Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
8307b0cb
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8307b0cb
编写于
9月 07, 2021
作者:
W
wangxinxin08
提交者:
GitHub
9月 07, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add conv op check for illegal input or attributes (#35337)
* add conv op check for illegal input or attributes
上级
eae4bf5b
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
519 addition
and
0 deletion
+519
-0
paddle/fluid/operators/conv_op.cc
paddle/fluid/operators/conv_op.cc
+4
-0
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+22
-0
python/paddle/fluid/tests/unittests/test_functional_conv1d.py
...on/paddle/fluid/tests/unittests/test_functional_conv1d.py
+70
-0
python/paddle/fluid/tests/unittests/test_functional_conv1d_transpose.py
...fluid/tests/unittests/test_functional_conv1d_transpose.py
+70
-0
python/paddle/fluid/tests/unittests/test_functional_conv2d.py
...on/paddle/fluid/tests/unittests/test_functional_conv2d.py
+76
-0
python/paddle/fluid/tests/unittests/test_functional_conv2d_transpose.py
...fluid/tests/unittests/test_functional_conv2d_transpose.py
+76
-0
python/paddle/fluid/tests/unittests/test_functional_conv3d.py
...on/paddle/fluid/tests/unittests/test_functional_conv3d.py
+76
-0
python/paddle/fluid/tests/unittests/test_functional_conv3d_transpose.py
...fluid/tests/unittests/test_functional_conv3d_transpose.py
+77
-0
python/paddle/nn/functional/conv.py
python/paddle/nn/functional/conv.py
+48
-0
未找到文件。
paddle/fluid/operators/conv_op.cc
浏览文件 @
8307b0cb
...
@@ -116,6 +116,10 @@ std::vector<int64_t> ConvOp::ComputeOutputShape(
...
@@ -116,6 +116,10 @@ std::vector<int64_t> ConvOp::ComputeOutputShape(
"the output channels is %d, the filter's shape is [%s], "
"the output channels is %d, the filter's shape is [%s], "
"the groups is %d."
,
"the groups is %d."
,
filter_dims
[
0
],
filter_dims
,
groups
));
filter_dims
[
0
],
filter_dims
,
groups
));
PADDLE_ENFORCE_GT
(
filter_dims
[
0
],
0
,
platform
::
errors
::
InvalidArgument
(
"the size of filter at axis 0 should be greater than 0"
));
framework
::
DDim
in_data_dims
;
framework
::
DDim
in_data_dims
;
if
(
channel_last
)
{
if
(
channel_last
)
{
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
8307b0cb
...
@@ -1816,6 +1816,10 @@ def conv3d(input,
...
@@ -1816,6 +1816,10 @@ def conv3d(input,
"Attr(data_format): %s." % str(data_format))
"Attr(data_format): %s." % str(data_format))
channel_last = (data_format == "NDHWC")
channel_last = (data_format == "NDHWC")
if len(input.shape) != 5:
raise ValueError(
"Input should be 5D tensor, but received input with the shape of {}".
format(input.shape))
num_channels = input.shape[4] if channel_last else input.shape[1]
num_channels = input.shape[4] if channel_last else input.shape[1]
if num_channels < 0:
if num_channels < 0:
raise ValueError(
raise ValueError(
...
@@ -1824,6 +1828,10 @@ def conv3d(input,
...
@@ -1824,6 +1828,10 @@ def conv3d(input,
if groups is None:
if groups is None:
num_filter_channels = num_channels
num_filter_channels = num_channels
elif groups <= 0:
raise ValueError(
"the groups of conv3d should be greater than 0. Received groups: {}".
format(groups))
else:
else:
if num_channels % groups != 0:
if num_channels % groups != 0:
raise ValueError(
raise ValueError(
...
@@ -4244,10 +4252,15 @@ def conv3d_transpose(input,
...
@@ -4244,10 +4252,15 @@ def conv3d_transpose(input,
raise ValueError(
raise ValueError(
"Param(data_format) of Op(fluid.layers.conv3d_transpose) got wrong value: received "
"Param(data_format) of Op(fluid.layers.conv3d_transpose) got wrong value: received "
+ data_format + " but only NCDHW or NDHWC supported.")
+ data_format + " but only NCDHW or NDHWC supported.")
l_type = "conv3d_transpose"
l_type = "conv3d_transpose"
helper = LayerHelper(l_type, **locals())
helper = LayerHelper(l_type, **locals())
if not isinstance(input, Variable):
if not isinstance(input, Variable):
raise TypeError("Input of conv3d_transpose must be Variable")
raise TypeError("Input of conv3d_transpose must be Variable")
if len(input.shape) != 5:
raise ValueError(
"Input should be 5D tensor, but received input with the shape of {}".
format(input.shape))
input_channel = input.shape[1] if data_format == 'NCDHW' else input.shape[
input_channel = input.shape[1] if data_format == 'NCDHW' else input.shape[
-1]
-1]
...
@@ -4339,6 +4352,15 @@ def conv3d_transpose(input,
...
@@ -4339,6 +4352,15 @@ def conv3d_transpose(input,
raise ValueError("output_size should be int, list[int] or tuple[int]")
raise ValueError("output_size should be int, list[int] or tuple[int]")
groups = 1 if groups is None else groups
groups = 1 if groups is None else groups
if groups <= 0:
raise ValueError(
"the groups of conv3d_transpose should be greater than 0. Received groups: {}".
format(groups))
if num_filters % groups != 0:
raise ValueError("Attr(num_filters) must be divisible by groups,"
"Received: Attr(num_filters) is {}, the groups is {}".
format(num_filters, groups))
filter_shape = [input_channel, num_filters // groups] + filter_size
filter_shape = [input_channel, num_filters // groups] + filter_size
img_filter = helper.create_parameter(
img_filter = helper.create_parameter(
dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)
dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)
...
...
python/paddle/fluid/tests/unittests/test_functional_conv1d.py
0 → 100644
浏览文件 @
8307b0cb
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
import
paddle.nn.functional
as
F
from
paddle
import
fluid
import
paddle.fluid.dygraph
as
dg
import
paddle.fluid.initializer
as
I
import
numpy
as
np
import
unittest
from
unittest
import
TestCase
class
TestFunctionalConv1DError
(
TestCase
):
def
setUp
(
self
):
self
.
input
=
[]
self
.
filter
=
[]
self
.
bias
=
None
self
.
padding
=
0
self
.
stride
=
1
self
.
dilation
=
1
self
.
groups
=
1
self
.
data_format
=
"NCL"
def
dygraph_case
(
self
):
with
dg
.
guard
():
x
=
dg
.
to_variable
(
self
.
input
,
dtype
=
paddle
.
float32
)
w
=
dg
.
to_variable
(
self
.
filter
,
dtype
=
paddle
.
float32
)
b
=
None
if
self
.
bias
is
None
else
dg
.
to_variable
(
self
.
bias
,
dtype
=
paddle
.
float32
)
y
=
F
.
conv1d
(
x
,
w
,
b
,
padding
=
self
.
padding
,
stride
=
self
.
stride
,
dilation
=
self
.
dilation
,
groups
=
self
.
groups
,
data_format
=
self
.
data_format
)
def
test_exception
(
self
):
with
self
.
assertRaises
(
ValueError
):
self
.
dygraph_case
()
class
TestFunctionalConv1DErrorCase1
(
TestFunctionalConv1DError
):
def
setUp
(
self
):
self
.
input
=
np
.
random
.
randn
(
1
,
3
,
3
)
self
.
filter
=
np
.
random
.
randn
(
3
,
3
,
1
)
self
.
bias
=
None
self
.
padding
=
0
self
.
stride
=
1
self
.
dilation
=
1
self
.
groups
=
0
self
.
data_format
=
"NCL"
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_functional_conv1d_transpose.py
0 → 100644
浏览文件 @
8307b0cb
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
import
paddle.nn.functional
as
F
from
paddle
import
fluid
import
paddle.fluid.dygraph
as
dg
import
paddle.fluid.initializer
as
I
import
numpy
as
np
import
unittest
from
unittest
import
TestCase
class
TestFunctionalConv1DError
(
TestCase
):
def
setUp
(
self
):
self
.
input
=
[]
self
.
filter
=
[]
self
.
bias
=
None
self
.
padding
=
0
self
.
stride
=
1
self
.
dilation
=
1
self
.
groups
=
1
self
.
data_format
=
"NCL"
def
dygraph_case
(
self
):
with
dg
.
guard
():
x
=
dg
.
to_variable
(
self
.
input
,
dtype
=
paddle
.
float32
)
w
=
dg
.
to_variable
(
self
.
filter
,
dtype
=
paddle
.
float32
)
b
=
None
if
self
.
bias
is
None
else
dg
.
to_variable
(
self
.
bias
,
dtype
=
paddle
.
float32
)
y
=
F
.
conv1d_transpose
(
x
,
w
,
b
,
padding
=
self
.
padding
,
stride
=
self
.
stride
,
dilation
=
self
.
dilation
,
groups
=
self
.
groups
,
data_format
=
self
.
data_format
)
def
test_exception
(
self
):
with
self
.
assertRaises
(
ValueError
):
self
.
dygraph_case
()
class
TestFunctionalConv1DErrorCase1
(
TestFunctionalConv1DError
):
def
setUp
(
self
):
self
.
input
=
np
.
random
.
randn
(
1
,
3
,
3
)
self
.
filter
=
np
.
random
.
randn
(
3
,
3
,
1
)
self
.
bias
=
None
self
.
padding
=
0
self
.
stride
=
1
self
.
dilation
=
1
self
.
groups
=
0
self
.
data_format
=
"NCL"
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_functional_conv2d.py
浏览文件 @
8307b0cb
...
@@ -457,5 +457,81 @@ class TestFunctionalConv2DErrorCase11(TestFunctionalConv2DError):
...
@@ -457,5 +457,81 @@ class TestFunctionalConv2DErrorCase11(TestFunctionalConv2DError):
self
.
data_format
=
"NHCW"
self
.
data_format
=
"NHCW"
class
TestFunctionalConv2DErrorCase12
(
TestCase
):
def
setUp
(
self
):
self
.
input
=
np
.
array
([])
self
.
filter
=
np
.
array
([])
self
.
num_filters
=
0
self
.
filter_size
=
0
self
.
bias
=
None
self
.
padding
=
0
self
.
stride
=
1
self
.
dilation
=
1
self
.
groups
=
1
self
.
data_format
=
"NCHW"
def
static_graph_case
(
self
):
main
=
fluid
.
Program
()
start
=
fluid
.
Program
()
with
fluid
.
unique_name
.
guard
():
with
fluid
.
program_guard
(
main
,
start
):
x
=
fluid
.
data
(
"input"
,
self
.
input
.
shape
,
dtype
=
paddle
.
float32
)
y
=
fluid
.
layers
.
conv2d
(
x
,
self
.
num_filters
,
self
.
filter_size
,
stride
=
self
.
stride
,
padding
=
self
.
padding
,
dilation
=
self
.
dilation
,
groups
=
self
.
groups
,
param_attr
=
I
.
NumpyArrayInitializer
(
self
.
filter
),
bias_attr
=
False
if
self
.
bias
is
None
else
I
.
NumpyArrayInitializer
(
self
.
bias
),
act
=
None
,
data_format
=
self
.
data_format
)
exe
=
fluid
.
Executor
()
exe
.
run
(
start
)
out
,
=
exe
.
run
(
main
,
feed
=
{
"input"
:
self
.
input
},
fetch_list
=
[
y
])
return
out
def
dygraph_case
(
self
):
with
dg
.
guard
():
x
=
dg
.
to_variable
(
self
.
input
,
dtype
=
paddle
.
float32
)
w
=
dg
.
to_variable
(
self
.
filter
,
dtype
=
paddle
.
float32
)
b
=
None
if
self
.
bias
is
None
else
dg
.
to_variable
(
self
.
bias
,
dtype
=
paddle
.
float32
)
y
=
F
.
conv2d
(
x
,
w
,
b
,
padding
=
self
.
padding
,
stride
=
self
.
stride
,
dilation
=
self
.
dilation
,
groups
=
self
.
groups
,
data_format
=
self
.
data_format
)
def
test_dygraph_exception
(
self
):
with
self
.
assertRaises
(
ValueError
):
self
.
dygraph_case
()
def
test_static_exception
(
self
):
with
self
.
assertRaises
(
ValueError
):
self
.
static_graph_case
()
class
TestFunctionalConv2DErrorCase13
(
TestFunctionalConv2DErrorCase12
):
def
setUp
(
self
):
self
.
input
=
np
.
random
.
randn
(
1
,
3
,
3
,
3
)
self
.
filter
=
np
.
random
.
randn
(
3
,
3
,
1
,
1
)
self
.
num_filters
=
3
self
.
filter_size
=
1
self
.
bias
=
None
self
.
padding
=
0
self
.
stride
=
1
self
.
dilation
=
1
self
.
groups
=
0
self
.
data_format
=
"NCHW"
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
unittest
.
main
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_functional_conv2d_transpose.py
浏览文件 @
8307b0cb
...
@@ -463,5 +463,81 @@ class TestFunctionalConv2DErrorCase9(TestFunctionalConv2DError):
...
@@ -463,5 +463,81 @@ class TestFunctionalConv2DErrorCase9(TestFunctionalConv2DError):
self
.
data_format
=
"NCHW"
self
.
data_format
=
"NCHW"
class
TestFunctionalConv2DErrorCase10
(
TestCase
):
def
setUp
(
self
):
self
.
input
=
np
.
array
([])
self
.
filter
=
np
.
array
([])
self
.
num_filters
=
0
self
.
filter_size
=
0
self
.
bias
=
None
self
.
padding
=
0
self
.
stride
=
1
self
.
dilation
=
1
self
.
groups
=
1
self
.
data_format
=
"NCHW"
def
static_graph_case
(
self
):
main
=
fluid
.
Program
()
start
=
fluid
.
Program
()
with
fluid
.
unique_name
.
guard
():
with
fluid
.
program_guard
(
main
,
start
):
x
=
fluid
.
data
(
"input"
,
self
.
input
.
shape
,
dtype
=
paddle
.
float32
)
y
=
fluid
.
layers
.
conv2d
(
x
,
self
.
num_filters
,
self
.
filter_size
,
stride
=
self
.
stride
,
padding
=
self
.
padding
,
dilation
=
self
.
dilation
,
groups
=
self
.
groups
,
param_attr
=
I
.
NumpyArrayInitializer
(
self
.
filter
),
bias_attr
=
False
if
self
.
bias
is
None
else
I
.
NumpyArrayInitializer
(
self
.
bias
),
act
=
None
,
data_format
=
self
.
data_format
)
exe
=
fluid
.
Executor
()
exe
.
run
(
start
)
out
,
=
exe
.
run
(
main
,
feed
=
{
"input"
:
self
.
input
},
fetch_list
=
[
y
])
return
out
def
dygraph_case
(
self
):
with
dg
.
guard
():
x
=
dg
.
to_variable
(
self
.
input
,
dtype
=
paddle
.
float32
)
w
=
dg
.
to_variable
(
self
.
filter
,
dtype
=
paddle
.
float32
)
b
=
None
if
self
.
bias
is
None
else
dg
.
to_variable
(
self
.
bias
,
dtype
=
paddle
.
float32
)
y
=
F
.
conv2d_transpose
(
x
,
w
,
b
,
padding
=
self
.
padding
,
stride
=
self
.
stride
,
dilation
=
self
.
dilation
,
groups
=
self
.
groups
,
data_format
=
self
.
data_format
)
def
test_dygraph_exception
(
self
):
with
self
.
assertRaises
(
ValueError
):
self
.
dygraph_case
()
def
test_static_exception
(
self
):
with
self
.
assertRaises
(
ValueError
):
self
.
static_graph_case
()
class
TestFunctionalConv2DErrorCase11
(
TestFunctionalConv2DErrorCase10
):
def
setUp
(
self
):
self
.
input
=
np
.
random
.
randn
(
1
,
3
,
3
,
3
)
self
.
filter
=
np
.
random
.
randn
(
3
,
3
,
1
,
1
)
self
.
num_filters
=
3
self
.
filter_size
=
1
self
.
bias
=
None
self
.
padding
=
0
self
.
stride
=
1
self
.
dilation
=
1
self
.
groups
=
0
self
.
data_format
=
"NCHW"
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
unittest
.
main
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_functional_conv3d.py
浏览文件 @
8307b0cb
...
@@ -432,5 +432,81 @@ class TestFunctionalConv3DErrorCase10(TestFunctionalConv3DError):
...
@@ -432,5 +432,81 @@ class TestFunctionalConv3DErrorCase10(TestFunctionalConv3DError):
self
.
data_format
=
"NDHWC"
self
.
data_format
=
"NDHWC"
class
TestFunctionalConv3DErrorCase11
(
TestCase
):
def
setUp
(
self
):
self
.
input
=
np
.
array
([])
self
.
filter
=
np
.
array
([])
self
.
num_filters
=
0
self
.
filter_size
=
0
self
.
bias
=
None
self
.
padding
=
0
self
.
stride
=
1
self
.
dilation
=
1
self
.
groups
=
1
self
.
data_format
=
"NCDHW"
def
static_graph_case
(
self
):
main
=
fluid
.
Program
()
start
=
fluid
.
Program
()
with
fluid
.
unique_name
.
guard
():
with
fluid
.
program_guard
(
main
,
start
):
x
=
fluid
.
data
(
"input"
,
self
.
input
.
shape
,
dtype
=
paddle
.
float32
)
y
=
fluid
.
layers
.
conv3d
(
x
,
self
.
num_filters
,
self
.
filter_size
,
stride
=
self
.
stride
,
padding
=
self
.
padding
,
dilation
=
self
.
dilation
,
groups
=
self
.
groups
,
param_attr
=
I
.
NumpyArrayInitializer
(
self
.
filter
),
bias_attr
=
False
if
self
.
bias
is
None
else
I
.
NumpyArrayInitializer
(
self
.
bias
),
act
=
None
,
data_format
=
self
.
data_format
)
exe
=
fluid
.
Executor
()
exe
.
run
(
start
)
out
,
=
exe
.
run
(
main
,
feed
=
{
"input"
:
self
.
input
},
fetch_list
=
[
y
])
return
out
def
dygraph_case
(
self
):
with
dg
.
guard
():
x
=
dg
.
to_variable
(
self
.
input
,
dtype
=
paddle
.
float32
)
w
=
dg
.
to_variable
(
self
.
filter
,
dtype
=
paddle
.
float32
)
b
=
None
if
self
.
bias
is
None
else
dg
.
to_variable
(
self
.
bias
,
dtype
=
paddle
.
float32
)
y
=
F
.
conv3d
(
x
,
w
,
b
,
padding
=
self
.
padding
,
stride
=
self
.
stride
,
dilation
=
self
.
dilation
,
groups
=
self
.
groups
,
data_format
=
self
.
data_format
)
def
test_dygraph_exception
(
self
):
with
self
.
assertRaises
(
ValueError
):
self
.
dygraph_case
()
def
test_static_exception
(
self
):
with
self
.
assertRaises
(
ValueError
):
self
.
static_graph_case
()
class
TestFunctionalConv3DErrorCase12
(
TestFunctionalConv3DErrorCase11
):
def
setUp
(
self
):
self
.
input
=
np
.
random
.
randn
(
1
,
3
,
3
,
3
,
3
)
self
.
filter
=
np
.
random
.
randn
(
3
,
3
,
1
,
1
,
1
)
self
.
num_filters
=
3
self
.
filter_size
=
1
self
.
bias
=
None
self
.
padding
=
0
self
.
stride
=
1
self
.
dilation
=
1
self
.
groups
=
0
self
.
data_format
=
"NCDHW"
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
unittest
.
main
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_functional_conv3d_transpose.py
浏览文件 @
8307b0cb
...
@@ -483,5 +483,82 @@ class TestFunctionalConv3DTransposeErrorCase9(
...
@@ -483,5 +483,82 @@ class TestFunctionalConv3DTransposeErrorCase9(
self
.
data_format
=
"NCDHW"
self
.
data_format
=
"NCDHW"
class
TestFunctionalConv3DTransposeErrorCase10
(
TestCase
):
def
setUp
(
self
):
self
.
input
=
np
.
array
([])
self
.
filter
=
np
.
array
([])
self
.
num_filters
=
0
self
.
filter_size
=
0
self
.
bias
=
None
self
.
padding
=
0
self
.
stride
=
1
self
.
dilation
=
1
self
.
groups
=
1
self
.
data_format
=
"NCDHW"
def
static_graph_case
(
self
):
main
=
fluid
.
Program
()
start
=
fluid
.
Program
()
with
fluid
.
unique_name
.
guard
():
with
fluid
.
program_guard
(
main
,
start
):
x
=
fluid
.
data
(
"input"
,
self
.
input
.
shape
,
dtype
=
paddle
.
float32
)
y
=
fluid
.
layers
.
conv3d_transpose
(
x
,
self
.
num_filters
,
self
.
filter_size
,
stride
=
self
.
stride
,
padding
=
self
.
padding
,
dilation
=
self
.
dilation
,
groups
=
self
.
groups
,
param_attr
=
I
.
NumpyArrayInitializer
(
self
.
filter
),
bias_attr
=
False
if
self
.
bias
is
None
else
I
.
NumpyArrayInitializer
(
self
.
bias
),
act
=
None
,
data_format
=
self
.
data_format
)
exe
=
fluid
.
Executor
()
exe
.
run
(
start
)
out
,
=
exe
.
run
(
main
,
feed
=
{
"input"
:
self
.
input
},
fetch_list
=
[
y
])
return
out
def
dygraph_case
(
self
):
with
dg
.
guard
():
x
=
dg
.
to_variable
(
self
.
input
,
dtype
=
paddle
.
float32
)
w
=
dg
.
to_variable
(
self
.
filter
,
dtype
=
paddle
.
float32
)
b
=
None
if
self
.
bias
is
None
else
dg
.
to_variable
(
self
.
bias
,
dtype
=
paddle
.
float32
)
y
=
F
.
conv3d_transpose
(
x
,
w
,
b
,
padding
=
self
.
padding
,
stride
=
self
.
stride
,
dilation
=
self
.
dilation
,
groups
=
self
.
groups
,
data_format
=
self
.
data_format
)
def
test_dygraph_exception
(
self
):
with
self
.
assertRaises
(
ValueError
):
self
.
dygraph_case
()
def
test_static_exception
(
self
):
with
self
.
assertRaises
(
ValueError
):
self
.
static_graph_case
()
class
TestFunctionalConv3DTransposeErrorCase11
(
TestFunctionalConv3DTransposeErrorCase10
):
def
setUp
(
self
):
self
.
input
=
np
.
random
.
randn
(
1
,
3
,
3
,
3
,
3
)
self
.
filter
=
np
.
random
.
randn
(
3
,
3
,
1
,
1
,
1
)
self
.
num_filters
=
3
self
.
filter_size
=
1
self
.
bias
=
None
self
.
padding
=
0
self
.
stride
=
1
self
.
dilation
=
1
self
.
groups
=
0
self
.
data_format
=
"NCDHW"
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
unittest
.
main
()
unittest
.
main
()
python/paddle/nn/functional/conv.py
浏览文件 @
8307b0cb
...
@@ -299,12 +299,20 @@ def conv1d(x,
...
@@ -299,12 +299,20 @@ def conv1d(x,
channel_last
=
(
data_format
==
"NLC"
)
channel_last
=
(
data_format
==
"NLC"
)
channel_dim
=
-
1
if
channel_last
else
1
channel_dim
=
-
1
if
channel_last
else
1
conv2d_data_format
=
"NHWC"
if
channel_last
else
"NCHW"
conv2d_data_format
=
"NHWC"
if
channel_last
else
"NCHW"
if
len
(
x
.
shape
)
!=
3
:
raise
ValueError
(
"Input x should be 3D tensor, but received x with the shape of {}"
.
format
(
x
.
shape
))
num_channels
=
x
.
shape
[
channel_dim
]
num_channels
=
x
.
shape
[
channel_dim
]
num_filters
=
weight
.
shape
[
0
]
num_filters
=
weight
.
shape
[
0
]
if
num_channels
<
0
:
if
num_channels
<
0
:
raise
ValueError
(
"The channel dimension of the input({}) "
raise
ValueError
(
"The channel dimension of the input({}) "
"should be defined. Received: {}."
.
format
(
"should be defined. Received: {}."
.
format
(
x
.
shape
,
num_channels
))
x
.
shape
,
num_channels
))
if
groups
<=
0
:
raise
ValueError
(
"The groups of conv1d should be greater than 0. Received groups: {}"
.
format
(
groups
))
if
num_channels
%
groups
!=
0
:
if
num_channels
%
groups
!=
0
:
raise
ValueError
(
raise
ValueError
(
"the channel of input must be divisible by groups,"
"the channel of input must be divisible by groups,"
...
@@ -508,12 +516,20 @@ def conv2d(x,
...
@@ -508,12 +516,20 @@ def conv2d(x,
channel_last
=
(
data_format
==
"NHWC"
)
channel_last
=
(
data_format
==
"NHWC"
)
channel_dim
=
-
1
if
channel_last
else
1
channel_dim
=
-
1
if
channel_last
else
1
if
len
(
x
.
shape
)
!=
4
:
raise
ValueError
(
"Input x should be 4D tensor, but received x with the shape of {}"
.
format
(
x
.
shape
))
num_channels
=
x
.
shape
[
channel_dim
]
num_channels
=
x
.
shape
[
channel_dim
]
num_filters
=
weight
.
shape
[
0
]
num_filters
=
weight
.
shape
[
0
]
if
num_channels
<
0
:
if
num_channels
<
0
:
raise
ValueError
(
"The channel dimension of the input({}) "
raise
ValueError
(
"The channel dimension of the input({}) "
"should be defined. Received: {}."
.
format
(
"should be defined. Received: {}."
.
format
(
x
.
shape
,
num_channels
))
x
.
shape
,
num_channels
))
if
groups
<=
0
:
raise
ValueError
(
"The groups of conv2d should be greater than 0. Received groups: {}"
.
format
(
groups
))
if
num_channels
%
groups
!=
0
:
if
num_channels
%
groups
!=
0
:
raise
ValueError
(
raise
ValueError
(
"the channel of input must be divisible by groups,"
"the channel of input must be divisible by groups,"
...
@@ -710,12 +726,20 @@ def conv1d_transpose(x,
...
@@ -710,12 +726,20 @@ def conv1d_transpose(x,
data_format
))
data_format
))
channel_last
=
(
data_format
==
"NLC"
)
channel_last
=
(
data_format
==
"NLC"
)
channel_dim
=
-
1
if
channel_last
else
1
channel_dim
=
-
1
if
channel_last
else
1
if
len
(
x
.
shape
)
!=
3
:
raise
ValueError
(
"Input x should be 3D tensor, but received x with the shape of {}"
.
format
(
x
.
shape
))
num_channels
=
x
.
shape
[
channel_dim
]
num_channels
=
x
.
shape
[
channel_dim
]
if
num_channels
<
0
:
if
num_channels
<
0
:
raise
ValueError
(
"The channel dimension of the input({}) "
raise
ValueError
(
"The channel dimension of the input({}) "
"should be defined. Received: {}."
.
format
(
"should be defined. Received: {}."
.
format
(
x
.
shape
,
num_channels
))
x
.
shape
,
num_channels
))
if
groups
<=
0
:
raise
ValueError
(
"The groups of conv1d_transpose should be greater than 0. Received groups: {}"
.
format
(
groups
))
if
num_channels
%
groups
!=
0
:
if
num_channels
%
groups
!=
0
:
raise
ValueError
(
raise
ValueError
(
"the channel of input must be divisible by groups,"
"the channel of input must be divisible by groups,"
...
@@ -964,11 +988,19 @@ def conv2d_transpose(x,
...
@@ -964,11 +988,19 @@ def conv2d_transpose(x,
data_format
))
data_format
))
channel_last
=
(
data_format
==
"NHWC"
)
channel_last
=
(
data_format
==
"NHWC"
)
channel_dim
=
-
1
if
channel_last
else
1
channel_dim
=
-
1
if
channel_last
else
1
if
len
(
x
.
shape
)
!=
4
:
raise
ValueError
(
"Input x should be 4D tensor, but received x with the shape of {}"
.
format
(
x
.
shape
))
num_channels
=
x
.
shape
[
channel_dim
]
num_channels
=
x
.
shape
[
channel_dim
]
if
num_channels
<
0
:
if
num_channels
<
0
:
raise
ValueError
(
"The channel dimension of the input({}) "
raise
ValueError
(
"The channel dimension of the input({}) "
"should be defined. Received: {}."
.
format
(
"should be defined. Received: {}."
.
format
(
x
.
shape
,
num_channels
))
x
.
shape
,
num_channels
))
if
groups
<=
0
:
raise
ValueError
(
"The groups of conv2d_transpose should be greater than 0. Received groups: {}"
.
format
(
groups
))
if
num_channels
%
groups
!=
0
:
if
num_channels
%
groups
!=
0
:
raise
ValueError
(
raise
ValueError
(
"the channel of input must be divisible by groups,"
"the channel of input must be divisible by groups,"
...
@@ -1167,12 +1199,20 @@ def conv3d(x,
...
@@ -1167,12 +1199,20 @@ def conv3d(x,
channel_last
=
(
data_format
==
"NDHWC"
)
channel_last
=
(
data_format
==
"NDHWC"
)
channel_dim
=
-
1
if
channel_last
else
1
channel_dim
=
-
1
if
channel_last
else
1
if
len
(
x
.
shape
)
!=
5
:
raise
ValueError
(
"Input x should be 5D tensor, but received x with the shape of {}"
.
format
(
x
.
shape
))
num_channels
=
x
.
shape
[
channel_dim
]
num_channels
=
x
.
shape
[
channel_dim
]
num_filters
=
weight
.
shape
[
0
]
num_filters
=
weight
.
shape
[
0
]
if
num_channels
<
0
:
if
num_channels
<
0
:
raise
ValueError
(
raise
ValueError
(
"The channel dimension of the input({}) should be defined. "
"The channel dimension of the input({}) should be defined. "
"Received: {}."
.
format
(
x
.
shape
,
num_channels
))
"Received: {}."
.
format
(
x
.
shape
,
num_channels
))
if
groups
<=
0
:
raise
ValueError
(
"The groups of conv3d should be greater than 0. Received groups: {}"
.
format
(
groups
))
if
num_channels
%
groups
!=
0
:
if
num_channels
%
groups
!=
0
:
raise
ValueError
(
raise
ValueError
(
"The number of input channels must be divisible by Attr(groups). "
"The number of input channels must be divisible by Attr(groups). "
...
@@ -1358,12 +1398,20 @@ def conv3d_transpose(x,
...
@@ -1358,12 +1398,20 @@ def conv3d_transpose(x,
channel_last
=
(
data_format
==
"NDHWC"
)
channel_last
=
(
data_format
==
"NDHWC"
)
channel_dim
=
-
1
if
channel_last
else
1
channel_dim
=
-
1
if
channel_last
else
1
if
len
(
x
.
shape
)
!=
5
:
raise
ValueError
(
"Input x should be 5D tensor, but received x with the shape of {}"
.
format
(
x
.
shape
))
num_channels
=
x
.
shape
[
channel_dim
]
num_channels
=
x
.
shape
[
channel_dim
]
num_filters
=
weight
.
shape
[
1
]
num_filters
=
weight
.
shape
[
1
]
if
num_channels
<
0
:
if
num_channels
<
0
:
raise
ValueError
(
raise
ValueError
(
"The channel dimension of the input({}) should be defined. "
"The channel dimension of the input({}) should be defined. "
"Received: {}."
.
format
(
x
.
shape
,
num_channels
))
"Received: {}."
.
format
(
x
.
shape
,
num_channels
))
if
groups
<=
0
:
raise
ValueError
(
"The groups of conv3d_transpose should be greater than 0. Received groups: {}"
.
format
(
groups
))
if
num_channels
%
groups
!=
0
:
if
num_channels
%
groups
!=
0
:
raise
ValueError
(
raise
ValueError
(
"The number of input channels must be divisible by Attr(groups). "
"The number of input channels must be divisible by Attr(groups). "
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录