conv.py 69.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

L
LielinJiang 已提交
15
from ...device import get_cudnn_version
16
from ...static import Variable
17 18
from ...fluid.layers.utils import convert_to_list, _is_symmetric_padding, _contain_var, _convert_to_tensor_list
from ...fluid.data_feeder import check_variable_and_dtype, check_dtype
19
from ...fluid.layer_helper import LayerHelper
20 21
from ...tensor.manipulation import unsqueeze, squeeze
from ...fluid.layers import nn
22
from paddle import _C_ops, _legacy_C_ops
F
From00 已提交
23 24
from paddle import get_flags
from paddle import in_dynamic_mode
Z
zhiboniu 已提交
25 26
from paddle.device import is_compiled_with_cuda
from paddle.device import is_compiled_with_npu
H
hong 已提交
27 28
from paddle import in_dynamic_mode
from paddle import get_flags
F
From00 已提交
29 30 31 32
from paddle.device import is_compiled_with_rocm
from paddle.fluid.framework import _global_flags
from paddle.fluid.framework import _in_legacy_dygraph
from paddle.fluid.framework import in_dygraph_mode
33

34 35
__all__ = []

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76

def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
    else:
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]


def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_


def _update_padding_nd(padding, channel_last, num_dims):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".
                format(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
                raise ValueError(
                    "Non-zero padding({}) in the batch or channel dimensions "
                    "is not supported.".format(padding))
            padding_algorithm = "EXPLICIT"
77 78
            padding = _exclude_padding_in_batch_and_channel(
                padding, channel_last)
79
            if _is_symmetric_padding(padding, num_dims):
80 81 82 83
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
84 85
            padding = convert_to_list(padding, 2 * num_dims, 'padding')
            if _is_symmetric_padding(padding, num_dims):
86 87 88 89
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
90
            padding = convert_to_list(padding, num_dims, 'padding')
91 92 93 94 95
        else:
            raise ValueError("In valid padding: {}".format(padding))
    # for integer padding
    else:
        padding_algorithm = "EXPLICIT"
96
        padding = convert_to_list(padding, num_dims, 'padding')
97 98
    if not all([p >= 0 for p in padding]):
        raise ValueError(
99 100
            "Invalid padding, all value should be larger than or equal to 0, but received: {}"
            .format(padding))
101 102 103
    return padding, padding_algorithm


L
LielinJiang 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
def _conv_nd(x,
             weight,
             bias=None,
             stride=1,
             padding=0,
             padding_algorithm=None,
             dilation=1,
             groups=1,
             data_format="NCHW",
             channel_dim=1,
             op_type="conv2d",
             use_cudnn=True,
             use_mkldnn=False,
             name=None):

119
    # Due to the poor performance of NHWC, we transpose the input to NCHW.
H
hong 已提交
120
    if in_dygraph_mode() and op_type == "conv2d":
121 122 123
        pre_bias = _C_ops.conv2d(x, weight, stride, padding, padding_algorithm,
                                 groups, dilation, data_format, False, -1,
                                 False)
H
hong 已提交
124
        if bias is not None:
125 126
            channel_dim = channel_dim + len(
                x.shape) if channel_dim < 0 else channel_dim
127 128 129 130
            if isinstance(x, tuple):
                x = x[0]
            if isinstance(bias, tuple):
                bias = bias[0]
C
Chen Weihang 已提交
131
            if len(bias.shape) < len(x.shape):
132
                tmp_bias = _C_ops.reshape(
133
                    bias, [1 for i in range(channel_dim)] + bias.shape +
C
Chen Weihang 已提交
134
                    [1 for i in range(len(x.shape) - channel_dim - 1)])
135
                return _C_ops.add(pre_bias, tmp_bias)
C
Chen Weihang 已提交
136
            else:
137
                return _C_ops.add(pre_bias, bias)
H
hong 已提交
138 139
        else:
            return pre_bias
140 141

    if in_dygraph_mode() and op_type == "depthwise_conv2d":
142 143 144 145
        pre_bias = _C_ops.depthwise_conv2d(x, weight, stride, padding,
                                           padding_algorithm, groups, dilation,
                                           data_format, False, -1, False, False,
                                           use_cudnn)
146 147 148
        if bias is not None:
            channel_dim = channel_dim + len(
                x.shape) if channel_dim < 0 else channel_dim
149
            tmp_bias = _C_ops.reshape(
150 151
                bias, [1 for i in range(channel_dim)] + bias.shape +
                [1 for i in range(len(x.shape) - channel_dim - 1)])
152
            return _C_ops.add(pre_bias, tmp_bias)
153 154 155 156
        else:
            return pre_bias

    if in_dygraph_mode() and op_type == "conv3d":
157 158 159
        pre_bias = _C_ops.conv3d(x, weight, stride, padding, padding_algorithm,
                                 groups, dilation, data_format, False, -1,
                                 False)
160 161 162
        if bias is not None:
            channel_dim = channel_dim + len(
                x.shape) if channel_dim < 0 else channel_dim
163
            tmp_bias = _C_ops.reshape(
164 165
                bias,
                bias.shape + [1 for i in range(len(x.shape) - channel_dim - 1)])
166
            return _C_ops.add(pre_bias, tmp_bias)
167 168 169
        else:
            return pre_bias

Z
zhiboniu 已提交
170
    if in_dynamic_mode():
L
LielinJiang 已提交
171 172 173 174 175
        attrs = ('strides', stride, 'paddings', padding, 'dilations', dilation,
                 'groups', groups, 'use_cudnn', use_cudnn, 'use_mkldnn',
                 use_mkldnn, 'fuse_relu_before_depthwise_conv', False,
                 "padding_algorithm", padding_algorithm, "data_format",
                 data_format)
176
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
L
LielinJiang 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
        if bias is not None:
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            out = pre_bias
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format
        }
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 op_type)
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        pre_bias = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [pre_bias]}
200 201 202 203
        helper.append_op(type=op_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
L
LielinJiang 已提交
204 205
        if bias is not None:
            out = helper.create_variable_for_type_inference(dtype)
206 207 208 209 210 211 212 213 214 215
            helper.append_op(type='elementwise_add',
                             inputs={
                                 'X': [pre_bias],
                                 'Y': [bias]
                             },
                             outputs={'Out': [out]},
                             attrs={
                                 'axis': channel_dim,
                                 'use_mkldnn': use_mkldnn
                             })
L
LielinJiang 已提交
216 217 218 219 220
        else:
            out = pre_bias
    return out


W
whs 已提交
221 222 223 224 225 226 227 228 229
def conv1d(x,
           weight,
           bias=None,
           stride=1,
           padding=0,
           dilation=1,
           groups=1,
           data_format='NCL',
           name=None):
230
    r"""
W
whs 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
    The convolution1D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCL format, where N is batch size, C is the number of
    channels, L is the length of the feature.
    Filter is in MCK format, where M is the number of output image channels,
    C is the number of input image channels, K is the size of the kernel.
    If the groups is greater than 1, C will equal the number of input image
    channels divided by the groups. If bias attribution and activation type
    are provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
246
        Out = \sigma (W \ast X + b)
W
whs 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272

    Where:

    * :math:`X`: Input value, a tensor with NCL format.
    * :math:`W`: Kernel value, a tensor with MCK format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

W
whs 已提交
273
            L_{out} = \frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1
W
whs 已提交
274 275

    Args:
276
        x (Tensor): The input is 3-D Tensor with shape [N, C, L], the data type
W
whs 已提交
277 278
            of input is float16 or float32 or float64.
        weight (Tensor): The convolution kernel with shape [M, C/g, K], where M is
279
            the number of output channels, g is the number of groups, K is the kernel's size.
W
whs 已提交
280
        bias (Tensor, optional): The bias with shape [M,]. Default: None.
281
        stride (int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
W
whs 已提交
282
            contain one integers, (stride_size). Default: 1.
283
        padding(int|str|tuple|list, optional): The padding size. Padding could be in one of the following forms.
W
whs 已提交
284 285 286 287 288 289
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            4. a list[int] or tuple[int] whose length is 2. It has the form  [pad_before, pad_after].
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
290
        dilation (int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
W
whs 已提交
291 292 293 294 295 296
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv1d function. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
297
        data_format (str, optional): Specify the data format of the input, and the data format of the output
W
whs 已提交
298 299 300
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, feature_length]`.
301 302
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
W
whs 已提交
303 304 305
           None by default.

    Returns:
306
        A tensor representing the conv1d, whose data type is the
W
whs 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
        same with input.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F
          import numpy as np
          x = np.array([[[4, 8, 1, 9],
            [7, 2, 0, 9],
            [6, 9, 2, 6]]]).astype(np.float32)
          w=np.array(
          [[[9, 3, 4],
            [0, 0, 7],
            [2, 5, 6]],
           [[0, 3, 4],
            [2, 9, 7],
            [5, 6, 8]]]).astype(np.float32)
325

W
whs 已提交
326 327 328 329 330
          x_var = paddle.to_tensor(x)
          w_var = paddle.to_tensor(w)
          y_var = F.conv1d(x_var, w_var)
          y_np = y_var.numpy()
          print(y_np)
331

W
whs 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344
          # [[[133. 238.]
          #   [160. 211.]]]
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ["NCL", "NLC"]:
        raise ValueError("Attr(data_format) should be 'NCL' or 'NLC'. "
                         "Received Attr(data_format): {}.".format(data_format))

L
LielinJiang 已提交
345
    channel_last = (data_format == "NLC")
W
whs 已提交
346 347
    channel_dim = -1 if channel_last else 1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"
348 349 350 351
    if len(x.shape) != 3:
        raise ValueError(
            "Input x should be 3D tensor, but received x with the shape of {}".
            format(x.shape))
W
whs 已提交
352 353 354
    num_channels = x.shape[channel_dim]
    num_filters = weight.shape[0]
    if num_channels < 0:
355
        raise ValueError("The channel dimension of the input({}) "
W
whs 已提交
356 357
                         "should be defined. Received: {}.".format(
                             x.shape, num_channels))
358 359
    if groups <= 0:
        raise ValueError(
360 361
            "The groups of conv1d should be greater than 0. Received groups: {}"
            .format(groups))
W
whs 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
            ", the groups is {}".format(num_channels, x.shape, groups))
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
            ", the groups is {}".format(num_filters, weight.shape, groups))

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)
375

W
whs 已提交
376
    if len(padding) == 2:
377
        padding = [0] * 2 + padding
W
whs 已提交
378
    elif len(padding) == 1:
379
        padding = [0] + padding
W
whs 已提交
380 381
    else:
        raise ValueError(
382 383
            "The size of padding's dimension should be 1 or 2. But got padding={}"
            .format(padding))
384 385 386
    stride = [1] + convert_to_list(stride, 1, 'stride')
    dilation = [1] + convert_to_list(dilation, 1, 'dilation')
    weight = unsqueeze(weight, axis=[-2])
W
whs 已提交
387 388

    l_type = "conv2d"
389 390

    # When "groups==num_channels and num_filters% num_channels == 0" using depthwise_conv2d has better performance
391 392
    if (is_compiled_with_cuda() and num_channels == groups and num_channels != 1
            and num_filters % num_channels == 0):
W
whs 已提交
393 394 395
        l_type = 'depthwise_conv2d'
        use_cudnn = False

396
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
Z
zhiboniu 已提交
397
    if is_compiled_with_npu():
398 399 400 401 402
        if (num_channels == groups and num_channels == num_filters):
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

403
    squeeze_aixs = -3 if channel_last else -2
404
    x = unsqueeze(x, axis=[squeeze_aixs])
405

406 407 408 409 410 411 412 413
    if in_dygraph_mode():
        out = getattr(_C_ops,
                      l_type)(x, weight, stride, padding, padding_algorithm,
                              groups, dilation, conv2d_data_format, False, -1,
                              False, False, use_cudnn)
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    elif _in_legacy_dygraph():
W
whs 已提交
414 415 416 417
        attrs = ('strides', stride, 'paddings', padding, 'dilations', dilation,
                 'groups', groups, 'use_cudnn', use_cudnn, 'use_mkldnn', False,
                 'fuse_relu_before_depthwise_conv', False, "padding_algorithm",
                 padding_algorithm, "data_format", conv2d_data_format)
418
        out = getattr(_legacy_C_ops, l_type)(x, weight, *attrs)
W
whs 已提交
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": conv2d_data_format
        }
        check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                                 'conv2d')
        helper = LayerHelper(l_type, **locals())
437
        dtype = helper.input_dtype(input_param_name='x')
W
whs 已提交
438 439
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
440 441 442 443
        helper.append_op(type=l_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
W
whs 已提交
444 445
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
446
    out = squeeze(out, axis=[squeeze_aixs])
W
whs 已提交
447 448 449
    return out


450
def conv2d(x,
451 452 453
           weight,
           bias=None,
           stride=1,
454
           padding=0,
455 456 457 458
           dilation=1,
           groups=1,
           data_format="NCHW",
           name=None):
459
    r"""
S
swtkiwi 已提交
460

461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
    channels, H is the height of the feature, and W is the width of the feature.
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

478
    ..  math::
479

480
        Out = \sigma (W \ast X + b)
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504

    Where:

    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

505
        ..  math::
506

507 508
            H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
509 510

    Args:
511
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W], the data type
512
            of input is float16 or float32 or float64.
513
        weight (Tensor): The convolution kernel with shape [M, C/g, kH, kW], where M is
514
            the number of output channels, g is the number of groups, kH is the filter's
515
            height, kW is the filter's width.
516
        bias (Tensor, optional): The bias with shape [M,].
517 518
        stride (int|list|tuple): The stride size. It means the stride in convolution.
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width).
519
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
520 521 522 523
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
524 525
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0],
526
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
527
            when `data_format` is `"NHWC"`, `padding` can be in the form
528 529
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
530
        dilation (int|list|tuple): The dilation size. It means the spacing between the kernel
531 532
            points. If dilation is a list/tuple, it must contain two integers, (dilation_height,
            dilation_width). Otherwise, dilation_height = dilation_width = dilation.
533
            Default: dilation = 1.
C
cnn 已提交
534
        groups (int): The groups number of the Conv2D Layer. According to grouped
535 536 537 538
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
539
        data_format (str, optional): Specify the data format of the input, and the data format of the output
540 541 542
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
543 544
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
545 546 547
           None by default.

    Returns:
548
        A Tensor representing the conv2d result, whose data type is the same with input.
549 550 551 552

    Examples:
        .. code-block:: python

553
          import paddle
554 555
          import paddle.nn.functional as F

556 557
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((6, 3, 3, 3), dtype='float32')
558 559 560 561

          y_var = F.conv2d(x_var, w_var)
          y_np = y_var.numpy()

562 563 564 565 566 567 568 569 570 571
          print(y_np.shape)
          # (2, 6, 6, 6)
    """
    # entry checks
    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError("Attr(data_format) should be 'NCHW' or 'NHWC'. "
                         "Received Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NHWC")
    channel_dim = -1 if channel_last else 1
572 573 574 575
    if len(x.shape) != 4:
        raise ValueError(
            "Input x should be 4D tensor, but received x with the shape of {}".
            format(x.shape))
576
    num_channels = x.shape[channel_dim]
577 578
    num_filters = weight.shape[0]
    if num_channels < 0:
579
        raise ValueError("The channel dimension of the input({}) "
580
                         "should be defined. Received: {}.".format(
581
                             x.shape, num_channels))
582 583
    if groups <= 0:
        raise ValueError(
584 585
            "The groups of conv2d should be greater than 0. Received groups: {}"
            .format(groups))
586 587 588 589
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
590
            ", the groups is {}".format(num_channels, x.shape, groups))
591 592 593 594 595 596
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
            ", the groups is {}".format(num_filters, weight.shape, groups))

597 598
    cudnn_version = get_cudnn_version()

599 600
    use_cudnn = True if (is_compiled_with_cuda()
                         and cudnn_version is not None) else False
601

602 603
    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
604 605
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
606 607

    l_type = "conv2d"
608 609
    if (num_channels == groups and num_channels != 1
            and num_filters % num_channels == 0):
610
        l_type = 'depthwise_conv2d'
Z
zhiboniu 已提交
611
        if is_compiled_with_rocm():
612 613 614
            use_cudnn = True
        else:
            use_cudnn = False
H
hong 已提交
615 616
    else:
        if in_dygraph_mode():
617 618 619
            pre_bias = _C_ops.conv2d(x, weight, stride, padding,
                                     padding_algorithm, groups, dilation,
                                     data_format, False, -1, False)
H
hong 已提交
620 621 622 623 624 625 626
            if bias is not None:
                out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
                return out
            else:
                return pre_bias

    use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
627

628
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
Z
zhiboniu 已提交
629
    if is_compiled_with_npu():
630 631 632 633 634
        if (num_channels == groups and num_channels == num_filters):
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

635 636
    if (is_compiled_with_cuda() and get_flags("FLAGS_conv2d_disable_cudnn")
        ["FLAGS_conv2d_disable_cudnn"]):
637
        use_cudnn = False
638

L
LielinJiang 已提交
639 640 641
    return _conv_nd(x, weight, bias, stride, padding, padding_algorithm,
                    dilation, groups, data_format, channel_dim, l_type,
                    use_cudnn, use_mkldnn, name)
642 643


644
def conv1d_transpose(x,
645 646 647 648 649 650 651 652 653 654
                     weight,
                     bias=None,
                     stride=1,
                     padding=0,
                     output_padding=0,
                     groups=1,
                     dilation=1,
                     output_size=None,
                     data_format="NCL",
                     name=None):
655
    r"""
656 657 658 659 660 661 662 663 664 665 666 667 668 669
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
670
        Out = \sigma (W \ast X + b)
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' or 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

           L^\prime_{out} &= (L_{in} - 1) * stride - pad_top - pad_bottom + dilation * (L_f - 1) + 1 + output_padding \\\\
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
706
          and :math:`L^\prime_{out} + stride`.
707 708 709 710 711 712 713 714 715

    Args:
        x(Tensor): 3-D tensor with [N, C, L] or [N, L, C] format,
                         its data type is float32 or float64.
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, K],
            where M is the number of output channels(filters), g is the number of groups,
            K is the size of the kernel.
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
716
            If stride is a list/tuple, it must contain one integer, `(stride_size)`.
717 718 719 720 721 722 723
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
724
             If it is a list/tuple, it must contain one integer. Default: 0.
725 726 727 728 729 730 731
        groups(int, optional): The groups number of the conv1d transpose function. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
732
            If dilation is a list/tuple, it must contain one integer, `(dilation_size)`.
733 734
            Default: dilation = 1.
        output_size(int|tuple|list, optional): The output image size. If output size is a
735
            tuple/list, it must contain one integer, `(feature_length)`. None if use
736
            filter_size(shape of weight), padding, and stride to calculate output_size.
737
        data_format (str, optional): Specify the data format of the input, and the data format of the output
738 739 740
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, input_length]`.
741 742
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
           None by default.

    Returns:
        A  tensor representing the result of 1-D transpose convolution, whose
        data type is the same with input. And its shape is (num_batches, channels, length)
        when data_format is `"NCL"` and (num_batches, length, channels) when data_format is
        `"NLC"`.

    Examples:
        .. code-block:: python



          import paddle
          import paddle.nn.functional as F
          import numpy as np
759

760 761 762 763
          # shape: (1, 2, 4)
          x=np.array([[[4, 0, 9, 7],
                       [8, 0, 9, 2,]]]).astype(np.float32)
          # shape: (2, 1, 2)
W
whs 已提交
764
          w=np.array([[[7, 0]],
765 766 767
                      [[4, 2]]]).astype(np.float32)
          x_var = paddle.to_tensor(x)
          w_var = paddle.to_tensor(w)
768
          y_var = F.conv1d_transpose(x_var, w_var)
W
whs 已提交
769
          print(y_var)
770

771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
          # [[[60. 16. 99. 75.  4.]]]
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ['NCL', 'NLC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCL' or 'NLC' are supported.".format(
                data_format))
    channel_last = (data_format == "NLC")
    channel_dim = -1 if channel_last else 1
786 787 788 789
    if len(x.shape) != 3:
        raise ValueError(
            "Input x should be 3D tensor, but received x with the shape of {}".
            format(x.shape))
790 791 792

    num_channels = x.shape[channel_dim]
    if num_channels < 0:
793
        raise ValueError("The channel dimension of the input({}) "
794 795
                         "should be defined. Received: {}.".format(
                             x.shape, num_channels))
796 797
    if groups <= 0:
        raise ValueError(
798 799
            "The groups of conv1d_transpose should be greater than 0. Received groups: {}"
            .format(groups))
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
            ", the groups is {}".format(num_channels, x.shape, groups))

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)

    if len(padding) == 2:
        padding = padding + [0] * 2
    elif len(padding) == 1:
        padding = padding + [0]
    else:
        raise ValueError(
815
            "The size of padding's dimension should 1 or 2. But got padding={}".
816 817
            format(padding))

818 819
    stride = convert_to_list(stride, 1, 'stride') + [1]
    dilation = convert_to_list(dilation, 1, 'dilation') + [1]
820 821 822 823

    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
824 825 826 827
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
        if isinstance(output_size, (list, tuple, int)):
828
            output_size = convert_to_list(output_size, 1, 'output_size') + [1]
L
LielinJiang 已提交
829 830 831 832 833 834 835
        else:
            raise ValueError(
                "output_size should be int, or list, tuple of ints")

    if output_padding == 0:
        output_padding = []
    else:
836 837
        output_padding = convert_to_list(output_padding, 1,
                                         'output_padding') + [0]
L
LielinJiang 已提交
838 839 840 841

    if len(output_padding) > 0 and output_padding[0] > stride[0]:
        raise ValueError(
            "The size of output_padding should not be greater than stride."
842 843
            "But got output_padding={} and stride={}".format(
                output_padding[0], stride[0]))
844 845 846

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
847 848
    if (num_channels == groups and num_channels != 1 and num_filters == 1
            and not use_cudnn):
849 850 851 852 853 854
        op_type = 'depthwise_conv2d_transpose'
        use_cudnn = False

    squeeze_axis = -2 if channel_last else -1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"

855 856
    x = unsqueeze(x, axis=[squeeze_axis])
    weight = unsqueeze(weight, axis=[-1])
857

858 859 860 861 862 863 864 865
    if in_dygraph_mode():
        out = getattr(_C_ops,
                      op_type)(x, weight, stride, padding, output_padding,
                               output_size, padding_algorithm, groups, dilation,
                               conv2d_data_format)
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    elif _in_legacy_dygraph():
L
LielinJiang 已提交
866 867 868 869
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'strides', stride, 'paddings', padding, 'padding_algorithm',
                 padding_algorithm, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, 'data_format', conv2d_data_format)
870
        out = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
871 872 873 874 875
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
L
LielinJiang 已提交
876
            'output_padding': output_padding,
877 878 879 880 881 882 883 884 885 886 887 888
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': conv2d_data_format
        }
        check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                                 'conv2d_transpose')
        helper = LayerHelper(op_type, **locals())
889
        dtype = helper.input_dtype(input_param_name='x')
890 891
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
892 893 894 895
        helper.append_op(type=op_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
896 897 898
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)

899
    out = squeeze(out, axis=[squeeze_axis])
900 901 902
    return out


903
def conv2d_transpose(x,
904 905 906
                     weight,
                     bias=None,
                     stride=1,
L
LielinJiang 已提交
907 908 909
                     padding=0,
                     output_padding=0,
                     dilation=1,
910
                     groups=1,
L
LielinJiang 已提交
911
                     output_size=None,
912
                     data_format='NCHW',
913
                     name=None):
914
    r"""
S
swtkiwi 已提交
915

916 917 918 919 920 921 922 923 924 925 926
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW or NHWC format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
927
    See more detail in :ref:`api_nn_conv_ConvTranspose2d` .
928 929 930

    For each input :math:`X`, the equation is:

931
    ..  math::
932

933
        Out = \sigma (W \ast X + b)
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957

    Where:

    * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a 4-D Tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

958
        ..  math::
959 960 961 962 963 964 965

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]

    Note:
966 967
          The conv2d_transpose can be seen as the backward of the conv2d. For conv2d,
          when stride > 1, conv2d maps multiple input shape to the same output shape,
968
          so for conv2d_transpose, when stride > 1, input shape maps multiple output shape.
969 970 971
          If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`;
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must
972
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`.
973 974

    Args:
L
LielinJiang 已提交
975
        x(Tensor): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format,
976
            whose data type is float32 or float64.
L
LielinJiang 已提交
977
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, kH, kW],
978 979
            where M is the number of output channels(filters), g is the number of groups,
            kH is the height of the kernel, and kW is the width of the kernel.
L
LielinJiang 已提交
980
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
981 982
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution.
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width).
L
LielinJiang 已提交
983
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
984 985
        padding(str|int|list|tuple, optional): The padding size. It means the number of zero-paddings
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
986
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
987
            it could be in three forms: `[pad_height, pad_width]` or
988
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
989
            and when `data_format` is `"NCHW"`, `padding` can be in the form
990
            `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
991
            when `data_format` is `"NHWC"`, `padding` can be in the form
992 993
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
994 995
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
996
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
997 998 999 1000 1001
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
1002 1003
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points.
            If dilation is a list/tuple, it must contain two integers, (dilation_height, dilation_width).
1004
            Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1.
L
LielinJiang 已提交
1005
        output_size(int|tuple|list, optional): The output image size. If output size is a
1006
            tuple/list, it must contain two integers, (image_height, image_width). None if use
1007
            filter_size(shape of weight), padding, and stride to calculate output_size.
1008
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1009 1010 1011
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
1012 1013
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
1014 1015 1016
           None by default.

    Returns:
1017
        A Tensor representing the conv2d_transpose, whose
1018 1019
        data type is the same with input and shape is (num_batches, channels, out_h,
        out_w) or (num_batches, out_h, out_w, channels). The tensor variable storing
L
LielinJiang 已提交
1020
        transposed convolution result.
1021 1022 1023 1024

    Examples:
        .. code-block:: python

L
LielinJiang 已提交
1025 1026
          import paddle
          import paddle.nn.functional as F
1027

1028 1029
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
1030

1031
          y_var = F.conv2d_transpose(x_var, w_var)
L
LielinJiang 已提交
1032
          y_np = y_var.numpy()
1033

1034
          print(y_np.shape)
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
          # (2, 6, 10, 10)
    """

    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCHW' or 'NHWC' are supported.".format(
                data_format))
    channel_last = (data_format == "NHWC")
    channel_dim = -1 if channel_last else 1
1045 1046 1047 1048
    if len(x.shape) != 4:
        raise ValueError(
            "Input x should be 4D tensor, but received x with the shape of {}".
            format(x.shape))
L
LielinJiang 已提交
1049
    num_channels = x.shape[channel_dim]
1050
    if num_channels < 0:
1051
        raise ValueError("The channel dimension of the input({}) "
1052
                         "should be defined. Received: {}.".format(
L
LielinJiang 已提交
1053
                             x.shape, num_channels))
1054 1055
    if groups <= 0:
        raise ValueError(
1056 1057
            "The groups of conv2d_transpose should be greater than 0. Received groups: {}"
            .format(groups))
1058 1059 1060 1061
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
L
LielinJiang 已提交
1062 1063 1064 1065
            ", the groups is {}".format(num_channels, x.shape, groups))

    cudnn_version = get_cudnn_version()

1066 1067
    use_cudnn = True if (is_compiled_with_cuda()
                         and cudnn_version is not None) else False
1068 1069 1070

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
1071 1072
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
L
LielinJiang 已提交
1073

1074 1075 1076
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1077 1078 1079
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
1080 1081 1082 1083 1084 1085
        if isinstance(output_size, (list, tuple)):
            if _contain_var(output_size):
                output_size = _convert_to_tensor_list(output_size)
            else:
                output_size = convert_to_list(output_size, 2, 'output_size')
        elif isinstance(output_size, int):
1086
            output_size = convert_to_list(output_size, 2, 'output_size')
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
        elif isinstance(output_size, Variable):
            check_dtype(output_size.dtype, 'output_size', ['int32', 'int64'],
                        'conv2d_transpose')
            if len(output_size.shape) == 1 and (output_size.shape[0] == 1
                                                or output_size.shape[0] == 2):
                if output_size.shape[0] == 1:
                    output_size = [output_size, output_size]
            else:
                raise ValueError(
                    "output_size must contain one or two integers.")
L
LielinJiang 已提交
1097 1098
        else:
            raise ValueError(
1099 1100
                "output_size should be int or Tensor or list, tuple of ints or Tensor"
            )
L
LielinJiang 已提交
1101 1102 1103 1104

    if output_padding == 0:
        output_padding = []
    else:
1105
        output_padding = convert_to_list(output_padding, 2, 'output_padding')
1106 1107 1108

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
L
LielinJiang 已提交
1109
    if (num_channels == groups and num_channels != 1 and num_filters == 1):
1110
        op_type = 'depthwise_conv2d_transpose'
L
LielinJiang 已提交
1111
        use_cudnn = False
1112

F
From00 已提交
1113
    if in_dygraph_mode():
1114 1115 1116
        op = _C_ops.conv2d_transpose if op_type == 'conv2d_transpose' else _C_ops.depthwise_conv2d_transpose
        pre_bias = op(x, weight, stride, padding, output_padding, output_size,
                      padding_algorithm, groups, dilation, data_format)
F
From00 已提交
1117 1118 1119 1120 1121 1122
        if bias is not None:
            return nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            return pre_bias

    if _in_legacy_dygraph():
L
LielinJiang 已提交
1123 1124 1125 1126
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'strides', stride, 'paddings', padding, 'padding_algorithm',
                 padding_algorithm, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, 'data_format', data_format)
1127
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
1128
        if bias is not None:
L
LielinJiang 已提交
1129
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1130
        else:
L
LielinJiang 已提交
1131
            out = pre_bias
1132
    else:
L
LielinJiang 已提交
1133
        inputs = {'Input': [x], 'Filter': [weight]}
1134
        attrs = {
L
LielinJiang 已提交
1135
            'output_padding': output_padding,
1136 1137 1138 1139 1140 1141 1142 1143 1144
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': data_format
        }
L
LielinJiang 已提交
1145
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
1146 1147
                                 'conv2d_transpose')
        helper = LayerHelper(op_type, **locals())
L
LielinJiang 已提交
1148
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1149
        outputs = {"Output": [pre_bias]}
1150 1151 1152 1153
        helper.append_op(type=op_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
L
LielinJiang 已提交
1154

1155
        if bias is not None:
L
LielinJiang 已提交
1156
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1157
        else:
L
LielinJiang 已提交
1158 1159
            out = pre_bias

1160 1161 1162
    return out


1163
def conv3d(x,
1164 1165 1166
           weight,
           bias=None,
           stride=1,
1167
           padding=0,
1168 1169 1170 1171
           dilation=1,
           groups=1,
           data_format="NCDHW",
           name=None):
1172
    r"""
S
swtkiwi 已提交
1173

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are in NCDHW or NDHWC format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

1185
    ..  math::
1186

1187
        Out = \sigma (W \ast X + b)
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1211
        ..  math::
1212 1213 1214 1215 1216 1217

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
1218
        x (Tensor): The input is 5-D Tensor with shape [N, C, D, H, W], the data
1219
            type of input is float16 or float32 or float64.
1220
        weight (Tensor): The convolution kernel, a Tensor with shape [M, C/g, kD, kH, kW],
1221 1222
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
1223
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
1224 1225
        stride (int|list|tuple, optional): The stride size. It means the stride in convolution. If stride is a
            list/tuple, it must contain three integers, (stride_depth, stride_height, stride_width).
1226
            Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1.
1227
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings
1228 1229 1230 1231
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1232
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1233
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1234
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1235 1236
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
1237
        dilation (int|list|tuple, optional): The dilation size. It means the spacing between the kernel points.
1238
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height,
1239
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation.
1240
            Default: dilation = 1.
1241
        groups (int, optional): The groups number of the Conv3D Layer. According to grouped
1242 1243 1244 1245
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
1246
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1247 1248 1249
            will be consistent with that of the input. An optional string from: `"NCDHW"`, `"NDHWC"`.
            The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_depth, input_height, input_width]`.
1250 1251
        name(str|None, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
1252 1253 1254
           None by default.

    Returns:
1255 1256 1257
        A Tensor representing the conv3d, whose data type is
        the same with input. If act is None, the tensor storing the
        convolution result, and if act is not None, the tensor storing
1258 1259 1260 1261 1262
        convolution and non-linearity activation result.

    Examples:
        .. code-block:: python

1263 1264
            import paddle
            import paddle.nn.functional as F
1265

1266 1267
            x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
            w_var = paddle.randn((6, 3, 3, 3, 3), dtype='float32')
1268

1269 1270
            y_var = F.conv3d(x_var, w_var)
            y_np = y_var.numpy()
1271

1272
            print(y_np.shape)
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
            # (2, 6, 6, 6, 6)
    """
    # entry check
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NDHWC")
    channel_dim = -1 if channel_last else 1
1283 1284 1285 1286
    if len(x.shape) != 5:
        raise ValueError(
            "Input x should be 5D tensor, but received x with the shape of {}".
            format(x.shape))
1287
    num_channels = x.shape[channel_dim]
1288 1289 1290
    num_filters = weight.shape[0]
    if num_channels < 0:
        raise ValueError(
1291
            "The channel dimension of the input({}) should be defined. "
1292
            "Received: {}.".format(x.shape, num_channels))
1293 1294
    if groups <= 0:
        raise ValueError(
1295 1296
            "The groups of conv3d should be greater than 0. Received groups: {}"
            .format(groups))
1297 1298 1299
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
1300 1301
            "Received: number of channels({}), groups({}).".format(
                num_channels, groups))
1302 1303 1304
    if num_filters % groups != 0:
        raise ValueError(
            "The number of filters must be divisible by Attr(groups). "
1305 1306
            "Received: number of filters({}), groups({}).".format(
                num_filters, groups))
1307

1308
    cudnn_version = get_cudnn_version()
1309 1310
    use_cudnn = True if (is_compiled_with_cuda()
                         and cudnn_version is not None) else False
1311

1312
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1313 1314
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1315 1316
    op_type = "conv3d"

L
LielinJiang 已提交
1317 1318 1319
    return _conv_nd(x, weight, bias, stride, padding, padding_algorithm,
                    dilation, groups, data_format, channel_dim, op_type,
                    use_cudnn, False, name)
1320 1321


1322
def conv3d_transpose(x,
1323 1324 1325
                     weight,
                     bias=None,
                     stride=1,
L
LielinJiang 已提交
1326 1327
                     padding=0,
                     output_padding=0,
1328
                     groups=1,
L
LielinJiang 已提交
1329 1330
                     dilation=1,
                     output_size=None,
1331
                     data_format='NCDHW',
1332
                     name=None):
1333
    r"""
L
LielinJiang 已提交
1334
    The convolution3d transpose layer calculates the output based on the input,
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
1345
    See more detail in :ref:`api_nn_conv_ConvTranspose3d` .
1346 1347 1348

    For each input :math:`X`, the equation is:

1349
    ..  math::
1350

1351
        Out = \sigma (W \ast X + b)
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375

    In the above equation:

    * :math:`X`: Input value, a Tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a Tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1376
        ..  math::
1377 1378 1379 1380 1381 1382 1383 1384 1385

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ]

    Note:
1386 1387
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
          when stride > 1, conv3d maps multiple input shape to the same output shape,
1388 1389
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
1390 1391 1392 1393
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`,
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must
1394
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`.
1395 1396

    Args:
1397
        x(Tensor): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type
1398
            of input is float32 or float64.
L
LielinJiang 已提交
1399
        weight (Tensor): The convolution kernel, a Tensor with shape [C, M/g, kD, kH, kW],
1400 1401
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
L
LielinJiang 已提交
1402
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
1403 1404 1405
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution.
            If stride is a list/tuple, it must contain three integers, (stride_depth, stride_height,
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride.
L
LielinJiang 已提交
1406
            Default: stride = 1.
1407
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings
1408 1409 1410
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
1411
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1412
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1413
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1414
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1415 1416
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
1417 1418
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
1419
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
1420 1421 1422 1423 1424
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
1425 1426 1427
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points.
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height,
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation.
1428
            Default: dilation = 1.
L
LielinJiang 已提交
1429
        output_size(int|list|tuple, optional): The output image size. If output size is a
1430
            list/tuple, it must contain three integers, (image_depth, image_height, image_width).
1431
            None if use filter_size(shape of weight), padding, and stride to calculate output_size.
1432
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1433 1434 1435
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
1436 1437
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
1438 1439 1440
           None by default.

    Returns:
1441
        A Tensor representing the conv3d_transpose, whose data
1442 1443 1444
        type is the same with input and shape is (num_batches, channels, out_d, out_h,
        out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor
        variable storing the transposed convolution result, and if act is not None, the tensor
1445 1446 1447 1448
        variable storing transposed convolution and non-linearity activation result.

    Examples:
       .. code-block:: python
1449

L
LielinJiang 已提交
1450
          import paddle
1451 1452
          import paddle.nn.functional as F

1453 1454
          x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3, 3), dtype='float32')
1455

1456
          y_var = F.conv3d_transpose(x_var, w_var)
L
LielinJiang 已提交
1457
          y_np = y_var.numpy()
1458

1459
          print(y_np.shape)
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
          # (2, 6, 10, 10, 10)
    """
    # entry checks
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NDHWC")
    channel_dim = -1 if channel_last else 1
1470 1471 1472 1473
    if len(x.shape) != 5:
        raise ValueError(
            "Input x should be 5D tensor, but received x with the shape of {}".
            format(x.shape))
L
LielinJiang 已提交
1474
    num_channels = x.shape[channel_dim]
1475 1476 1477
    num_filters = weight.shape[1]
    if num_channels < 0:
        raise ValueError(
1478
            "The channel dimension of the input({}) should be defined. "
L
LielinJiang 已提交
1479
            "Received: {}.".format(x.shape, num_channels))
1480 1481
    if groups <= 0:
        raise ValueError(
1482 1483
            "The groups of conv3d_transpose should be greater than 0. Received groups: {}"
            .format(groups))
1484 1485 1486
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
1487 1488
            "Received: number of channels({}), groups({}).".format(
                num_channels, groups))
1489 1490

    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1491 1492
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1493 1494 1495
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1496 1497 1498 1499
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
        if isinstance(output_size, (list, tuple, int)):
1500
            output_size = convert_to_list(output_size, 3, 'output_size')
L
LielinJiang 已提交
1501 1502 1503 1504 1505 1506 1507
        else:
            raise ValueError(
                "output_size should be int, or list, tuple of ints")

    if output_padding == 0:
        output_padding = []
    else:
1508
        output_padding = convert_to_list(output_padding, 3, 'output_padding')
L
LielinJiang 已提交
1509 1510 1511 1512

    cudnn_version = get_cudnn_version()

    #TODO(LielinJiang): whether to use cudnn according to the version of cudnn
1513 1514
    use_cudnn = True if (is_compiled_with_cuda()
                         and cudnn_version is not None) else False
1515 1516 1517 1518

    op_type = 'conv3d_transpose'
    data_format_ = "NHWC" if channel_last else "NCHW"

F
From00 已提交
1519
    if in_dygraph_mode():
1520 1521 1522 1523
        pre_bias = _C_ops.conv3d_transpose(x, weight, stride, padding,
                                           output_padding, output_size,
                                           padding_algorithm, groups, dilation,
                                           data_format_)
F
From00 已提交
1524 1525 1526 1527 1528 1529
        if bias is not None:
            return nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            return pre_bias

    if _in_legacy_dygraph():
L
LielinJiang 已提交
1530 1531 1532 1533
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'paddings', padding, "padding_algorithm", padding_algorithm,
                 'strides', stride, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, "data_format", data_format_)
1534
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
1535
        if bias is not None:
L
LielinJiang 已提交
1536
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1537
        else:
L
LielinJiang 已提交
1538
            out = pre_bias
1539
    else:
L
LielinJiang 已提交
1540
        inputs = {'Input': [x], 'Filter': [weight]}
1541
        attrs = {
L
LielinJiang 已提交
1542
            'output_padding': output_padding,
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
            'output_size': output_size,
            'paddings': padding,
            "padding_algorithm": padding_algorithm,
            'strides': stride,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            "data_format": data_format_
        }
        helper = LayerHelper(op_type, **locals())
L
LielinJiang 已提交
1553 1554
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'conv3d')
1555

L
LielinJiang 已提交
1556
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1557 1558
        outputs = {"Output": [pre_bias]}

1559 1560 1561 1562
        helper.append_op(type=op_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
1563
        if bias is not None:
L
LielinJiang 已提交
1564
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1565
        else:
L
LielinJiang 已提交
1566
            out = pre_bias
1567 1568

    return out