未验证 提交 81f1402f 编写于 作者: F Feiyu Chan 提交者: GitHub

Add functional convolutions in paddle.nn.functional (#23408)

* add functional conv

* add test and doc for function convs, test=develop

* update ConvTransposeOp's InferShape and error message, test=develop
上级 70782e63
......@@ -109,14 +109,30 @@ void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
const int offset = (data_layout != DataLayout::kNHWC ? 2 : 1);
for (size_t i = 0; i < strides.size(); ++i) {
auto filter_extent = dilations[i] * (filter_dims[i + 2] - 1) + 1;
auto infer_shape = (in_dims[i + offset] - 1) * strides[i] -
paddings[2 * i] - paddings[2 * i + 1] + filter_extent;
auto infer_shape = (ctx->IsRuntime() || in_dims[i + offset] > 0)
? (in_dims[i + offset] - 1) * strides[i] -
paddings[2 * i] - paddings[2 * i + 1] +
filter_extent
: -1;
if (output_size.size()) {
PADDLE_ENFORCE_EQ((output_size[i] >= infer_shape &&
output_size[i] < infer_shape + strides[i]),
true,
"output_size of Op(ConvTransposeOp) should be "
"in appropriate range.");
if (ctx->IsRuntime()) {
PADDLE_ENFORCE_GE(
output_size[i], infer_shape,
platform::errors::InvalidArgument(
"output_size of Op(ConvTransposeOp) should not be "
"less than the infered output size. But received output_size = "
"[%s], whose dim %d is less than the infered output size [%s]",
framework::make_ddim(output_size), i, infer_shape));
PADDLE_ENFORCE_LT(
output_size[i], infer_shape + strides[i],
platform::errors::InvalidArgument(
"output_size of Op(ConvTransposeOp) should be less "
"than infered size + stride. But received output_size = [%s], "
"whose dim %d is not less than the infered output size (%d) + "
"stride (%d) = %d",
framework::make_ddim(output_size), i, infer_shape, strides[i],
infer_shape + strides[i]));
}
output_shape.push_back(output_size[i]);
} else {
output_shape.push_back(infer_shape);
......
......@@ -3857,10 +3857,10 @@ def conv2d_transpose(input,
if output_size is None:
output_size = []
elif isinstance(output_size, list) or isinstance(output_size, int):
elif isinstance(output_size, (list, tuple, int)):
output_size = utils.convert_to_list(output_size, 2, 'output_size')
else:
raise ValueError("output_size should be list or int")
raise ValueError("output_size should be int, list[int] or tuple[int]")
groups = 1 if groups is None else groups
filter_shape = [input_channel, num_filters // groups] + filter_size
......@@ -4129,7 +4129,7 @@ def conv3d_transpose(input,
if output_size is None:
raise ValueError("output_size must be set when filter_size is None")
if isinstance(output_size, int):
output_size = [output_size, output_size]
output_size = [output_size, output_size, output_size]
d_in = input.shape[2] if data_format == 'NCDHW' else input.shape[1]
h_in = input.shape[3] if data_format == 'NCDHW' else input.shape[2]
......@@ -4149,6 +4149,13 @@ def conv3d_transpose(input,
if len(padding) == 6 and utils._is_symmetric_padding(padding, 3):
padding = [padding[0], padding[2], padding[4]]
if output_size is None:
output_size = []
elif isinstance(output_size, (list, tuple, int)):
output_size = utils.convert_to_list(output_size, 3, 'output_size')
else:
raise ValueError("output_size should be int, list[int] or tuple[int]")
groups = 1 if groups is None else groups
filter_shape = [input_channel, num_filters // groups] + filter_size
img_filter = helper.create_parameter(
......@@ -4166,6 +4173,7 @@ def conv3d_transpose(input,
'Filter': [img_filter]},
outputs={'Output': pre_bias},
attrs={
'output_size': output_size,
'strides': stride,
'paddings': padding,
'padding_algorithm': padding_algorithm,
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn.functional as F
from paddle import fluid
import paddle.fluid.dygraph as dg
import paddle.fluid.initializer as I
import numpy as np
import unittest
from unittest import TestCase
class TestFunctionalConv2D(TestCase):
batch_size = 4
spatial_shape = (16, 16)
dtype = "float32"
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = 0
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NHWC"
def prepare(self):
if isinstance(self.filter_shape, int):
filter_shape = (self.filter_shape, ) * 2
else:
filter_shape = tuple(self.filter_shape)
self.weight = np.random.uniform(
-1, 1, (self.out_channels, self.in_channels // self.groups
) + filter_shape).astype(self.dtype)
if not self.no_bias:
self.bias = np.random.uniform(-1, 1, (
self.out_channels, )).astype(self.dtype)
self.channel_last = (self.data_format == "NHWC")
if self.channel_last:
self.input_shape = (self.batch_size, ) + self.spatial_shape + (
self.in_channels, )
else:
self.input_shape = (self.batch_size, self.in_channels
) + self.spatial_shape
self.input = np.random.uniform(-1, 1,
self.input_shape).astype(self.dtype)
def static_graph_case_1(self):
main = fluid.Program()
start = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, start):
if self.channel_last:
x = fluid.data(
"input", (-1, -1, -1, self.in_channels),
dtype=self.dtype)
else:
x = fluid.data(
"input", (-1, self.in_channels, -1, -1),
dtype=self.dtype)
y = fluid.layers.conv2d(
x,
self.out_channels,
self.filter_shape,
stride=self.stride,
padding=self.padding,
dilation=self.dilation,
groups=self.groups,
param_attr=I.NumpyArrayInitializer(self.weight),
bias_attr=False
if self.no_bias else I.NumpyArrayInitializer(self.bias),
use_cudnn=self.use_cudnn,
act=self.act,
data_format=self.data_format)
exe = fluid.Executor(self.place)
exe.run(start)
out, = exe.run(main, feed={"input": self.input}, fetch_list=[y])
return out
def static_graph_case_2(self):
main = fluid.Program()
start = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, start):
if self.channel_last:
x = x = fluid.data(
"input", (-1, -1, -1, self.in_channels),
dtype=self.dtype)
else:
x = fluid.data(
"input", (-1, self.in_channels, -1, -1),
dtype=self.dtype)
weight = fluid.data(
"weight", self.weight.shape, dtype=self.dtype)
if not self.no_bias:
bias = fluid.data("bias", self.bias.shape, dtype=self.dtype)
y = F.conv2d(
x,
weight,
None if self.no_bias else bias,
padding=self.padding,
stride=self.stride,
dilation=self.dilation,
groups=self.groups,
act=self.act,
data_format=self.data_format,
use_cudnn=self.use_cudnn)
exe = fluid.Executor(self.place)
exe.run(start)
feed_dict = {"input": self.input, "weight": self.weight}
if not self.no_bias:
feed_dict["bias"] = self.bias
out, = exe.run(main, feed=feed_dict, fetch_list=[y])
return out
def dygraph_case(self):
with dg.guard(self.place):
x = dg.to_variable(self.input)
weight = dg.to_variable(self.weight)
bias = None if self.no_bias else dg.to_variable(self.bias)
y = F.conv2d(
x,
weight,
bias,
padding=self.padding,
stride=self.stride,
dilation=self.dilation,
act=self.act,
groups=self.groups,
data_format=self.data_format,
use_cudnn=self.use_cudnn)
out = y.numpy()
return out
def _test_identity(self):
self.prepare()
out1 = self.static_graph_case_1()
out2 = self.static_graph_case_2()
out3 = self.dygraph_case()
np.testing.assert_array_almost_equal(out1, out2)
np.testing.assert_array_almost_equal(out2, out3)
def test_identity_cpu(self):
self.place = fluid.CPUPlace()
self._test_identity()
@unittest.skipIf(not fluid.core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
def test_identity_gpu(self):
self.place = fluid.CUDAPlace(0)
self._test_identity()
class TestFunctionalConv2DError(TestCase):
batch_size = 4
spatial_shape = (16, 16)
dtype = "float32"
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = "not_valid"
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NHWC"
def test_exception(self):
self.prepare()
with self.assertRaises(ValueError):
self.static_graph_case()
def prepare(self):
if isinstance(self.filter_shape, int):
filter_shape = (self.filter_shape, ) * 2
else:
filter_shape = tuple(self.filter_shape)
self.weight_shape = (self.out_channels, self.in_channels // self.groups
) + filter_shape
self.bias_shape = (self.out_channels, )
def static_graph_case(self):
main = fluid.Program()
start = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, start):
self.channel_last = self.data_format == "NHWC"
if self.channel_last:
x = x = fluid.data(
"input", (-1, -1, -1, self.in_channels),
dtype=self.dtype)
else:
x = fluid.data(
"input", (-1, self.in_channels, -1, -1),
dtype=self.dtype)
weight = fluid.data(
"weight", self.weight_shape, dtype=self.dtype)
if not self.no_bias:
bias = fluid.data("bias", self.bias_shape, dtype=self.dtype)
y = F.conv2d(
x,
weight,
None if self.no_bias else bias,
padding=self.padding,
stride=self.stride,
dilation=self.dilation,
groups=self.groups,
act=self.act,
data_format=self.data_format,
use_cudnn=self.use_cudnn)
class TestFunctionalConv2DCase2(TestFunctionalConv2D):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = [1, 2]
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NHWC"
class TestFunctionalConv2DCase3(TestFunctionalConv2D):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = [1, 2, 3, 1]
self.stride = 2
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NHWC"
class TestFunctionalConv2DCase4(TestFunctionalConv2D):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = [1, 1, 2, 2]
self.stride = 1
self.dilation = 2
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NHWC"
class TestFunctionalConv2DCase5(TestFunctionalConv2D):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = [[0, 0], [1, 1], [2, 2], [0, 0]]
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NHWC"
class TestFunctionalConv2DCase6(TestFunctionalConv2D):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = [[0, 0], [0, 0], [1, 1], [2, 2]]
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCHW"
class TestFunctionalConv2DCase7(TestFunctionalConv2D):
def setUp(self):
self.in_channels = 6
self.out_channels = 8
self.filter_shape = 3
self.padding = "same"
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCHW"
class TestFunctionalConv2DCase8(TestFunctionalConv2D):
def setUp(self):
self.in_channels = 6
self.out_channels = 12
self.filter_shape = 3
self.padding = "valid"
self.stride = 1
self.dilation = 1
self.groups = 6
self.no_bias = True
self.act = None
self.use_cudnn = False
self.data_format = "NCHW"
class TestFunctionalConv2DErrorCase2(TestFunctionalConv2DError):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = [[0, 0], [1, 2], [3, 4], [5, 6]]
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = False
self.data_format = "NCHW"
class TestFunctionalConv2DErrorCase3(TestFunctionalConv2DError):
def setUp(self):
self.in_channels = 3
self.out_channels = 4
self.filter_shape = 3
self.padding = "same"
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = False
self.data_format = "not_valid"
class TestFunctionalConv2DErrorCase4(TestFunctionalConv2DError):
def setUp(self):
self.in_channels = 4
self.out_channels = 3
self.filter_shape = 3
self.padding = "same"
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = False
self.data_format = "NCHW"
class TestFunctionalConv2DErrorCase6(TestFunctionalConv2DError):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = "same"
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = "not_valid"
self.data_format = "NCHW"
class TestFunctionalConv2DErrorCase7(TestFunctionalConv2DError):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = "same"
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "not_valid"
class TestFunctionalConv2DErrorCase8(TestFunctionalConv2DError):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = [1, 2, 1, 2, 1]
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCHW"
class TestFunctionalConv2DErrorCase9(TestFunctionalConv2DError):
def setUp(self):
self.in_channels = -5
self.out_channels = 5
self.filter_shape = 3
self.padding = [[0, 0], [0, 0], [3, 2], [1, 2]]
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = False
self.data_format = "NCHW"
class TestFunctionalConv2DErrorCase10(TestFunctionalConv2DError):
def setUp(self):
self.in_channels = 3
self.out_channels = 4
self.filter_shape = 3
self.padding = "same"
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = False
self.data_format = "NHWC"
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn.functional as F
from paddle import fluid
import paddle.fluid.dygraph as dg
import paddle.fluid.initializer as I
import numpy as np
import unittest
from unittest import TestCase
class TestFunctionalConv2D(TestCase):
batch_size = 4
spatial_shape = (16, 16)
dtype = "float32"
output_size = None
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = 0
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NHWC"
def prepare(self):
if isinstance(self.filter_shape, int):
filter_shape = (self.filter_shape, ) * 2
else:
filter_shape = tuple(self.filter_shape)
self.weight = np.random.uniform(
-1, 1, (self.in_channels, self.out_channels // self.groups
) + filter_shape).astype(self.dtype)
if not self.no_bias:
self.bias = np.random.uniform(-1, 1, (
self.out_channels, )).astype(self.dtype)
self.channel_last = (self.data_format == "NHWC")
if self.channel_last:
self.input_shape = (self.batch_size, ) + self.spatial_shape + (
self.in_channels, )
else:
self.input_shape = (self.batch_size, self.in_channels
) + self.spatial_shape
self.input = np.random.uniform(-1, 1,
self.input_shape).astype(self.dtype)
def static_graph_case_1(self):
main = fluid.Program()
start = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, start):
if self.channel_last:
x = fluid.data(
"input", (-1, -1, -1, self.in_channels),
dtype=self.dtype)
else:
x = fluid.data(
"input", (-1, self.in_channels, -1, -1),
dtype=self.dtype)
y = fluid.layers.conv2d_transpose(
x,
self.out_channels,
output_size=self.output_size,
filter_size=self.filter_shape,
stride=self.stride,
padding=self.padding,
dilation=self.dilation,
groups=self.groups,
param_attr=I.NumpyArrayInitializer(self.weight),
bias_attr=False
if self.no_bias else I.NumpyArrayInitializer(self.bias),
use_cudnn=self.use_cudnn,
act=self.act,
data_format=self.data_format)
exe = fluid.Executor(self.place)
exe.run(start)
out, = exe.run(main, feed={"input": self.input}, fetch_list=[y])
return out
def static_graph_case_2(self):
main = fluid.Program()
start = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, start):
if self.channel_last:
x = x = fluid.data(
"input", (-1, -1, -1, self.in_channels),
dtype=self.dtype)
else:
x = fluid.data(
"input", (-1, self.in_channels, -1, -1),
dtype=self.dtype)
weight = fluid.data(
"weight", self.weight.shape, dtype=self.dtype)
if not self.no_bias:
bias = fluid.data("bias", self.bias.shape, dtype=self.dtype)
y = F.conv2d_transpose(
x,
weight,
None if self.no_bias else bias,
output_size=self.output_size,
padding=self.padding,
stride=self.stride,
dilation=self.dilation,
groups=self.groups,
act=self.act,
data_format=self.data_format,
use_cudnn=self.use_cudnn)
exe = fluid.Executor(self.place)
exe.run(start)
feed_dict = {"input": self.input, "weight": self.weight}
if not self.no_bias:
feed_dict["bias"] = self.bias
out, = exe.run(main, feed=feed_dict, fetch_list=[y])
return out
def dygraph_case(self):
with dg.guard(self.place):
x = dg.to_variable(self.input)
weight = dg.to_variable(self.weight)
bias = None if self.no_bias else dg.to_variable(self.bias)
y = F.conv2d_transpose(
x,
weight,
bias,
output_size=self.output_size,
padding=self.padding,
stride=self.stride,
dilation=self.dilation,
act=self.act,
groups=self.groups,
data_format=self.data_format,
use_cudnn=self.use_cudnn)
out = y.numpy()
return out
def _test_identity(self):
self.prepare()
out1 = self.static_graph_case_1()
out2 = self.static_graph_case_2()
out3 = self.dygraph_case()
np.testing.assert_array_almost_equal(out1, out2)
np.testing.assert_array_almost_equal(out2, out3)
def test_identity_cpu(self):
self.place = fluid.CPUPlace()
self._test_identity()
@unittest.skipIf(not fluid.core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
def test_identity_gpu(self):
self.place = fluid.CUDAPlace(0)
self._test_identity()
class TestFunctionalConv2DError(TestCase):
batch_size = 4
spatial_shape = (16, 16)
dtype = "float32"
output_size = None
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = "not_valid"
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NHWC"
def test_exception(self):
self.prepare()
with self.assertRaises(ValueError):
self.static_graph_case()
def prepare(self):
if isinstance(self.filter_shape, int):
filter_shape = (self.filter_shape, ) * 2
else:
filter_shape = tuple(self.filter_shape)
self.weight_shape = (self.in_channels, self.out_channels // self.groups
) + filter_shape
self.bias_shape = (self.out_channels, )
def static_graph_case(self):
main = fluid.Program()
start = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, start):
self.channel_last = self.data_format == "NHWC"
if self.channel_last:
x = x = fluid.data(
"input", (-1, -1, -1, self.in_channels),
dtype=self.dtype)
else:
x = fluid.data(
"input", (-1, self.in_channels, -1, -1),
dtype=self.dtype)
weight = fluid.data(
"weight", self.weight_shape, dtype=self.dtype)
if not self.no_bias:
bias = fluid.data("bias", self.bias_shape, dtype=self.dtype)
y = F.conv2d_transpose(
x,
weight,
None if self.no_bias else bias,
output_size=self.output_size,
padding=self.padding,
stride=self.stride,
dilation=self.dilation,
groups=self.groups,
act=self.act,
data_format=self.data_format,
use_cudnn=self.use_cudnn)
class TestFunctionalConv2DCase2(TestFunctionalConv2D):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = 0
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NHWC"
class TestFunctionalConv2DCase3(TestFunctionalConv2D):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = 0
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = True
self.act = None
self.use_cudnn = True
self.data_format = "NCHW"
class TestFunctionalConv2DCase4(TestFunctionalConv2D):
def setUp(self):
self.in_channels = 4
self.out_channels = 6
self.filter_shape = 3
self.padding = 0
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NHWC"
class TestFunctionalConv2DCase5(TestFunctionalConv2D):
def setUp(self):
self.in_channels = 4
self.out_channels = 6
self.filter_shape = 3
self.padding = "same"
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NHWC"
class TestFunctionalConv2DCase6(TestFunctionalConv2D):
def setUp(self):
self.in_channels = 4
self.out_channels = 6
self.filter_shape = 3
self.padding = "valid"
self.stride = (1, 2)
self.dilation = (2, 1)
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NHWC"
class TestFunctionalConv2DCase7(TestFunctionalConv2D):
def setUp(self):
self.in_channels = 4
self.out_channels = 4
self.filter_shape = 3
self.padding = "valid"
self.stride = (1, 2)
self.dilation = 1
self.groups = 4
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = False
self.data_format = "NHWC"
class TestFunctionalConv2DCase8(TestFunctionalConv2D):
def setUp(self):
self.in_channels = 4
self.out_channels = 4
self.filter_shape = 3
self.padding = "valid"
self.output_size = [18, 34]
self.stride = (1, 2)
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCHW"
class TestFunctionalConv2DCase9(TestFunctionalConv2D):
def setUp(self):
self.in_channels = 4
self.out_channels = 6
self.filter_shape = 3
self.padding = [[0, 0], [1, 2], [2, 1], [0, 0]]
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NHWC"
class TestFunctionalConv2DCase10(TestFunctionalConv2D):
def setUp(self):
self.in_channels = 4
self.out_channels = 6
self.filter_shape = 3
self.padding = [[0, 0], [0, 0], [1, 1], [2, 2]]
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCHW"
class TestFunctionalConv2DCase11(TestFunctionalConv2D):
def setUp(self):
self.in_channels = 4
self.out_channels = 6
self.filter_shape = 3
self.padding = [1, 1, 2, 2]
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCHW"
class TestFunctionalConv2DCase12(TestFunctionalConv2D):
def setUp(self):
self.in_channels = 4
self.out_channels = 6
self.filter_shape = 3
self.padding = [1, 2]
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCHW"
class TestFunctionalConv2DErrorCase2(TestFunctionalConv2DError):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = [1, 2, 2, 1, 3]
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NHWC"
class TestFunctionalConv2DErrorCase3(TestFunctionalConv2DError):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = [[0, 0], [0, 0], [1, 2], [2, 1]]
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NHWC"
class TestFunctionalConv2DErrorCase4(TestFunctionalConv2DError):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = [[0, 0], [1, 2], [0, 0], [2, 1]]
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCHW"
class TestFunctionalConv2DErrorCase5(TestFunctionalConv2DError):
def setUp(self):
self.in_channels = -2
self.out_channels = 5
self.filter_shape = 3
self.padding = 0
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCHW"
class TestFunctionalConv2DErrorCase6(TestFunctionalConv2DError):
def setUp(self):
self.in_channels = 4
self.out_channels = 5
self.filter_shape = 3
self.padding = 0
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = "not_valid"
self.data_format = "NCHW"
class TestFunctionalConv2DErrorCase7(TestFunctionalConv2DError):
def setUp(self):
self.in_channels = 4
self.out_channels = 5
self.filter_shape = 3
self.padding = 0
self.output_size = "not_valid"
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCHW"
class TestFunctionalConv2DErrorCase8(TestFunctionalConv2DError):
def setUp(self):
self.in_channels = 4
self.out_channels = 5
self.filter_shape = 3
self.padding = 0
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "not_valid"
class TestFunctionalConv2DErrorCase9(TestFunctionalConv2DError):
def setUp(self):
self.in_channels = 3
self.out_channels = 4
self.filter_shape = 3
self.padding = 0
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCHW"
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn.functional as F
from paddle import fluid
import paddle.fluid.dygraph as dg
import paddle.fluid.initializer as I
import numpy as np
import unittest
from unittest import TestCase
class TestFunctionalConv3D(TestCase):
batch_size = 4
spatial_shape = (8, 8, 8)
dtype = "float32"
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = 0
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NDHWC"
def prepare(self):
if isinstance(self.filter_shape, int):
filter_shape = (self.filter_shape, ) * 3
else:
filter_shape = tuple(self.filter_shape)
self.weight = np.random.uniform(
-1, 1, (self.out_channels, self.in_channels // self.groups
) + filter_shape).astype(self.dtype)
if not self.no_bias:
self.bias = np.random.uniform(-1, 1, (
self.out_channels, )).astype(self.dtype)
self.channel_last = (self.data_format == "NDHWC")
if self.channel_last:
self.input_shape = (self.batch_size, ) + self.spatial_shape + (
self.in_channels, )
else:
self.input_shape = (self.batch_size, self.in_channels
) + self.spatial_shape
self.input = np.random.uniform(-1, 1,
self.input_shape).astype(self.dtype)
def static_graph_case_1(self):
main = fluid.Program()
start = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, start):
if self.channel_last:
x = fluid.data(
"input", (-1, -1, -1, -1, self.in_channels),
dtype=self.dtype)
else:
x = fluid.data(
"input", (-1, self.in_channels, -1, -1, -1),
dtype=self.dtype)
y = fluid.layers.conv3d(
x,
self.out_channels,
self.filter_shape,
stride=self.stride,
padding=self.padding,
dilation=self.dilation,
groups=self.groups,
param_attr=I.NumpyArrayInitializer(self.weight),
bias_attr=False
if self.no_bias else I.NumpyArrayInitializer(self.bias),
use_cudnn=self.use_cudnn,
act=self.act,
data_format=self.data_format)
exe = fluid.Executor(self.place)
exe.run(start)
out, = exe.run(main, feed={"input": self.input}, fetch_list=[y])
return out
def static_graph_case_2(self):
main = fluid.Program()
start = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, start):
if self.channel_last:
x = x = fluid.data(
"input", (-1, -1, -1, -1, self.in_channels),
dtype=self.dtype)
else:
x = fluid.data(
"input", (-1, self.in_channels, -1, -1, -1),
dtype=self.dtype)
weight = fluid.data(
"weight", self.weight.shape, dtype=self.dtype)
if not self.no_bias:
bias = fluid.data("bias", self.bias.shape, dtype=self.dtype)
y = F.conv3d(
x,
weight,
None if self.no_bias else bias,
padding=self.padding,
stride=self.stride,
dilation=self.dilation,
groups=self.groups,
act=self.act,
data_format=self.data_format,
use_cudnn=self.use_cudnn)
exe = fluid.Executor(self.place)
exe.run(start)
feed_dict = {"input": self.input, "weight": self.weight}
if not self.no_bias:
feed_dict["bias"] = self.bias
out, = exe.run(main, feed=feed_dict, fetch_list=[y])
return out
def dygraph_case(self):
with dg.guard(self.place):
x = dg.to_variable(self.input)
weight = dg.to_variable(self.weight)
bias = None if self.no_bias else dg.to_variable(self.bias)
y = F.conv3d(
x,
weight,
bias,
padding=self.padding,
stride=self.stride,
dilation=self.dilation,
act=self.act,
groups=self.groups,
data_format=self.data_format,
use_cudnn=self.use_cudnn)
out = y.numpy()
return out
def _test_identity(self):
self.prepare()
out1 = self.static_graph_case_1()
out2 = self.static_graph_case_2()
out3 = self.dygraph_case()
np.testing.assert_array_almost_equal(out1, out2)
np.testing.assert_array_almost_equal(out2, out3)
def test_identity_cpu(self):
self.place = fluid.CPUPlace()
self._test_identity()
@unittest.skipIf(not fluid.core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
def test_identity_gpu(self):
self.place = fluid.CUDAPlace(0)
self._test_identity()
class TestFunctionalConv3DError(TestCase):
batch_size = 4
spatial_shape = (8, 8, 8)
dtype = "float32"
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = "not_valid"
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NDHWC"
def test_exception(self):
self.prepare()
with self.assertRaises(ValueError):
self.static_graph_case()
def prepare(self):
if isinstance(self.filter_shape, int):
filter_shape = (self.filter_shape, ) * 3
else:
filter_shape = tuple(self.filter_shape)
self.weight_shape = (self.out_channels, self.in_channels // self.groups
) + filter_shape
self.bias_shape = (self.out_channels, )
def static_graph_case(self):
main = fluid.Program()
start = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, start):
self.channel_last = self.data_format == "NDHWC"
if self.channel_last:
x = x = fluid.data(
"input", (-1, -1, -1, -1, self.in_channels),
dtype=self.dtype)
else:
x = fluid.data(
"input", (-1, self.in_channels, -1, -1, -1),
dtype=self.dtype)
weight = fluid.data(
"weight", self.weight_shape, dtype=self.dtype)
if not self.no_bias:
bias = fluid.data("bias", self.bias_shape, dtype=self.dtype)
y = F.conv3d(
x,
weight,
None if self.no_bias else bias,
padding=self.padding,
stride=self.stride,
dilation=self.dilation,
groups=self.groups,
act=self.act,
data_format=self.data_format,
use_cudnn=self.use_cudnn)
class TestFunctionalConv3DCase2(TestFunctionalConv3D):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = [1, 2, 1]
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NDHWC"
class TestFunctionalConv3DCase3(TestFunctionalConv3D):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = [1, 2, 3, 1, 2, 3]
self.stride = 2
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NDHWC"
class TestFunctionalConv3DCase4(TestFunctionalConv3D):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = [1, 1, 2, 2, 3, 3]
self.stride = 1
self.dilation = 2
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NDHWC"
class TestFunctionalConv3DCase5(TestFunctionalConv3D):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = [[0, 0], [1, 1], [2, 2], [1, 1], [0, 0]]
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NDHWC"
class TestFunctionalConv3DCase6(TestFunctionalConv3D):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = [[0, 0], [0, 0], [1, 1], [2, 2], [2, 2]]
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCDHW"
class TestFunctionalConv3DCase7(TestFunctionalConv3D):
def setUp(self):
self.in_channels = 6
self.out_channels = 8
self.filter_shape = 3
self.padding = "same"
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCDHW"
class TestFunctionalConv3DCase8(TestFunctionalConv3D):
def setUp(self):
self.in_channels = 6
self.out_channels = 12
self.filter_shape = 3
self.padding = "valid"
self.stride = 1
self.dilation = 1
self.groups = 6
self.no_bias = True
self.act = None
self.use_cudnn = False
self.data_format = "NCDHW"
class TestFunctionalConv3DErrorCase2(TestFunctionalConv3DError):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = [[0, 0], [1, 1], [1, 2], [3, 4], [5, 6]]
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = False
self.data_format = "NCDHW"
class TestFunctionalConv3DErrorCase3(TestFunctionalConv3DError):
def setUp(self):
self.in_channels = 3
self.out_channels = 4
self.filter_shape = 3
self.padding = "same"
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = False
self.data_format = "not_valid"
class TestFunctionalConv3DErrorCase4(TestFunctionalConv3DError):
def setUp(self):
self.in_channels = 4
self.out_channels = 3
self.filter_shape = 3
self.padding = "same"
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = False
self.data_format = "NCDHW"
class TestFunctionalConv3DErrorCase6(TestFunctionalConv3DError):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = "same"
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = "not_valid"
self.data_format = "NCDHW"
class TestFunctionalConv3DErrorCase7(TestFunctionalConv3DError):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = "same"
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "not_valid"
class TestFunctionalConv3DErrorCase8(TestFunctionalConv3DError):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = [1, 2, 1, 2, 1]
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCDHW"
class TestFunctionalConv3DErrorCase9(TestFunctionalConv3DError):
def setUp(self):
self.in_channels = -5
self.out_channels = 5
self.filter_shape = 3
self.padding = [[0, 0], [0, 0], [3, 2], [1, 2], [1, 1]]
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = False
self.data_format = "NCDHW"
class TestFunctionalConv3DErrorCase10(TestFunctionalConv3DError):
def setUp(self):
self.in_channels = 3
self.out_channels = 4
self.filter_shape = 3
self.padding = "same"
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = False
self.data_format = "NDHWC"
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn.functional as F
from paddle import fluid
import paddle.fluid.dygraph as dg
import paddle.fluid.initializer as I
import numpy as np
import unittest
from unittest import TestCase
class TestFunctionalConv3DTranspose(TestCase):
batch_size = 4
spatial_shape = (8, 8, 8)
dtype = "float32"
output_size = None
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = 0
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NDHWC"
def prepare(self):
if isinstance(self.filter_shape, int):
filter_shape = (self.filter_shape, ) * 3
else:
filter_shape = tuple(self.filter_shape)
self.weight = np.random.uniform(
-1, 1, (self.in_channels, self.out_channels // self.groups
) + filter_shape).astype(self.dtype)
if not self.no_bias:
self.bias = np.random.uniform(-1, 1, (
self.out_channels, )).astype(self.dtype)
self.channel_last = (self.data_format == "NDHWC")
if self.channel_last:
self.input_shape = (self.batch_size, ) + self.spatial_shape + (
self.in_channels, )
else:
self.input_shape = (self.batch_size, self.in_channels
) + self.spatial_shape
self.input = np.random.uniform(-1, 1,
self.input_shape).astype(self.dtype)
def static_graph_case_1(self):
main = fluid.Program()
start = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, start):
if self.channel_last:
x = fluid.data(
"input", (-1, -1, -1, -1, self.in_channels),
dtype=self.dtype)
else:
x = fluid.data(
"input", (-1, self.in_channels, -1, -1, -1),
dtype=self.dtype)
y = fluid.layers.conv3d_transpose(
x,
self.out_channels,
output_size=self.output_size,
filter_size=self.filter_shape,
stride=self.stride,
padding=self.padding,
dilation=self.dilation,
groups=self.groups,
param_attr=I.NumpyArrayInitializer(self.weight),
bias_attr=False
if self.no_bias else I.NumpyArrayInitializer(self.bias),
use_cudnn=self.use_cudnn,
act=self.act,
data_format=self.data_format)
exe = fluid.Executor(self.place)
exe.run(start)
out, = exe.run(main, feed={"input": self.input}, fetch_list=[y])
return out
def static_graph_case_2(self):
main = fluid.Program()
start = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, start):
if self.channel_last:
x = x = fluid.data(
"input", (-1, -1, -1, -1, self.in_channels),
dtype=self.dtype)
else:
x = fluid.data(
"input", (-1, self.in_channels, -1, -1, -1),
dtype=self.dtype)
weight = fluid.data(
"weight", self.weight.shape, dtype=self.dtype)
if not self.no_bias:
bias = fluid.data("bias", self.bias.shape, dtype=self.dtype)
y = F.conv3d_transpose(
x,
weight,
None if self.no_bias else bias,
output_size=self.output_size,
padding=self.padding,
stride=self.stride,
dilation=self.dilation,
groups=self.groups,
act=self.act,
data_format=self.data_format,
use_cudnn=self.use_cudnn)
exe = fluid.Executor(self.place)
exe.run(start)
feed_dict = {"input": self.input, "weight": self.weight}
if not self.no_bias:
feed_dict["bias"] = self.bias
out, = exe.run(main, feed=feed_dict, fetch_list=[y])
return out
def dygraph_case(self):
with dg.guard(self.place):
x = dg.to_variable(self.input)
weight = dg.to_variable(self.weight)
bias = None if self.no_bias else dg.to_variable(self.bias)
y = F.conv3d_transpose(
x,
weight,
bias,
output_size=self.output_size,
padding=self.padding,
stride=self.stride,
dilation=self.dilation,
act=self.act,
groups=self.groups,
data_format=self.data_format,
use_cudnn=self.use_cudnn)
out = y.numpy()
return out
def _test_identity(self):
self.prepare()
out1 = self.static_graph_case_1()
out2 = self.static_graph_case_2()
out3 = self.dygraph_case()
np.testing.assert_array_almost_equal(out1, out2)
np.testing.assert_array_almost_equal(out2, out3)
def test_identity_cpu(self):
self.place = fluid.CPUPlace()
self._test_identity()
@unittest.skipIf(not fluid.core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
def test_identity_gpu(self):
self.place = fluid.CUDAPlace(0)
self._test_identity()
class TestFunctionalConv3DTransposeError(TestCase):
batch_size = 4
spatial_shape = (8, 8, 8)
dtype = "float32"
output_size = None
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = "not_valid"
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NDHWC"
def test_exception(self):
self.prepare()
with self.assertRaises(ValueError):
self.static_graph_case()
def prepare(self):
if isinstance(self.filter_shape, int):
filter_shape = (self.filter_shape, ) * 3
else:
filter_shape = tuple(self.filter_shape)
self.weight_shape = (self.in_channels, self.out_channels // self.groups
) + filter_shape
self.bias_shape = (self.out_channels, )
def static_graph_case(self):
main = fluid.Program()
start = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, start):
self.channel_last = self.data_format == "NDHWC"
if self.channel_last:
x = x = fluid.data(
"input", (-1, -1, -1, -1, self.in_channels),
dtype=self.dtype)
else:
x = fluid.data(
"input", (-1, self.in_channels, -1, -1, -1),
dtype=self.dtype)
weight = fluid.data(
"weight", self.weight_shape, dtype=self.dtype)
if not self.no_bias:
bias = fluid.data("bias", self.bias_shape, dtype=self.dtype)
y = F.conv3d_transpose(
x,
weight,
None if self.no_bias else bias,
output_size=self.output_size,
padding=self.padding,
stride=self.stride,
dilation=self.dilation,
groups=self.groups,
act=self.act,
data_format=self.data_format,
use_cudnn=self.use_cudnn)
class TestFunctionalConv3DTransposeCase2(TestFunctionalConv3DTranspose):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = 0
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCDHW"
class TestFunctionalConv3DTransposeCase3(TestFunctionalConv3DTranspose):
def setUp(self):
self.in_channels = 4
self.out_channels = 6
self.filter_shape = 3
self.padding = 0
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NDHWC"
class TestFunctionalConv3DTransposeCase4(TestFunctionalConv3DTranspose):
def setUp(self):
self.in_channels = 4
self.out_channels = 6
self.filter_shape = 3
self.padding = "same"
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = True
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NDHWC"
class TestFunctionalConv3DTransposeCase5(TestFunctionalConv3DTranspose):
def setUp(self):
self.in_channels = 4
self.out_channels = 6
self.filter_shape = 3
self.padding = "valid"
self.stride = (1, 2, 1)
self.dilation = (2, 1, 1)
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NDHWC"
class TestFunctionalConv3DTransposeCase6(TestFunctionalConv3DTranspose):
def setUp(self):
self.in_channels = 4
self.out_channels = 4
self.filter_shape = 3
self.padding = "valid"
self.stride = (1, 2, 1)
self.dilation = 1
self.groups = 4
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = False
self.data_format = "NDHWC"
class TestFunctionalConv3DTransposeCase7(TestFunctionalConv3DTranspose):
def setUp(self):
self.in_channels = 4
self.out_channels = 4
self.filter_shape = 3
self.padding = "valid"
self.output_size = (10, 17, 10)
self.stride = (1, 2, 1)
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCDHW"
class TestFunctionalConv3DTransposeCase8(TestFunctionalConv3DTranspose):
def setUp(self):
self.in_channels = 4
self.out_channels = 6
self.filter_shape = 3
self.padding = [[0, 0], [1, 2], [1, 2], [2, 1], [0, 0]]
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NDHWC"
class TestFunctionalConv3DTransposeCase9(TestFunctionalConv3DTranspose):
def setUp(self):
self.in_channels = 4
self.out_channels = 6
self.filter_shape = 3
self.padding = [[0, 0], [0, 0], [1, 1], [1, 1], [2, 2]]
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCDHW"
class TestFunctionalConv3DTransposeCase10(TestFunctionalConv3DTranspose):
def setUp(self):
self.in_channels = 4
self.out_channels = 6
self.filter_shape = 3
self.padding = [1, 1, 2, 2, 1, 1]
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCDHW"
class TestFunctionalConv3DTransposeCase11(TestFunctionalConv3DTranspose):
def setUp(self):
self.in_channels = 4
self.out_channels = 6
self.filter_shape = 3
self.padding = [1, 2, 1]
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCDHW"
class TestFunctionalConv3DTransposeErrorCase2(
TestFunctionalConv3DTransposeError):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = [1, 2, 2, 1, 3]
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NDHWC"
class TestFunctionalConv3DTransposeErrorCase3(
TestFunctionalConv3DTransposeError):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = [[0, 0], [0, 0], [1, 1], [1, 2], [2, 1]]
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NDHWC"
class TestFunctionalConv3DTransposeErrorCase4(
TestFunctionalConv3DTransposeError):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = [[0, 0], [1, 2], [1, 1], [0, 0], [2, 1]]
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCDHW"
class TestFunctionalConv3DTransposeErrorCase5(
TestFunctionalConv3DTransposeError):
def setUp(self):
self.in_channels = -2
self.out_channels = 5
self.filter_shape = 3
self.padding = 0
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCDHW"
class TestFunctionalConv3DTransposeErrorCase6(
TestFunctionalConv3DTransposeError):
def setUp(self):
self.in_channels = 4
self.out_channels = 5
self.filter_shape = 3
self.padding = 0
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = "not_valid"
self.data_format = "NCDHW"
class TestFunctionalConv3DTransposeErrorCase7(
TestFunctionalConv3DTransposeError):
def setUp(self):
self.in_channels = 4
self.out_channels = 5
self.filter_shape = 3
self.padding = 0
self.output_size = "not_valid"
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCDHW"
class TestFunctionalConv3DTransposeErrorCase8(
TestFunctionalConv3DTransposeError):
def setUp(self):
self.in_channels = 4
self.out_channels = 5
self.filter_shape = 3
self.padding = 0
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "not_valid"
class TestFunctionalConv3DTransposeErrorCase9(
TestFunctionalConv3DTransposeError):
def setUp(self):
self.in_channels = 3
self.out_channels = 4
self.filter_shape = 3
self.padding = 0
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.use_cudnn = True
self.data_format = "NCDHW"
if __name__ == "__main__":
unittest.main()
......@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: import all neural network related api under this directory,
# TODO: import all neural network related api under this directory,
# including layers, linear, conv, rnn etc.
__all__ = []
......@@ -85,10 +85,10 @@ from .layer import loss #DEFINE_ALIAS
# from .layer.common import Embedding #DEFINE_ALIAS
# from .layer.common import Linear #DEFINE_ALIAS
# from .layer.common import UpSample #DEFINE_ALIAS
# from .functional.conv import conv2d #DEFINE_ALIAS
# from .functional.conv import conv2d_transpose #DEFINE_ALIAS
# from .functional.conv import conv3d #DEFINE_ALIAS
# from .functional.conv import conv3d_transpose #DEFINE_ALIAS
from .functional.conv import conv2d #DEFINE_ALIAS
from .functional.conv import conv2d_transpose #DEFINE_ALIAS
from .functional.conv import conv3d #DEFINE_ALIAS
from .functional.conv import conv3d_transpose #DEFINE_ALIAS
# from .functional.loss import bpr_loss #DEFINE_ALIAS
# from .functional.loss import center_loss #DEFINE_ALIAS
# from .functional.loss import cross_entropy #DEFINE_ALIAS
......
......@@ -12,15 +12,15 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: import all neural network related api under this directory,
# TODO: import all neural network related api under this directory,
# including layers, linear, conv, rnn etc.
# __all__ = [ ]
# TODO: define alias in functional directory
# from .conv import conv2d #DEFINE_ALIAS
# from .conv import conv2d_transpose #DEFINE_ALIAS
# from .conv import conv3d #DEFINE_ALIAS
# from .conv import conv3d_transpose #DEFINE_ALIAS
from .conv import conv2d #DEFINE_ALIAS
from .conv import conv2d_transpose #DEFINE_ALIAS
from .conv import conv3d #DEFINE_ALIAS
from .conv import conv3d_transpose #DEFINE_ALIAS
# from .loss import bpr_loss #DEFINE_ALIAS
# from .loss import center_loss #DEFINE_ALIAS
# from .loss import cross_entropy #DEFINE_ALIAS
......
此差异已折叠。
......@@ -146,7 +146,10 @@ packages=['paddle',
'paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler',
'paddle.fluid.incubate.fleet.parameter_server.pslib',
'paddle.fluid.incubate.fleet.collective',
'paddle.fluid.incubate.fleet.utils']
'paddle.fluid.incubate.fleet.utils',
'paddle.nn',
'paddle.nn.functional',
'paddle.nn.layer']
with open('@PADDLE_SOURCE_DIR@/python/requirements.txt') as f:
setup_requires = f.read().splitlines()
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册