conv.py 71.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15 16 17 18 19 20 21 22 23 24 25 26 27
from paddle import _C_ops, _legacy_C_ops, get_flags, in_dynamic_mode
from paddle.device import (
    get_all_custom_device_type,
    is_compiled_with_cuda,
    is_compiled_with_npu,
    is_compiled_with_rocm,
)
from paddle.fluid.framework import (
    _global_flags,
    _in_legacy_dygraph,
    in_dygraph_mode,
)

L
LielinJiang 已提交
28
from ...device import get_cudnn_version
29 30 31
from ...fluid.data_feeder import check_dtype, check_variable_and_dtype
from ...fluid.layer_helper import LayerHelper
from ...fluid.layers import nn
32 33 34
from ...fluid.layers.utils import (
    _contain_var,
    _convert_to_tensor_list,
35 36
    _is_symmetric_padding,
    convert_to_list,
37
)
38
from ...framework import no_grad
39 40
from ...static import Variable
from ...tensor.manipulation import squeeze, unsqueeze
41

42 43
__all__ = []

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
    else:
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]


def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_


def _update_padding_nd(padding, channel_last, num_dims):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
67 68 69 70
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".format(
                    padding
                )
            )
71 72 73 74 75 76 77 78 79 80 81 82 83 84
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
                raise ValueError(
                    "Non-zero padding({}) in the batch or channel dimensions "
85 86
                    "is not supported.".format(padding)
                )
87
            padding_algorithm = "EXPLICIT"
88
            padding = _exclude_padding_in_batch_and_channel(
89 90
                padding, channel_last
            )
91
            if _is_symmetric_padding(padding, num_dims):
92 93 94 95
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
96 97
            padding = convert_to_list(padding, 2 * num_dims, 'padding')
            if _is_symmetric_padding(padding, num_dims):
98 99 100 101
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
102
            padding = convert_to_list(padding, num_dims, 'padding')
103 104 105 106 107
        else:
            raise ValueError("In valid padding: {}".format(padding))
    # for integer padding
    else:
        padding_algorithm = "EXPLICIT"
108
        padding = convert_to_list(padding, num_dims, 'padding')
109 110
    if not all([p >= 0 for p in padding]):
        raise ValueError(
111 112 113 114
            "Invalid padding, all value should be larger than or equal to 0, but received: {}".format(
                padding
            )
        )
115 116 117
    return padding, padding_algorithm


118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
def _conv_nd(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    padding_algorithm=None,
    dilation=1,
    groups=1,
    data_format="NCHW",
    channel_dim=1,
    op_type="conv2d",
    use_cudnn=True,
    use_mkldnn=False,
    name=None,
):
L
LielinJiang 已提交
134

135
    # Due to the poor performance of NHWC, we transpose the input to NCHW.
H
hong 已提交
136
    if in_dygraph_mode() and op_type == "conv2d":
137 138 139 140 141 142 143
        pre_bias = _C_ops.conv2d(
            x,
            weight,
            stride,
            padding,
            padding_algorithm,
            dilation,
144
            groups,
145 146
            data_format,
        )
H
hong 已提交
147
        if bias is not None:
148 149 150
            channel_dim = (
                channel_dim + len(x.shape) if channel_dim < 0 else channel_dim
            )
151 152 153 154
            if isinstance(x, tuple):
                x = x[0]
            if isinstance(bias, tuple):
                bias = bias[0]
C
Chen Weihang 已提交
155
            if len(bias.shape) < len(x.shape):
156
                bias = _C_ops.reshape(
157 158 159 160 161
                    bias,
                    [1 for i in range(channel_dim)]
                    + bias.shape
                    + [1 for i in range(len(x.shape) - channel_dim - 1)],
                )
162 163 164 165 166 167 168 169
            # TODO(qili93): temporary for ascned npu performance to be removed along with npu_identity op
            if 'npu' in get_all_custom_device_type():
                with no_grad():
                    bias_storage = _C_ops.npu_identity(
                        bias, 3
                    )  # ACL_FORMAT_NC1HWC0 = 3
                    bias_storage._share_underline_tensor_to(bias)
            return _C_ops.add(pre_bias, bias)
H
hong 已提交
170 171
        else:
            return pre_bias
172 173

    if in_dygraph_mode() and op_type == "depthwise_conv2d":
174 175 176 177 178 179 180 181 182 183
        pre_bias = _C_ops.depthwise_conv2d(
            x,
            weight,
            stride,
            padding,
            padding_algorithm,
            groups,
            dilation,
            data_format,
        )
184
        if bias is not None:
185 186 187
            channel_dim = (
                channel_dim + len(x.shape) if channel_dim < 0 else channel_dim
            )
188
            tmp_bias = _C_ops.reshape(
189 190 191 192 193
                bias,
                [1 for i in range(channel_dim)]
                + bias.shape
                + [1 for i in range(len(x.shape) - channel_dim - 1)],
            )
194
            return _C_ops.add(pre_bias, tmp_bias)
195 196 197 198
        else:
            return pre_bias

    if in_dygraph_mode() and op_type == "conv3d":
199 200 201 202 203 204 205 206 207 208
        pre_bias = _C_ops.conv3d(
            x,
            weight,
            stride,
            padding,
            padding_algorithm,
            groups,
            dilation,
            data_format,
        )
209
        if bias is not None:
210 211 212
            channel_dim = (
                channel_dim + len(x.shape) if channel_dim < 0 else channel_dim
            )
213
            tmp_bias = _C_ops.reshape(
214
                bias,
215 216
                bias.shape + [1 for i in range(len(x.shape) - channel_dim - 1)],
            )
217
            return _C_ops.add(pre_bias, tmp_bias)
218 219 220
        else:
            return pre_bias

Z
zhiboniu 已提交
221
    if in_dynamic_mode():
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
        attrs = (
            'strides',
            stride,
            'paddings',
            padding,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            'use_mkldnn',
            use_mkldnn,
            'fuse_relu_before_depthwise_conv',
            False,
            "padding_algorithm",
            padding_algorithm,
            "data_format",
            data_format,
        )
242
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
L
LielinJiang 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
        if bias is not None:
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            out = pre_bias
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
258
            "data_format": data_format,
L
LielinJiang 已提交
259
        }
260 261 262
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], op_type
        )
L
LielinJiang 已提交
263 264 265 266
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        pre_bias = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [pre_bias]}
267 268 269
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
L
LielinJiang 已提交
270 271
        if bias is not None:
            out = helper.create_variable_for_type_inference(dtype)
272 273 274 275 276 277
            helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [bias]},
                outputs={'Out': [out]},
                attrs={'axis': channel_dim, 'use_mkldnn': use_mkldnn},
            )
L
LielinJiang 已提交
278 279 280 281 282
        else:
            out = pre_bias
    return out


283 284 285 286 287 288 289 290 291 292 293
def conv1d(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
    data_format='NCL',
    name=None,
):
294
    r"""
W
whs 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
    The convolution1D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCL format, where N is batch size, C is the number of
    channels, L is the length of the feature.
    Filter is in MCK format, where M is the number of output image channels,
    C is the number of input image channels, K is the size of the kernel.
    If the groups is greater than 1, C will equal the number of input image
    channels divided by the groups. If bias attribution and activation type
    are provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
310
        Out = \sigma (W \ast X + b)
W
whs 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336

    Where:

    * :math:`X`: Input value, a tensor with NCL format.
    * :math:`W`: Kernel value, a tensor with MCK format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

W
whs 已提交
337
            L_{out} = \frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1
W
whs 已提交
338 339

    Args:
340
        x (Tensor): The input is 3-D Tensor with shape [N, C, L], the data type
W
whs 已提交
341 342
            of input is float16 or float32 or float64.
        weight (Tensor): The convolution kernel with shape [M, C/g, K], where M is
343
            the number of output channels, g is the number of groups, K is the kernel's size.
W
whs 已提交
344
        bias (Tensor, optional): The bias with shape [M,]. Default: None.
345
        stride (int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
W
whs 已提交
346
            contain one integers, (stride_size). Default: 1.
347
        padding(int|str|tuple|list, optional): The padding size. Padding could be in one of the following forms.
W
whs 已提交
348 349 350 351 352 353
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            4. a list[int] or tuple[int] whose length is 2. It has the form  [pad_before, pad_after].
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
354
        dilation (int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
W
whs 已提交
355 356 357 358 359 360
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv1d function. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
361
        data_format (str, optional): Specify the data format of the input, and the data format of the output
W
whs 已提交
362 363 364
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, feature_length]`.
365 366
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
W
whs 已提交
367 368 369
           None by default.

    Returns:
370
        A tensor representing the conv1d, whose data type is the
W
whs 已提交
371 372 373 374 375 376 377
        same with input.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F
378

379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
          x = paddle.to_tensor([[[4, 8, 1, 9],
                                 [7, 2, 0, 9],
                                 [6, 9, 2, 6]]], dtype="float32")
          w = paddle.to_tensor([[[9, 3, 4],
                                 [0, 0, 7],
                                 [2, 5, 6]],
                                [[0, 3, 4],
                                 [2, 9, 7],
                                 [5, 6, 8]]], dtype="float32")

          y = F.conv1d(x, w)
          print(y)
          # Tensor(shape=[1, 2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
          #        [[[133., 238.],
          #          [160., 211.]]])
W
whs 已提交
394 395 396 397 398 399 400 401
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ["NCL", "NLC"]:
402 403 404 405
        raise ValueError(
            "Attr(data_format) should be 'NCL' or 'NLC'. "
            "Received Attr(data_format): {}.".format(data_format)
        )
W
whs 已提交
406

407
    channel_last = data_format == "NLC"
W
whs 已提交
408 409
    channel_dim = -1 if channel_last else 1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"
410 411
    if len(x.shape) != 3:
        raise ValueError(
412 413 414 415
            "Input x should be 3D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
W
whs 已提交
416 417 418
    num_channels = x.shape[channel_dim]
    num_filters = weight.shape[0]
    if num_channels < 0:
419 420 421 422
        raise ValueError(
            "The channel dimension of the input({}) "
            "should be defined. Received: {}.".format(x.shape, num_channels)
        )
423 424
    if groups <= 0:
        raise ValueError(
425 426 427 428
            "The groups of conv1d should be greater than 0. Received groups: {}".format(
                groups
            )
        )
W
whs 已提交
429 430 431 432
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
433 434
            ", the groups is {}".format(num_channels, x.shape, groups)
        )
W
whs 已提交
435 436 437 438
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
439 440
            ", the groups is {}".format(num_filters, weight.shape, groups)
        )
W
whs 已提交
441 442 443

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)
444

W
whs 已提交
445
    if len(padding) == 2:
446
        padding = [0] * 2 + padding
W
whs 已提交
447
    elif len(padding) == 1:
448
        padding = [0] + padding
W
whs 已提交
449 450
    else:
        raise ValueError(
451 452 453 454
            "The size of padding's dimension should be 1 or 2. But got padding={}".format(
                padding
            )
        )
455 456 457
    stride = [1] + convert_to_list(stride, 1, 'stride')
    dilation = [1] + convert_to_list(dilation, 1, 'dilation')
    weight = unsqueeze(weight, axis=[-2])
W
whs 已提交
458 459

    l_type = "conv2d"
460 461

    # When "groups==num_channels and num_filters% num_channels == 0" using depthwise_conv2d has better performance
462 463 464 465 466 467
    if (
        is_compiled_with_cuda()
        and num_channels == groups
        and num_channels != 1
        and num_filters % num_channels == 0
    ):
W
whs 已提交
468 469 470
        l_type = 'depthwise_conv2d'
        use_cudnn = False

471
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
Z
zhiboniu 已提交
472
    if is_compiled_with_npu():
473
        if num_channels == groups and num_channels == num_filters:
474 475 476 477
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

478
    squeeze_aixs = -3 if channel_last else -2
479
    x = unsqueeze(x, axis=[squeeze_aixs])
480

481
    if in_dygraph_mode():
482 483 484 485 486 487 488 489 490 491 492 493
        if l_type == 'conv2d':
            out = _C_ops.conv2d(
                x,
                weight,
                stride,
                padding,
                padding_algorithm,
                dilation,
                groups,
                conv2d_data_format,
            )
        else:
494
            out = _C_ops.depthwise_conv2d(
495 496 497 498 499 500 501 502 503 504 505 506 507
                x,
                weight,
                stride,
                padding,
                padding_algorithm,
                groups,
                dilation,
                conv2d_data_format,
                False,
                -1,
                False,
                False,
            )
508 509 510
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    elif _in_legacy_dygraph():
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
        attrs = (
            'strides',
            stride,
            'paddings',
            padding,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            'use_mkldnn',
            False,
            'fuse_relu_before_depthwise_conv',
            False,
            "padding_algorithm",
            padding_algorithm,
            "data_format",
            conv2d_data_format,
        )
531
        out = getattr(_legacy_C_ops, l_type)(x, weight, *attrs)
W
whs 已提交
532 533 534 535 536 537 538 539 540 541 542 543 544
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
545
            "data_format": conv2d_data_format,
W
whs 已提交
546
        }
547 548 549
        check_variable_and_dtype(
            x, 'input', ['float16', 'float32', 'float64'], 'conv2d'
        )
W
whs 已提交
550
        helper = LayerHelper(l_type, **locals())
551
        dtype = helper.input_dtype(input_param_name='x')
W
whs 已提交
552 553
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
554 555 556
        helper.append_op(
            type=l_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
W
whs 已提交
557 558
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
559
    out = squeeze(out, axis=[squeeze_aixs])
W
whs 已提交
560 561 562
    return out


563 564 565 566 567 568 569 570 571 572 573
def conv2d(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
    data_format="NCHW",
    name=None,
):
574
    r"""
S
swtkiwi 已提交
575

576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
    channels, H is the height of the feature, and W is the width of the feature.
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

593
    ..  math::
594

595
        Out = \sigma (W \ast X + b)
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619

    Where:

    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

620
        ..  math::
621

622 623
            H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
624 625

    Args:
626
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W], the data type
627
            of input is float16 or float32 or float64.
628
        weight (Tensor): The convolution kernel with shape [M, C/g, kH, kW], where M is
629
            the number of output channels, g is the number of groups, kH is the filter's
630
            height, kW is the filter's width.
631
        bias (Tensor, optional): The bias with shape [M,].
632 633
        stride (int|list|tuple): The stride size. It means the stride in convolution.
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width).
634
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
635 636 637 638
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
639 640
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0],
641
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
642
            when `data_format` is `"NHWC"`, `padding` can be in the form
643 644
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
645
        dilation (int|list|tuple): The dilation size. It means the spacing between the kernel
646 647
            points. If dilation is a list/tuple, it must contain two integers, (dilation_height,
            dilation_width). Otherwise, dilation_height = dilation_width = dilation.
648
            Default: dilation = 1.
C
cnn 已提交
649
        groups (int): The groups number of the Conv2D Layer. According to grouped
650 651 652 653
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
654
        data_format (str, optional): Specify the data format of the input, and the data format of the output
655 656 657
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
658 659
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
660 661 662
           None by default.

    Returns:
663
        A Tensor representing the conv2d result, whose data type is the same with input.
664 665 666 667

    Examples:
        .. code-block:: python

668
          import paddle
669 670
          import paddle.nn.functional as F

671 672
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((6, 3, 3, 3), dtype='float32')
673 674 675 676

          y_var = F.conv2d(x_var, w_var)
          y_np = y_var.numpy()

677 678 679 680 681
          print(y_np.shape)
          # (2, 6, 6, 6)
    """
    # entry checks
    if data_format not in ["NCHW", "NHWC"]:
682 683 684 685
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. "
            "Received Attr(data_format): {}.".format(data_format)
        )
686

687
    channel_last = data_format == "NHWC"
688
    channel_dim = -1 if channel_last else 1
689 690
    if len(x.shape) != 4:
        raise ValueError(
691 692 693 694
            "Input x should be 4D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
695
    num_channels = x.shape[channel_dim]
696 697
    num_filters = weight.shape[0]
    if num_channels < 0:
698 699 700 701
        raise ValueError(
            "The channel dimension of the input({}) "
            "should be defined. Received: {}.".format(x.shape, num_channels)
        )
702 703
    if groups <= 0:
        raise ValueError(
704 705 706 707
            "The groups of conv2d should be greater than 0. Received groups: {}".format(
                groups
            )
        )
708 709 710 711
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
712 713
            ", the groups is {}".format(num_channels, x.shape, groups)
        )
714 715 716 717
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
718 719
            ", the groups is {}".format(num_filters, weight.shape, groups)
        )
720

721 722
    cudnn_version = get_cudnn_version()

723 724 725 726 727
    use_cudnn = (
        True
        if (is_compiled_with_cuda() and cudnn_version is not None)
        else False
    )
728

729 730
    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
731 732
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
733 734

    l_type = "conv2d"
735 736 737 738 739
    if (
        num_channels == groups
        and num_channels != 1
        and num_filters % num_channels == 0
    ):
740
        l_type = 'depthwise_conv2d'
Z
zhiboniu 已提交
741
        if is_compiled_with_rocm():
742 743 744
            use_cudnn = True
        else:
            use_cudnn = False
H
hong 已提交
745 746
    else:
        if in_dygraph_mode():
747 748 749 750 751 752 753
            pre_bias = _C_ops.conv2d(
                x,
                weight,
                stride,
                padding,
                padding_algorithm,
                dilation,
754
                groups,
755 756
                data_format,
            )
H
hong 已提交
757
            if bias is not None:
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
                channel_dim = (
                    channel_dim + len(x.shape)
                    if channel_dim < 0
                    else channel_dim
                )
                if len(bias.shape) < len(x.shape):
                    bias = _C_ops.reshape(
                        bias,
                        [1 for i in range(channel_dim)]
                        + bias.shape
                        + [1 for i in range(len(x.shape) - channel_dim - 1)],
                    )
                # TODO(qili93): temporary for ascned npu performance to be removed along with npu_identity op
                if 'npu' in get_all_custom_device_type():
                    with no_grad():
                        bias_storage = _C_ops.npu_identity(
                            bias, 3
                        )  # ACL_FORMAT_NC1HWC0 = 3
                        bias_storage._share_underline_tensor_to(bias)
                return _C_ops.add(pre_bias, bias)
H
hong 已提交
778 779 780 781
            else:
                return pre_bias

    use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
782

783
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
Z
zhiboniu 已提交
784
    if is_compiled_with_npu():
785
        if num_channels == groups and num_channels == num_filters:
786 787 788 789
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

790 791 792 793 794 795
    if (
        is_compiled_with_cuda()
        and get_flags("FLAGS_conv2d_disable_cudnn")[
            "FLAGS_conv2d_disable_cudnn"
        ]
    ):
796
        use_cudnn = False
797

798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
    return _conv_nd(
        x,
        weight,
        bias,
        stride,
        padding,
        padding_algorithm,
        dilation,
        groups,
        data_format,
        channel_dim,
        l_type,
        use_cudnn,
        use_mkldnn,
        name,
    )


def conv1d_transpose(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    output_padding=0,
    groups=1,
    dilation=1,
    output_size=None,
    data_format="NCL",
    name=None,
):
829
    r"""
830 831 832 833 834 835 836 837 838 839 840 841 842 843
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
844
        Out = \sigma (W \ast X + b)
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' or 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

           L^\prime_{out} &= (L_{in} - 1) * stride - pad_top - pad_bottom + dilation * (L_f - 1) + 1 + output_padding \\\\
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
880
          and :math:`L^\prime_{out} + stride`.
881 882 883 884 885 886 887 888 889

    Args:
        x(Tensor): 3-D tensor with [N, C, L] or [N, L, C] format,
                         its data type is float32 or float64.
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, K],
            where M is the number of output channels(filters), g is the number of groups,
            K is the size of the kernel.
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
890
            If stride is a list/tuple, it must contain one integer, `(stride_size)`.
891 892 893 894 895 896 897
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
898
             If it is a list/tuple, it must contain one integer. Default: 0.
899 900 901 902 903 904 905
        groups(int, optional): The groups number of the conv1d transpose function. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
906
            If dilation is a list/tuple, it must contain one integer, `(dilation_size)`.
907 908
            Default: dilation = 1.
        output_size(int|tuple|list, optional): The output image size. If output size is a
909
            tuple/list, it must contain one integer, `(feature_length)`. None if use
910
            filter_size(shape of weight), padding, and stride to calculate output_size.
911
        data_format (str, optional): Specify the data format of the input, and the data format of the output
912 913 914
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, input_length]`.
915 916
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
917 918 919 920 921 922 923 924 925 926 927 928 929
           None by default.

    Returns:
        A  tensor representing the result of 1-D transpose convolution, whose
        data type is the same with input. And its shape is (num_batches, channels, length)
        when data_format is `"NCL"` and (num_batches, length, channels) when data_format is
        `"NLC"`.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F
930

931
          # shape: (1, 2, 4)
932 933
          x = paddle.to_tensor([[[4, 0, 9, 7],
                                [8, 0, 9, 2,]]], dtype="float32")
934
          # shape: (2, 1, 2)
935 936 937 938 939 940 941
          w = paddle.to_tensor([[[7, 0]],
                                [[4, 2]]], dtype="float32")

          y = F.conv1d_transpose(x, w)
          print(y)
          # Tensor(shape=[1, 1, 5], dtype=float32, place=Place(gpu:0), stop_gradient=True,
          #        [[[60., 16., 99., 75., 4. ]]])
942 943 944 945 946 947 948 949 950 951 952
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ['NCL', 'NLC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCL' or 'NLC' are supported.".format(
953 954 955 956
                data_format
            )
        )
    channel_last = data_format == "NLC"
957
    channel_dim = -1 if channel_last else 1
958 959
    if len(x.shape) != 3:
        raise ValueError(
960 961 962 963
            "Input x should be 3D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
964 965 966

    num_channels = x.shape[channel_dim]
    if num_channels < 0:
967 968 969 970
        raise ValueError(
            "The channel dimension of the input({}) "
            "should be defined. Received: {}.".format(x.shape, num_channels)
        )
971 972
    if groups <= 0:
        raise ValueError(
973 974 975 976
            "The groups of conv1d_transpose should be greater than 0. Received groups: {}".format(
                groups
            )
        )
977 978 979 980
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
981 982
            ", the groups is {}".format(num_channels, x.shape, groups)
        )
983 984 985 986 987 988 989 990 991 992

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)

    if len(padding) == 2:
        padding = padding + [0] * 2
    elif len(padding) == 1:
        padding = padding + [0]
    else:
        raise ValueError(
993 994 995 996
            "The size of padding's dimension should 1 or 2. But got padding={}".format(
                padding
            )
        )
997

998 999
    stride = convert_to_list(stride, 1, 'stride') + [1]
    dilation = convert_to_list(dilation, 1, 'dilation') + [1]
1000 1001 1002 1003

    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1004
        if output_padding != 0:
1005 1006 1007 1008
            raise ValueError(
                'output_padding option is mutually exclusive with '
                'output_size'
            )
L
LielinJiang 已提交
1009
        if isinstance(output_size, (list, tuple, int)):
1010
            output_size = convert_to_list(output_size, 1, 'output_size') + [1]
L
LielinJiang 已提交
1011 1012
        else:
            raise ValueError(
1013 1014
                "output_size should be int, or list, tuple of ints"
            )
L
LielinJiang 已提交
1015 1016 1017 1018

    if output_padding == 0:
        output_padding = []
    else:
1019 1020 1021
        output_padding = convert_to_list(
            output_padding, 1, 'output_padding'
        ) + [0]
L
LielinJiang 已提交
1022 1023 1024 1025

    if len(output_padding) > 0 and output_padding[0] > stride[0]:
        raise ValueError(
            "The size of output_padding should not be greater than stride."
1026
            "But got output_padding={} and stride={}".format(
1027 1028 1029
                output_padding[0], stride[0]
            )
        )
1030 1031 1032

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
1033 1034 1035 1036 1037 1038
    if (
        num_channels == groups
        and num_channels != 1
        and num_filters == 1
        and not use_cudnn
    ):
1039 1040 1041 1042 1043 1044
        op_type = 'depthwise_conv2d_transpose'
        use_cudnn = False

    squeeze_axis = -2 if channel_last else -1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"

1045 1046
    x = unsqueeze(x, axis=[squeeze_axis])
    weight = unsqueeze(weight, axis=[-1])
1047

1048
    if in_dygraph_mode():
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
        out = getattr(_C_ops, op_type)(
            x,
            weight,
            stride,
            padding,
            output_padding,
            output_size,
            padding_algorithm,
            groups,
            dilation,
            conv2d_data_format,
        )
1061 1062 1063
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    elif _in_legacy_dygraph():
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
        attrs = (
            'output_padding',
            output_padding,
            'output_size',
            output_size,
            'strides',
            stride,
            'paddings',
            padding,
            'padding_algorithm',
            padding_algorithm,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            'data_format',
            conv2d_data_format,
        )
1084
        out = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
1085 1086 1087 1088 1089
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
L
LielinJiang 已提交
1090
            'output_padding': output_padding,
1091 1092 1093 1094 1095 1096 1097
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
1098
            'data_format': conv2d_data_format,
1099
        }
1100 1101 1102
        check_variable_and_dtype(
            x, 'input', ['float16', 'float32', 'float64'], 'conv2d_transpose'
        )
1103
        helper = LayerHelper(op_type, **locals())
1104
        dtype = helper.input_dtype(input_param_name='x')
1105 1106
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
1107 1108 1109
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
1110 1111 1112
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)

1113
    out = squeeze(out, axis=[squeeze_axis])
1114 1115 1116
    return out


1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
def conv2d_transpose(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    output_padding=0,
    dilation=1,
    groups=1,
    output_size=None,
    data_format='NCHW',
    name=None,
):
1130
    r"""
S
swtkiwi 已提交
1131

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW or NHWC format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
1143
    See more detail in :ref:`api_nn_conv_ConvTranspose2d` .
1144 1145 1146

    For each input :math:`X`, the equation is:

1147
    ..  math::
1148

1149
        Out = \sigma (W \ast X + b)
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173

    Where:

    * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a 4-D Tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

1174
        ..  math::
1175 1176 1177 1178 1179 1180 1181

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]

    Note:
1182 1183
          The conv2d_transpose can be seen as the backward of the conv2d. For conv2d,
          when stride > 1, conv2d maps multiple input shape to the same output shape,
1184
          so for conv2d_transpose, when stride > 1, input shape maps multiple output shape.
1185 1186 1187
          If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`;
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must
1188
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`.
1189 1190

    Args:
L
LielinJiang 已提交
1191
        x(Tensor): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format,
1192
            whose data type is float32 or float64.
L
LielinJiang 已提交
1193
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, kH, kW],
1194 1195
            where M is the number of output channels(filters), g is the number of groups,
            kH is the height of the kernel, and kW is the width of the kernel.
L
LielinJiang 已提交
1196
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
1197 1198
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution.
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width).
L
LielinJiang 已提交
1199
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
1200 1201
        padding(str|int|list|tuple, optional): The padding size. It means the number of zero-paddings
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
1202
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
1203
            it could be in three forms: `[pad_height, pad_width]` or
1204
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
1205
            and when `data_format` is `"NCHW"`, `padding` can be in the form
1206
            `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
1207
            when `data_format` is `"NHWC"`, `padding` can be in the form
1208 1209
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
1210 1211
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
1212
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
1213 1214 1215 1216 1217
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
1218 1219
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points.
            If dilation is a list/tuple, it must contain two integers, (dilation_height, dilation_width).
1220
            Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1.
L
LielinJiang 已提交
1221
        output_size(int|tuple|list, optional): The output image size. If output size is a
1222
            tuple/list, it must contain two integers, (image_height, image_width). None if use
1223
            filter_size(shape of weight), padding, and stride to calculate output_size.
1224
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1225 1226 1227
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
1228 1229
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
1230 1231 1232
           None by default.

    Returns:
1233
        A Tensor representing the conv2d_transpose, whose
1234 1235
        data type is the same with input and shape is (num_batches, channels, out_h,
        out_w) or (num_batches, out_h, out_w, channels). The tensor variable storing
L
LielinJiang 已提交
1236
        transposed convolution result.
1237 1238 1239 1240

    Examples:
        .. code-block:: python

L
LielinJiang 已提交
1241 1242
          import paddle
          import paddle.nn.functional as F
1243

1244 1245
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
1246

1247
          y_var = F.conv2d_transpose(x_var, w_var)
L
LielinJiang 已提交
1248
          y_np = y_var.numpy()
1249

1250
          print(y_np.shape)
1251 1252 1253 1254 1255 1256 1257
          # (2, 6, 10, 10)
    """

    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCHW' or 'NHWC' are supported.".format(
1258 1259 1260 1261
                data_format
            )
        )
    channel_last = data_format == "NHWC"
1262
    channel_dim = -1 if channel_last else 1
1263 1264
    if len(x.shape) != 4:
        raise ValueError(
1265 1266 1267 1268
            "Input x should be 4D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
L
LielinJiang 已提交
1269
    num_channels = x.shape[channel_dim]
1270
    if num_channels < 0:
1271 1272 1273 1274
        raise ValueError(
            "The channel dimension of the input({}) "
            "should be defined. Received: {}.".format(x.shape, num_channels)
        )
1275 1276
    if groups <= 0:
        raise ValueError(
1277 1278 1279 1280
            "The groups of conv2d_transpose should be greater than 0. Received groups: {}".format(
                groups
            )
        )
1281 1282 1283 1284
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
1285 1286
            ", the groups is {}".format(num_channels, x.shape, groups)
        )
L
LielinJiang 已提交
1287 1288 1289

    cudnn_version = get_cudnn_version()

1290 1291 1292 1293 1294
    use_cudnn = (
        True
        if (is_compiled_with_cuda() and cudnn_version is not None)
        else False
    )
1295 1296 1297

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
1298 1299
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
L
LielinJiang 已提交
1300

1301 1302 1303
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1304
        if output_padding != 0:
1305 1306 1307 1308
            raise ValueError(
                'output_padding option is mutually exclusive with '
                'output_size'
            )
1309 1310 1311 1312 1313 1314
        if isinstance(output_size, (list, tuple)):
            if _contain_var(output_size):
                output_size = _convert_to_tensor_list(output_size)
            else:
                output_size = convert_to_list(output_size, 2, 'output_size')
        elif isinstance(output_size, int):
1315
            output_size = convert_to_list(output_size, 2, 'output_size')
1316
        elif isinstance(output_size, Variable):
1317 1318 1319 1320 1321 1322 1323 1324 1325
            check_dtype(
                output_size.dtype,
                'output_size',
                ['int32', 'int64'],
                'conv2d_transpose',
            )
            if len(output_size.shape) == 1 and (
                output_size.shape[0] == 1 or output_size.shape[0] == 2
            ):
1326 1327 1328 1329
                if output_size.shape[0] == 1:
                    output_size = [output_size, output_size]
            else:
                raise ValueError(
1330 1331
                    "output_size must contain one or two integers."
                )
L
LielinJiang 已提交
1332 1333
        else:
            raise ValueError(
1334 1335
                "output_size should be int or Tensor or list, tuple of ints or Tensor"
            )
L
LielinJiang 已提交
1336 1337 1338 1339

    if output_padding == 0:
        output_padding = []
    else:
1340
        output_padding = convert_to_list(output_padding, 2, 'output_padding')
1341 1342 1343

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
1344
    if num_channels == groups and num_channels != 1 and num_filters == 1:
1345
        op_type = 'depthwise_conv2d_transpose'
L
LielinJiang 已提交
1346
        use_cudnn = False
1347

F
From00 已提交
1348
    if in_dygraph_mode():
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
        op = (
            _C_ops.conv2d_transpose
            if op_type == 'conv2d_transpose'
            else _C_ops.depthwise_conv2d_transpose
        )
        pre_bias = op(
            x,
            weight,
            stride,
            padding,
            output_padding,
            output_size,
            padding_algorithm,
            groups,
            dilation,
            data_format,
        )
F
From00 已提交
1366 1367 1368 1369 1370 1371
        if bias is not None:
            return nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            return pre_bias

    if _in_legacy_dygraph():
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
        attrs = (
            'output_padding',
            output_padding,
            'output_size',
            output_size,
            'strides',
            stride,
            'paddings',
            padding,
            'padding_algorithm',
            padding_algorithm,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            'data_format',
            data_format,
        )
1392
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
1393
        if bias is not None:
L
LielinJiang 已提交
1394
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1395
        else:
L
LielinJiang 已提交
1396
            out = pre_bias
1397
    else:
L
LielinJiang 已提交
1398
        inputs = {'Input': [x], 'Filter': [weight]}
1399
        attrs = {
L
LielinJiang 已提交
1400
            'output_padding': output_padding,
1401 1402 1403 1404 1405 1406 1407
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
1408
            'data_format': data_format,
1409
        }
1410 1411 1412
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'conv2d_transpose'
        )
1413
        helper = LayerHelper(op_type, **locals())
L
LielinJiang 已提交
1414
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1415
        outputs = {"Output": [pre_bias]}
1416 1417 1418
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
L
LielinJiang 已提交
1419

1420
        if bias is not None:
L
LielinJiang 已提交
1421
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1422
        else:
L
LielinJiang 已提交
1423 1424
            out = pre_bias

1425 1426 1427
    return out


1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
def conv3d(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
    data_format="NCDHW",
    name=None,
):
1439
    r"""
S
swtkiwi 已提交
1440

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are in NCDHW or NDHWC format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

1452
    ..  math::
1453

1454
        Out = \sigma (W \ast X + b)
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1478
        ..  math::
1479 1480 1481 1482 1483 1484

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
1485
        x (Tensor): The input is 5-D Tensor with shape [N, C, D, H, W], the data
1486
            type of input is float16 or float32 or float64.
1487
        weight (Tensor): The convolution kernel, a Tensor with shape [M, C/g, kD, kH, kW],
1488 1489
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
1490
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
1491 1492
        stride (int|list|tuple, optional): The stride size. It means the stride in convolution. If stride is a
            list/tuple, it must contain three integers, (stride_depth, stride_height, stride_width).
1493
            Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1.
1494
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings
1495 1496 1497 1498
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1499
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1500
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1501
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1502 1503
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
1504
        dilation (int|list|tuple, optional): The dilation size. It means the spacing between the kernel points.
1505
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height,
1506
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation.
1507
            Default: dilation = 1.
1508
        groups (int, optional): The groups number of the Conv3D Layer. According to grouped
1509 1510 1511 1512
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
1513
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1514 1515 1516
            will be consistent with that of the input. An optional string from: `"NCDHW"`, `"NDHWC"`.
            The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_depth, input_height, input_width]`.
1517 1518
        name(str|None, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
1519 1520 1521
           None by default.

    Returns:
1522 1523 1524
        A Tensor representing the conv3d, whose data type is
        the same with input. If act is None, the tensor storing the
        convolution result, and if act is not None, the tensor storing
1525 1526 1527 1528 1529
        convolution and non-linearity activation result.

    Examples:
        .. code-block:: python

1530 1531
            import paddle
            import paddle.nn.functional as F
1532

1533 1534
            x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
            w_var = paddle.randn((6, 3, 3, 3, 3), dtype='float32')
1535

1536 1537
            y_var = F.conv3d(x_var, w_var)
            y_np = y_var.numpy()
1538

1539
            print(y_np.shape)
1540 1541 1542 1543 1544 1545
            # (2, 6, 6, 6, 6)
    """
    # entry check
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
1546 1547
            "Attr(data_format): {}.".format(data_format)
        )
1548

1549
    channel_last = data_format == "NDHWC"
1550
    channel_dim = -1 if channel_last else 1
1551 1552
    if len(x.shape) != 5:
        raise ValueError(
1553 1554 1555 1556
            "Input x should be 5D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
1557
    num_channels = x.shape[channel_dim]
1558 1559 1560
    num_filters = weight.shape[0]
    if num_channels < 0:
        raise ValueError(
1561
            "The channel dimension of the input({}) should be defined. "
1562 1563
            "Received: {}.".format(x.shape, num_channels)
        )
1564 1565
    if groups <= 0:
        raise ValueError(
1566 1567 1568 1569
            "The groups of conv3d should be greater than 0. Received groups: {}".format(
                groups
            )
        )
1570 1571 1572
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
1573
            "Received: number of channels({}), groups({}).".format(
1574 1575 1576
                num_channels, groups
            )
        )
1577 1578 1579
    if num_filters % groups != 0:
        raise ValueError(
            "The number of filters must be divisible by Attr(groups). "
1580
            "Received: number of filters({}), groups({}).".format(
1581 1582 1583
                num_filters, groups
            )
        )
1584

1585
    cudnn_version = get_cudnn_version()
1586 1587 1588 1589 1590
    use_cudnn = (
        True
        if (is_compiled_with_cuda() and cudnn_version is not None)
        else False
    )
1591

1592
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1593 1594
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1595 1596
    op_type = "conv3d"

1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
    return _conv_nd(
        x,
        weight,
        bias,
        stride,
        padding,
        padding_algorithm,
        dilation,
        groups,
        data_format,
        channel_dim,
        op_type,
        use_cudnn,
        False,
        name,
    )


def conv3d_transpose(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    output_padding=0,
    groups=1,
    dilation=1,
    output_size=None,
    data_format='NCDHW',
    name=None,
):
1628
    r"""
L
LielinJiang 已提交
1629
    The convolution3d transpose layer calculates the output based on the input,
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
1640
    See more detail in :ref:`api_nn_conv_ConvTranspose3d` .
1641 1642 1643

    For each input :math:`X`, the equation is:

1644
    ..  math::
1645

1646
        Out = \sigma (W \ast X + b)
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670

    In the above equation:

    * :math:`X`: Input value, a Tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a Tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1671
        ..  math::
1672 1673 1674 1675 1676 1677 1678 1679 1680

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ]

    Note:
1681 1682
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
          when stride > 1, conv3d maps multiple input shape to the same output shape,
1683 1684
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
1685 1686 1687 1688
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`,
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must
1689
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`.
1690 1691

    Args:
1692
        x(Tensor): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type
1693
            of input is float32 or float64.
L
LielinJiang 已提交
1694
        weight (Tensor): The convolution kernel, a Tensor with shape [C, M/g, kD, kH, kW],
1695 1696
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
L
LielinJiang 已提交
1697
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
1698 1699 1700
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution.
            If stride is a list/tuple, it must contain three integers, (stride_depth, stride_height,
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride.
L
LielinJiang 已提交
1701
            Default: stride = 1.
1702
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings
1703 1704 1705
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
1706
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1707
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1708
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1709
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1710 1711
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
1712 1713
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
1714
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
1715 1716 1717 1718 1719
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
1720 1721 1722
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points.
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height,
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation.
1723
            Default: dilation = 1.
L
LielinJiang 已提交
1724
        output_size(int|list|tuple, optional): The output image size. If output size is a
1725
            list/tuple, it must contain three integers, (image_depth, image_height, image_width).
1726
            None if use filter_size(shape of weight), padding, and stride to calculate output_size.
1727
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1728 1729 1730
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
1731 1732
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
1733 1734 1735
           None by default.

    Returns:
1736
        A Tensor representing the conv3d_transpose, whose data
1737 1738 1739
        type is the same with input and shape is (num_batches, channels, out_d, out_h,
        out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor
        variable storing the transposed convolution result, and if act is not None, the tensor
1740 1741 1742 1743
        variable storing transposed convolution and non-linearity activation result.

    Examples:
       .. code-block:: python
1744

L
LielinJiang 已提交
1745
          import paddle
1746 1747
          import paddle.nn.functional as F

1748 1749
          x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3, 3), dtype='float32')
1750

1751
          y_var = F.conv3d_transpose(x_var, w_var)
L
LielinJiang 已提交
1752
          y_np = y_var.numpy()
1753

1754
          print(y_np.shape)
1755 1756 1757 1758 1759 1760
          # (2, 6, 10, 10, 10)
    """
    # entry checks
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
1761 1762
            "Attr(data_format): {}.".format(data_format)
        )
1763

1764
    channel_last = data_format == "NDHWC"
1765
    channel_dim = -1 if channel_last else 1
1766 1767
    if len(x.shape) != 5:
        raise ValueError(
1768 1769 1770 1771
            "Input x should be 5D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
L
LielinJiang 已提交
1772
    num_channels = x.shape[channel_dim]
1773 1774 1775
    num_filters = weight.shape[1]
    if num_channels < 0:
        raise ValueError(
1776
            "The channel dimension of the input({}) should be defined. "
1777 1778
            "Received: {}.".format(x.shape, num_channels)
        )
1779 1780
    if groups <= 0:
        raise ValueError(
1781 1782 1783 1784
            "The groups of conv3d_transpose should be greater than 0. Received groups: {}".format(
                groups
            )
        )
1785 1786 1787
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
1788
            "Received: number of channels({}), groups({}).".format(
1789 1790 1791
                num_channels, groups
            )
        )
1792 1793

    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1794 1795
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1796 1797 1798
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1799
        if output_padding != 0:
1800 1801 1802 1803
            raise ValueError(
                'output_padding option is mutually exclusive with '
                'output_size'
            )
L
LielinJiang 已提交
1804
        if isinstance(output_size, (list, tuple, int)):
1805
            output_size = convert_to_list(output_size, 3, 'output_size')
L
LielinJiang 已提交
1806 1807
        else:
            raise ValueError(
1808 1809
                "output_size should be int, or list, tuple of ints"
            )
L
LielinJiang 已提交
1810 1811 1812 1813

    if output_padding == 0:
        output_padding = []
    else:
1814
        output_padding = convert_to_list(output_padding, 3, 'output_padding')
L
LielinJiang 已提交
1815 1816 1817

    cudnn_version = get_cudnn_version()

1818 1819 1820 1821 1822 1823
    # TODO(LielinJiang): whether to use cudnn according to the version of cudnn
    use_cudnn = (
        True
        if (is_compiled_with_cuda() and cudnn_version is not None)
        else False
    )
1824 1825 1826 1827

    op_type = 'conv3d_transpose'
    data_format_ = "NHWC" if channel_last else "NCHW"

F
From00 已提交
1828
    if in_dygraph_mode():
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
        pre_bias = _C_ops.conv3d_transpose(
            x,
            weight,
            stride,
            padding,
            output_padding,
            output_size,
            padding_algorithm,
            groups,
            dilation,
            data_format_,
        )
F
From00 已提交
1841 1842 1843 1844 1845 1846
        if bias is not None:
            return nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            return pre_bias

    if _in_legacy_dygraph():
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
        attrs = (
            'output_padding',
            output_padding,
            'output_size',
            output_size,
            'paddings',
            padding,
            "padding_algorithm",
            padding_algorithm,
            'strides',
            stride,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            "data_format",
            data_format_,
        )
1867
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
1868
        if bias is not None:
L
LielinJiang 已提交
1869
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1870
        else:
L
LielinJiang 已提交
1871
            out = pre_bias
1872
    else:
L
LielinJiang 已提交
1873
        inputs = {'Input': [x], 'Filter': [weight]}
1874
        attrs = {
L
LielinJiang 已提交
1875
            'output_padding': output_padding,
1876 1877 1878 1879 1880 1881 1882
            'output_size': output_size,
            'paddings': padding,
            "padding_algorithm": padding_algorithm,
            'strides': stride,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
1883
            "data_format": data_format_,
1884 1885
        }
        helper = LayerHelper(op_type, **locals())
1886 1887 1888
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'conv3d'
        )
1889

L
LielinJiang 已提交
1890
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1891 1892
        outputs = {"Output": [pre_bias]}

1893 1894 1895
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
1896
        if bias is not None:
L
LielinJiang 已提交
1897
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1898
        else:
L
LielinJiang 已提交
1899
            out = pre_bias
1900 1901

    return out