conv.py 68.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from __future__ import print_function
15

16
import numpy as np
L
LielinJiang 已提交
17
from ...device import get_cudnn_version
18
from ...static import Variable
Z
zhiboniu 已提交
19
from ...fluid import dygraph_utils
20
from ...fluid.layers.utils import convert_to_list, _is_symmetric_padding
21
from ...fluid.data_feeder import check_variable_and_dtype
22
from ...framework import ParamAttr
23
from ...fluid.layer_helper import LayerHelper
24 25 26
from ...tensor.manipulation import unsqueeze, squeeze
from ...tensor.math import add
from ...fluid.layers import nn
F
From00 已提交
27 28 29
from paddle import _C_ops
from paddle import get_flags
from paddle import in_dynamic_mode
Z
zhiboniu 已提交
30 31
from paddle.device import is_compiled_with_cuda
from paddle.device import is_compiled_with_npu
F
From00 已提交
32 33 34 35
from paddle.device import is_compiled_with_rocm
from paddle.fluid.framework import _global_flags
from paddle.fluid.framework import _in_legacy_dygraph
from paddle.fluid.framework import in_dygraph_mode
36

37 38
__all__ = []

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
    else:
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]


def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_


def _update_padding_nd(padding, channel_last, num_dims):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".
                format(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
                raise ValueError(
                    "Non-zero padding({}) in the batch or channel dimensions "
                    "is not supported.".format(padding))
            padding_algorithm = "EXPLICIT"
            padding = _exclude_padding_in_batch_and_channel(padding,
                                                            channel_last)
82
            if _is_symmetric_padding(padding, num_dims):
83 84 85 86
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
87 88
            padding = convert_to_list(padding, 2 * num_dims, 'padding')
            if _is_symmetric_padding(padding, num_dims):
89 90 91 92
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
93
            padding = convert_to_list(padding, num_dims, 'padding')
94 95 96 97 98
        else:
            raise ValueError("In valid padding: {}".format(padding))
    # for integer padding
    else:
        padding_algorithm = "EXPLICIT"
99
        padding = convert_to_list(padding, num_dims, 'padding')
100 101 102 103
    if not all([p >= 0 for p in padding]):
        raise ValueError(
            "Invalid padding, all value should be larger than or equal to 0, but received: {}".
            format(padding))
104 105 106
    return padding, padding_algorithm


L
LielinJiang 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
def _conv_nd(x,
             weight,
             bias=None,
             stride=1,
             padding=0,
             padding_algorithm=None,
             dilation=1,
             groups=1,
             data_format="NCHW",
             channel_dim=1,
             op_type="conv2d",
             use_cudnn=True,
             use_mkldnn=False,
             name=None):

122
    # Due to the poor performance of NHWC, we transpose the input to NCHW.
Z
zhiboniu 已提交
123
    if in_dynamic_mode():
L
LielinJiang 已提交
124 125 126 127 128
        attrs = ('strides', stride, 'paddings', padding, 'dilations', dilation,
                 'groups', groups, 'use_cudnn', use_cudnn, 'use_mkldnn',
                 use_mkldnn, 'fuse_relu_before_depthwise_conv', False,
                 "padding_algorithm", padding_algorithm, "data_format",
                 data_format)
W
wanghuancoder 已提交
129
        pre_bias = getattr(_C_ops, op_type)(x, weight, *attrs)
L
LielinJiang 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
        if bias is not None:
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            out = pre_bias
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format
        }
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 op_type)
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        pre_bias = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [pre_bias]}
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs)
        if bias is not None:
            out = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [bias]},
                outputs={'Out': [out]},
                attrs={'axis': channel_dim,
                       'use_mkldnn': use_mkldnn})
        else:
            out = pre_bias
    return out


W
whs 已提交
169 170 171 172 173 174 175 176 177
def conv1d(x,
           weight,
           bias=None,
           stride=1,
           padding=0,
           dilation=1,
           groups=1,
           data_format='NCL',
           name=None):
178
    r"""
W
whs 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
    The convolution1D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCL format, where N is batch size, C is the number of
    channels, L is the length of the feature.
    Filter is in MCK format, where M is the number of output image channels,
    C is the number of input image channels, K is the size of the kernel.
    If the groups is greater than 1, C will equal the number of input image
    channels divided by the groups. If bias attribution and activation type
    are provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
194
        Out = \sigma (W \ast X + b)
W
whs 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220

    Where:

    * :math:`X`: Input value, a tensor with NCL format.
    * :math:`W`: Kernel value, a tensor with MCK format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

W
whs 已提交
221
            L_{out} = \frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1
W
whs 已提交
222 223 224 225 226 227 228

    Args:
        x (Tensor): The input is 3-D Tensor with shape [N, C, L], the data type 
            of input is float16 or float32 or float64.
        weight (Tensor): The convolution kernel with shape [M, C/g, K], where M is
            the number of output channels, g is the number of groups, K is the kernel's size. 
        bias (Tensor, optional): The bias with shape [M,]. Default: None.
229
        stride (int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
W
whs 已提交
230
            contain one integers, (stride_size). Default: 1.
231
        padding(int|str|tuple|list, optional): The padding size. Padding could be in one of the following forms.
W
whs 已提交
232 233 234 235 236 237
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            4. a list[int] or tuple[int] whose length is 2. It has the form  [pad_before, pad_after].
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
238
        dilation (int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
W
whs 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv1d function. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, feature_length]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
        A tensor representing the conv1d, whose data type is the 
        same with input.

    Raises:
258
        ValueError: If the channel dimension of the input is less than or equal to zero.
W
whs 已提交
259 260
        ValueError: If `data_format` is not "NCL" or "NLC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
261
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
W
whs 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 3-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 1.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F
          import numpy as np
          x = np.array([[[4, 8, 1, 9],
            [7, 2, 0, 9],
            [6, 9, 2, 6]]]).astype(np.float32)
          w=np.array(
          [[[9, 3, 4],
            [0, 0, 7],
            [2, 5, 6]],
           [[0, 3, 4],
            [2, 9, 7],
            [5, 6, 8]]]).astype(np.float32)
L
LielinJiang 已提交
285
          
W
whs 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
          x_var = paddle.to_tensor(x)
          w_var = paddle.to_tensor(w)
          y_var = F.conv1d(x_var, w_var)
          y_np = y_var.numpy()
          print(y_np)
          
          # [[[133. 238.]
          #   [160. 211.]]]
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ["NCL", "NLC"]:
        raise ValueError("Attr(data_format) should be 'NCL' or 'NLC'. "
                         "Received Attr(data_format): {}.".format(data_format))

L
LielinJiang 已提交
305
    channel_last = (data_format == "NLC")
W
whs 已提交
306 307
    channel_dim = -1 if channel_last else 1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"
308 309 310 311
    if len(x.shape) != 3:
        raise ValueError(
            "Input x should be 3D tensor, but received x with the shape of {}".
            format(x.shape))
W
whs 已提交
312 313 314
    num_channels = x.shape[channel_dim]
    num_filters = weight.shape[0]
    if num_channels < 0:
315
        raise ValueError("The channel dimension of the input({}) "
W
whs 已提交
316 317
                         "should be defined. Received: {}.".format(
                             x.shape, num_channels))
318 319 320 321
    if groups <= 0:
        raise ValueError(
            "The groups of conv1d should be greater than 0. Received groups: {}".
            format(groups))
W
whs 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
            ", the groups is {}".format(num_channels, x.shape, groups))
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
            ", the groups is {}".format(num_filters, weight.shape, groups))

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)
335

W
whs 已提交
336
    if len(padding) == 2:
337
        padding = [0] * 2 + padding
W
whs 已提交
338
    elif len(padding) == 1:
339
        padding = [0] + padding
W
whs 已提交
340 341
    else:
        raise ValueError(
342
            "The size of padding's dimension should be 1 or 2. But got padding={}".
W
whs 已提交
343
            format(padding))
344 345 346
    stride = [1] + convert_to_list(stride, 1, 'stride')
    dilation = [1] + convert_to_list(dilation, 1, 'dilation')
    weight = unsqueeze(weight, axis=[-2])
W
whs 已提交
347 348

    l_type = "conv2d"
349 350

    # When "groups==num_channels and num_filters% num_channels == 0" using depthwise_conv2d has better performance
Z
zhiboniu 已提交
351
    if (is_compiled_with_cuda() and num_channels == groups and
352
            num_channels != 1 and num_filters % num_channels == 0):
W
whs 已提交
353 354 355
        l_type = 'depthwise_conv2d'
        use_cudnn = False

356
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
Z
zhiboniu 已提交
357
    if is_compiled_with_npu():
358 359 360 361 362
        if (num_channels == groups and num_channels == num_filters):
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

363
    squeeze_aixs = -3 if channel_last else -2
364
    x = unsqueeze(x, axis=[squeeze_aixs])
365

Z
zhiboniu 已提交
366
    if in_dynamic_mode():
W
whs 已提交
367 368 369 370
        attrs = ('strides', stride, 'paddings', padding, 'dilations', dilation,
                 'groups', groups, 'use_cudnn', use_cudnn, 'use_mkldnn', False,
                 'fuse_relu_before_depthwise_conv', False, "padding_algorithm",
                 padding_algorithm, "data_format", conv2d_data_format)
W
wanghuancoder 已提交
371
        out = getattr(_C_ops, l_type)(x, weight, *attrs)
W
whs 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": conv2d_data_format
        }
        check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                                 'conv2d')
        helper = LayerHelper(l_type, **locals())
390
        dtype = helper.input_dtype(input_param_name='x')
W
whs 已提交
391 392 393 394 395 396
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
        helper.append_op(
            type=l_type, inputs=inputs, outputs=outputs, attrs=attrs)
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
397
    out = squeeze(out, axis=[squeeze_aixs])
W
whs 已提交
398 399 400
    return out


401
def conv2d(x,
402 403 404
           weight,
           bias=None,
           stride=1,
405
           padding=0,
406 407 408 409
           dilation=1,
           groups=1,
           data_format="NCHW",
           name=None):
410
    r"""
S
swtkiwi 已提交
411

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
    channels, H is the height of the feature, and W is the width of the feature.
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

429
    ..  math::
430

431
        Out = \sigma (W \ast X + b)
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455

    Where:

    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

456
        ..  math::
457

458 459
            H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
460 461

    Args:
462
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W], the data type 
463
            of input is float16 or float32 or float64.
464
        weight (Tensor): The convolution kernel with shape [M, C/g, kH, kW], where M is
465 466
            the number of output channels, g is the number of groups, kH is the filter's
            height, kW is the filter's width. 
467
        bias (Tensor, optional): The bias with shape [M,].
468 469
        stride (int|list|tuple): The stride size. It means the stride in convolution. 
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width). 
470
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
471 472 473 474 475 476 477
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when 
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0], 
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
478
            when `data_format` is `"NHWC"`, `padding` can be in the form
479 480
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
481 482
        dilation (int|list|tuple): The dilation size. It means the spacing between the kernel
            points. If dilation is a list/tuple, it must contain two integers, (dilation_height, 
483 484
            dilation_width). Otherwise, dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
C
cnn 已提交
485
        groups (int): The groups number of the Conv2D Layer. According to grouped
486 487 488 489 490 491 492 493 494 495 496 497 498
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
499
        A Tensor representing the conv2d result, whose data type is the same with input. 
500 501 502

    Raises:
        ValueError: If `data_format` is not "NCHW" or "NHWC".
503
        ValueError: If the channel dimension of the input is less than or equal to zero.
504
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
505
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
506 507 508 509 510 511 512 513 514 515
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

    Examples:
        .. code-block:: python

516
          import paddle
517 518
          import paddle.nn.functional as F

519 520
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((6, 3, 3, 3), dtype='float32')
521 522 523 524

          y_var = F.conv2d(x_var, w_var)
          y_np = y_var.numpy()

525 526 527 528 529 530 531 532 533 534
          print(y_np.shape)
          # (2, 6, 6, 6)
    """
    # entry checks
    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError("Attr(data_format) should be 'NCHW' or 'NHWC'. "
                         "Received Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NHWC")
    channel_dim = -1 if channel_last else 1
535 536 537 538
    if len(x.shape) != 4:
        raise ValueError(
            "Input x should be 4D tensor, but received x with the shape of {}".
            format(x.shape))
539
    num_channels = x.shape[channel_dim]
540 541
    num_filters = weight.shape[0]
    if num_channels < 0:
542
        raise ValueError("The channel dimension of the input({}) "
543
                         "should be defined. Received: {}.".format(
544
                             x.shape, num_channels))
545 546 547 548
    if groups <= 0:
        raise ValueError(
            "The groups of conv2d should be greater than 0. Received groups: {}".
            format(groups))
549 550 551 552
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
553
            ", the groups is {}".format(num_channels, x.shape, groups))
554 555 556 557 558 559
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
            ", the groups is {}".format(num_filters, weight.shape, groups))

560 561
    cudnn_version = get_cudnn_version()

Z
zhiboniu 已提交
562
    use_cudnn = True if (is_compiled_with_cuda() and
563 564
                         cudnn_version is not None) else False

565
    use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
L
LielinJiang 已提交
566

567 568
    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
569 570
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
571 572

    l_type = "conv2d"
L
LielinJiang 已提交
573 574
    if (num_channels == groups and num_channels != 1 and
            num_filters % num_channels == 0):
575
        l_type = 'depthwise_conv2d'
Z
zhiboniu 已提交
576
        if is_compiled_with_rocm():
577 578 579 580
            use_cudnn = True
        else:
            use_cudnn = False

581
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
Z
zhiboniu 已提交
582
    if is_compiled_with_npu():
583 584 585 586 587
        if (num_channels == groups and num_channels == num_filters):
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

Z
zhiboniu 已提交
588 589
    if (is_compiled_with_cuda() and get_flags("FLAGS_conv2d_disable_cudnn")[
            "FLAGS_conv2d_disable_cudnn"]):
590
        use_cudnn = False
591

L
LielinJiang 已提交
592 593 594
    return _conv_nd(x, weight, bias, stride, padding, padding_algorithm,
                    dilation, groups, data_format, channel_dim, l_type,
                    use_cudnn, use_mkldnn, name)
595 596


597
def conv1d_transpose(x,
598 599 600 601 602 603 604 605 606 607
                     weight,
                     bias=None,
                     stride=1,
                     padding=0,
                     output_padding=0,
                     groups=1,
                     dilation=1,
                     output_size=None,
                     data_format="NCL",
                     name=None):
608
    r"""
609 610 611 612 613 614 615 616 617 618 619 620 621 622
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
623
        Out = \sigma (W \ast X + b)
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' or 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

           L^\prime_{out} &= (L_{in} - 1) * stride - pad_top - pad_bottom + dilation * (L_f - 1) + 1 + output_padding \\\\
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
659
          and :math:`L^\prime_{out} + stride`.
660 661 662 663 664 665 666 667 668

    Args:
        x(Tensor): 3-D tensor with [N, C, L] or [N, L, C] format,
                         its data type is float32 or float64.
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, K],
            where M is the number of output channels(filters), g is the number of groups,
            K is the size of the kernel.
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
669
            If stride is a list/tuple, it must contain one integer, `(stride_size)`.
670 671 672 673 674 675 676
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
677
             If it is a list/tuple, it must contain one integer. Default: 0.
678 679 680 681 682 683 684
        groups(int, optional): The groups number of the conv1d transpose function. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
685
            If dilation is a list/tuple, it must contain one integer, `(dilation_size)`.
686 687
            Default: dilation = 1.
        output_size(int|tuple|list, optional): The output image size. If output size is a
688
            tuple/list, it must contain one integer, `(feature_length)`. None if use
689
            filter_size(shape of weight), padding, and stride to calculate output_size.
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, input_length]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
        A  tensor representing the result of 1-D transpose convolution, whose
        data type is the same with input. And its shape is (num_batches, channels, length)
        when data_format is `"NCL"` and (num_batches, length, channels) when data_format is
        `"NLC"`.

    Raises:
        ValueError: If `data_format` is a string, but not "NCL" or "NLC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
707
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
            or the element corresponding to the input's channel is not 0.
        ValueError: If `output_size` and filter_size are None at the same time.
        ValueError: If `output_padding` is greater than `stride`.
        ShapeError: If the input is not 3-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 1.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.

    Examples:
        .. code-block:: python



          import paddle
          import paddle.nn.functional as F
          import numpy as np
          
          # shape: (1, 2, 4)
          x=np.array([[[4, 0, 9, 7],
                       [8, 0, 9, 2,]]]).astype(np.float32)
          # shape: (2, 1, 2)
W
whs 已提交
730
          w=np.array([[[7, 0]],
731 732 733
                      [[4, 2]]]).astype(np.float32)
          x_var = paddle.to_tensor(x)
          w_var = paddle.to_tensor(w)
734
          y_var = F.conv1d_transpose(x_var, w_var)
W
whs 已提交
735
          print(y_var)
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
          
          # [[[60. 16. 99. 75.  4.]]]
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ['NCL', 'NLC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCL' or 'NLC' are supported.".format(
                data_format))
    channel_last = (data_format == "NLC")
    channel_dim = -1 if channel_last else 1
752 753 754 755
    if len(x.shape) != 3:
        raise ValueError(
            "Input x should be 3D tensor, but received x with the shape of {}".
            format(x.shape))
756 757 758

    num_channels = x.shape[channel_dim]
    if num_channels < 0:
759
        raise ValueError("The channel dimension of the input({}) "
760 761
                         "should be defined. Received: {}.".format(
                             x.shape, num_channels))
762 763 764 765
    if groups <= 0:
        raise ValueError(
            "The groups of conv1d_transpose should be greater than 0. Received groups: {}".
            format(groups))
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
            ", the groups is {}".format(num_channels, x.shape, groups))

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)

    if len(padding) == 2:
        padding = padding + [0] * 2
    elif len(padding) == 1:
        padding = padding + [0]
    else:
        raise ValueError(
781
            "The size of padding's dimension should 1 or 2. But got padding={}".
782 783
            format(padding))

784 785
    stride = convert_to_list(stride, 1, 'stride') + [1]
    dilation = convert_to_list(dilation, 1, 'dilation') + [1]
786 787 788 789

    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
790 791 792 793
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
        if isinstance(output_size, (list, tuple, int)):
794
            output_size = convert_to_list(output_size, 1, 'output_size') + [1]
L
LielinJiang 已提交
795 796 797 798 799 800 801
        else:
            raise ValueError(
                "output_size should be int, or list, tuple of ints")

    if output_padding == 0:
        output_padding = []
    else:
802 803
        output_padding = convert_to_list(output_padding, 1,
                                         'output_padding') + [0]
L
LielinJiang 已提交
804 805 806 807 808 809

    if len(output_padding) > 0 and output_padding[0] > stride[0]:
        raise ValueError(
            "The size of output_padding should not be greater than stride."
            "But got output_padding={} and stride={}".format(output_padding[0],
                                                             stride[0]))
810 811 812

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
L
LielinJiang 已提交
813 814
    if (num_channels == groups and num_channels != 1 and num_filters == 1 and
            not use_cudnn):
815 816 817 818 819 820
        op_type = 'depthwise_conv2d_transpose'
        use_cudnn = False

    squeeze_axis = -2 if channel_last else -1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"

821 822
    x = unsqueeze(x, axis=[squeeze_axis])
    weight = unsqueeze(weight, axis=[-1])
823

Z
zhiboniu 已提交
824
    if in_dynamic_mode():
L
LielinJiang 已提交
825 826 827 828
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'strides', stride, 'paddings', padding, 'padding_algorithm',
                 padding_algorithm, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, 'data_format', conv2d_data_format)
W
wanghuancoder 已提交
829
        out = getattr(_C_ops, op_type)(x, weight, *attrs)
830 831 832 833 834
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
L
LielinJiang 已提交
835
            'output_padding': output_padding,
836 837 838 839 840 841 842 843 844 845 846 847
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': conv2d_data_format
        }
        check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                                 'conv2d_transpose')
        helper = LayerHelper(op_type, **locals())
848
        dtype = helper.input_dtype(input_param_name='x')
849 850 851 852 853 854 855
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs)
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)

856
    out = squeeze(out, axis=[squeeze_axis])
857 858 859
    return out


860
def conv2d_transpose(x,
861 862 863
                     weight,
                     bias=None,
                     stride=1,
L
LielinJiang 已提交
864 865 866
                     padding=0,
                     output_padding=0,
                     dilation=1,
867
                     groups=1,
L
LielinJiang 已提交
868
                     output_size=None,
869
                     data_format='NCHW',
870
                     name=None):
871
    r"""
S
swtkiwi 已提交
872

873 874 875 876 877 878 879 880 881 882 883
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW or NHWC format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
884
    See more detail in :ref:`api_nn_conv_ConvTranspose2d` .
885 886 887

    For each input :math:`X`, the equation is:

888
    ..  math::
889

890
        Out = \sigma (W \ast X + b)
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914

    Where:

    * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a 4-D Tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

915
        ..  math::
916 917 918 919 920 921 922 923 924 925 926 927 928

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]

    Note:
          The conv2d_transpose can be seen as the backward of the conv2d. For conv2d, 
          when stride > 1, conv2d maps multiple input shape to the same output shape, 
          so for conv2d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`; 
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must 
929
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`.
930 931

    Args:
L
LielinJiang 已提交
932
        x(Tensor): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format,
933
            whose data type is float32 or float64.
L
LielinJiang 已提交
934
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, kH, kW],
935 936
            where M is the number of output channels(filters), g is the number of groups,
            kH is the height of the kernel, and kW is the width of the kernel.
L
LielinJiang 已提交
937 938
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution. 
939
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width). 
L
LielinJiang 已提交
940
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
941 942 943 944 945
        padding(str|int|list|tuple, optional): The padding size. It means the number of zero-paddings 
            on both sides for each dimension. If `padding` is a string, either 'VALID' or 
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or 
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
946
            and when `data_format` is `"NCHW"`, `padding` can be in the form 
947
            `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
948
            when `data_format` is `"NHWC"`, `padding` can be in the form 
949 950
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
951 952
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
953
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
954 955 956 957 958
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
959
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points. 
960
            If dilation is a list/tuple, it must contain two integers, (dilation_height, dilation_width). 
961
            Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1.
L
LielinJiang 已提交
962
        output_size(int|tuple|list, optional): The output image size. If output size is a
963
            tuple/list, it must contain two integers, (image_height, image_width). None if use
964
            filter_size(shape of weight), padding, and stride to calculate output_size.
965 966 967 968 969 970 971 972 973
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
974
        A Tensor representing the conv2d_transpose, whose
975
        data type is the same with input and shape is (num_batches, channels, out_h, 
L
LielinJiang 已提交
976 977
        out_w) or (num_batches, out_h, out_w, channels). The tensor variable storing 
        transposed convolution result.
978 979 980 981

    Raises:
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
982
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
983
            or the element corresponding to the input's channel is not 0.
L
LielinJiang 已提交
984
        ValueError: If `output_size` and kernel_size are None at the same time.
985 986 987 988 989 990 991 992 993
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.

    Examples:
        .. code-block:: python

L
LielinJiang 已提交
994 995
          import paddle
          import paddle.nn.functional as F
996

997 998
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
999

1000
          y_var = F.conv2d_transpose(x_var, w_var)
L
LielinJiang 已提交
1001
          y_np = y_var.numpy()
1002

1003
          print(y_np.shape)
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
          # (2, 6, 10, 10)
    """

    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCHW' or 'NHWC' are supported.".format(
                data_format))
    channel_last = (data_format == "NHWC")
    channel_dim = -1 if channel_last else 1
1014 1015 1016 1017
    if len(x.shape) != 4:
        raise ValueError(
            "Input x should be 4D tensor, but received x with the shape of {}".
            format(x.shape))
L
LielinJiang 已提交
1018
    num_channels = x.shape[channel_dim]
1019
    if num_channels < 0:
1020
        raise ValueError("The channel dimension of the input({}) "
1021
                         "should be defined. Received: {}.".format(
L
LielinJiang 已提交
1022
                             x.shape, num_channels))
1023 1024 1025 1026
    if groups <= 0:
        raise ValueError(
            "The groups of conv2d_transpose should be greater than 0. Received groups: {}".
            format(groups))
1027 1028 1029 1030
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
L
LielinJiang 已提交
1031 1032 1033 1034
            ", the groups is {}".format(num_channels, x.shape, groups))

    cudnn_version = get_cudnn_version()

Z
zhiboniu 已提交
1035
    use_cudnn = True if (is_compiled_with_cuda() and
L
LielinJiang 已提交
1036
                         cudnn_version is not None) else False
1037 1038 1039

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
1040 1041
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
L
LielinJiang 已提交
1042

1043 1044 1045
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1046 1047 1048 1049
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
        if isinstance(output_size, (list, tuple, int)):
1050
            output_size = convert_to_list(output_size, 2, 'output_size')
L
LielinJiang 已提交
1051 1052 1053 1054 1055 1056 1057
        else:
            raise ValueError(
                "output_size should be int, or list, tuple of ints")

    if output_padding == 0:
        output_padding = []
    else:
1058
        output_padding = convert_to_list(output_padding, 2, 'output_padding')
1059 1060 1061

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
L
LielinJiang 已提交
1062
    if (num_channels == groups and num_channels != 1 and num_filters == 1):
1063
        op_type = 'depthwise_conv2d_transpose'
L
LielinJiang 已提交
1064
        use_cudnn = False
1065

F
From00 已提交
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
    if in_dygraph_mode():
        final_state_op = _C_ops.final_state_conv2d_transpose if op_type == 'conv2d_transpose' else _C_ops.final_state_depthwise_conv2d_transpose
        pre_bias = final_state_op(x, weight, stride, padding, output_padding,
                                  output_size, padding_algorithm, groups,
                                  dilation, data_format)
        if bias is not None:
            return nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            return pre_bias

    if _in_legacy_dygraph():
L
LielinJiang 已提交
1077 1078 1079 1080
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'strides', stride, 'paddings', padding, 'padding_algorithm',
                 padding_algorithm, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, 'data_format', data_format)
W
wanghuancoder 已提交
1081
        pre_bias = getattr(_C_ops, op_type)(x, weight, *attrs)
1082
        if bias is not None:
L
LielinJiang 已提交
1083
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1084
        else:
L
LielinJiang 已提交
1085
            out = pre_bias
1086
    else:
L
LielinJiang 已提交
1087
        inputs = {'Input': [x], 'Filter': [weight]}
1088
        attrs = {
L
LielinJiang 已提交
1089
            'output_padding': output_padding,
1090 1091 1092 1093 1094 1095 1096 1097 1098
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': data_format
        }
L
LielinJiang 已提交
1099
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
1100 1101
                                 'conv2d_transpose')
        helper = LayerHelper(op_type, **locals())
L
LielinJiang 已提交
1102
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1103 1104 1105
        outputs = {"Output": [pre_bias]}
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs)
L
LielinJiang 已提交
1106

1107
        if bias is not None:
L
LielinJiang 已提交
1108
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1109
        else:
L
LielinJiang 已提交
1110 1111
            out = pre_bias

1112 1113 1114
    return out


1115
def conv3d(x,
1116 1117 1118
           weight,
           bias=None,
           stride=1,
1119
           padding=0,
1120 1121 1122 1123
           dilation=1,
           groups=1,
           data_format="NCDHW",
           name=None):
1124
    r"""
S
swtkiwi 已提交
1125

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are in NCDHW or NDHWC format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

1137
    ..  math::
1138

1139
        Out = \sigma (W \ast X + b)
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1163
        ..  math::
1164 1165 1166 1167 1168 1169

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
1170
        x (Tensor): The input is 5-D Tensor with shape [N, C, D, H, W], the data 
1171
            type of input is float16 or float32 or float64.
1172
        weight (Tensor): The convolution kernel, a Tensor with shape [M, C/g, kD, kH, kW],
1173 1174
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
1175
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
1176 1177
        stride (int|list|tuple): The stride size. It means the stride in convolution. If stride is a 
            list/tuple, it must contain three integers, (stride_depth, stride_height, stride_width). 
1178
            Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1.
1179 1180 1181 1182 1183
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings 
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1184
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1185
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1186
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1187 1188
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
1189 1190
        dilation (int|list|tuple): The dilation size. It means the spacing between the kernel points. 
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height,
1191 1192
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
C
cnn 已提交
1193
        groups (int): The groups number of the Conv3D Layer. According to grouped
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str|None): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
1207
        A Tensor representing the conv3d, whose data type is 
1208 1209
        the same with input. If act is None, the tensor storing the 
        convolution result, and if act is not None, the tensor storing 
1210 1211 1212 1213 1214
        convolution and non-linearity activation result.

    Examples:
        .. code-block:: python

1215 1216
            import paddle
            import paddle.nn.functional as F
1217

1218 1219
            x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
            w_var = paddle.randn((6, 3, 3, 3, 3), dtype='float32')
1220

1221 1222
            y_var = F.conv3d(x_var, w_var)
            y_np = y_var.numpy()
1223

1224
            print(y_np.shape)
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
            # (2, 6, 6, 6, 6)
    """
    # entry check
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NDHWC")
    channel_dim = -1 if channel_last else 1
1235 1236 1237 1238
    if len(x.shape) != 5:
        raise ValueError(
            "Input x should be 5D tensor, but received x with the shape of {}".
            format(x.shape))
1239
    num_channels = x.shape[channel_dim]
1240 1241 1242
    num_filters = weight.shape[0]
    if num_channels < 0:
        raise ValueError(
1243
            "The channel dimension of the input({}) should be defined. "
1244
            "Received: {}.".format(x.shape, num_channels))
1245 1246 1247 1248
    if groups <= 0:
        raise ValueError(
            "The groups of conv3d should be greater than 0. Received groups: {}".
            format(groups))
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
            "Received: number of channels({}), groups({}).".format(num_channels,
                                                                   groups))
    if num_filters % groups != 0:
        raise ValueError(
            "The number of filters must be divisible by Attr(groups). "
            "Received: number of filters({}), groups({}).".format(num_filters,
                                                                  groups))

1260
    cudnn_version = get_cudnn_version()
Z
zhiboniu 已提交
1261
    use_cudnn = True if (is_compiled_with_cuda() and
1262 1263
                         cudnn_version is not None) else False

1264
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1265 1266
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1267 1268
    op_type = "conv3d"

L
LielinJiang 已提交
1269 1270 1271
    return _conv_nd(x, weight, bias, stride, padding, padding_algorithm,
                    dilation, groups, data_format, channel_dim, op_type,
                    use_cudnn, False, name)
1272 1273


1274
def conv3d_transpose(x,
1275 1276 1277
                     weight,
                     bias=None,
                     stride=1,
L
LielinJiang 已提交
1278 1279
                     padding=0,
                     output_padding=0,
1280
                     groups=1,
L
LielinJiang 已提交
1281 1282
                     dilation=1,
                     output_size=None,
1283
                     data_format='NCDHW',
1284
                     name=None):
1285
    r"""
L
LielinJiang 已提交
1286
    The convolution3d transpose layer calculates the output based on the input,
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
1297
    See more detail in :ref:`api_nn_conv_ConvTranspose3d` .
1298 1299 1300

    For each input :math:`X`, the equation is:

1301
    ..  math::
1302

1303
        Out = \sigma (W \ast X + b)
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327

    In the above equation:

    * :math:`X`: Input value, a Tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a Tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1328
        ..  math::
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ]

    Note:
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
1346
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`.
1347 1348

    Args:
L
LielinJiang 已提交
1349
        x(Tensor): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type 
1350
            of input is float32 or float64.
L
LielinJiang 已提交
1351
        weight (Tensor): The convolution kernel, a Tensor with shape [C, M/g, kD, kH, kW],
1352 1353
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
L
LielinJiang 已提交
1354 1355
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution. 
1356
            If stride is a list/tuple, it must contain three integers, (stride_depth, stride_height, 
L
LielinJiang 已提交
1357 1358
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            Default: stride = 1.
1359 1360 1361 1362
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings 
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
1363
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1364
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1365
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1366
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1367 1368
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
1369 1370
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
1371
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
1372 1373 1374 1375 1376
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
1377
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points. 
1378
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height, 
1379 1380
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
L
LielinJiang 已提交
1381
        output_size(int|list|tuple, optional): The output image size. If output size is a
1382
            list/tuple, it must contain three integers, (image_depth, image_height, image_width).
1383
            None if use filter_size(shape of weight), padding, and stride to calculate output_size.
1384 1385 1386 1387
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
1388 1389 1390 1391 1392
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
1393
        A Tensor representing the conv3d_transpose, whose data
1394 1395 1396 1397 1398 1399 1400 1401
        type is the same with input and shape is (num_batches, channels, out_d, out_h, 
        out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor 
        variable storing the transposed convolution result, and if act is not None, the tensor 
        variable storing transposed convolution and non-linearity activation result.

    Raises:
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
1402
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
1403
            or the element corresponding to the input's channel is not 0.
L
LielinJiang 已提交
1404
        ValueError: If `output_size` and kernel_size are None at the same time.
1405 1406 1407 1408 1409 1410 1411 1412
        ShapeError: If the input is not 5-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.

    Examples:
       .. code-block:: python
L
LielinJiang 已提交
1413 1414
          
          import paddle
1415 1416
          import paddle.nn.functional as F

1417 1418
          x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3, 3), dtype='float32')
1419

1420
          y_var = F.conv3d_transpose(x_var, w_var)
L
LielinJiang 已提交
1421
          y_np = y_var.numpy()
1422

1423
          print(y_np.shape)
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
          # (2, 6, 10, 10, 10)
    """
    # entry checks
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NDHWC")
    channel_dim = -1 if channel_last else 1
1434 1435 1436 1437
    if len(x.shape) != 5:
        raise ValueError(
            "Input x should be 5D tensor, but received x with the shape of {}".
            format(x.shape))
L
LielinJiang 已提交
1438
    num_channels = x.shape[channel_dim]
1439 1440 1441
    num_filters = weight.shape[1]
    if num_channels < 0:
        raise ValueError(
1442
            "The channel dimension of the input({}) should be defined. "
L
LielinJiang 已提交
1443
            "Received: {}.".format(x.shape, num_channels))
1444 1445 1446 1447
    if groups <= 0:
        raise ValueError(
            "The groups of conv3d_transpose should be greater than 0. Received groups: {}".
            format(groups))
1448 1449 1450 1451 1452 1453 1454
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
            "Received: number of channels({}), groups({}).".format(num_channels,
                                                                   groups))

    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1455 1456
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1457 1458 1459
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1460 1461 1462 1463
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
        if isinstance(output_size, (list, tuple, int)):
1464
            output_size = convert_to_list(output_size, 3, 'output_size')
L
LielinJiang 已提交
1465 1466 1467 1468 1469 1470 1471
        else:
            raise ValueError(
                "output_size should be int, or list, tuple of ints")

    if output_padding == 0:
        output_padding = []
    else:
1472
        output_padding = convert_to_list(output_padding, 3, 'output_padding')
L
LielinJiang 已提交
1473 1474 1475 1476

    cudnn_version = get_cudnn_version()

    #TODO(LielinJiang): whether to use cudnn according to the version of cudnn
Z
zhiboniu 已提交
1477
    use_cudnn = True if (is_compiled_with_cuda() and
L
LielinJiang 已提交
1478
                         cudnn_version is not None) else False
1479 1480 1481 1482

    op_type = 'conv3d_transpose'
    data_format_ = "NHWC" if channel_last else "NCHW"

F
From00 已提交
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
    if in_dygraph_mode():
        pre_bias = _C_ops.final_state_conv3d_transpose(
            x, weight, stride, padding, output_padding, output_size,
            padding_algorithm, groups, dilation, data_format_)
        if bias is not None:
            return nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            return pre_bias

    if _in_legacy_dygraph():
L
LielinJiang 已提交
1493 1494 1495 1496
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'paddings', padding, "padding_algorithm", padding_algorithm,
                 'strides', stride, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, "data_format", data_format_)
W
wanghuancoder 已提交
1497
        pre_bias = getattr(_C_ops, op_type)(x, weight, *attrs)
1498
        if bias is not None:
L
LielinJiang 已提交
1499
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1500
        else:
L
LielinJiang 已提交
1501
            out = pre_bias
1502
    else:
L
LielinJiang 已提交
1503
        inputs = {'Input': [x], 'Filter': [weight]}
1504
        attrs = {
L
LielinJiang 已提交
1505
            'output_padding': output_padding,
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
            'output_size': output_size,
            'paddings': padding,
            "padding_algorithm": padding_algorithm,
            'strides': stride,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            "data_format": data_format_
        }
        helper = LayerHelper(op_type, **locals())
L
LielinJiang 已提交
1516 1517
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'conv3d')
1518

L
LielinJiang 已提交
1519
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1520 1521 1522 1523 1524
        outputs = {"Output": [pre_bias]}

        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs)
        if bias is not None:
L
LielinJiang 已提交
1525
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1526
        else:
L
LielinJiang 已提交
1527
            out = pre_bias
1528 1529

    return out