conv.py 68.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15 16 17 18 19 20 21
from paddle import _C_ops, _legacy_C_ops, get_flags, in_dynamic_mode
from paddle.device import (
    get_all_custom_device_type,
    is_compiled_with_cuda,
    is_compiled_with_npu,
    is_compiled_with_rocm,
)
22
from paddle.fluid.framework import _global_flags, in_dygraph_mode
23
from paddle.tensor.math import _add_with_axis
24

25
from ...common_ops_import import Variable
L
LielinJiang 已提交
26
from ...device import get_cudnn_version
27 28
from ...fluid.data_feeder import check_dtype, check_variable_and_dtype
from ...fluid.layer_helper import LayerHelper
29 30 31
from ...fluid.layers.utils import (
    _contain_var,
    _convert_to_tensor_list,
32 33
    _is_symmetric_padding,
    convert_to_list,
34
)
35
from ...framework import no_grad
36
from ...tensor.manipulation import squeeze, unsqueeze
37

38 39
__all__ = []

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
    else:
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]


def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_


def _update_padding_nd(padding, channel_last, num_dims):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
63 64 65 66
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".format(
                    padding
                )
            )
67 68 69 70 71 72 73 74 75 76 77 78 79 80
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
                raise ValueError(
                    "Non-zero padding({}) in the batch or channel dimensions "
81 82
                    "is not supported.".format(padding)
                )
83
            padding_algorithm = "EXPLICIT"
84
            padding = _exclude_padding_in_batch_and_channel(
85 86
                padding, channel_last
            )
87
            if _is_symmetric_padding(padding, num_dims):
88 89 90 91
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
92 93
            padding = convert_to_list(padding, 2 * num_dims, 'padding')
            if _is_symmetric_padding(padding, num_dims):
94 95 96 97
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
98
            padding = convert_to_list(padding, num_dims, 'padding')
99 100 101 102 103
        else:
            raise ValueError("In valid padding: {}".format(padding))
    # for integer padding
    else:
        padding_algorithm = "EXPLICIT"
104
        padding = convert_to_list(padding, num_dims, 'padding')
105 106
    if not all([p >= 0 for p in padding]):
        raise ValueError(
107 108 109 110
            "Invalid padding, all value should be larger than or equal to 0, but received: {}".format(
                padding
            )
        )
111 112 113
    return padding, padding_algorithm


114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
def _conv_nd(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    padding_algorithm=None,
    dilation=1,
    groups=1,
    data_format="NCHW",
    channel_dim=1,
    op_type="conv2d",
    use_cudnn=True,
    use_mkldnn=False,
    name=None,
):
L
LielinJiang 已提交
130

131
    # Due to the poor performance of NHWC, we transpose the input to NCHW.
H
hong 已提交
132
    if in_dygraph_mode() and op_type == "conv2d":
133 134 135 136 137 138 139
        pre_bias = _C_ops.conv2d(
            x,
            weight,
            stride,
            padding,
            padding_algorithm,
            dilation,
140
            groups,
141 142
            data_format,
        )
H
hong 已提交
143
        if bias is not None:
W
wanghuancoder 已提交
144 145 146
            new_shape = [1] * len(x.shape)
            new_shape[channel_dim] = -1
            bias = bias.reshape(new_shape)
147
            # TODO(qili93): temporary for ascned npu performance to be removed along with npu_identity op
148
            if (
149
                _global_flags()['FLAGS_npu_storage_format']
150 151
                and 'npu' in get_all_custom_device_type()
            ):
152 153 154 155 156 157
                with no_grad():
                    bias_storage = _C_ops.npu_identity(
                        bias, 3
                    )  # ACL_FORMAT_NC1HWC0 = 3
                    bias_storage._share_underline_tensor_to(bias)
            return _C_ops.add(pre_bias, bias)
H
hong 已提交
158 159
        else:
            return pre_bias
160 161

    if in_dygraph_mode() and op_type == "depthwise_conv2d":
162 163 164 165 166 167 168 169 170 171
        pre_bias = _C_ops.depthwise_conv2d(
            x,
            weight,
            stride,
            padding,
            padding_algorithm,
            groups,
            dilation,
            data_format,
        )
172
        if bias is not None:
W
wanghuancoder 已提交
173 174 175 176
            new_shape = [1] * len(x.shape)
            new_shape[channel_dim] = -1
            bias = bias.reshape(new_shape)
            return _C_ops.add(pre_bias, bias)
177 178 179 180
        else:
            return pre_bias

    if in_dygraph_mode() and op_type == "conv3d":
181 182 183 184 185 186 187 188 189 190
        pre_bias = _C_ops.conv3d(
            x,
            weight,
            stride,
            padding,
            padding_algorithm,
            groups,
            dilation,
            data_format,
        )
191
        if bias is not None:
W
wanghuancoder 已提交
192 193 194 195
            new_shape = [1] * len(x.shape)
            new_shape[channel_dim] = -1
            bias = bias.reshape(new_shape)
            return _C_ops.add(pre_bias, bias)
196 197 198
        else:
            return pre_bias

Z
zhiboniu 已提交
199
    if in_dynamic_mode():
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
        attrs = (
            'strides',
            stride,
            'paddings',
            padding,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            'use_mkldnn',
            use_mkldnn,
            'fuse_relu_before_depthwise_conv',
            False,
            "padding_algorithm",
            padding_algorithm,
            "data_format",
            data_format,
        )
220
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
L
LielinJiang 已提交
221
        if bias is not None:
222
            out = _add_with_axis(pre_bias, bias, axis=channel_dim)
L
LielinJiang 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235
        else:
            out = pre_bias
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
236
            "data_format": data_format,
L
LielinJiang 已提交
237
        }
238 239 240
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], op_type
        )
L
LielinJiang 已提交
241 242 243 244
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        pre_bias = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [pre_bias]}
245 246 247
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
L
LielinJiang 已提交
248 249
        if bias is not None:
            out = helper.create_variable_for_type_inference(dtype)
250 251 252 253 254 255
            helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [bias]},
                outputs={'Out': [out]},
                attrs={'axis': channel_dim, 'use_mkldnn': use_mkldnn},
            )
L
LielinJiang 已提交
256 257 258 259 260
        else:
            out = pre_bias
    return out


261 262 263 264 265 266 267 268 269 270 271
def conv1d(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
    data_format='NCL',
    name=None,
):
272
    r"""
W
whs 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
    The convolution1D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCL format, where N is batch size, C is the number of
    channels, L is the length of the feature.
    Filter is in MCK format, where M is the number of output image channels,
    C is the number of input image channels, K is the size of the kernel.
    If the groups is greater than 1, C will equal the number of input image
    channels divided by the groups. If bias attribution and activation type
    are provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
288
        Out = \sigma (W \ast X + b)
W
whs 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314

    Where:

    * :math:`X`: Input value, a tensor with NCL format.
    * :math:`W`: Kernel value, a tensor with MCK format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

W
whs 已提交
315
            L_{out} = \frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1
W
whs 已提交
316 317

    Args:
318
        x (Tensor): The input is 3-D Tensor with shape [N, C, L], the data type
W
whs 已提交
319 320
            of input is float16 or float32 or float64.
        weight (Tensor): The convolution kernel with shape [M, C/g, K], where M is
321
            the number of output channels, g is the number of groups, K is the kernel's size.
W
whs 已提交
322
        bias (Tensor, optional): The bias with shape [M,]. Default: None.
323
        stride (int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
W
whs 已提交
324
            contain one integers, (stride_size). Default: 1.
325
        padding(int|str|tuple|list, optional): The padding size. Padding could be in one of the following forms.
W
whs 已提交
326 327 328 329 330 331
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            4. a list[int] or tuple[int] whose length is 2. It has the form  [pad_before, pad_after].
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
332
        dilation (int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
W
whs 已提交
333 334 335 336 337 338
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv1d function. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
339
        data_format (str, optional): Specify the data format of the input, and the data format of the output
W
whs 已提交
340 341 342
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, feature_length]`.
343 344
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
W
whs 已提交
345 346 347
           None by default.

    Returns:
348
        A tensor representing the conv1d, whose data type is the
W
whs 已提交
349 350 351 352 353 354 355
        same with input.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F
356

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
          x = paddle.to_tensor([[[4, 8, 1, 9],
                                 [7, 2, 0, 9],
                                 [6, 9, 2, 6]]], dtype="float32")
          w = paddle.to_tensor([[[9, 3, 4],
                                 [0, 0, 7],
                                 [2, 5, 6]],
                                [[0, 3, 4],
                                 [2, 9, 7],
                                 [5, 6, 8]]], dtype="float32")

          y = F.conv1d(x, w)
          print(y)
          # Tensor(shape=[1, 2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
          #        [[[133., 238.],
          #          [160., 211.]]])
W
whs 已提交
372 373 374 375 376 377 378 379
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ["NCL", "NLC"]:
380 381 382 383
        raise ValueError(
            "Attr(data_format) should be 'NCL' or 'NLC'. "
            "Received Attr(data_format): {}.".format(data_format)
        )
W
whs 已提交
384

385
    channel_last = data_format == "NLC"
W
whs 已提交
386 387
    channel_dim = -1 if channel_last else 1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"
388 389
    if len(x.shape) != 3:
        raise ValueError(
390 391 392 393
            "Input x should be 3D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
W
whs 已提交
394 395 396
    num_channels = x.shape[channel_dim]
    num_filters = weight.shape[0]
    if num_channels < 0:
397 398 399 400
        raise ValueError(
            "The channel dimension of the input({}) "
            "should be defined. Received: {}.".format(x.shape, num_channels)
        )
401 402
    if groups <= 0:
        raise ValueError(
403 404 405 406
            "The groups of conv1d should be greater than 0. Received groups: {}".format(
                groups
            )
        )
W
whs 已提交
407 408 409 410
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
411 412
            ", the groups is {}".format(num_channels, x.shape, groups)
        )
W
whs 已提交
413 414 415 416
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
417 418
            ", the groups is {}".format(num_filters, weight.shape, groups)
        )
W
whs 已提交
419 420 421

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)
422

W
whs 已提交
423
    if len(padding) == 2:
424
        padding = [0] * 2 + padding
W
whs 已提交
425
    elif len(padding) == 1:
426
        padding = [0] + padding
W
whs 已提交
427 428
    else:
        raise ValueError(
429 430 431 432
            "The size of padding's dimension should be 1 or 2. But got padding={}".format(
                padding
            )
        )
433 434 435
    stride = [1] + convert_to_list(stride, 1, 'stride')
    dilation = [1] + convert_to_list(dilation, 1, 'dilation')
    weight = unsqueeze(weight, axis=[-2])
W
whs 已提交
436 437

    l_type = "conv2d"
438 439

    # When "groups==num_channels and num_filters% num_channels == 0" using depthwise_conv2d has better performance
440 441 442 443 444 445
    if (
        is_compiled_with_cuda()
        and num_channels == groups
        and num_channels != 1
        and num_filters % num_channels == 0
    ):
W
whs 已提交
446 447 448
        l_type = 'depthwise_conv2d'
        use_cudnn = False

449
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
Z
zhiboniu 已提交
450
    if is_compiled_with_npu():
451
        if num_channels == groups and num_channels == num_filters:
452 453 454 455
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

456
    squeeze_aixs = -3 if channel_last else -2
457
    x = unsqueeze(x, axis=[squeeze_aixs])
458

459
    if in_dygraph_mode():
460 461 462 463 464 465 466 467 468 469 470 471
        if l_type == 'conv2d':
            out = _C_ops.conv2d(
                x,
                weight,
                stride,
                padding,
                padding_algorithm,
                dilation,
                groups,
                conv2d_data_format,
            )
        else:
472
            out = _C_ops.depthwise_conv2d(
473 474 475 476 477 478 479 480 481 482 483 484 485
                x,
                weight,
                stride,
                padding,
                padding_algorithm,
                groups,
                dilation,
                conv2d_data_format,
                False,
                -1,
                False,
                False,
            )
486
        if bias is not None:
487
            out = _add_with_axis(out, bias, axis=channel_dim)
W
whs 已提交
488 489 490 491 492 493 494 495 496 497 498
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
499
            "data_format": conv2d_data_format,
W
whs 已提交
500
        }
501 502 503
        check_variable_and_dtype(
            x, 'input', ['float16', 'float32', 'float64'], 'conv2d'
        )
W
whs 已提交
504
        helper = LayerHelper(l_type, **locals())
505
        dtype = helper.input_dtype(input_param_name='x')
W
whs 已提交
506 507
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
508 509 510
        helper.append_op(
            type=l_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
W
whs 已提交
511
        if bias is not None:
512
            out = _add_with_axis(out, bias, axis=channel_dim)
513
    out = squeeze(out, axis=[squeeze_aixs])
W
whs 已提交
514 515 516
    return out


517 518 519 520 521 522 523 524 525 526 527
def conv2d(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
    data_format="NCHW",
    name=None,
):
528
    r"""
S
swtkiwi 已提交
529

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
    channels, H is the height of the feature, and W is the width of the feature.
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

547
    ..  math::
548

549
        Out = \sigma (W \ast X + b)
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573

    Where:

    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

574
        ..  math::
575

576 577
            H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
578 579

    Args:
580
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W], the data type
581
            of input is float16 or float32 or float64.
582
        weight (Tensor): The convolution kernel with shape [M, C/g, kH, kW], where M is
583
            the number of output channels, g is the number of groups, kH is the filter's
584
            height, kW is the filter's width.
585
        bias (Tensor, optional): The bias with shape [M,].
586
        stride (int|list|tuple, optional): The stride size. It means the stride in convolution.
587
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width).
588
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
589
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings
590 591 592
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
593 594
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0],
595
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
596
            when `data_format` is `"NHWC"`, `padding` can be in the form
597 598
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
599
        dilation (int|list|tuple, optional): The dilation size. It means the spacing between the kernel
600 601
            points. If dilation is a list/tuple, it must contain two integers, (dilation_height,
            dilation_width). Otherwise, dilation_height = dilation_width = dilation.
602
            Default: dilation = 1.
603
        groups (int, optional): The groups number of the Conv2D Layer. According to grouped
604 605 606 607
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
608
        data_format (str, optional): Specify the data format of the input, and the data format of the output
609 610 611
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
612 613
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
614 615 616
           None by default.

    Returns:
617
        A Tensor representing the conv2d result, whose data type is the same with input.
618 619 620 621

    Examples:
        .. code-block:: python

622
          import paddle
623 624
          import paddle.nn.functional as F

625 626
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((6, 3, 3, 3), dtype='float32')
627 628 629

          y_var = F.conv2d(x_var, w_var)

630 631
          print(y_var.shape)
          # [2, 6, 6, 6]
632 633 634
    """
    # entry checks
    if data_format not in ["NCHW", "NHWC"]:
635 636 637 638
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. "
            "Received Attr(data_format): {}.".format(data_format)
        )
639

640
    channel_last = data_format == "NHWC"
641
    channel_dim = -1 if channel_last else 1
642 643
    if len(x.shape) != 4:
        raise ValueError(
644 645 646 647
            "Input x should be 4D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
648
    num_channels = x.shape[channel_dim]
649 650
    num_filters = weight.shape[0]
    if num_channels < 0:
651 652 653 654
        raise ValueError(
            "The channel dimension of the input({}) "
            "should be defined. Received: {}.".format(x.shape, num_channels)
        )
655 656
    if groups <= 0:
        raise ValueError(
657 658 659 660
            "The groups of conv2d should be greater than 0. Received groups: {}".format(
                groups
            )
        )
661 662 663 664
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
665 666
            ", the groups is {}".format(num_channels, x.shape, groups)
        )
667 668 669 670
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
671 672
            ", the groups is {}".format(num_filters, weight.shape, groups)
        )
673

674 675
    cudnn_version = get_cudnn_version()

676 677 678 679 680
    use_cudnn = (
        True
        if (is_compiled_with_cuda() and cudnn_version is not None)
        else False
    )
681

682 683
    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
684 685
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
686 687

    l_type = "conv2d"
688 689 690 691 692
    if (
        num_channels == groups
        and num_channels != 1
        and num_filters % num_channels == 0
    ):
693
        l_type = 'depthwise_conv2d'
Z
zhiboniu 已提交
694
        if is_compiled_with_rocm():
695 696 697
            use_cudnn = True
        else:
            use_cudnn = False
H
hong 已提交
698 699
    else:
        if in_dygraph_mode():
700 701 702 703 704 705 706
            pre_bias = _C_ops.conv2d(
                x,
                weight,
                stride,
                padding,
                padding_algorithm,
                dilation,
707
                groups,
708 709
                data_format,
            )
H
hong 已提交
710
            if bias is not None:
711 712 713 714 715 716 717 718 719 720 721 722 723
                channel_dim = (
                    channel_dim + len(x.shape)
                    if channel_dim < 0
                    else channel_dim
                )
                if len(bias.shape) < len(x.shape):
                    bias = _C_ops.reshape(
                        bias,
                        [1 for i in range(channel_dim)]
                        + bias.shape
                        + [1 for i in range(len(x.shape) - channel_dim - 1)],
                    )
                # TODO(qili93): temporary for ascned npu performance to be removed along with npu_identity op
724
                if (
725
                    _global_flags()['FLAGS_npu_storage_format']
726 727
                    and 'npu' in get_all_custom_device_type()
                ):
728 729 730 731 732 733
                    with no_grad():
                        bias_storage = _C_ops.npu_identity(
                            bias, 3
                        )  # ACL_FORMAT_NC1HWC0 = 3
                        bias_storage._share_underline_tensor_to(bias)
                return _C_ops.add(pre_bias, bias)
H
hong 已提交
734 735 736 737
            else:
                return pre_bias

    use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
738

739
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
Z
zhiboniu 已提交
740
    if is_compiled_with_npu():
741
        if num_channels == groups and num_channels == num_filters:
742 743 744 745
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

746 747 748 749 750 751
    if (
        is_compiled_with_cuda()
        and get_flags("FLAGS_conv2d_disable_cudnn")[
            "FLAGS_conv2d_disable_cudnn"
        ]
    ):
752
        use_cudnn = False
753

754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
    return _conv_nd(
        x,
        weight,
        bias,
        stride,
        padding,
        padding_algorithm,
        dilation,
        groups,
        data_format,
        channel_dim,
        l_type,
        use_cudnn,
        use_mkldnn,
        name,
    )


def conv1d_transpose(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    output_padding=0,
    groups=1,
    dilation=1,
    output_size=None,
    data_format="NCL",
    name=None,
):
785
    r"""
786 787 788 789 790 791 792 793 794 795 796 797 798 799
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
800
        Out = \sigma (W \ast X + b)
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' or 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

827
           L^\prime_{out} &= (L_{in} - 1) * stride - 2 * padding + dilation * (L_f - 1) + 1 \\
828 829 830 831 832 833 834 835
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
836
          and :math:`L^\prime_{out} + stride`.
837 838 839 840 841 842 843 844 845

    Args:
        x(Tensor): 3-D tensor with [N, C, L] or [N, L, C] format,
                         its data type is float32 or float64.
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, K],
            where M is the number of output channels(filters), g is the number of groups,
            K is the size of the kernel.
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
846
            If stride is a list/tuple, it must contain one integer, `(stride_size)`.
847 848 849 850 851 852 853
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
854
             If it is a list/tuple, it must contain one integer. Default: 0.
855 856 857 858 859 860 861
        groups(int, optional): The groups number of the conv1d transpose function. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
862
            If dilation is a list/tuple, it must contain one integer, `(dilation_size)`.
863 864
            Default: dilation = 1.
        output_size(int|tuple|list, optional): The output image size. If output size is a
865
            tuple/list, it must contain one integer, `(feature_length)`. None if use
866
            filter_size(shape of weight), padding, and stride to calculate output_size.
867
        data_format (str, optional): Specify the data format of the input, and the data format of the output
868 869 870
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, input_length]`.
871 872
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
873 874 875 876 877 878 879 880 881 882 883 884 885
           None by default.

    Returns:
        A  tensor representing the result of 1-D transpose convolution, whose
        data type is the same with input. And its shape is (num_batches, channels, length)
        when data_format is `"NCL"` and (num_batches, length, channels) when data_format is
        `"NLC"`.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F
886

887
          # shape: (1, 2, 4)
888 889
          x = paddle.to_tensor([[[4, 0, 9, 7],
                                [8, 0, 9, 2,]]], dtype="float32")
890
          # shape: (2, 1, 2)
891 892 893 894 895 896 897
          w = paddle.to_tensor([[[7, 0]],
                                [[4, 2]]], dtype="float32")

          y = F.conv1d_transpose(x, w)
          print(y)
          # Tensor(shape=[1, 1, 5], dtype=float32, place=Place(gpu:0), stop_gradient=True,
          #        [[[60., 16., 99., 75., 4. ]]])
898 899 900 901 902 903 904 905 906 907 908
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ['NCL', 'NLC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCL' or 'NLC' are supported.".format(
909 910 911 912
                data_format
            )
        )
    channel_last = data_format == "NLC"
913
    channel_dim = -1 if channel_last else 1
914 915
    if len(x.shape) != 3:
        raise ValueError(
916 917 918 919
            "Input x should be 3D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
920 921 922

    num_channels = x.shape[channel_dim]
    if num_channels < 0:
923 924 925 926
        raise ValueError(
            "The channel dimension of the input({}) "
            "should be defined. Received: {}.".format(x.shape, num_channels)
        )
927 928
    if groups <= 0:
        raise ValueError(
929 930 931 932
            "The groups of conv1d_transpose should be greater than 0. Received groups: {}".format(
                groups
            )
        )
933 934 935 936
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
937 938
            ", the groups is {}".format(num_channels, x.shape, groups)
        )
939 940 941 942 943 944 945 946 947 948

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)

    if len(padding) == 2:
        padding = padding + [0] * 2
    elif len(padding) == 1:
        padding = padding + [0]
    else:
        raise ValueError(
949 950 951 952
            "The size of padding's dimension should 1 or 2. But got padding={}".format(
                padding
            )
        )
953

954 955
    stride = convert_to_list(stride, 1, 'stride') + [1]
    dilation = convert_to_list(dilation, 1, 'dilation') + [1]
956 957 958 959

    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
960
        if output_padding != 0:
961 962 963 964
            raise ValueError(
                'output_padding option is mutually exclusive with '
                'output_size'
            )
L
LielinJiang 已提交
965
        if isinstance(output_size, (list, tuple, int)):
966
            output_size = convert_to_list(output_size, 1, 'output_size') + [1]
L
LielinJiang 已提交
967 968
        else:
            raise ValueError(
969 970
                "output_size should be int, or list, tuple of ints"
            )
L
LielinJiang 已提交
971 972 973 974

    if output_padding == 0:
        output_padding = []
    else:
975 976 977
        output_padding = convert_to_list(
            output_padding, 1, 'output_padding'
        ) + [0]
L
LielinJiang 已提交
978 979 980 981

    if len(output_padding) > 0 and output_padding[0] > stride[0]:
        raise ValueError(
            "The size of output_padding should not be greater than stride."
982
            "But got output_padding={} and stride={}".format(
983 984 985
                output_padding[0], stride[0]
            )
        )
986

987 988 989 990 991 992 993
    if len(weight.shape) != 3:
        raise ValueError(
            'Input weight should be 3D tensor, but received weight with the shape of {}'.format(
                weight.shape
            )
        )

994 995
    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
996 997 998 999 1000 1001
    if (
        num_channels == groups
        and num_channels != 1
        and num_filters == 1
        and not use_cudnn
    ):
1002 1003 1004 1005 1006 1007
        op_type = 'depthwise_conv2d_transpose'
        use_cudnn = False

    squeeze_axis = -2 if channel_last else -1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"

1008 1009
    x = unsqueeze(x, axis=[squeeze_axis])
    weight = unsqueeze(weight, axis=[-1])
1010

1011
    if in_dygraph_mode():
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
        out = getattr(_C_ops, op_type)(
            x,
            weight,
            stride,
            padding,
            output_padding,
            output_size,
            padding_algorithm,
            groups,
            dilation,
            conv2d_data_format,
        )
1024
        if bias is not None:
1025
            out = _add_with_axis(out, bias, axis=channel_dim)
1026 1027 1028
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
L
LielinJiang 已提交
1029
            'output_padding': output_padding,
1030 1031 1032 1033 1034 1035 1036
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
1037
            'data_format': conv2d_data_format,
1038
        }
1039 1040 1041
        check_variable_and_dtype(
            x, 'input', ['float16', 'float32', 'float64'], 'conv2d_transpose'
        )
1042
        helper = LayerHelper(op_type, **locals())
1043
        dtype = helper.input_dtype(input_param_name='x')
1044 1045
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
1046 1047 1048
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
1049
        if bias is not None:
1050
            out = _add_with_axis(out, bias, axis=channel_dim)
1051

1052
    out = squeeze(out, axis=[squeeze_axis])
1053 1054 1055
    return out


1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
def conv2d_transpose(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    output_padding=0,
    dilation=1,
    groups=1,
    output_size=None,
    data_format='NCHW',
    name=None,
):
1069
    r"""
S
swtkiwi 已提交
1070

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW or NHWC format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
1082
    See more detail in :ref:`api_nn_conv_ConvTranspose2d` .
1083 1084 1085

    For each input :math:`X`, the equation is:

1086
    ..  math::
1087

1088
        Out = \sigma (W \ast X + b)
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112

    Where:

    * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a 4-D Tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

1113
        ..  math::
1114

1115 1116 1117
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\
1118 1119 1120
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]

    Note:
1121 1122
          The conv2d_transpose can be seen as the backward of the conv2d. For conv2d,
          when stride > 1, conv2d maps multiple input shape to the same output shape,
1123
          so for conv2d_transpose, when stride > 1, input shape maps multiple output shape.
1124 1125 1126
          If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`;
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must
1127
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`.
1128 1129

    Args:
L
LielinJiang 已提交
1130
        x(Tensor): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format,
1131
            whose data type is float32 or float64.
L
LielinJiang 已提交
1132
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, kH, kW],
1133 1134
            where M is the number of output channels(filters), g is the number of groups,
            kH is the height of the kernel, and kW is the width of the kernel.
L
LielinJiang 已提交
1135
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
1136 1137
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution.
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width).
L
LielinJiang 已提交
1138
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
1139 1140
        padding(str|int|list|tuple, optional): The padding size. It means the number of zero-paddings
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
1141
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
1142
            it could be in three forms: `[pad_height, pad_width]` or
1143
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
1144
            and when `data_format` is `"NCHW"`, `padding` can be in the form
1145
            `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
1146
            when `data_format` is `"NHWC"`, `padding` can be in the form
1147 1148
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
1149 1150
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
1151
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
1152 1153 1154 1155 1156
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
1157 1158
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points.
            If dilation is a list/tuple, it must contain two integers, (dilation_height, dilation_width).
1159
            Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1.
L
LielinJiang 已提交
1160
        output_size(int|tuple|list, optional): The output image size. If output size is a
1161
            tuple/list, it must contain two integers, (image_height, image_width). None if use
1162
            filter_size(shape of weight), padding, and stride to calculate output_size.
1163
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1164 1165 1166
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
1167 1168
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
1169 1170 1171
           None by default.

    Returns:
1172
        A Tensor representing the conv2d_transpose, whose
1173 1174
        data type is the same with input and shape is (num_batches, channels, out_h,
        out_w) or (num_batches, out_h, out_w, channels). The tensor variable storing
L
LielinJiang 已提交
1175
        transposed convolution result.
1176 1177 1178 1179

    Examples:
        .. code-block:: python

L
LielinJiang 已提交
1180 1181
          import paddle
          import paddle.nn.functional as F
1182

1183 1184
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
1185

1186
          y_var = F.conv2d_transpose(x_var, w_var)
1187

1188 1189
          print(y_var.shape)
          # [2, 6, 10, 10]
1190 1191 1192 1193 1194 1195
    """

    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCHW' or 'NHWC' are supported.".format(
1196 1197 1198 1199
                data_format
            )
        )
    channel_last = data_format == "NHWC"
1200
    channel_dim = -1 if channel_last else 1
1201 1202
    if len(x.shape) != 4:
        raise ValueError(
1203 1204 1205 1206
            "Input x should be 4D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
L
LielinJiang 已提交
1207
    num_channels = x.shape[channel_dim]
1208
    if num_channels < 0:
1209 1210 1211 1212
        raise ValueError(
            "The channel dimension of the input({}) "
            "should be defined. Received: {}.".format(x.shape, num_channels)
        )
1213 1214
    if groups <= 0:
        raise ValueError(
1215 1216 1217 1218
            "The groups of conv2d_transpose should be greater than 0. Received groups: {}".format(
                groups
            )
        )
1219 1220 1221 1222
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
1223 1224
            ", the groups is {}".format(num_channels, x.shape, groups)
        )
L
LielinJiang 已提交
1225 1226 1227

    cudnn_version = get_cudnn_version()

1228 1229 1230 1231 1232
    use_cudnn = (
        True
        if (is_compiled_with_cuda() and cudnn_version is not None)
        else False
    )
1233 1234 1235

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
1236 1237
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
L
LielinJiang 已提交
1238

1239 1240 1241
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1242
        if output_padding != 0:
1243 1244 1245 1246
            raise ValueError(
                'output_padding option is mutually exclusive with '
                'output_size'
            )
1247 1248 1249 1250 1251 1252
        if isinstance(output_size, (list, tuple)):
            if _contain_var(output_size):
                output_size = _convert_to_tensor_list(output_size)
            else:
                output_size = convert_to_list(output_size, 2, 'output_size')
        elif isinstance(output_size, int):
1253
            output_size = convert_to_list(output_size, 2, 'output_size')
1254
        elif isinstance(output_size, Variable):
1255 1256 1257 1258 1259 1260 1261 1262 1263
            check_dtype(
                output_size.dtype,
                'output_size',
                ['int32', 'int64'],
                'conv2d_transpose',
            )
            if len(output_size.shape) == 1 and (
                output_size.shape[0] == 1 or output_size.shape[0] == 2
            ):
1264 1265 1266 1267
                if output_size.shape[0] == 1:
                    output_size = [output_size, output_size]
            else:
                raise ValueError(
1268 1269
                    "output_size must contain one or two integers."
                )
L
LielinJiang 已提交
1270 1271
        else:
            raise ValueError(
1272 1273
                "output_size should be int or Tensor or list, tuple of ints or Tensor"
            )
L
LielinJiang 已提交
1274 1275 1276 1277

    if output_padding == 0:
        output_padding = []
    else:
1278
        output_padding = convert_to_list(output_padding, 2, 'output_padding')
1279 1280 1281

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
1282
    if num_channels == groups and num_channels != 1 and num_filters == 1:
1283
        op_type = 'depthwise_conv2d_transpose'
L
LielinJiang 已提交
1284
        use_cudnn = False
1285

F
From00 已提交
1286
    if in_dygraph_mode():
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
        op = (
            _C_ops.conv2d_transpose
            if op_type == 'conv2d_transpose'
            else _C_ops.depthwise_conv2d_transpose
        )
        pre_bias = op(
            x,
            weight,
            stride,
            padding,
            output_padding,
            output_size,
            padding_algorithm,
            groups,
            dilation,
            data_format,
        )
F
From00 已提交
1304
        if bias is not None:
1305
            return _add_with_axis(pre_bias, bias, axis=channel_dim)
F
From00 已提交
1306 1307
        else:
            return pre_bias
1308
    else:
L
LielinJiang 已提交
1309
        inputs = {'Input': [x], 'Filter': [weight]}
1310
        attrs = {
L
LielinJiang 已提交
1311
            'output_padding': output_padding,
1312 1313 1314 1315 1316 1317 1318
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
1319
            'data_format': data_format,
1320
        }
1321 1322 1323
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'conv2d_transpose'
        )
1324
        helper = LayerHelper(op_type, **locals())
L
LielinJiang 已提交
1325
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1326
        outputs = {"Output": [pre_bias]}
1327 1328 1329
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
L
LielinJiang 已提交
1330

1331
        if bias is not None:
1332
            out = _add_with_axis(pre_bias, bias, axis=channel_dim)
1333
        else:
L
LielinJiang 已提交
1334 1335
            out = pre_bias

1336 1337 1338
    return out


1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
def conv3d(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
    data_format="NCDHW",
    name=None,
):
1350
    r"""
S
swtkiwi 已提交
1351

1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are in NCDHW or NDHWC format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

1363
    ..  math::
1364

1365
        Out = \sigma (W \ast X + b)
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1389
        ..  math::
1390

1391 1392 1393
            D_{out}&= \frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\
            H_{out}&= \frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\
            W_{out}&= \frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1
1394 1395

    Args:
1396
        x (Tensor): The input is 5-D Tensor with shape [N, C, D, H, W], the data
1397
            type of input is float16 or float32 or float64.
1398
        weight (Tensor): The convolution kernel, a Tensor with shape [M, C/g, kD, kH, kW],
1399 1400
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
1401
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
1402 1403
        stride (int|list|tuple, optional): The stride size. It means the stride in convolution. If stride is a
            list/tuple, it must contain three integers, (stride_depth, stride_height, stride_width).
1404
            Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1.
1405
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings
1406 1407 1408 1409
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1410
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1411
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1412
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1413 1414
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
1415
        dilation (int|list|tuple, optional): The dilation size. It means the spacing between the kernel points.
1416
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height,
1417
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation.
1418
            Default: dilation = 1.
1419
        groups (int, optional): The groups number of the Conv3D Layer. According to grouped
1420 1421 1422 1423
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
1424
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1425 1426 1427
            will be consistent with that of the input. An optional string from: `"NCDHW"`, `"NDHWC"`.
            The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_depth, input_height, input_width]`.
1428 1429
        name(str|None, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
1430 1431 1432
           None by default.

    Returns:
1433 1434 1435
        A Tensor representing the conv3d, whose data type is
        the same with input. If act is None, the tensor storing the
        convolution result, and if act is not None, the tensor storing
1436 1437 1438 1439 1440
        convolution and non-linearity activation result.

    Examples:
        .. code-block:: python

1441 1442
            import paddle
            import paddle.nn.functional as F
1443

1444 1445
            x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
            w_var = paddle.randn((6, 3, 3, 3, 3), dtype='float32')
1446

1447
            y_var = F.conv3d(x_var, w_var)
1448

1449 1450
            print(y_var.shape)
            # [2, 6, 6, 6, 6]
1451 1452 1453 1454 1455
    """
    # entry check
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
1456 1457
            "Attr(data_format): {}.".format(data_format)
        )
1458

1459
    channel_last = data_format == "NDHWC"
1460
    channel_dim = -1 if channel_last else 1
1461 1462
    if len(x.shape) != 5:
        raise ValueError(
1463 1464 1465 1466
            "Input x should be 5D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
1467
    num_channels = x.shape[channel_dim]
1468 1469 1470
    num_filters = weight.shape[0]
    if num_channels < 0:
        raise ValueError(
1471
            "The channel dimension of the input({}) should be defined. "
1472 1473
            "Received: {}.".format(x.shape, num_channels)
        )
1474 1475
    if groups <= 0:
        raise ValueError(
1476 1477 1478 1479
            "The groups of conv3d should be greater than 0. Received groups: {}".format(
                groups
            )
        )
1480 1481 1482
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
1483
            "Received: number of channels({}), groups({}).".format(
1484 1485 1486
                num_channels, groups
            )
        )
1487 1488 1489
    if num_filters % groups != 0:
        raise ValueError(
            "The number of filters must be divisible by Attr(groups). "
1490
            "Received: number of filters({}), groups({}).".format(
1491 1492 1493
                num_filters, groups
            )
        )
1494

1495
    cudnn_version = get_cudnn_version()
1496 1497 1498 1499 1500
    use_cudnn = (
        True
        if (is_compiled_with_cuda() and cudnn_version is not None)
        else False
    )
1501

1502
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1503 1504
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1505 1506
    op_type = "conv3d"

1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
    return _conv_nd(
        x,
        weight,
        bias,
        stride,
        padding,
        padding_algorithm,
        dilation,
        groups,
        data_format,
        channel_dim,
        op_type,
        use_cudnn,
        False,
        name,
    )


def conv3d_transpose(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    output_padding=0,
    groups=1,
    dilation=1,
    output_size=None,
    data_format='NCDHW',
    name=None,
):
1538
    r"""
L
LielinJiang 已提交
1539
    The convolution3d transpose layer calculates the output based on the input,
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
1550
    See more detail in :ref:`api_nn_conv_ConvTranspose3d` .
1551 1552 1553

    For each input :math:`X`, the equation is:

1554
    ..  math::
1555

1556
        Out = \sigma (W \ast X + b)
1557 1558 1559 1560

    In the above equation:

    * :math:`X`: Input value, a Tensor with NCDHW or NDHWC format.
1561 1562
    * :math:`W`: Filter value, a Tensor with NCDHW format.
    * :math:`\ast`: Convolution operation.
1563
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
1564
    * :math:`\sigma`: Activation function.
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1581
        ..  math::
1582

1583 1584 1585 1586 1587
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\
1588 1589 1590
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ]

    Note:
1591 1592 1593 1594 1595 1596 1597 1598 1599
        The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
        when stride > 1, conv3d maps multiple input shape to the same output shape,
        so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
        If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`;
        else, the :math:`D_{out}` of the output size must between :math:`D^\prime_{out}` and
        :math:`D^\prime_{out} + strides[0]`, the :math:`H_{out}` of the output size must
        between :math:`H^\prime_{out}` and :math:`H^\prime_{out} + strides[1]`, and the
        :math:`W_{out}` of the output size must between :math:`W^\prime_{out}` and
        :math:`W^\prime_{out} + strides[2]`.
1600 1601

    Args:
1602
        x (Tensor): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type
1603
            of input is float32 or float64.
L
LielinJiang 已提交
1604
        weight (Tensor): The convolution kernel, a Tensor with shape [C, M/g, kD, kH, kW],
1605
            where M is the number of filters (output channels), g is the number of groups,
1606
            kD, kH, kW are the filter's depth, height and width respectively.
1607 1608
        bias (Tensor, optional): The bias, a Tensor of shape [M, ]. Default: None.
        stride (int|list|tuple, optional): The stride size. It means the stride in transposed convolution.
1609 1610
            If stride is a list/tuple, it must contain three integers, (stride_depth, stride_height,
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride.
1611 1612
            Default: 1.
        padding (str|int|list|tuple, optional): The padding size. It means the number of zero-paddings
1613 1614 1615
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
1616
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1617
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1618
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1619
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1620
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
1621 1622
            Default: 0.
        output_padding (int|list|tuple, optional): Additional size added to one side
L
LielinJiang 已提交
1623
            of each dimension in the output shape. Default: 0.
1624 1625 1626
        groups (int, optional): The groups number of the Conv3D transpose layer. Inspired by
            grouped convolution in `Alex Krizhevsky's Deep CNN paper <https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf>`_, in which
            when groups = 2, the first half of the filters is only connected to the
1627 1628
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
1629 1630
            Default: 1.
        dilation (int|list|tuple, optional): The dilation size. It means the spacing between the kernel points.
1631 1632
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height,
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation.
1633 1634
            Default: 1.
        output_size (int|list|tuple, optional): The output image size. If output size is a
1635
            list/tuple, it must contain three integers, (image_depth, image_height, image_width).
1636
            None if use filter_size(shape of weight), padding, and stride to calculate output_size.
1637
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1638
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
1639 1640 1641 1642 1643
            When it is `"NCHW"`, the data is stored in the order of: `[batch_size, input_channels, input_height, input_width]`.
            Default: `"NCHW"`.
        name (str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set.
           Default: None.
1644 1645

    Returns:
1646
        A Tensor representing the conv3d_transpose, whose data
1647 1648 1649
        type is the same with input and shape is (num_batches, channels, out_d, out_h,
        out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor
        variable storing the transposed convolution result, and if act is not None, the tensor
1650 1651 1652 1653
        variable storing transposed convolution and non-linearity activation result.

    Examples:
       .. code-block:: python
1654

L
LielinJiang 已提交
1655
          import paddle
1656 1657
          import paddle.nn.functional as F

1658 1659
          x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3, 3), dtype='float32')
1660

1661
          y_var = F.conv3d_transpose(x_var, w_var)
1662

1663 1664
          print(y_var.shape)
          # [2, 6, 10, 10, 10]
1665 1666 1667 1668 1669
    """
    # entry checks
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
1670 1671
            "Attr(data_format): {}.".format(data_format)
        )
1672

1673
    channel_last = data_format == "NDHWC"
1674
    channel_dim = -1 if channel_last else 1
1675 1676
    if len(x.shape) != 5:
        raise ValueError(
1677 1678 1679 1680
            "Input x should be 5D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
L
LielinJiang 已提交
1681
    num_channels = x.shape[channel_dim]
1682 1683 1684
    num_filters = weight.shape[1]
    if num_channels < 0:
        raise ValueError(
1685
            "The channel dimension of the input({}) should be defined. "
1686 1687
            "Received: {}.".format(x.shape, num_channels)
        )
1688 1689
    if groups <= 0:
        raise ValueError(
1690 1691 1692 1693
            "The groups of conv3d_transpose should be greater than 0. Received groups: {}".format(
                groups
            )
        )
1694 1695 1696
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
1697
            "Received: number of channels({}), groups({}).".format(
1698 1699 1700
                num_channels, groups
            )
        )
1701 1702

    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1703 1704
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1705 1706 1707
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1708
        if output_padding != 0:
1709 1710 1711 1712
            raise ValueError(
                'output_padding option is mutually exclusive with '
                'output_size'
            )
L
LielinJiang 已提交
1713
        if isinstance(output_size, (list, tuple, int)):
1714
            output_size = convert_to_list(output_size, 3, 'output_size')
L
LielinJiang 已提交
1715 1716
        else:
            raise ValueError(
1717 1718
                "output_size should be int, or list, tuple of ints"
            )
L
LielinJiang 已提交
1719 1720 1721 1722

    if output_padding == 0:
        output_padding = []
    else:
1723
        output_padding = convert_to_list(output_padding, 3, 'output_padding')
L
LielinJiang 已提交
1724 1725 1726

    cudnn_version = get_cudnn_version()

1727 1728 1729 1730 1731 1732
    # TODO(LielinJiang): whether to use cudnn according to the version of cudnn
    use_cudnn = (
        True
        if (is_compiled_with_cuda() and cudnn_version is not None)
        else False
    )
1733 1734 1735 1736

    op_type = 'conv3d_transpose'
    data_format_ = "NHWC" if channel_last else "NCHW"

F
From00 已提交
1737
    if in_dygraph_mode():
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
        pre_bias = _C_ops.conv3d_transpose(
            x,
            weight,
            stride,
            padding,
            output_padding,
            output_size,
            padding_algorithm,
            groups,
            dilation,
            data_format_,
        )
F
From00 已提交
1750
        if bias is not None:
1751
            return _add_with_axis(pre_bias, bias, axis=channel_dim)
F
From00 已提交
1752 1753
        else:
            return pre_bias
1754
    else:
L
LielinJiang 已提交
1755
        inputs = {'Input': [x], 'Filter': [weight]}
1756
        attrs = {
L
LielinJiang 已提交
1757
            'output_padding': output_padding,
1758 1759 1760 1761 1762 1763 1764
            'output_size': output_size,
            'paddings': padding,
            "padding_algorithm": padding_algorithm,
            'strides': stride,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
1765
            "data_format": data_format_,
1766 1767
        }
        helper = LayerHelper(op_type, **locals())
1768 1769 1770
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'conv3d'
        )
1771

L
LielinJiang 已提交
1772
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1773 1774
        outputs = {"Output": [pre_bias]}

1775 1776 1777
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
1778
        if bias is not None:
1779
            out = _add_with_axis(pre_bias, bias, axis=channel_dim)
1780
        else:
L
LielinJiang 已提交
1781
            out = pre_bias
1782 1783

    return out