conv.py 71.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from __future__ import print_function
15

16
import numpy as np
L
LielinJiang 已提交
17
from ...device import get_cudnn_version
18
from ...static import Variable
Z
zhiboniu 已提交
19
from ...fluid import dygraph_utils
20
from ...fluid.layers.utils import convert_to_list, _is_symmetric_padding
21
from ...fluid.data_feeder import check_variable_and_dtype
22
from ...framework import ParamAttr
23
from ...fluid.layer_helper import LayerHelper
24 25 26
from ...tensor.manipulation import unsqueeze, squeeze
from ...tensor.math import add
from ...fluid.layers import nn
F
From00 已提交
27 28 29
from paddle import _C_ops
from paddle import get_flags
from paddle import in_dynamic_mode
Z
zhiboniu 已提交
30 31
from paddle.device import is_compiled_with_cuda
from paddle.device import is_compiled_with_npu
H
hong 已提交
32 33
from paddle import in_dynamic_mode
from paddle import get_flags
F
From00 已提交
34 35 36 37
from paddle.device import is_compiled_with_rocm
from paddle.fluid.framework import _global_flags
from paddle.fluid.framework import _in_legacy_dygraph
from paddle.fluid.framework import in_dygraph_mode
38

39 40
__all__ = []

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
    else:
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]


def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_


def _update_padding_nd(padding, channel_last, num_dims):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".
                format(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
                raise ValueError(
                    "Non-zero padding({}) in the batch or channel dimensions "
                    "is not supported.".format(padding))
            padding_algorithm = "EXPLICIT"
            padding = _exclude_padding_in_batch_and_channel(padding,
                                                            channel_last)
84
            if _is_symmetric_padding(padding, num_dims):
85 86 87 88
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
89 90
            padding = convert_to_list(padding, 2 * num_dims, 'padding')
            if _is_symmetric_padding(padding, num_dims):
91 92 93 94
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
95
            padding = convert_to_list(padding, num_dims, 'padding')
96 97 98 99 100
        else:
            raise ValueError("In valid padding: {}".format(padding))
    # for integer padding
    else:
        padding_algorithm = "EXPLICIT"
101
        padding = convert_to_list(padding, num_dims, 'padding')
102 103 104 105
    if not all([p >= 0 for p in padding]):
        raise ValueError(
            "Invalid padding, all value should be larger than or equal to 0, but received: {}".
            format(padding))
106 107 108
    return padding, padding_algorithm


L
LielinJiang 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
def _conv_nd(x,
             weight,
             bias=None,
             stride=1,
             padding=0,
             padding_algorithm=None,
             dilation=1,
             groups=1,
             data_format="NCHW",
             channel_dim=1,
             op_type="conv2d",
             use_cudnn=True,
             use_mkldnn=False,
             name=None):

124
    # Due to the poor performance of NHWC, we transpose the input to NCHW.
H
hong 已提交
125 126 127 128 129
    if in_dygraph_mode() and op_type == "conv2d":
        pre_bias = _C_ops.final_state_conv2d(
            x, weight, stride, padding, padding_algorithm, groups, dilation,
            data_format, False, -1, False)
        if bias is not None:
130 131
            channel_dim = channel_dim + len(
                x.shape) if channel_dim < 0 else channel_dim
C
Chen Weihang 已提交
132 133 134 135 136 137 138
            if len(bias.shape) < len(x.shape):
                tmp_bias = _C_ops.final_state_reshape(
                    bias, bias.shape +
                    [1 for i in range(len(x.shape) - channel_dim - 1)])
                return _C_ops.final_state_add(pre_bias, tmp_bias)
            else:
                return _C_ops.final_state_add(pre_bias, bias)
H
hong 已提交
139 140
        else:
            return pre_bias
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169

    if in_dygraph_mode() and op_type == "depthwise_conv2d":
        pre_bias = _C_ops.final_state_depthwise_conv2d(
            x, weight, stride, padding, padding_algorithm, groups, dilation,
            data_format, False, -1, False, False)
        if bias is not None:
            channel_dim = channel_dim + len(
                x.shape) if channel_dim < 0 else channel_dim
            tmp_bias = _C_ops.final_state_reshape(
                bias, bias.shape +
                [1 for i in range(len(x.shape) - channel_dim - 1)])
            return _C_ops.final_state_add(pre_bias, tmp_bias)
        else:
            return pre_bias

    if in_dygraph_mode() and op_type == "conv3d":
        pre_bias = _C_ops.final_state_conv3d(
            x, weight, stride, padding, padding_algorithm, groups, dilation,
            data_format, False, -1, False)
        if bias is not None:
            channel_dim = channel_dim + len(
                x.shape) if channel_dim < 0 else channel_dim
            tmp_bias = _C_ops.final_state_reshape(
                bias, bias.shape +
                [1 for i in range(len(x.shape) - channel_dim - 1)])
            return _C_ops.final_state_add(pre_bias, tmp_bias)
        else:
            return pre_bias

Z
zhiboniu 已提交
170
    if in_dynamic_mode():
L
LielinJiang 已提交
171 172 173 174 175
        attrs = ('strides', stride, 'paddings', padding, 'dilations', dilation,
                 'groups', groups, 'use_cudnn', use_cudnn, 'use_mkldnn',
                 use_mkldnn, 'fuse_relu_before_depthwise_conv', False,
                 "padding_algorithm", padding_algorithm, "data_format",
                 data_format)
W
wanghuancoder 已提交
176
        pre_bias = getattr(_C_ops, op_type)(x, weight, *attrs)
L
LielinJiang 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
        if bias is not None:
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            out = pre_bias
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format
        }
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 op_type)
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        pre_bias = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [pre_bias]}
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs)
        if bias is not None:
            out = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [bias]},
                outputs={'Out': [out]},
                attrs={'axis': channel_dim,
                       'use_mkldnn': use_mkldnn})
        else:
            out = pre_bias
    return out


W
whs 已提交
216 217 218 219 220 221 222 223 224
def conv1d(x,
           weight,
           bias=None,
           stride=1,
           padding=0,
           dilation=1,
           groups=1,
           data_format='NCL',
           name=None):
225
    r"""
W
whs 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
    The convolution1D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCL format, where N is batch size, C is the number of
    channels, L is the length of the feature.
    Filter is in MCK format, where M is the number of output image channels,
    C is the number of input image channels, K is the size of the kernel.
    If the groups is greater than 1, C will equal the number of input image
    channels divided by the groups. If bias attribution and activation type
    are provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
241
        Out = \sigma (W \ast X + b)
W
whs 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267

    Where:

    * :math:`X`: Input value, a tensor with NCL format.
    * :math:`W`: Kernel value, a tensor with MCK format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

W
whs 已提交
268
            L_{out} = \frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1
W
whs 已提交
269 270 271 272 273 274 275

    Args:
        x (Tensor): The input is 3-D Tensor with shape [N, C, L], the data type 
            of input is float16 or float32 or float64.
        weight (Tensor): The convolution kernel with shape [M, C/g, K], where M is
            the number of output channels, g is the number of groups, K is the kernel's size. 
        bias (Tensor, optional): The bias with shape [M,]. Default: None.
276
        stride (int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
W
whs 已提交
277
            contain one integers, (stride_size). Default: 1.
278
        padding(int|str|tuple|list, optional): The padding size. Padding could be in one of the following forms.
W
whs 已提交
279 280 281 282 283 284
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            4. a list[int] or tuple[int] whose length is 2. It has the form  [pad_before, pad_after].
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
285
        dilation (int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
W
whs 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv1d function. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, feature_length]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
        A tensor representing the conv1d, whose data type is the 
        same with input.

    Raises:
305
        ValueError: If the channel dimension of the input is less than or equal to zero.
W
whs 已提交
306 307
        ValueError: If `data_format` is not "NCL" or "NLC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
308
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
W
whs 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 3-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 1.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F
          import numpy as np
          x = np.array([[[4, 8, 1, 9],
            [7, 2, 0, 9],
            [6, 9, 2, 6]]]).astype(np.float32)
          w=np.array(
          [[[9, 3, 4],
            [0, 0, 7],
            [2, 5, 6]],
           [[0, 3, 4],
            [2, 9, 7],
            [5, 6, 8]]]).astype(np.float32)
L
LielinJiang 已提交
332
          
W
whs 已提交
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
          x_var = paddle.to_tensor(x)
          w_var = paddle.to_tensor(w)
          y_var = F.conv1d(x_var, w_var)
          y_np = y_var.numpy()
          print(y_np)
          
          # [[[133. 238.]
          #   [160. 211.]]]
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ["NCL", "NLC"]:
        raise ValueError("Attr(data_format) should be 'NCL' or 'NLC'. "
                         "Received Attr(data_format): {}.".format(data_format))

L
LielinJiang 已提交
352
    channel_last = (data_format == "NLC")
W
whs 已提交
353 354
    channel_dim = -1 if channel_last else 1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"
355 356 357 358
    if len(x.shape) != 3:
        raise ValueError(
            "Input x should be 3D tensor, but received x with the shape of {}".
            format(x.shape))
W
whs 已提交
359 360 361
    num_channels = x.shape[channel_dim]
    num_filters = weight.shape[0]
    if num_channels < 0:
362
        raise ValueError("The channel dimension of the input({}) "
W
whs 已提交
363 364
                         "should be defined. Received: {}.".format(
                             x.shape, num_channels))
365 366 367 368
    if groups <= 0:
        raise ValueError(
            "The groups of conv1d should be greater than 0. Received groups: {}".
            format(groups))
W
whs 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
            ", the groups is {}".format(num_channels, x.shape, groups))
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
            ", the groups is {}".format(num_filters, weight.shape, groups))

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)
382

W
whs 已提交
383
    if len(padding) == 2:
384
        padding = [0] * 2 + padding
W
whs 已提交
385
    elif len(padding) == 1:
386
        padding = [0] + padding
W
whs 已提交
387 388
    else:
        raise ValueError(
389
            "The size of padding's dimension should be 1 or 2. But got padding={}".
W
whs 已提交
390
            format(padding))
391 392 393
    stride = [1] + convert_to_list(stride, 1, 'stride')
    dilation = [1] + convert_to_list(dilation, 1, 'dilation')
    weight = unsqueeze(weight, axis=[-2])
W
whs 已提交
394 395

    l_type = "conv2d"
396 397

    # When "groups==num_channels and num_filters% num_channels == 0" using depthwise_conv2d has better performance
Z
zhiboniu 已提交
398
    if (is_compiled_with_cuda() and num_channels == groups and
399
            num_channels != 1 and num_filters % num_channels == 0):
W
whs 已提交
400 401 402
        l_type = 'depthwise_conv2d'
        use_cudnn = False

403
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
Z
zhiboniu 已提交
404
    if is_compiled_with_npu():
405 406 407 408 409
        if (num_channels == groups and num_channels == num_filters):
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

410
    squeeze_aixs = -3 if channel_last else -2
411
    x = unsqueeze(x, axis=[squeeze_aixs])
412

Z
zhiboniu 已提交
413
    if in_dynamic_mode():
W
whs 已提交
414 415 416 417
        attrs = ('strides', stride, 'paddings', padding, 'dilations', dilation,
                 'groups', groups, 'use_cudnn', use_cudnn, 'use_mkldnn', False,
                 'fuse_relu_before_depthwise_conv', False, "padding_algorithm",
                 padding_algorithm, "data_format", conv2d_data_format)
W
wanghuancoder 已提交
418
        out = getattr(_C_ops, l_type)(x, weight, *attrs)
W
whs 已提交
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": conv2d_data_format
        }
        check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                                 'conv2d')
        helper = LayerHelper(l_type, **locals())
437
        dtype = helper.input_dtype(input_param_name='x')
W
whs 已提交
438 439 440 441 442 443
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
        helper.append_op(
            type=l_type, inputs=inputs, outputs=outputs, attrs=attrs)
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
444
    out = squeeze(out, axis=[squeeze_aixs])
W
whs 已提交
445 446 447
    return out


448
def conv2d(x,
449 450 451
           weight,
           bias=None,
           stride=1,
452
           padding=0,
453 454 455 456
           dilation=1,
           groups=1,
           data_format="NCHW",
           name=None):
457
    r"""
S
swtkiwi 已提交
458

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
    channels, H is the height of the feature, and W is the width of the feature.
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

476
    ..  math::
477

478
        Out = \sigma (W \ast X + b)
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502

    Where:

    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

503
        ..  math::
504

505 506
            H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
507 508

    Args:
509
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W], the data type 
510
            of input is float16 or float32 or float64.
511
        weight (Tensor): The convolution kernel with shape [M, C/g, kH, kW], where M is
512 513
            the number of output channels, g is the number of groups, kH is the filter's
            height, kW is the filter's width. 
514
        bias (Tensor, optional): The bias with shape [M,].
515 516
        stride (int|list|tuple): The stride size. It means the stride in convolution. 
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width). 
517
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
518 519 520 521 522 523 524
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when 
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0], 
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
525
            when `data_format` is `"NHWC"`, `padding` can be in the form
526 527
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
528 529
        dilation (int|list|tuple): The dilation size. It means the spacing between the kernel
            points. If dilation is a list/tuple, it must contain two integers, (dilation_height, 
530 531
            dilation_width). Otherwise, dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
C
cnn 已提交
532
        groups (int): The groups number of the Conv2D Layer. According to grouped
533 534 535 536 537 538 539 540 541 542 543 544 545
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
546
        A Tensor representing the conv2d result, whose data type is the same with input. 
547 548 549

    Raises:
        ValueError: If `data_format` is not "NCHW" or "NHWC".
550
        ValueError: If the channel dimension of the input is less than or equal to zero.
551
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
552
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
553 554 555 556 557 558 559 560 561 562
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

    Examples:
        .. code-block:: python

563
          import paddle
564 565
          import paddle.nn.functional as F

566 567
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((6, 3, 3, 3), dtype='float32')
568 569 570 571

          y_var = F.conv2d(x_var, w_var)
          y_np = y_var.numpy()

572 573 574 575 576 577 578 579 580 581
          print(y_np.shape)
          # (2, 6, 6, 6)
    """
    # entry checks
    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError("Attr(data_format) should be 'NCHW' or 'NHWC'. "
                         "Received Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NHWC")
    channel_dim = -1 if channel_last else 1
582 583 584 585
    if len(x.shape) != 4:
        raise ValueError(
            "Input x should be 4D tensor, but received x with the shape of {}".
            format(x.shape))
586
    num_channels = x.shape[channel_dim]
587 588
    num_filters = weight.shape[0]
    if num_channels < 0:
589
        raise ValueError("The channel dimension of the input({}) "
590
                         "should be defined. Received: {}.".format(
591
                             x.shape, num_channels))
592 593 594 595
    if groups <= 0:
        raise ValueError(
            "The groups of conv2d should be greater than 0. Received groups: {}".
            format(groups))
596 597 598 599
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
600
            ", the groups is {}".format(num_channels, x.shape, groups))
601 602 603 604 605 606
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
            ", the groups is {}".format(num_filters, weight.shape, groups))

607 608
    cudnn_version = get_cudnn_version()

Z
zhiboniu 已提交
609
    use_cudnn = True if (is_compiled_with_cuda() and
610 611
                         cudnn_version is not None) else False

612 613
    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
614 615
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
616 617

    l_type = "conv2d"
L
LielinJiang 已提交
618 619
    if (num_channels == groups and num_channels != 1 and
            num_filters % num_channels == 0):
620
        l_type = 'depthwise_conv2d'
Z
zhiboniu 已提交
621
        if is_compiled_with_rocm():
622 623 624
            use_cudnn = True
        else:
            use_cudnn = False
H
hong 已提交
625 626 627 628 629 630 631 632 633 634 635 636
    else:
        if in_dygraph_mode():
            pre_bias = _C_ops.final_state_conv2d(
                x, weight, stride, padding, padding_algorithm, groups, dilation,
                data_format, False, -1, False)
            if bias is not None:
                out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
                return out
            else:
                return pre_bias

    use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
637

638
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
Z
zhiboniu 已提交
639
    if is_compiled_with_npu():
640 641 642 643 644
        if (num_channels == groups and num_channels == num_filters):
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

Z
zhiboniu 已提交
645 646
    if (is_compiled_with_cuda() and get_flags("FLAGS_conv2d_disable_cudnn")[
            "FLAGS_conv2d_disable_cudnn"]):
647
        use_cudnn = False
648

L
LielinJiang 已提交
649 650 651
    return _conv_nd(x, weight, bias, stride, padding, padding_algorithm,
                    dilation, groups, data_format, channel_dim, l_type,
                    use_cudnn, use_mkldnn, name)
652 653


654
def conv1d_transpose(x,
655 656 657 658 659 660 661 662 663 664
                     weight,
                     bias=None,
                     stride=1,
                     padding=0,
                     output_padding=0,
                     groups=1,
                     dilation=1,
                     output_size=None,
                     data_format="NCL",
                     name=None):
665
    r"""
666 667 668 669 670 671 672 673 674 675 676 677 678 679
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
680
        Out = \sigma (W \ast X + b)
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' or 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

           L^\prime_{out} &= (L_{in} - 1) * stride - pad_top - pad_bottom + dilation * (L_f - 1) + 1 + output_padding \\\\
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
716
          and :math:`L^\prime_{out} + stride`.
717 718 719 720 721 722 723 724 725

    Args:
        x(Tensor): 3-D tensor with [N, C, L] or [N, L, C] format,
                         its data type is float32 or float64.
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, K],
            where M is the number of output channels(filters), g is the number of groups,
            K is the size of the kernel.
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
726
            If stride is a list/tuple, it must contain one integer, `(stride_size)`.
727 728 729 730 731 732 733
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
734
             If it is a list/tuple, it must contain one integer. Default: 0.
735 736 737 738 739 740 741
        groups(int, optional): The groups number of the conv1d transpose function. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
742
            If dilation is a list/tuple, it must contain one integer, `(dilation_size)`.
743 744
            Default: dilation = 1.
        output_size(int|tuple|list, optional): The output image size. If output size is a
745
            tuple/list, it must contain one integer, `(feature_length)`. None if use
746
            filter_size(shape of weight), padding, and stride to calculate output_size.
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, input_length]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
        A  tensor representing the result of 1-D transpose convolution, whose
        data type is the same with input. And its shape is (num_batches, channels, length)
        when data_format is `"NCL"` and (num_batches, length, channels) when data_format is
        `"NLC"`.

    Raises:
        ValueError: If `data_format` is a string, but not "NCL" or "NLC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
764
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
            or the element corresponding to the input's channel is not 0.
        ValueError: If `output_size` and filter_size are None at the same time.
        ValueError: If `output_padding` is greater than `stride`.
        ShapeError: If the input is not 3-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 1.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.

    Examples:
        .. code-block:: python



          import paddle
          import paddle.nn.functional as F
          import numpy as np
          
          # shape: (1, 2, 4)
          x=np.array([[[4, 0, 9, 7],
                       [8, 0, 9, 2,]]]).astype(np.float32)
          # shape: (2, 1, 2)
W
whs 已提交
787
          w=np.array([[[7, 0]],
788 789 790
                      [[4, 2]]]).astype(np.float32)
          x_var = paddle.to_tensor(x)
          w_var = paddle.to_tensor(w)
791
          y_var = F.conv1d_transpose(x_var, w_var)
W
whs 已提交
792
          print(y_var)
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
          
          # [[[60. 16. 99. 75.  4.]]]
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ['NCL', 'NLC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCL' or 'NLC' are supported.".format(
                data_format))
    channel_last = (data_format == "NLC")
    channel_dim = -1 if channel_last else 1
809 810 811 812
    if len(x.shape) != 3:
        raise ValueError(
            "Input x should be 3D tensor, but received x with the shape of {}".
            format(x.shape))
813 814 815

    num_channels = x.shape[channel_dim]
    if num_channels < 0:
816
        raise ValueError("The channel dimension of the input({}) "
817 818
                         "should be defined. Received: {}.".format(
                             x.shape, num_channels))
819 820 821 822
    if groups <= 0:
        raise ValueError(
            "The groups of conv1d_transpose should be greater than 0. Received groups: {}".
            format(groups))
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
            ", the groups is {}".format(num_channels, x.shape, groups))

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)

    if len(padding) == 2:
        padding = padding + [0] * 2
    elif len(padding) == 1:
        padding = padding + [0]
    else:
        raise ValueError(
838
            "The size of padding's dimension should 1 or 2. But got padding={}".
839 840
            format(padding))

841 842
    stride = convert_to_list(stride, 1, 'stride') + [1]
    dilation = convert_to_list(dilation, 1, 'dilation') + [1]
843 844 845 846

    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
847 848 849 850
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
        if isinstance(output_size, (list, tuple, int)):
851
            output_size = convert_to_list(output_size, 1, 'output_size') + [1]
L
LielinJiang 已提交
852 853 854 855 856 857 858
        else:
            raise ValueError(
                "output_size should be int, or list, tuple of ints")

    if output_padding == 0:
        output_padding = []
    else:
859 860
        output_padding = convert_to_list(output_padding, 1,
                                         'output_padding') + [0]
L
LielinJiang 已提交
861 862 863 864 865 866

    if len(output_padding) > 0 and output_padding[0] > stride[0]:
        raise ValueError(
            "The size of output_padding should not be greater than stride."
            "But got output_padding={} and stride={}".format(output_padding[0],
                                                             stride[0]))
867 868 869

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
L
LielinJiang 已提交
870 871
    if (num_channels == groups and num_channels != 1 and num_filters == 1 and
            not use_cudnn):
872 873 874 875 876 877
        op_type = 'depthwise_conv2d_transpose'
        use_cudnn = False

    squeeze_axis = -2 if channel_last else -1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"

878 879
    x = unsqueeze(x, axis=[squeeze_axis])
    weight = unsqueeze(weight, axis=[-1])
880

Z
zhiboniu 已提交
881
    if in_dynamic_mode():
L
LielinJiang 已提交
882 883 884 885
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'strides', stride, 'paddings', padding, 'padding_algorithm',
                 padding_algorithm, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, 'data_format', conv2d_data_format)
W
wanghuancoder 已提交
886
        out = getattr(_C_ops, op_type)(x, weight, *attrs)
887 888 889 890 891
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
L
LielinJiang 已提交
892
            'output_padding': output_padding,
893 894 895 896 897 898 899 900 901 902 903 904
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': conv2d_data_format
        }
        check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                                 'conv2d_transpose')
        helper = LayerHelper(op_type, **locals())
905
        dtype = helper.input_dtype(input_param_name='x')
906 907 908 909 910 911 912
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs)
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)

913
    out = squeeze(out, axis=[squeeze_axis])
914 915 916
    return out


917
def conv2d_transpose(x,
918 919 920
                     weight,
                     bias=None,
                     stride=1,
L
LielinJiang 已提交
921 922 923
                     padding=0,
                     output_padding=0,
                     dilation=1,
924
                     groups=1,
L
LielinJiang 已提交
925
                     output_size=None,
926
                     data_format='NCHW',
927
                     name=None):
928
    r"""
S
swtkiwi 已提交
929

930 931 932 933 934 935 936 937 938 939 940
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW or NHWC format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
941
    See more detail in :ref:`api_nn_conv_ConvTranspose2d` .
942 943 944

    For each input :math:`X`, the equation is:

945
    ..  math::
946

947
        Out = \sigma (W \ast X + b)
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971

    Where:

    * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a 4-D Tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

972
        ..  math::
973 974 975 976 977 978 979 980 981 982 983 984 985

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]

    Note:
          The conv2d_transpose can be seen as the backward of the conv2d. For conv2d, 
          when stride > 1, conv2d maps multiple input shape to the same output shape, 
          so for conv2d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`; 
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must 
986
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`.
987 988

    Args:
L
LielinJiang 已提交
989
        x(Tensor): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format,
990
            whose data type is float32 or float64.
L
LielinJiang 已提交
991
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, kH, kW],
992 993
            where M is the number of output channels(filters), g is the number of groups,
            kH is the height of the kernel, and kW is the width of the kernel.
L
LielinJiang 已提交
994 995
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution. 
996
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width). 
L
LielinJiang 已提交
997
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
998 999 1000 1001 1002
        padding(str|int|list|tuple, optional): The padding size. It means the number of zero-paddings 
            on both sides for each dimension. If `padding` is a string, either 'VALID' or 
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or 
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1003
            and when `data_format` is `"NCHW"`, `padding` can be in the form 
1004
            `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1005
            when `data_format` is `"NHWC"`, `padding` can be in the form 
1006 1007
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
1008 1009
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
1010
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
1011 1012 1013 1014 1015
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
1016
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points. 
1017
            If dilation is a list/tuple, it must contain two integers, (dilation_height, dilation_width). 
1018
            Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1.
L
LielinJiang 已提交
1019
        output_size(int|tuple|list, optional): The output image size. If output size is a
1020
            tuple/list, it must contain two integers, (image_height, image_width). None if use
1021
            filter_size(shape of weight), padding, and stride to calculate output_size.
1022 1023 1024 1025 1026 1027 1028 1029 1030
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
1031
        A Tensor representing the conv2d_transpose, whose
1032
        data type is the same with input and shape is (num_batches, channels, out_h, 
L
LielinJiang 已提交
1033 1034
        out_w) or (num_batches, out_h, out_w, channels). The tensor variable storing 
        transposed convolution result.
1035 1036 1037 1038

    Raises:
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
1039
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
1040
            or the element corresponding to the input's channel is not 0.
L
LielinJiang 已提交
1041
        ValueError: If `output_size` and kernel_size are None at the same time.
1042 1043 1044 1045 1046 1047 1048 1049 1050
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.

    Examples:
        .. code-block:: python

L
LielinJiang 已提交
1051 1052
          import paddle
          import paddle.nn.functional as F
1053

1054 1055
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
1056

1057
          y_var = F.conv2d_transpose(x_var, w_var)
L
LielinJiang 已提交
1058
          y_np = y_var.numpy()
1059

1060
          print(y_np.shape)
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
          # (2, 6, 10, 10)
    """

    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCHW' or 'NHWC' are supported.".format(
                data_format))
    channel_last = (data_format == "NHWC")
    channel_dim = -1 if channel_last else 1
1071 1072 1073 1074
    if len(x.shape) != 4:
        raise ValueError(
            "Input x should be 4D tensor, but received x with the shape of {}".
            format(x.shape))
L
LielinJiang 已提交
1075
    num_channels = x.shape[channel_dim]
1076
    if num_channels < 0:
1077
        raise ValueError("The channel dimension of the input({}) "
1078
                         "should be defined. Received: {}.".format(
L
LielinJiang 已提交
1079
                             x.shape, num_channels))
1080 1081 1082 1083
    if groups <= 0:
        raise ValueError(
            "The groups of conv2d_transpose should be greater than 0. Received groups: {}".
            format(groups))
1084 1085 1086 1087
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
L
LielinJiang 已提交
1088 1089 1090 1091
            ", the groups is {}".format(num_channels, x.shape, groups))

    cudnn_version = get_cudnn_version()

Z
zhiboniu 已提交
1092
    use_cudnn = True if (is_compiled_with_cuda() and
L
LielinJiang 已提交
1093
                         cudnn_version is not None) else False
1094 1095 1096

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
1097 1098
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
L
LielinJiang 已提交
1099

1100 1101 1102
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1103 1104 1105 1106
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
        if isinstance(output_size, (list, tuple, int)):
1107
            output_size = convert_to_list(output_size, 2, 'output_size')
L
LielinJiang 已提交
1108 1109 1110 1111 1112 1113 1114
        else:
            raise ValueError(
                "output_size should be int, or list, tuple of ints")

    if output_padding == 0:
        output_padding = []
    else:
1115
        output_padding = convert_to_list(output_padding, 2, 'output_padding')
1116 1117 1118

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
L
LielinJiang 已提交
1119
    if (num_channels == groups and num_channels != 1 and num_filters == 1):
1120
        op_type = 'depthwise_conv2d_transpose'
L
LielinJiang 已提交
1121
        use_cudnn = False
1122

F
From00 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
    if in_dygraph_mode():
        final_state_op = _C_ops.final_state_conv2d_transpose if op_type == 'conv2d_transpose' else _C_ops.final_state_depthwise_conv2d_transpose
        pre_bias = final_state_op(x, weight, stride, padding, output_padding,
                                  output_size, padding_algorithm, groups,
                                  dilation, data_format)
        if bias is not None:
            return nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            return pre_bias

    if _in_legacy_dygraph():
L
LielinJiang 已提交
1134 1135 1136 1137
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'strides', stride, 'paddings', padding, 'padding_algorithm',
                 padding_algorithm, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, 'data_format', data_format)
W
wanghuancoder 已提交
1138
        pre_bias = getattr(_C_ops, op_type)(x, weight, *attrs)
1139
        if bias is not None:
L
LielinJiang 已提交
1140
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1141
        else:
L
LielinJiang 已提交
1142
            out = pre_bias
1143
    else:
L
LielinJiang 已提交
1144
        inputs = {'Input': [x], 'Filter': [weight]}
1145
        attrs = {
L
LielinJiang 已提交
1146
            'output_padding': output_padding,
1147 1148 1149 1150 1151 1152 1153 1154 1155
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': data_format
        }
L
LielinJiang 已提交
1156
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
1157 1158
                                 'conv2d_transpose')
        helper = LayerHelper(op_type, **locals())
L
LielinJiang 已提交
1159
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1160 1161 1162
        outputs = {"Output": [pre_bias]}
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs)
L
LielinJiang 已提交
1163

1164
        if bias is not None:
L
LielinJiang 已提交
1165
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1166
        else:
L
LielinJiang 已提交
1167 1168
            out = pre_bias

1169 1170 1171
    return out


1172
def conv3d(x,
1173 1174 1175
           weight,
           bias=None,
           stride=1,
1176
           padding=0,
1177 1178 1179 1180
           dilation=1,
           groups=1,
           data_format="NCDHW",
           name=None):
1181
    r"""
S
swtkiwi 已提交
1182

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are in NCDHW or NDHWC format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

1194
    ..  math::
1195

1196
        Out = \sigma (W \ast X + b)
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1220
        ..  math::
1221 1222 1223 1224 1225 1226

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
1227
        x (Tensor): The input is 5-D Tensor with shape [N, C, D, H, W], the data 
1228
            type of input is float16 or float32 or float64.
1229
        weight (Tensor): The convolution kernel, a Tensor with shape [M, C/g, kD, kH, kW],
1230 1231
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
1232
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
1233 1234
        stride (int|list|tuple): The stride size. It means the stride in convolution. If stride is a 
            list/tuple, it must contain three integers, (stride_depth, stride_height, stride_width). 
1235
            Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1.
1236 1237 1238 1239 1240
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings 
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1241
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1242
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1243
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1244 1245
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
1246 1247
        dilation (int|list|tuple): The dilation size. It means the spacing between the kernel points. 
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height,
1248 1249
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
C
cnn 已提交
1250
        groups (int): The groups number of the Conv3D Layer. According to grouped
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str|None): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
1264
        A Tensor representing the conv3d, whose data type is 
1265 1266
        the same with input. If act is None, the tensor storing the 
        convolution result, and if act is not None, the tensor storing 
1267 1268 1269 1270 1271
        convolution and non-linearity activation result.

    Examples:
        .. code-block:: python

1272 1273
            import paddle
            import paddle.nn.functional as F
1274

1275 1276
            x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
            w_var = paddle.randn((6, 3, 3, 3, 3), dtype='float32')
1277

1278 1279
            y_var = F.conv3d(x_var, w_var)
            y_np = y_var.numpy()
1280

1281
            print(y_np.shape)
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
            # (2, 6, 6, 6, 6)
    """
    # entry check
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NDHWC")
    channel_dim = -1 if channel_last else 1
1292 1293 1294 1295
    if len(x.shape) != 5:
        raise ValueError(
            "Input x should be 5D tensor, but received x with the shape of {}".
            format(x.shape))
1296
    num_channels = x.shape[channel_dim]
1297 1298 1299
    num_filters = weight.shape[0]
    if num_channels < 0:
        raise ValueError(
1300
            "The channel dimension of the input({}) should be defined. "
1301
            "Received: {}.".format(x.shape, num_channels))
1302 1303 1304 1305
    if groups <= 0:
        raise ValueError(
            "The groups of conv3d should be greater than 0. Received groups: {}".
            format(groups))
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
            "Received: number of channels({}), groups({}).".format(num_channels,
                                                                   groups))
    if num_filters % groups != 0:
        raise ValueError(
            "The number of filters must be divisible by Attr(groups). "
            "Received: number of filters({}), groups({}).".format(num_filters,
                                                                  groups))

1317
    cudnn_version = get_cudnn_version()
Z
zhiboniu 已提交
1318
    use_cudnn = True if (is_compiled_with_cuda() and
1319 1320
                         cudnn_version is not None) else False

1321
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1322 1323
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1324 1325
    op_type = "conv3d"

L
LielinJiang 已提交
1326 1327 1328
    return _conv_nd(x, weight, bias, stride, padding, padding_algorithm,
                    dilation, groups, data_format, channel_dim, op_type,
                    use_cudnn, False, name)
1329 1330


1331
def conv3d_transpose(x,
1332 1333 1334
                     weight,
                     bias=None,
                     stride=1,
L
LielinJiang 已提交
1335 1336
                     padding=0,
                     output_padding=0,
1337
                     groups=1,
L
LielinJiang 已提交
1338 1339
                     dilation=1,
                     output_size=None,
1340
                     data_format='NCDHW',
1341
                     name=None):
1342
    r"""
L
LielinJiang 已提交
1343
    The convolution3d transpose layer calculates the output based on the input,
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
1354
    See more detail in :ref:`api_nn_conv_ConvTranspose3d` .
1355 1356 1357

    For each input :math:`X`, the equation is:

1358
    ..  math::
1359

1360
        Out = \sigma (W \ast X + b)
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384

    In the above equation:

    * :math:`X`: Input value, a Tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a Tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1385
        ..  math::
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ]

    Note:
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
1403
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`.
1404 1405

    Args:
L
LielinJiang 已提交
1406
        x(Tensor): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type 
1407
            of input is float32 or float64.
L
LielinJiang 已提交
1408
        weight (Tensor): The convolution kernel, a Tensor with shape [C, M/g, kD, kH, kW],
1409 1410
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
L
LielinJiang 已提交
1411 1412
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution. 
1413
            If stride is a list/tuple, it must contain three integers, (stride_depth, stride_height, 
L
LielinJiang 已提交
1414 1415
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            Default: stride = 1.
1416 1417 1418 1419
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings 
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
1420
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1421
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1422
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1423
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1424 1425
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
1426 1427
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
1428
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
1429 1430 1431 1432 1433
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
1434
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points. 
1435
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height, 
1436 1437
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
L
LielinJiang 已提交
1438
        output_size(int|list|tuple, optional): The output image size. If output size is a
1439
            list/tuple, it must contain three integers, (image_depth, image_height, image_width).
1440
            None if use filter_size(shape of weight), padding, and stride to calculate output_size.
1441 1442 1443 1444
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
1445 1446 1447 1448 1449
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
1450
        A Tensor representing the conv3d_transpose, whose data
1451 1452 1453 1454 1455 1456 1457 1458
        type is the same with input and shape is (num_batches, channels, out_d, out_h, 
        out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor 
        variable storing the transposed convolution result, and if act is not None, the tensor 
        variable storing transposed convolution and non-linearity activation result.

    Raises:
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
1459
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
1460
            or the element corresponding to the input's channel is not 0.
L
LielinJiang 已提交
1461
        ValueError: If `output_size` and kernel_size are None at the same time.
1462 1463 1464 1465 1466 1467 1468 1469
        ShapeError: If the input is not 5-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.

    Examples:
       .. code-block:: python
L
LielinJiang 已提交
1470 1471
          
          import paddle
1472 1473
          import paddle.nn.functional as F

1474 1475
          x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3, 3), dtype='float32')
1476

1477
          y_var = F.conv3d_transpose(x_var, w_var)
L
LielinJiang 已提交
1478
          y_np = y_var.numpy()
1479

1480
          print(y_np.shape)
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
          # (2, 6, 10, 10, 10)
    """
    # entry checks
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NDHWC")
    channel_dim = -1 if channel_last else 1
1491 1492 1493 1494
    if len(x.shape) != 5:
        raise ValueError(
            "Input x should be 5D tensor, but received x with the shape of {}".
            format(x.shape))
L
LielinJiang 已提交
1495
    num_channels = x.shape[channel_dim]
1496 1497 1498
    num_filters = weight.shape[1]
    if num_channels < 0:
        raise ValueError(
1499
            "The channel dimension of the input({}) should be defined. "
L
LielinJiang 已提交
1500
            "Received: {}.".format(x.shape, num_channels))
1501 1502 1503 1504
    if groups <= 0:
        raise ValueError(
            "The groups of conv3d_transpose should be greater than 0. Received groups: {}".
            format(groups))
1505 1506 1507 1508 1509 1510 1511
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
            "Received: number of channels({}), groups({}).".format(num_channels,
                                                                   groups))

    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1512 1513
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1514 1515 1516
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1517 1518 1519 1520
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
        if isinstance(output_size, (list, tuple, int)):
1521
            output_size = convert_to_list(output_size, 3, 'output_size')
L
LielinJiang 已提交
1522 1523 1524 1525 1526 1527 1528
        else:
            raise ValueError(
                "output_size should be int, or list, tuple of ints")

    if output_padding == 0:
        output_padding = []
    else:
1529
        output_padding = convert_to_list(output_padding, 3, 'output_padding')
L
LielinJiang 已提交
1530 1531 1532 1533

    cudnn_version = get_cudnn_version()

    #TODO(LielinJiang): whether to use cudnn according to the version of cudnn
Z
zhiboniu 已提交
1534
    use_cudnn = True if (is_compiled_with_cuda() and
L
LielinJiang 已提交
1535
                         cudnn_version is not None) else False
1536 1537 1538 1539

    op_type = 'conv3d_transpose'
    data_format_ = "NHWC" if channel_last else "NCHW"

F
From00 已提交
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
    if in_dygraph_mode():
        pre_bias = _C_ops.final_state_conv3d_transpose(
            x, weight, stride, padding, output_padding, output_size,
            padding_algorithm, groups, dilation, data_format_)
        if bias is not None:
            return nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            return pre_bias

    if _in_legacy_dygraph():
L
LielinJiang 已提交
1550 1551 1552 1553
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'paddings', padding, "padding_algorithm", padding_algorithm,
                 'strides', stride, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, "data_format", data_format_)
W
wanghuancoder 已提交
1554
        pre_bias = getattr(_C_ops, op_type)(x, weight, *attrs)
1555
        if bias is not None:
L
LielinJiang 已提交
1556
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1557
        else:
L
LielinJiang 已提交
1558
            out = pre_bias
1559
    else:
L
LielinJiang 已提交
1560
        inputs = {'Input': [x], 'Filter': [weight]}
1561
        attrs = {
L
LielinJiang 已提交
1562
            'output_padding': output_padding,
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
            'output_size': output_size,
            'paddings': padding,
            "padding_algorithm": padding_algorithm,
            'strides': stride,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            "data_format": data_format_
        }
        helper = LayerHelper(op_type, **locals())
L
LielinJiang 已提交
1573 1574
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'conv3d')
1575

L
LielinJiang 已提交
1576
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1577 1578 1579 1580 1581
        outputs = {"Output": [pre_bias]}

        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs)
        if bias is not None:
L
LielinJiang 已提交
1582
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1583
        else:
L
LielinJiang 已提交
1584
            out = pre_bias
1585 1586

    return out