core.c 211.3 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
T
Thomas Gleixner 已提交
47

48 49
#include "internal.h"

50 51
#include <asm/irq_regs.h>

52 53
static struct workqueue_struct *perf_wq;

54 55
typedef int (*remote_function_f)(void *);

56
struct remote_function_call {
57
	struct task_struct	*p;
58
	remote_function_f	func;
59 60
	void			*info;
	int			ret;
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
91
task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 93
{
	struct remote_function_call data = {
94 95 96 97
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
115
static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 117
{
	struct remote_function_call data = {
118 119 120 121
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
122 123 124 125 126 127 128
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

129 130 131 132 133 134 135
#define EVENT_OWNER_KERNEL ((void *) -1)

static bool is_kernel_event(struct perf_event *event)
{
	return event->owner == EVENT_OWNER_KERNEL;
}

S
Stephane Eranian 已提交
136 137
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
138 139
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
140

141 142 143 144 145 146 147
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

148 149 150 151 152 153
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
154 155 156 157
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
158
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
159
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
160
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
S
Stephane Eranian 已提交
161

162 163 164
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
165
static atomic_t nr_freq_events __read_mostly;
166

P
Peter Zijlstra 已提交
167 168 169 170
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

171
/*
172
 * perf event paranoia level:
173 174
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
175
 *   1 - disallow cpu events for unpriv
176
 *   2 - disallow kernel profiling for unpriv
177
 */
178
int sysctl_perf_event_paranoid __read_mostly = 1;
179

180 181
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
182 183

/*
184
 * max perf event sample rate
185
 */
186 187 188 189 190 191 192 193 194
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
195 196
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
197 198 199 200 201 202

void update_perf_cpu_limits(void)
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
203
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
204
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
205
}
P
Peter Zijlstra 已提交
206

207 208
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
209 210 211 212
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
213
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
214 215 216 217 218

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
237 238 239

	return 0;
}
240

241 242 243 244 245 246 247
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
248
static DEFINE_PER_CPU(u64, running_sample_length);
249

250
static void perf_duration_warn(struct irq_work *w)
251
{
252
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
253
	u64 avg_local_sample_len;
254
	u64 local_samples_len;
255

256
	local_samples_len = __this_cpu_read(running_sample_length);
257 258 259 260 261
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
262
			avg_local_sample_len, allowed_ns >> 1,
263 264 265 266 267 268 269
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
270
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
271 272
	u64 avg_local_sample_len;
	u64 local_samples_len;
273

P
Peter Zijlstra 已提交
274
	if (allowed_ns == 0)
275 276 277
		return;

	/* decay the counter by 1 average sample */
278
	local_samples_len = __this_cpu_read(running_sample_length);
279 280
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
281
	__this_cpu_write(running_sample_length, local_samples_len);
282 283 284 285 286 287 288 289

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
290
	if (avg_local_sample_len <= allowed_ns)
291 292 293 294 295 296 297 298 299 300
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
301

302 303 304 305 306 307
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
308 309
}

310
static atomic64_t perf_event_id;
311

312 313 314 315
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
316 317 318 319 320
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
321

322
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
323

324
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
325
{
326
	return "pmu";
T
Thomas Gleixner 已提交
327 328
}

329 330 331 332 333
static inline u64 perf_clock(void)
{
	return local_clock();
}

334 335 336 337 338
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
339 340 341 342 343 344
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
361 362 363 364 365 366 367 368
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
385 386 387 388
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
389
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
428 429
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
430
	/*
431 432
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
433
	 */
434
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
435 436
		return;

437 438 439 440 441 442
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
443 444 445
}

static inline void
446 447
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
448 449 450 451
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

452 453 454 455 456 457
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
458 459 460 461
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
462
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
495 496
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
497 498 499 500 501 502 503 504 505

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
506 507
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
508 509 510 511 512 513 514 515 516 517 518

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
519
				WARN_ON_ONCE(cpuctx->cgrp);
520 521 522 523
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
524 525 526 527
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
528 529
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
530 531 532 533 534 535 536 537
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

538 539
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
540
{
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
563 564
}

565 566
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
567
{
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
586 587 588 589 590 591 592 593
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
594 595
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
596

597
	if (!f.file)
S
Stephane Eranian 已提交
598 599
		return -EBADF;

A
Al Viro 已提交
600
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
601
					 &perf_event_cgrp_subsys);
602 603 604 605
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
606 607 608 609 610 611 612 613 614 615 616 617 618

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
619
out:
620
	fdput(f);
S
Stephane Eranian 已提交
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

694 695
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
696 697 698
{
}

699 700
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
701 702 703 704 705 706 707 708 709 710 711
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
712 713
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

744 745 746 747 748 749 750 751
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
752
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
753 754 755 756 757 758 759 760 761
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
762 763
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
764
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
765 766 767
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
768

P
Peter Zijlstra 已提交
769
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
770 771
}

772
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
773
{
774
	struct hrtimer *timer = &cpuctx->hrtimer;
775
	struct pmu *pmu = cpuctx->ctx.pmu;
776
	u64 interval;
777 778 779 780 781

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

782 783 784 785
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
786 787 788
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
789

790
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
791

P
Peter Zijlstra 已提交
792 793
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
794
	timer->function = perf_mux_hrtimer_handler;
795 796
}

797
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
798
{
799
	struct hrtimer *timer = &cpuctx->hrtimer;
800
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
801
	unsigned long flags;
802 803 804

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
805
		return 0;
806

P
Peter Zijlstra 已提交
807 808 809 810 811 812 813
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
814

815
	return 0;
816 817
}

P
Peter Zijlstra 已提交
818
void perf_pmu_disable(struct pmu *pmu)
819
{
P
Peter Zijlstra 已提交
820 821 822
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
823 824
}

P
Peter Zijlstra 已提交
825
void perf_pmu_enable(struct pmu *pmu)
826
{
P
Peter Zijlstra 已提交
827 828 829
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
830 831
}

832
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
833 834

/*
835 836 837 838
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
839
 */
840
static void perf_event_ctx_activate(struct perf_event_context *ctx)
841
{
842
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
843

844
	WARN_ON(!irqs_disabled());
845

846 847 848 849 850 851 852 853 854 855 856 857
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
858 859
}

860
static void get_ctx(struct perf_event_context *ctx)
861
{
862
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
863 864
}

865 866 867 868 869 870 871 872 873
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

874
static void put_ctx(struct perf_event_context *ctx)
875
{
876 877 878
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
879 880
		if (ctx->task)
			put_task_struct(ctx->task);
881
		call_rcu(&ctx->rcu_head, free_ctx);
882
	}
883 884
}

P
Peter Zijlstra 已提交
885 886 887 888 889 890 891
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
 *      __perf_event_exit_task()
 *        sync_child_event()
 *          put_event()			[ parent, 1 ]
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event_context::lock
 *	    perf_event::child_mutex;
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
946 947
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
948 949 950 951 952 953 954 955 956 957 958 959
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
960
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
961 962 963 964 965 966 967 968 969
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
970 971 972 973 974 975
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
976 977 978 979 980 981 982
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

983 984 985 986 987 988 989
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
990
{
991 992 993 994 995
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
996
		ctx->parent_ctx = NULL;
997
	ctx->generation++;
998 999

	return parent_ctx;
1000 1001
}

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1024
/*
1025
 * If we inherit events we want to return the parent event id
1026 1027
 * to userspace.
 */
1028
static u64 primary_event_id(struct perf_event *event)
1029
{
1030
	u64 id = event->id;
1031

1032 1033
	if (event->parent)
		id = event->parent->id;
1034 1035 1036 1037

	return id;
}

1038
/*
1039
 * Get the perf_event_context for a task and lock it.
1040 1041 1042
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1043
static struct perf_event_context *
P
Peter Zijlstra 已提交
1044
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1045
{
1046
	struct perf_event_context *ctx;
1047

P
Peter Zijlstra 已提交
1048
retry:
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
	 * part of the read side critical section was preemptible -- see
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
	 * side critical section is non-preemptible.
	 */
	preempt_disable();
	rcu_read_lock();
P
Peter Zijlstra 已提交
1060
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1061 1062 1063 1064
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1065
		 * perf_event_task_sched_out, though the
1066 1067 1068 1069 1070 1071
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1072
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
1073
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1074
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1075 1076
			rcu_read_unlock();
			preempt_enable();
1077 1078
			goto retry;
		}
1079 1080

		if (!atomic_inc_not_zero(&ctx->refcount)) {
1081
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1082 1083
			ctx = NULL;
		}
1084 1085
	}
	rcu_read_unlock();
1086
	preempt_enable();
1087 1088 1089 1090 1091 1092 1093 1094
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1095 1096
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1097
{
1098
	struct perf_event_context *ctx;
1099 1100
	unsigned long flags;

P
Peter Zijlstra 已提交
1101
	ctx = perf_lock_task_context(task, ctxn, &flags);
1102 1103
	if (ctx) {
		++ctx->pin_count;
1104
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1105 1106 1107 1108
	}
	return ctx;
}

1109
static void perf_unpin_context(struct perf_event_context *ctx)
1110 1111 1112
{
	unsigned long flags;

1113
	raw_spin_lock_irqsave(&ctx->lock, flags);
1114
	--ctx->pin_count;
1115
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1116 1117
}

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1129 1130 1131
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1132 1133 1134 1135

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1136 1137 1138
	return ctx ? ctx->time : 0;
}

1139 1140
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1141
 * The caller of this function needs to hold the ctx->lock.
1142 1143 1144 1145 1146 1147 1148 1149 1150
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1162
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1163 1164
	else if (ctx->is_active)
		run_end = ctx->time;
1165 1166 1167 1168
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1169 1170 1171 1172

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1173
		run_end = perf_event_time(event);
1174 1175

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1176

1177 1178
}

1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1191 1192 1193 1194 1195 1196 1197 1198 1199
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1200
/*
1201
 * Add a event from the lists for its context.
1202 1203
 * Must be called with ctx->mutex and ctx->lock held.
 */
1204
static void
1205
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1206
{
1207 1208
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1209 1210

	/*
1211 1212 1213
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1214
	 */
1215
	if (event->group_leader == event) {
1216 1217
		struct list_head *list;

1218 1219 1220
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1221 1222
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1223
	}
P
Peter Zijlstra 已提交
1224

1225
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1226 1227
		ctx->nr_cgroups++;

1228 1229 1230
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1231
		ctx->nr_stat++;
1232 1233

	ctx->generation++;
1234 1235
}

J
Jiri Olsa 已提交
1236 1237 1238 1239 1240 1241 1242 1243 1244
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1284 1285 1286 1287 1288 1289
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1290 1291 1292
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1293 1294 1295
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1296 1297 1298
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1299 1300 1301
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1302 1303 1304 1305 1306 1307 1308 1309 1310
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1311 1312 1313 1314 1315 1316
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1317 1318 1319
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1320 1321 1322 1323 1324 1325 1326 1327 1328
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1329
	event->id_header_size = size;
1330 1331
}

1332 1333
static void perf_group_attach(struct perf_event *event)
{
1334
	struct perf_event *group_leader = event->group_leader, *pos;
1335

P
Peter Zijlstra 已提交
1336 1337 1338 1339 1340 1341
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1342 1343 1344 1345 1346
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1347 1348
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1349 1350 1351 1352 1353 1354
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1355 1356 1357 1358 1359

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1360 1361
}

1362
/*
1363
 * Remove a event from the lists for its context.
1364
 * Must be called with ctx->mutex and ctx->lock held.
1365
 */
1366
static void
1367
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1368
{
1369
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1370 1371 1372 1373

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1374 1375 1376 1377
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1378
		return;
1379 1380 1381

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1382
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1383
		ctx->nr_cgroups--;
1384 1385 1386 1387 1388 1389 1390 1391 1392
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1393

1394 1395
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1396
		ctx->nr_stat--;
1397

1398
	list_del_rcu(&event->event_entry);
1399

1400 1401
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1402

1403
	update_group_times(event);
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1414 1415

	ctx->generation++;
1416 1417
}

1418
static void perf_group_detach(struct perf_event *event)
1419 1420
{
	struct perf_event *sibling, *tmp;
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1437
		goto out;
1438 1439 1440 1441
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1442

1443
	/*
1444 1445
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1446
	 * to whatever list we are on.
1447
	 */
1448
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1449 1450
		if (list)
			list_move_tail(&sibling->group_entry, list);
1451
		sibling->group_leader = sibling;
1452 1453 1454

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1455 1456

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1457
	}
1458 1459 1460 1461 1462 1463

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1464 1465
}

1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
/*
 * User event without the task.
 */
static bool is_orphaned_event(struct perf_event *event)
{
	return event && !is_kernel_event(event) && !event->owner;
}

/*
 * Event has a parent but parent's task finished and it's
 * alive only because of children holding refference.
 */
static bool is_orphaned_child(struct perf_event *event)
{
	return is_orphaned_event(event->parent);
}

static void orphans_remove_work(struct work_struct *work);

static void schedule_orphans_remove(struct perf_event_context *ctx)
{
	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
		return;

	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
		get_ctx(ctx);
		ctx->orphans_remove_sched = true;
	}
}

static int __init perf_workqueue_init(void)
{
	perf_wq = create_singlethread_workqueue("perf");
	WARN(!perf_wq, "failed to create perf workqueue\n");
	return perf_wq ? 0 : -1;
}

core_initcall(perf_workqueue_init);

1505 1506 1507 1508 1509 1510
static inline int pmu_filter_match(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1511 1512 1513
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1514
	return (event->cpu == -1 || event->cpu == smp_processor_id())
1515
	    && perf_cgroup_match(event) && pmu_filter_match(event);
1516 1517
}

1518 1519
static void
event_sched_out(struct perf_event *event,
1520
		  struct perf_cpu_context *cpuctx,
1521
		  struct perf_event_context *ctx)
1522
{
1523
	u64 tstamp = perf_event_time(event);
1524
	u64 delta;
P
Peter Zijlstra 已提交
1525 1526 1527 1528

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1529 1530 1531 1532 1533 1534 1535 1536
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1537
		delta = tstamp - event->tstamp_stopped;
1538
		event->tstamp_running += delta;
1539
		event->tstamp_stopped = tstamp;
1540 1541
	}

1542
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1543
		return;
1544

1545 1546
	perf_pmu_disable(event->pmu);

1547 1548 1549 1550
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1551
	}
1552
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1553
	event->pmu->del(event, 0);
1554
	event->oncpu = -1;
1555

1556
	if (!is_software_event(event))
1557
		cpuctx->active_oncpu--;
1558 1559
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1560 1561
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1562
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1563
		cpuctx->exclusive = 0;
1564

1565 1566 1567
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1568
	perf_pmu_enable(event->pmu);
1569 1570
}

1571
static void
1572
group_sched_out(struct perf_event *group_event,
1573
		struct perf_cpu_context *cpuctx,
1574
		struct perf_event_context *ctx)
1575
{
1576
	struct perf_event *event;
1577
	int state = group_event->state;
1578

1579
	event_sched_out(group_event, cpuctx, ctx);
1580 1581 1582 1583

	/*
	 * Schedule out siblings (if any):
	 */
1584 1585
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1586

1587
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1588 1589 1590
		cpuctx->exclusive = 0;
}

1591 1592 1593 1594 1595
struct remove_event {
	struct perf_event *event;
	bool detach_group;
};

T
Thomas Gleixner 已提交
1596
/*
1597
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1598
 *
1599
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1600 1601
 * remove it from the context list.
 */
1602
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1603
{
1604 1605
	struct remove_event *re = info;
	struct perf_event *event = re->event;
1606
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1607
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1608

1609
	raw_spin_lock(&ctx->lock);
1610
	event_sched_out(event, cpuctx, ctx);
1611 1612
	if (re->detach_group)
		perf_group_detach(event);
1613
	list_del_event(event, ctx);
1614 1615 1616 1617
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1618
	raw_spin_unlock(&ctx->lock);
1619 1620

	return 0;
T
Thomas Gleixner 已提交
1621 1622 1623 1624
}


/*
1625
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1626
 *
1627
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1628
 * call when the task is on a CPU.
1629
 *
1630 1631
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1632 1633
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1634
 * When called from perf_event_exit_task, it's OK because the
1635
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1636
 */
1637
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
T
Thomas Gleixner 已提交
1638
{
1639
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1640
	struct task_struct *task = ctx->task;
1641 1642 1643 1644
	struct remove_event re = {
		.event = event,
		.detach_group = detach_group,
	};
T
Thomas Gleixner 已提交
1645

1646 1647
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1648 1649
	if (!task) {
		/*
1650 1651 1652 1653
		 * Per cpu events are removed via an smp call. The removal can
		 * fail if the CPU is currently offline, but in that case we
		 * already called __perf_remove_from_context from
		 * perf_event_exit_cpu.
T
Thomas Gleixner 已提交
1654
		 */
1655
		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
T
Thomas Gleixner 已提交
1656 1657 1658 1659
		return;
	}

retry:
1660
	if (!task_function_call(task, __perf_remove_from_context, &re))
1661
		return;
T
Thomas Gleixner 已提交
1662

1663
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1664
	/*
1665 1666
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1667
	 */
1668
	if (ctx->is_active) {
1669
		raw_spin_unlock_irq(&ctx->lock);
1670 1671 1672 1673 1674
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
1675 1676 1677 1678
		goto retry;
	}

	/*
1679 1680
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1681
	 */
1682 1683
	if (detach_group)
		perf_group_detach(event);
1684
	list_del_event(event, ctx);
1685
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1686 1687
}

1688
/*
1689
 * Cross CPU call to disable a performance event
1690
 */
1691
int __perf_event_disable(void *info)
1692
{
1693 1694
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1695
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1696 1697

	/*
1698 1699
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1700 1701 1702
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1703
	 */
1704
	if (ctx->task && cpuctx->task_ctx != ctx)
1705
		return -EINVAL;
1706

1707
	raw_spin_lock(&ctx->lock);
1708 1709

	/*
1710
	 * If the event is on, turn it off.
1711 1712
	 * If it is in error state, leave it in error state.
	 */
1713
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1714
		update_context_time(ctx);
S
Stephane Eranian 已提交
1715
		update_cgrp_time_from_event(event);
1716 1717 1718
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1719
		else
1720 1721
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1722 1723
	}

1724
	raw_spin_unlock(&ctx->lock);
1725 1726

	return 0;
1727 1728 1729
}

/*
1730
 * Disable a event.
1731
 *
1732 1733
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1734
 * remains valid.  This condition is satisifed when called through
1735 1736 1737 1738
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1739
 * is the current context on this CPU and preemption is disabled,
1740
 * hence we can't get into perf_event_task_sched_out for this context.
1741
 */
P
Peter Zijlstra 已提交
1742
static void _perf_event_disable(struct perf_event *event)
1743
{
1744
	struct perf_event_context *ctx = event->ctx;
1745 1746 1747 1748
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1749
		 * Disable the event on the cpu that it's on
1750
		 */
1751
		cpu_function_call(event->cpu, __perf_event_disable, event);
1752 1753 1754
		return;
	}

P
Peter Zijlstra 已提交
1755
retry:
1756 1757
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1758

1759
	raw_spin_lock_irq(&ctx->lock);
1760
	/*
1761
	 * If the event is still active, we need to retry the cross-call.
1762
	 */
1763
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1764
		raw_spin_unlock_irq(&ctx->lock);
1765 1766 1767 1768 1769
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1770 1771 1772 1773 1774 1775 1776
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1777 1778 1779
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1780
	}
1781
	raw_spin_unlock_irq(&ctx->lock);
1782
}
P
Peter Zijlstra 已提交
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1796
EXPORT_SYMBOL_GPL(perf_event_disable);
1797

S
Stephane Eranian 已提交
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1833 1834 1835
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
1836
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
1837

1838
static int
1839
event_sched_in(struct perf_event *event,
1840
		 struct perf_cpu_context *cpuctx,
1841
		 struct perf_event_context *ctx)
1842
{
1843
	u64 tstamp = perf_event_time(event);
1844
	int ret = 0;
1845

1846 1847
	lockdep_assert_held(&ctx->lock);

1848
	if (event->state <= PERF_EVENT_STATE_OFF)
1849 1850
		return 0;

1851
	event->state = PERF_EVENT_STATE_ACTIVE;
1852
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1864 1865 1866 1867 1868
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1869 1870
	perf_pmu_disable(event->pmu);

1871 1872
	perf_set_shadow_time(event, ctx, tstamp);

1873 1874
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
1875
	if (event->pmu->add(event, PERF_EF_START)) {
1876 1877
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1878 1879
		ret = -EAGAIN;
		goto out;
1880 1881
	}

1882 1883
	event->tstamp_running += tstamp - event->tstamp_stopped;

1884
	if (!is_software_event(event))
1885
		cpuctx->active_oncpu++;
1886 1887
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
1888 1889
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1890

1891
	if (event->attr.exclusive)
1892 1893
		cpuctx->exclusive = 1;

1894 1895 1896
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1897 1898 1899 1900
out:
	perf_pmu_enable(event->pmu);

	return ret;
1901 1902
}

1903
static int
1904
group_sched_in(struct perf_event *group_event,
1905
	       struct perf_cpu_context *cpuctx,
1906
	       struct perf_event_context *ctx)
1907
{
1908
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1909
	struct pmu *pmu = ctx->pmu;
1910 1911
	u64 now = ctx->time;
	bool simulate = false;
1912

1913
	if (group_event->state == PERF_EVENT_STATE_OFF)
1914 1915
		return 0;

P
Peter Zijlstra 已提交
1916
	pmu->start_txn(pmu);
1917

1918
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1919
		pmu->cancel_txn(pmu);
1920
		perf_mux_hrtimer_restart(cpuctx);
1921
		return -EAGAIN;
1922
	}
1923 1924 1925 1926

	/*
	 * Schedule in siblings as one group (if any):
	 */
1927
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1928
		if (event_sched_in(event, cpuctx, ctx)) {
1929
			partial_group = event;
1930 1931 1932 1933
			goto group_error;
		}
	}

1934
	if (!pmu->commit_txn(pmu))
1935
		return 0;
1936

1937 1938 1939 1940
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1951
	 */
1952 1953
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1954 1955 1956 1957 1958 1959 1960 1961
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1962
	}
1963
	event_sched_out(group_event, cpuctx, ctx);
1964

P
Peter Zijlstra 已提交
1965
	pmu->cancel_txn(pmu);
1966

1967
	perf_mux_hrtimer_restart(cpuctx);
1968

1969 1970 1971
	return -EAGAIN;
}

1972
/*
1973
 * Work out whether we can put this event group on the CPU now.
1974
 */
1975
static int group_can_go_on(struct perf_event *event,
1976 1977 1978 1979
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1980
	 * Groups consisting entirely of software events can always go on.
1981
	 */
1982
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1983 1984 1985
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1986
	 * events can go on.
1987 1988 1989 1990 1991
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1992
	 * events on the CPU, it can't go on.
1993
	 */
1994
	if (event->attr.exclusive && cpuctx->active_oncpu)
1995 1996 1997 1998 1999 2000 2001 2002
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2003 2004
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2005
{
2006 2007
	u64 tstamp = perf_event_time(event);

2008
	list_add_event(event, ctx);
2009
	perf_group_attach(event);
2010 2011 2012
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2013 2014
}

2015 2016 2017 2018 2019 2020
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2021

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
2034
/*
2035
 * Cross CPU call to install and enable a performance event
2036 2037
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
2038
 */
2039
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2040
{
2041 2042
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2043
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2044 2045 2046
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

2047
	perf_ctx_lock(cpuctx, task_ctx);
2048
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
2049 2050

	/*
2051
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
2052
	 */
2053
	if (task_ctx)
2054
		task_ctx_sched_out(task_ctx);
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
2069 2070
		task = task_ctx->task;
	}
2071

2072
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
2073

2074
	update_context_time(ctx);
S
Stephane Eranian 已提交
2075 2076 2077 2078 2079 2080
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
2081

2082
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
2083

2084
	/*
2085
	 * Schedule everything back in
2086
	 */
2087
	perf_event_sched_in(cpuctx, task_ctx, task);
2088 2089 2090

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
2091 2092

	return 0;
T
Thomas Gleixner 已提交
2093 2094 2095
}

/*
2096
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
2097
 *
2098 2099
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
2100
 *
2101
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
2102 2103 2104 2105
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
2106 2107
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2108 2109 2110 2111
			int cpu)
{
	struct task_struct *task = ctx->task;

2112 2113
	lockdep_assert_held(&ctx->mutex);

2114
	event->ctx = ctx;
2115 2116
	if (event->cpu != -1)
		event->cpu = cpu;
2117

T
Thomas Gleixner 已提交
2118 2119
	if (!task) {
		/*
2120
		 * Per cpu events are installed via an smp call and
2121
		 * the install is always successful.
T
Thomas Gleixner 已提交
2122
		 */
2123
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
2124 2125 2126 2127
		return;
	}

retry:
2128 2129
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
2130

2131
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2132
	/*
2133 2134
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
2135
	 */
2136
	if (ctx->is_active) {
2137
		raw_spin_unlock_irq(&ctx->lock);
2138 2139 2140 2141 2142
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
2143 2144 2145 2146
		goto retry;
	}

	/*
2147 2148
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
2149
	 */
2150
	add_event_to_ctx(event, ctx);
2151
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2152 2153
}

2154
/*
2155
 * Put a event into inactive state and update time fields.
2156 2157 2158 2159 2160 2161
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2162
static void __perf_event_mark_enabled(struct perf_event *event)
2163
{
2164
	struct perf_event *sub;
2165
	u64 tstamp = perf_event_time(event);
2166

2167
	event->state = PERF_EVENT_STATE_INACTIVE;
2168
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2169
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2170 2171
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2172
	}
2173 2174
}

2175
/*
2176
 * Cross CPU call to enable a performance event
2177
 */
2178
static int __perf_event_enable(void *info)
2179
{
2180 2181 2182
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
2183
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2184
	int err;
2185

2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
2196
		return -EINVAL;
2197

2198
	raw_spin_lock(&ctx->lock);
2199
	update_context_time(ctx);
2200

2201
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2202
		goto unlock;
S
Stephane Eranian 已提交
2203 2204 2205 2206

	/*
	 * set current task's cgroup time reference point
	 */
2207
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2208

2209
	__perf_event_mark_enabled(event);
2210

S
Stephane Eranian 已提交
2211 2212 2213
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2214
		goto unlock;
S
Stephane Eranian 已提交
2215
	}
2216

2217
	/*
2218
	 * If the event is in a group and isn't the group leader,
2219
	 * then don't put it on unless the group is on.
2220
	 */
2221
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2222
		goto unlock;
2223

2224
	if (!group_can_go_on(event, cpuctx, 1)) {
2225
		err = -EEXIST;
2226
	} else {
2227
		if (event == leader)
2228
			err = group_sched_in(event, cpuctx, ctx);
2229
		else
2230
			err = event_sched_in(event, cpuctx, ctx);
2231
	}
2232 2233 2234

	if (err) {
		/*
2235
		 * If this event can't go on and it's part of a
2236 2237
		 * group, then the whole group has to come off.
		 */
2238
		if (leader != event) {
2239
			group_sched_out(leader, cpuctx, ctx);
2240
			perf_mux_hrtimer_restart(cpuctx);
2241
		}
2242
		if (leader->attr.pinned) {
2243
			update_group_times(leader);
2244
			leader->state = PERF_EVENT_STATE_ERROR;
2245
		}
2246 2247
	}

P
Peter Zijlstra 已提交
2248
unlock:
2249
	raw_spin_unlock(&ctx->lock);
2250 2251

	return 0;
2252 2253 2254
}

/*
2255
 * Enable a event.
2256
 *
2257 2258
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2259
 * remains valid.  This condition is satisfied when called through
2260 2261
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2262
 */
P
Peter Zijlstra 已提交
2263
static void _perf_event_enable(struct perf_event *event)
2264
{
2265
	struct perf_event_context *ctx = event->ctx;
2266 2267 2268 2269
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2270
		 * Enable the event on the cpu that it's on
2271
		 */
2272
		cpu_function_call(event->cpu, __perf_event_enable, event);
2273 2274 2275
		return;
	}

2276
	raw_spin_lock_irq(&ctx->lock);
2277
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2278 2279 2280
		goto out;

	/*
2281 2282
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2283 2284 2285 2286
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2287 2288
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2289

P
Peter Zijlstra 已提交
2290
retry:
2291
	if (!ctx->is_active) {
2292
		__perf_event_mark_enabled(event);
2293 2294 2295
		goto out;
	}

2296
	raw_spin_unlock_irq(&ctx->lock);
2297 2298 2299

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2300

2301
	raw_spin_lock_irq(&ctx->lock);
2302 2303

	/*
2304
	 * If the context is active and the event is still off,
2305 2306
	 * we need to retry the cross-call.
	 */
2307 2308 2309 2310 2311 2312
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2313
		goto retry;
2314
	}
2315

P
Peter Zijlstra 已提交
2316
out:
2317
	raw_spin_unlock_irq(&ctx->lock);
2318
}
P
Peter Zijlstra 已提交
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2331
EXPORT_SYMBOL_GPL(perf_event_enable);
2332

P
Peter Zijlstra 已提交
2333
static int _perf_event_refresh(struct perf_event *event, int refresh)
2334
{
2335
	/*
2336
	 * not supported on inherited events
2337
	 */
2338
	if (event->attr.inherit || !is_sampling_event(event))
2339 2340
		return -EINVAL;

2341
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2342
	_perf_event_enable(event);
2343 2344

	return 0;
2345
}
P
Peter Zijlstra 已提交
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2361
EXPORT_SYMBOL_GPL(perf_event_refresh);
2362

2363 2364 2365
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2366
{
2367
	struct perf_event *event;
2368
	int is_active = ctx->is_active;
2369

2370
	ctx->is_active &= ~event_type;
2371
	if (likely(!ctx->nr_events))
2372 2373
		return;

2374
	update_context_time(ctx);
S
Stephane Eranian 已提交
2375
	update_cgrp_time_from_cpuctx(cpuctx);
2376
	if (!ctx->nr_active)
2377
		return;
2378

P
Peter Zijlstra 已提交
2379
	perf_pmu_disable(ctx->pmu);
2380
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2381 2382
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2383
	}
2384

2385
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2386
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2387
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2388
	}
P
Peter Zijlstra 已提交
2389
	perf_pmu_enable(ctx->pmu);
2390 2391
}

2392
/*
2393 2394 2395 2396 2397 2398
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2399
 */
2400 2401
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2402
{
2403 2404 2405
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2428 2429
}

2430 2431
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2432 2433 2434
{
	u64 value;

2435
	if (!event->attr.inherit_stat)
2436 2437 2438
		return;

	/*
2439
	 * Update the event value, we cannot use perf_event_read()
2440 2441
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2442
	 * we know the event must be on the current CPU, therefore we
2443 2444
	 * don't need to use it.
	 */
2445 2446
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2447 2448
		event->pmu->read(event);
		/* fall-through */
2449

2450 2451
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2452 2453 2454 2455 2456 2457 2458
		break;

	default:
		break;
	}

	/*
2459
	 * In order to keep per-task stats reliable we need to flip the event
2460 2461
	 * values when we flip the contexts.
	 */
2462 2463 2464
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2465

2466 2467
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2468

2469
	/*
2470
	 * Since we swizzled the values, update the user visible data too.
2471
	 */
2472 2473
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2474 2475
}

2476 2477
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2478
{
2479
	struct perf_event *event, *next_event;
2480 2481 2482 2483

	if (!ctx->nr_stat)
		return;

2484 2485
	update_context_time(ctx);

2486 2487
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2488

2489 2490
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2491

2492 2493
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2494

2495
		__perf_event_sync_stat(event, next_event);
2496

2497 2498
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2499 2500 2501
	}
}

2502 2503
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2504
{
P
Peter Zijlstra 已提交
2505
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2506
	struct perf_event_context *next_ctx;
2507
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2508
	struct perf_cpu_context *cpuctx;
2509
	int do_switch = 1;
T
Thomas Gleixner 已提交
2510

P
Peter Zijlstra 已提交
2511 2512
	if (likely(!ctx))
		return;
2513

P
Peter Zijlstra 已提交
2514 2515
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2516 2517
		return;

2518
	rcu_read_lock();
P
Peter Zijlstra 已提交
2519
	next_ctx = next->perf_event_ctxp[ctxn];
2520 2521 2522 2523 2524 2525 2526
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2527
	if (!parent && !next_parent)
2528 2529 2530
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2531 2532 2533 2534 2535 2536 2537 2538 2539
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2540 2541
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2542
		if (context_equiv(ctx, next_ctx)) {
2543 2544
			/*
			 * XXX do we need a memory barrier of sorts
2545
			 * wrt to rcu_dereference() of perf_event_ctxp
2546
			 */
P
Peter Zijlstra 已提交
2547 2548
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2549 2550
			ctx->task = next;
			next_ctx->task = task;
2551 2552 2553

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2554
			do_switch = 0;
2555

2556
			perf_event_sync_stat(ctx, next_ctx);
2557
		}
2558 2559
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2560
	}
2561
unlock:
2562
	rcu_read_unlock();
2563

2564
	if (do_switch) {
2565
		raw_spin_lock(&ctx->lock);
2566
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2567
		cpuctx->task_ctx = NULL;
2568
		raw_spin_unlock(&ctx->lock);
2569
	}
T
Thomas Gleixner 已提交
2570 2571
}

2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
void perf_sched_cb_dec(struct pmu *pmu)
{
	this_cpu_dec(perf_sched_cb_usages);
}

void perf_sched_cb_inc(struct pmu *pmu)
{
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (prev == next)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		if (pmu->sched_task) {
			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->sched_task(cpuctx->task_ctx, sched_in);

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2636 2637
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2638 2639 2640
{
	int ctxn;

2641 2642 2643
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

P
Peter Zijlstra 已提交
2644 2645
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2646 2647 2648 2649 2650 2651

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2652
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2653
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2654 2655
}

2656
static void task_ctx_sched_out(struct perf_event_context *ctx)
2657
{
P
Peter Zijlstra 已提交
2658
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2659

2660 2661
	if (!cpuctx->task_ctx)
		return;
2662 2663 2664 2665

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2666
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2667 2668 2669
	cpuctx->task_ctx = NULL;
}

2670 2671 2672 2673 2674 2675 2676
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2677 2678
}

2679
static void
2680
ctx_pinned_sched_in(struct perf_event_context *ctx,
2681
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2682
{
2683
	struct perf_event *event;
T
Thomas Gleixner 已提交
2684

2685 2686
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2687
			continue;
2688
		if (!event_filter_match(event))
2689 2690
			continue;

S
Stephane Eranian 已提交
2691 2692 2693 2694
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2695
		if (group_can_go_on(event, cpuctx, 1))
2696
			group_sched_in(event, cpuctx, ctx);
2697 2698 2699 2700 2701

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2702 2703 2704
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2705
		}
2706
	}
2707 2708 2709 2710
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2711
		      struct perf_cpu_context *cpuctx)
2712 2713 2714
{
	struct perf_event *event;
	int can_add_hw = 1;
2715

2716 2717 2718
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2719
			continue;
2720 2721
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2722
		 * of events:
2723
		 */
2724
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2725 2726
			continue;

S
Stephane Eranian 已提交
2727 2728 2729 2730
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2731
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2732
			if (group_sched_in(event, cpuctx, ctx))
2733
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2734
		}
T
Thomas Gleixner 已提交
2735
	}
2736 2737 2738 2739 2740
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2741 2742
	     enum event_type_t event_type,
	     struct task_struct *task)
2743
{
S
Stephane Eranian 已提交
2744
	u64 now;
2745
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2746

2747
	ctx->is_active |= event_type;
2748
	if (likely(!ctx->nr_events))
2749
		return;
2750

S
Stephane Eranian 已提交
2751 2752
	now = perf_clock();
	ctx->timestamp = now;
2753
	perf_cgroup_set_timestamp(task, ctx);
2754 2755 2756 2757
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2758
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2759
		ctx_pinned_sched_in(ctx, cpuctx);
2760 2761

	/* Then walk through the lower prio flexible groups */
2762
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2763
		ctx_flexible_sched_in(ctx, cpuctx);
2764 2765
}

2766
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2767 2768
			     enum event_type_t event_type,
			     struct task_struct *task)
2769 2770 2771
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2772
	ctx_sched_in(ctx, cpuctx, event_type, task);
2773 2774
}

S
Stephane Eranian 已提交
2775 2776
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2777
{
P
Peter Zijlstra 已提交
2778
	struct perf_cpu_context *cpuctx;
2779

P
Peter Zijlstra 已提交
2780
	cpuctx = __get_cpu_context(ctx);
2781 2782 2783
	if (cpuctx->task_ctx == ctx)
		return;

2784
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2785
	perf_pmu_disable(ctx->pmu);
2786 2787 2788 2789 2790 2791 2792
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2793 2794
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2795

2796 2797
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2798 2799
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
2800 2801
}

P
Peter Zijlstra 已提交
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2813 2814
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2815 2816 2817 2818 2819 2820 2821 2822 2823
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2824
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2825
	}
S
Stephane Eranian 已提交
2826 2827 2828 2829 2830
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
2831
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2832
		perf_cgroup_sched_in(prev, task);
2833

2834 2835
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
2836 2837
}

2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2865
#define REDUCE_FLS(a, b)		\
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2905 2906 2907
	if (!divisor)
		return dividend;

2908 2909 2910
	return div64_u64(dividend, divisor);
}

2911 2912 2913
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2914
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2915
{
2916
	struct hw_perf_event *hwc = &event->hw;
2917
	s64 period, sample_period;
2918 2919
	s64 delta;

2920
	period = perf_calculate_period(event, nsec, count);
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2931

2932
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2933 2934 2935
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2936
		local64_set(&hwc->period_left, 0);
2937 2938 2939

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2940
	}
2941 2942
}

2943 2944 2945 2946 2947 2948 2949
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2950
{
2951 2952
	struct perf_event *event;
	struct hw_perf_event *hwc;
2953
	u64 now, period = TICK_NSEC;
2954
	s64 delta;
2955

2956 2957 2958 2959 2960 2961
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2962 2963
		return;

2964
	raw_spin_lock(&ctx->lock);
2965
	perf_pmu_disable(ctx->pmu);
2966

2967
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2968
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2969 2970
			continue;

2971
		if (!event_filter_match(event))
2972 2973
			continue;

2974 2975
		perf_pmu_disable(event->pmu);

2976
		hwc = &event->hw;
2977

2978
		if (hwc->interrupts == MAX_INTERRUPTS) {
2979
			hwc->interrupts = 0;
2980
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2981
			event->pmu->start(event, 0);
2982 2983
		}

2984
		if (!event->attr.freq || !event->attr.sample_freq)
2985
			goto next;
2986

2987 2988 2989 2990 2991
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2992
		now = local64_read(&event->count);
2993 2994
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2995

2996 2997 2998
		/*
		 * restart the event
		 * reload only if value has changed
2999 3000 3001
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3002
		 */
3003
		if (delta > 0)
3004
			perf_adjust_period(event, period, delta, false);
3005 3006

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3007 3008
	next:
		perf_pmu_enable(event->pmu);
3009
	}
3010

3011
	perf_pmu_enable(ctx->pmu);
3012
	raw_spin_unlock(&ctx->lock);
3013 3014
}

3015
/*
3016
 * Round-robin a context's events:
3017
 */
3018
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3019
{
3020 3021 3022 3023 3024 3025
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3026 3027
}

3028
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3029
{
P
Peter Zijlstra 已提交
3030
	struct perf_event_context *ctx = NULL;
3031
	int rotate = 0;
3032

3033 3034 3035 3036
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3037

P
Peter Zijlstra 已提交
3038
	ctx = cpuctx->task_ctx;
3039 3040 3041 3042
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3043

3044
	if (!rotate)
3045 3046
		goto done;

3047
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3048
	perf_pmu_disable(cpuctx->ctx.pmu);
3049

3050 3051 3052
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3053

3054 3055 3056
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3057

3058
	perf_event_sched_in(cpuctx, ctx, current);
3059

3060 3061
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3062
done:
3063 3064

	return rotate;
3065 3066
}

3067 3068 3069
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
3070
	if (atomic_read(&nr_freq_events) ||
3071
	    __this_cpu_read(perf_throttled_count))
3072
		return false;
3073 3074
	else
		return true;
3075 3076 3077
}
#endif

3078 3079
void perf_event_task_tick(void)
{
3080 3081
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3082
	int throttled;
3083

3084 3085
	WARN_ON(!irqs_disabled());

3086 3087 3088
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

3089
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3090
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3091 3092
}

3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3103
	__perf_event_mark_enabled(event);
3104 3105 3106 3107

	return 1;
}

3108
/*
3109
 * Enable all of a task's events that have been marked enable-on-exec.
3110 3111
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
3112
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3113
{
3114
	struct perf_event_context *clone_ctx = NULL;
3115
	struct perf_event *event;
3116 3117
	unsigned long flags;
	int enabled = 0;
3118
	int ret;
3119 3120

	local_irq_save(flags);
3121
	if (!ctx || !ctx->nr_events)
3122 3123
		goto out;

3124 3125 3126 3127 3128 3129 3130
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
3131
	perf_cgroup_sched_out(current, NULL);
3132

3133
	raw_spin_lock(&ctx->lock);
3134
	task_ctx_sched_out(ctx);
3135

3136
	list_for_each_entry(event, &ctx->event_list, event_entry) {
3137 3138 3139
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
3140 3141 3142
	}

	/*
3143
	 * Unclone this context if we enabled any event.
3144
	 */
3145
	if (enabled)
3146
		clone_ctx = unclone_ctx(ctx);
3147

3148
	raw_spin_unlock(&ctx->lock);
3149

3150 3151 3152
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
3153
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
3154
out:
3155
	local_irq_restore(flags);
3156 3157 3158

	if (clone_ctx)
		put_ctx(clone_ctx);
3159 3160
}

3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctx);
	}
	rcu_read_unlock();
}

T
Thomas Gleixner 已提交
3177
/*
3178
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3179
 */
3180
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3181
{
3182 3183
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3184
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
3185

3186 3187 3188 3189
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3190 3191
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3192 3193 3194 3195
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3196
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3197
	if (ctx->is_active) {
3198
		update_context_time(ctx);
S
Stephane Eranian 已提交
3199 3200
		update_cgrp_time_from_event(event);
	}
3201
	update_event_times(event);
3202 3203
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
3204
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3205 3206
}

P
Peter Zijlstra 已提交
3207 3208
static inline u64 perf_event_count(struct perf_event *event)
{
3209 3210 3211 3212
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3213 3214
}

3215
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
3216 3217
{
	/*
3218 3219
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3220
	 */
3221 3222 3223 3224
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3225 3226 3227
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3228
		raw_spin_lock_irqsave(&ctx->lock, flags);
3229 3230 3231 3232 3233
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3234
		if (ctx->is_active) {
3235
			update_context_time(ctx);
S
Stephane Eranian 已提交
3236 3237
			update_cgrp_time_from_event(event);
		}
3238
		update_event_times(event);
3239
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3240 3241
	}

P
Peter Zijlstra 已提交
3242
	return perf_event_count(event);
T
Thomas Gleixner 已提交
3243 3244
}

3245
/*
3246
 * Initialize the perf_event context in a task_struct:
3247
 */
3248
static void __perf_event_init_context(struct perf_event_context *ctx)
3249
{
3250
	raw_spin_lock_init(&ctx->lock);
3251
	mutex_init(&ctx->mutex);
3252
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3253 3254
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3255 3256
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3257
	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3273
	}
3274 3275 3276
	ctx->pmu = pmu;

	return ctx;
3277 3278
}

3279 3280 3281 3282 3283
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3284 3285

	rcu_read_lock();
3286
	if (!vpid)
T
Thomas Gleixner 已提交
3287 3288
		task = current;
	else
3289
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3290 3291 3292 3293 3294 3295 3296 3297
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3298 3299 3300 3301
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3302 3303 3304 3305 3306 3307 3308
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3309 3310 3311
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3312
static struct perf_event_context *
3313 3314
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3315
{
3316
	struct perf_event_context *ctx, *clone_ctx = NULL;
3317
	struct perf_cpu_context *cpuctx;
3318
	void *task_ctx_data = NULL;
3319
	unsigned long flags;
P
Peter Zijlstra 已提交
3320
	int ctxn, err;
3321
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3322

3323
	if (!task) {
3324
		/* Must be root to operate on a CPU event: */
3325
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3326 3327 3328
			return ERR_PTR(-EACCES);

		/*
3329
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3330 3331 3332
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3333
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3334 3335
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3336
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3337
		ctx = &cpuctx->ctx;
3338
		get_ctx(ctx);
3339
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3340 3341 3342 3343

		return ctx;
	}

P
Peter Zijlstra 已提交
3344 3345 3346 3347 3348
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3349 3350 3351 3352 3353 3354 3355 3356
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3357
retry:
P
Peter Zijlstra 已提交
3358
	ctx = perf_lock_task_context(task, ctxn, &flags);
3359
	if (ctx) {
3360
		clone_ctx = unclone_ctx(ctx);
3361
		++ctx->pin_count;
3362 3363 3364 3365 3366

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3367
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3368 3369 3370

		if (clone_ctx)
			put_ctx(clone_ctx);
3371
	} else {
3372
		ctx = alloc_perf_context(pmu, task);
3373 3374 3375
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3376

3377 3378 3379 3380 3381
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3392
		else {
3393
			get_ctx(ctx);
3394
			++ctx->pin_count;
3395
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3396
		}
3397 3398 3399
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3400
			put_ctx(ctx);
3401 3402 3403 3404

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3405 3406 3407
		}
	}

3408
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3409
	return ctx;
3410

P
Peter Zijlstra 已提交
3411
errout:
3412
	kfree(task_ctx_data);
3413
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3414 3415
}

L
Li Zefan 已提交
3416
static void perf_event_free_filter(struct perf_event *event);
3417
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3418

3419
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3420
{
3421
	struct perf_event *event;
P
Peter Zijlstra 已提交
3422

3423 3424 3425
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3426
	perf_event_free_filter(event);
3427
	kfree(event);
P
Peter Zijlstra 已提交
3428 3429
}

3430 3431
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3432

3433
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3434
{
3435 3436 3437 3438 3439 3440
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3441

3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3455 3456
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3457 3458 3459 3460 3461 3462 3463
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3464

3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
 * __free_event()), the latter -- before the first perf_install_in_context().
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

3550 3551
static void __free_event(struct perf_event *event)
{
3552
	if (!event->parent) {
3553 3554
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3555
	}
3556

3557 3558
	perf_event_free_bpf_prog(event);

3559 3560 3561 3562 3563 3564
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

3565 3566
	if (event->pmu) {
		exclusive_event_destroy(event);
3567
		module_put(event->pmu->module);
3568
	}
3569

3570 3571
	call_rcu(&event->rcu_head, free_event_rcu);
}
P
Peter Zijlstra 已提交
3572 3573

static void _free_event(struct perf_event *event)
3574
{
3575
	irq_work_sync(&event->pending);
3576

3577
	unaccount_event(event);
3578

3579
	if (event->rb) {
3580 3581 3582 3583 3584 3585 3586
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3587
		ring_buffer_attach(event, NULL);
3588
		mutex_unlock(&event->mmap_mutex);
3589 3590
	}

S
Stephane Eranian 已提交
3591 3592 3593
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

3594
	__free_event(event);
3595 3596
}

P
Peter Zijlstra 已提交
3597 3598 3599 3600 3601
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3602
{
P
Peter Zijlstra 已提交
3603 3604 3605 3606 3607 3608
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3609

P
Peter Zijlstra 已提交
3610
	_free_event(event);
T
Thomas Gleixner 已提交
3611 3612
}

3613
/*
3614
 * Remove user event from the owner task.
3615
 */
3616
static void perf_remove_from_owner(struct perf_event *event)
3617
{
P
Peter Zijlstra 已提交
3618
	struct task_struct *owner;
3619

P
Peter Zijlstra 已提交
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3640 3641 3642 3643 3644 3645 3646 3647 3648 3649
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3661 3662 3663 3664
}

static void put_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
3665
	struct perf_event_context *ctx;
3666 3667 3668 3669 3670 3671

	if (!atomic_long_dec_and_test(&event->refcount))
		return;

	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3672

P
Peter Zijlstra 已提交
3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
P
Peter Zijlstra 已提交
3685 3686
	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
3687
	perf_remove_from_context(event, true);
L
Leon Yu 已提交
3688
	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
3689 3690

	_free_event(event);
3691 3692
}

P
Peter Zijlstra 已提交
3693 3694 3695 3696 3697 3698 3699
int perf_event_release_kernel(struct perf_event *event)
{
	put_event(event);
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3700 3701 3702
/*
 * Called when the last reference to the file is gone.
 */
3703 3704 3705 3706
static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3707 3708
}

3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744
/*
 * Remove all orphanes events from the context.
 */
static void orphans_remove_work(struct work_struct *work)
{
	struct perf_event_context *ctx;
	struct perf_event *event, *tmp;

	ctx = container_of(work, struct perf_event_context,
			   orphans_remove.work);

	mutex_lock(&ctx->mutex);
	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
		struct perf_event *parent_event = event->parent;

		if (!is_orphaned_child(event))
			continue;

		perf_remove_from_context(event, true);

		mutex_lock(&parent_event->child_mutex);
		list_del_init(&event->child_list);
		mutex_unlock(&parent_event->child_mutex);

		free_event(event);
		put_event(parent_event);
	}

	raw_spin_lock_irq(&ctx->lock);
	ctx->orphans_remove_sched = false;
	raw_spin_unlock_irq(&ctx->lock);
	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

3745
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3746
{
3747
	struct perf_event *child;
3748 3749
	u64 total = 0;

3750 3751 3752
	*enabled = 0;
	*running = 0;

3753
	mutex_lock(&event->child_mutex);
3754
	total += perf_event_read(event);
3755 3756 3757 3758 3759 3760
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3761
		total += perf_event_read(child);
3762 3763 3764
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3765
	mutex_unlock(&event->child_mutex);
3766 3767 3768

	return total;
}
3769
EXPORT_SYMBOL_GPL(perf_event_read_value);
3770

3771
static int perf_event_read_group(struct perf_event *event,
3772 3773
				   u64 read_format, char __user *buf)
{
3774
	struct perf_event *leader = event->group_leader, *sub;
3775
	struct perf_event_context *ctx = leader->ctx;
P
Peter Zijlstra 已提交
3776
	int n = 0, size = 0, ret;
3777
	u64 count, enabled, running;
P
Peter Zijlstra 已提交
3778 3779 3780
	u64 values[5];

	lockdep_assert_held(&ctx->mutex);
3781

3782
	count = perf_event_read_value(leader, &enabled, &running);
3783 3784

	values[n++] = 1 + leader->nr_siblings;
3785 3786 3787 3788
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3789 3790 3791
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3792 3793 3794 3795

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
P
Peter Zijlstra 已提交
3796
		return -EFAULT;
3797

3798
	ret = size;
3799

3800
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3801
		n = 0;
3802

3803
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3804 3805 3806 3807 3808
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3809
		if (copy_to_user(buf + ret, values, size)) {
P
Peter Zijlstra 已提交
3810
			return -EFAULT;
3811
		}
3812 3813

		ret += size;
3814 3815
	}

3816
	return ret;
3817 3818
}

3819
static int perf_event_read_one(struct perf_event *event,
3820 3821
				 u64 read_format, char __user *buf)
{
3822
	u64 enabled, running;
3823 3824 3825
	u64 values[4];
	int n = 0;

3826 3827 3828 3829 3830
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3831
	if (read_format & PERF_FORMAT_ID)
3832
		values[n++] = primary_event_id(event);
3833 3834 3835 3836 3837 3838 3839

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

	if (event->state != PERF_EVENT_STATE_EXIT)
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
3853
/*
3854
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3855 3856
 */
static ssize_t
3857
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3858
{
3859
	u64 read_format = event->attr.read_format;
3860
	int ret;
T
Thomas Gleixner 已提交
3861

3862
	/*
3863
	 * Return end-of-file for a read on a event that is in
3864 3865 3866
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3867
	if (event->state == PERF_EVENT_STATE_ERROR)
3868 3869
		return 0;

3870
	if (count < event->read_size)
3871 3872
		return -ENOSPC;

3873
	WARN_ON_ONCE(event->ctx->parent_ctx);
3874
	if (read_format & PERF_FORMAT_GROUP)
3875
		ret = perf_event_read_group(event, read_format, buf);
3876
	else
3877
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3878

3879
	return ret;
T
Thomas Gleixner 已提交
3880 3881 3882 3883 3884
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3885
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
3886 3887
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
3888

P
Peter Zijlstra 已提交
3889 3890 3891 3892 3893
	ctx = perf_event_ctx_lock(event);
	ret = perf_read_hw(event, buf, count);
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
3894 3895 3896 3897
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3898
	struct perf_event *event = file->private_data;
3899
	struct ring_buffer *rb;
3900
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
3901

3902
	poll_wait(file, &event->waitq, wait);
3903

3904
	if (is_event_hup(event))
3905
		return events;
P
Peter Zijlstra 已提交
3906

3907
	/*
3908 3909
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3910 3911
	 */
	mutex_lock(&event->mmap_mutex);
3912 3913
	rb = event->rb;
	if (rb)
3914
		events = atomic_xchg(&rb->poll, 0);
3915
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
3916 3917 3918
	return events;
}

P
Peter Zijlstra 已提交
3919
static void _perf_event_reset(struct perf_event *event)
3920
{
3921
	(void)perf_event_read(event);
3922
	local64_set(&event->count, 0);
3923
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3924 3925
}

3926
/*
3927 3928 3929 3930
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3931
 */
3932 3933
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3934
{
3935
	struct perf_event *child;
P
Peter Zijlstra 已提交
3936

3937
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
3938

3939 3940 3941
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3942
		func(child);
3943
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3944 3945
}

3946 3947
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3948
{
3949 3950
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3951

P
Peter Zijlstra 已提交
3952 3953
	lockdep_assert_held(&ctx->mutex);

3954
	event = event->group_leader;
3955

3956 3957
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3958
		perf_event_for_each_child(sibling, func);
3959 3960
}

3961
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3962
{
3963
	struct perf_event_context *ctx = event->ctx;
3964
	int ret = 0, active;
3965 3966
	u64 value;

3967
	if (!is_sampling_event(event))
3968 3969
		return -EINVAL;

3970
	if (copy_from_user(&value, arg, sizeof(value)))
3971 3972 3973 3974 3975
		return -EFAULT;

	if (!value)
		return -EINVAL;

3976
	raw_spin_lock_irq(&ctx->lock);
3977 3978
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3979 3980 3981 3982
			ret = -EINVAL;
			goto unlock;
		}

3983
		event->attr.sample_freq = value;
3984
	} else {
3985 3986
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3987
	}
3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}

4002
unlock:
4003
	raw_spin_unlock_irq(&ctx->lock);
4004 4005 4006 4007

	return ret;
}

4008 4009
static const struct file_operations perf_fops;

4010
static inline int perf_fget_light(int fd, struct fd *p)
4011
{
4012 4013 4014
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4015

4016 4017 4018
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4019
	}
4020 4021
	*p = f;
	return 0;
4022 4023 4024 4025
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4026
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4027
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4028

P
Peter Zijlstra 已提交
4029
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4030
{
4031
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4032
	u32 flags = arg;
4033 4034

	switch (cmd) {
4035
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4036
		func = _perf_event_enable;
4037
		break;
4038
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4039
		func = _perf_event_disable;
4040
		break;
4041
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4042
		func = _perf_event_reset;
4043
		break;
P
Peter Zijlstra 已提交
4044

4045
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4046
		return _perf_event_refresh(event, arg);
4047

4048 4049
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4050

4051 4052 4053 4054 4055 4056 4057 4058 4059
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4060
	case PERF_EVENT_IOC_SET_OUTPUT:
4061 4062 4063
	{
		int ret;
		if (arg != -1) {
4064 4065 4066 4067 4068 4069 4070 4071 4072 4073
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4074 4075 4076
		}
		return ret;
	}
4077

L
Li Zefan 已提交
4078 4079 4080
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4081 4082 4083
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4084
	default:
P
Peter Zijlstra 已提交
4085
		return -ENOTTY;
4086
	}
P
Peter Zijlstra 已提交
4087 4088

	if (flags & PERF_IOC_FLAG_GROUP)
4089
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4090
	else
4091
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4092 4093

	return 0;
4094 4095
}

P
Peter Zijlstra 已提交
4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4129
int perf_event_task_enable(void)
4130
{
P
Peter Zijlstra 已提交
4131
	struct perf_event_context *ctx;
4132
	struct perf_event *event;
4133

4134
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4135 4136 4137 4138 4139
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4140
	mutex_unlock(&current->perf_event_mutex);
4141 4142 4143 4144

	return 0;
}

4145
int perf_event_task_disable(void)
4146
{
P
Peter Zijlstra 已提交
4147
	struct perf_event_context *ctx;
4148
	struct perf_event *event;
4149

4150
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4151 4152 4153 4154 4155
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4156
	mutex_unlock(&current->perf_event_mutex);
4157 4158 4159 4160

	return 0;
}

4161
static int perf_event_index(struct perf_event *event)
4162
{
P
Peter Zijlstra 已提交
4163 4164 4165
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4166
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4167 4168
		return 0;

4169
	return event->pmu->event_idx(event);
4170 4171
}

4172
static void calc_timer_values(struct perf_event *event,
4173
				u64 *now,
4174 4175
				u64 *enabled,
				u64 *running)
4176
{
4177
	u64 ctx_time;
4178

4179 4180
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4181 4182 4183 4184
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4200 4201
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4202 4203 4204 4205 4206

unlock:
	rcu_read_unlock();
}

4207 4208
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4209 4210 4211
{
}

4212 4213 4214 4215 4216
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4217
void perf_event_update_userpage(struct perf_event *event)
4218
{
4219
	struct perf_event_mmap_page *userpg;
4220
	struct ring_buffer *rb;
4221
	u64 enabled, running, now;
4222 4223

	rcu_read_lock();
4224 4225 4226 4227
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4228 4229 4230 4231 4232 4233 4234 4235 4236
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4237
	calc_timer_values(event, &now, &enabled, &running);
4238

4239
	userpg = rb->user_page;
4240 4241 4242 4243 4244
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4245
	++userpg->lock;
4246
	barrier();
4247
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4248
	userpg->offset = perf_event_count(event);
4249
	if (userpg->index)
4250
		userpg->offset -= local64_read(&event->hw.prev_count);
4251

4252
	userpg->time_enabled = enabled +
4253
			atomic64_read(&event->child_total_time_enabled);
4254

4255
	userpg->time_running = running +
4256
			atomic64_read(&event->child_total_time_running);
4257

4258
	arch_perf_update_userpage(event, userpg, now);
4259

4260
	barrier();
4261
	++userpg->lock;
4262
	preempt_enable();
4263
unlock:
4264
	rcu_read_unlock();
4265 4266
}

4267 4268 4269
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4270
	struct ring_buffer *rb;
4271 4272 4273 4274 4275 4276 4277 4278 4279
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4280 4281
	rb = rcu_dereference(event->rb);
	if (!rb)
4282 4283 4284 4285 4286
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4287
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4302 4303 4304
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4305
	struct ring_buffer *old_rb = NULL;
4306 4307
	unsigned long flags;

4308 4309 4310 4311 4312 4313
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4314

4315 4316 4317 4318
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4319

4320 4321
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4322
	}
4323

4324
	if (rb) {
4325 4326 4327 4328 4329
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4346 4347 4348 4349 4350 4351 4352 4353
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4354 4355 4356 4357
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4358 4359 4360
	rcu_read_unlock();
}

4361
struct ring_buffer *ring_buffer_get(struct perf_event *event)
4362
{
4363
	struct ring_buffer *rb;
4364

4365
	rcu_read_lock();
4366 4367 4368 4369
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4370 4371 4372
	}
	rcu_read_unlock();

4373
	return rb;
4374 4375
}

4376
void ring_buffer_put(struct ring_buffer *rb)
4377
{
4378
	if (!atomic_dec_and_test(&rb->refcount))
4379
		return;
4380

4381
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4382

4383
	call_rcu(&rb->rcu_head, rb_free_rcu);
4384 4385 4386 4387
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4388
	struct perf_event *event = vma->vm_file->private_data;
4389

4390
	atomic_inc(&event->mmap_count);
4391
	atomic_inc(&event->rb->mmap_count);
4392

4393 4394 4395
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

4396 4397
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4398 4399
}

4400 4401 4402 4403 4404 4405 4406 4407
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4408 4409
static void perf_mmap_close(struct vm_area_struct *vma)
{
4410
	struct perf_event *event = vma->vm_file->private_data;
4411

4412
	struct ring_buffer *rb = ring_buffer_get(event);
4413 4414 4415
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4416

4417 4418 4419
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

		rb_free_aux(rb);
		mutex_unlock(&event->mmap_mutex);
	}

4434 4435 4436
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4437
		goto out_put;
4438

4439
	ring_buffer_attach(event, NULL);
4440 4441 4442
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4443 4444
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4445

4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4462

4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4474 4475 4476
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4477
		mutex_unlock(&event->mmap_mutex);
4478
		put_event(event);
4479

4480 4481 4482 4483 4484
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4485
	}
4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4501
out_put:
4502
	ring_buffer_put(rb); /* could be last */
4503 4504
}

4505
static const struct vm_operations_struct perf_mmap_vmops = {
4506
	.open		= perf_mmap_open,
4507
	.close		= perf_mmap_close, /* non mergable */
4508 4509
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4510 4511 4512 4513
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4514
	struct perf_event *event = file->private_data;
4515
	unsigned long user_locked, user_lock_limit;
4516
	struct user_struct *user = current_user();
4517
	unsigned long locked, lock_limit;
4518
	struct ring_buffer *rb = NULL;
4519 4520
	unsigned long vma_size;
	unsigned long nr_pages;
4521
	long user_extra = 0, extra = 0;
4522
	int ret = 0, flags = 0;
4523

4524 4525 4526
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4527
	 * same rb.
4528 4529 4530 4531
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4532
	if (!(vma->vm_flags & VM_SHARED))
4533
		return -EINVAL;
4534 4535

	vma_size = vma->vm_end - vma->vm_start;
4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
4596

4597
	/*
4598
	 * If we have rb pages ensure they're a power-of-two number, so we
4599 4600
	 * can do bitmasks instead of modulo.
	 */
4601
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4602 4603
		return -EINVAL;

4604
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4605 4606
		return -EINVAL;

4607
	WARN_ON_ONCE(event->ctx->parent_ctx);
4608
again:
4609
	mutex_lock(&event->mmap_mutex);
4610
	if (event->rb) {
4611
		if (event->rb->nr_pages != nr_pages) {
4612
			ret = -EINVAL;
4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4626 4627 4628
		goto unlock;
	}

4629
	user_extra = nr_pages + 1;
4630 4631

accounting:
4632
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4633 4634 4635 4636 4637 4638

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4639
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4640

4641 4642
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4643

4644
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4645
	lock_limit >>= PAGE_SHIFT;
4646
	locked = vma->vm_mm->pinned_vm + extra;
4647

4648 4649
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4650 4651 4652
		ret = -EPERM;
		goto unlock;
	}
4653

4654
	WARN_ON(!rb && event->rb);
4655

4656
	if (vma->vm_flags & VM_WRITE)
4657
		flags |= RING_BUFFER_WRITABLE;
4658

4659
	if (!rb) {
4660 4661 4662
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
4663

4664 4665 4666 4667
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
4668

4669 4670 4671
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
4672

4673
		ring_buffer_attach(event, rb);
4674

4675 4676 4677
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
4678 4679
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
4680 4681 4682
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
4683

4684
unlock:
4685 4686 4687 4688
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

4689
		atomic_inc(&event->mmap_count);
4690 4691 4692 4693
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
4694
	mutex_unlock(&event->mmap_mutex);
4695

4696 4697 4698 4699
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4700
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4701
	vma->vm_ops = &perf_mmap_vmops;
4702

4703 4704 4705
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

4706
	return ret;
4707 4708
}

P
Peter Zijlstra 已提交
4709 4710
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4711
	struct inode *inode = file_inode(filp);
4712
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4713 4714 4715
	int retval;

	mutex_lock(&inode->i_mutex);
4716
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4717 4718 4719 4720 4721 4722 4723 4724
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4725
static const struct file_operations perf_fops = {
4726
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4727 4728 4729
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4730
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4731
	.compat_ioctl		= perf_compat_ioctl,
4732
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4733
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4734 4735
};

4736
/*
4737
 * Perf event wakeup
4738 4739 4740 4741 4742
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4743 4744 4745 4746 4747 4748 4749 4750
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

4751
void perf_event_wakeup(struct perf_event *event)
4752
{
4753
	ring_buffer_wakeup(event);
4754

4755
	if (event->pending_kill) {
4756
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4757
		event->pending_kill = 0;
4758
	}
4759 4760
}

4761
static void perf_pending_event(struct irq_work *entry)
4762
{
4763 4764
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4765 4766 4767 4768 4769 4770 4771
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
4772

4773 4774 4775
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4776 4777
	}

4778 4779 4780
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4781
	}
4782 4783 4784

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
4785 4786
}

4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

4823
static void perf_sample_regs_user(struct perf_regs *regs_user,
4824 4825
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
4826
{
4827 4828
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
4829
		regs_user->regs = regs;
4830 4831
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
4832 4833 4834
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
4835 4836 4837
	}
}

4838 4839 4840 4841 4842 4843 4844 4845
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

4941 4942 4943
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
4957
		data->time = perf_event_clock(event);
4958

4959
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4971 4972 4973
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
4998 4999 5000

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5001 5002
}

5003 5004 5005
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5006 5007 5008 5009 5010
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5011
static void perf_output_read_one(struct perf_output_handle *handle,
5012 5013
				 struct perf_event *event,
				 u64 enabled, u64 running)
5014
{
5015
	u64 read_format = event->attr.read_format;
5016 5017 5018
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5019
	values[n++] = perf_event_count(event);
5020
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5021
		values[n++] = enabled +
5022
			atomic64_read(&event->child_total_time_enabled);
5023 5024
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5025
		values[n++] = running +
5026
			atomic64_read(&event->child_total_time_running);
5027 5028
	}
	if (read_format & PERF_FORMAT_ID)
5029
		values[n++] = primary_event_id(event);
5030

5031
	__output_copy(handle, values, n * sizeof(u64));
5032 5033 5034
}

/*
5035
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5036 5037
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5038 5039
			    struct perf_event *event,
			    u64 enabled, u64 running)
5040
{
5041 5042
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5043 5044 5045 5046 5047 5048
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5049
		values[n++] = enabled;
5050 5051

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5052
		values[n++] = running;
5053

5054
	if (leader != event)
5055 5056
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5057
	values[n++] = perf_event_count(leader);
5058
	if (read_format & PERF_FORMAT_ID)
5059
		values[n++] = primary_event_id(leader);
5060

5061
	__output_copy(handle, values, n * sizeof(u64));
5062

5063
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5064 5065
		n = 0;

5066 5067
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5068 5069
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5070
		values[n++] = perf_event_count(sub);
5071
		if (read_format & PERF_FORMAT_ID)
5072
			values[n++] = primary_event_id(sub);
5073

5074
		__output_copy(handle, values, n * sizeof(u64));
5075 5076 5077
	}
}

5078 5079 5080
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5081
static void perf_output_read(struct perf_output_handle *handle,
5082
			     struct perf_event *event)
5083
{
5084
	u64 enabled = 0, running = 0, now;
5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5096
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5097
		calc_timer_values(event, &now, &enabled, &running);
5098

5099
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5100
		perf_output_read_group(handle, event, enabled, running);
5101
	else
5102
		perf_output_read_one(handle, event, enabled, running);
5103 5104
}

5105 5106 5107
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5108
			struct perf_event *event)
5109 5110 5111 5112 5113
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5114 5115 5116
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5142
		perf_output_read(handle, event);
5143 5144 5145 5146 5147 5148 5149 5150 5151 5152

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5153
			__output_copy(handle, data->callchain, size);
5154 5155 5156 5157 5158 5159 5160 5161 5162
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
5163 5164
			__output_copy(handle, data->raw->data,
					   data->raw->size);
5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5176

5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5211

5212
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5213 5214 5215
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5216
	}
A
Andi Kleen 已提交
5217 5218 5219

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5220 5221 5222

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5223

A
Andi Kleen 已提交
5224 5225 5226
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5257 5258 5259 5260
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5261
			 struct perf_event *event,
5262
			 struct pt_regs *regs)
5263
{
5264
	u64 sample_type = event->attr.sample_type;
5265

5266
	header->type = PERF_RECORD_SAMPLE;
5267
	header->size = sizeof(*header) + event->header_size;
5268 5269 5270

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5271

5272
	__perf_event_header__init_id(header, data, event);
5273

5274
	if (sample_type & PERF_SAMPLE_IP)
5275 5276
		data->ip = perf_instruction_pointer(regs);

5277
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5278
		int size = 1;
5279

5280
		data->callchain = perf_callchain(event, regs);
5281 5282 5283 5284 5285

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5286 5287
	}

5288
	if (sample_type & PERF_SAMPLE_RAW) {
5289 5290 5291 5292 5293 5294 5295 5296
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
5297
		header->size += size;
5298
	}
5299 5300 5301 5302 5303 5304 5305 5306 5307

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5308

5309
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5310 5311
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5312

5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5336
						     data->regs_user.regs);
5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5364
}
5365

5366 5367 5368
void perf_event_output(struct perf_event *event,
			struct perf_sample_data *data,
			struct pt_regs *regs)
5369 5370 5371
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5372

5373 5374 5375
	/* protect the callchain buffers */
	rcu_read_lock();

5376
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5377

5378
	if (perf_output_begin(&handle, event, header.size))
5379
		goto exit;
5380

5381
	perf_output_sample(&handle, &header, data, event);
5382

5383
	perf_output_end(&handle);
5384 5385 5386

exit:
	rcu_read_unlock();
5387 5388
}

5389
/*
5390
 * read event_id
5391 5392 5393 5394 5395 5396 5397 5398 5399 5400
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5401
perf_event_read_event(struct perf_event *event,
5402 5403 5404
			struct task_struct *task)
{
	struct perf_output_handle handle;
5405
	struct perf_sample_data sample;
5406
	struct perf_read_event read_event = {
5407
		.header = {
5408
			.type = PERF_RECORD_READ,
5409
			.misc = 0,
5410
			.size = sizeof(read_event) + event->read_size,
5411
		},
5412 5413
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5414
	};
5415
	int ret;
5416

5417
	perf_event_header__init_id(&read_event.header, &sample, event);
5418
	ret = perf_output_begin(&handle, event, read_event.header.size);
5419 5420 5421
	if (ret)
		return;

5422
	perf_output_put(&handle, read_event);
5423
	perf_output_read(&handle, event);
5424
	perf_event__output_id_sample(event, &handle, &sample);
5425

5426 5427 5428
	perf_output_end(&handle);
}

5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5443
		output(event, data);
5444 5445 5446 5447
	}
}

static void
5448
perf_event_aux(perf_event_aux_output_cb output, void *data,
5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5461
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5462 5463 5464 5465 5466 5467 5468
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5469
			perf_event_aux_ctx(ctx, output, data);
5470 5471 5472 5473 5474 5475
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
5476
		perf_event_aux_ctx(task_ctx, output, data);
5477 5478 5479 5480 5481
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5482
/*
P
Peter Zijlstra 已提交
5483 5484
 * task tracking -- fork/exit
 *
5485
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5486 5487
 */

P
Peter Zijlstra 已提交
5488
struct perf_task_event {
5489
	struct task_struct		*task;
5490
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5491 5492 5493 5494 5495 5496

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5497 5498
		u32				tid;
		u32				ptid;
5499
		u64				time;
5500
	} event_id;
P
Peter Zijlstra 已提交
5501 5502
};

5503 5504
static int perf_event_task_match(struct perf_event *event)
{
5505 5506 5507
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5508 5509
}

5510
static void perf_event_task_output(struct perf_event *event,
5511
				   void *data)
P
Peter Zijlstra 已提交
5512
{
5513
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5514
	struct perf_output_handle handle;
5515
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5516
	struct task_struct *task = task_event->task;
5517
	int ret, size = task_event->event_id.header.size;
5518

5519 5520 5521
	if (!perf_event_task_match(event))
		return;

5522
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5523

5524
	ret = perf_output_begin(&handle, event,
5525
				task_event->event_id.header.size);
5526
	if (ret)
5527
		goto out;
P
Peter Zijlstra 已提交
5528

5529 5530
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5531

5532 5533
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5534

5535 5536
	task_event->event_id.time = perf_event_clock(event);

5537
	perf_output_put(&handle, task_event->event_id);
5538

5539 5540
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5541
	perf_output_end(&handle);
5542 5543
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5544 5545
}

5546 5547
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5548
			      int new)
P
Peter Zijlstra 已提交
5549
{
P
Peter Zijlstra 已提交
5550
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5551

5552 5553 5554
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5555 5556
		return;

P
Peter Zijlstra 已提交
5557
	task_event = (struct perf_task_event){
5558 5559
		.task	  = task,
		.task_ctx = task_ctx,
5560
		.event_id    = {
P
Peter Zijlstra 已提交
5561
			.header = {
5562
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5563
				.misc = 0,
5564
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5565
			},
5566 5567
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5568 5569
			/* .tid  */
			/* .ptid */
5570
			/* .time */
P
Peter Zijlstra 已提交
5571 5572 5573
		},
	};

5574
	perf_event_aux(perf_event_task_output,
5575 5576
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5577 5578
}

5579
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5580
{
5581
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5582 5583
}

5584 5585 5586 5587 5588
/*
 * comm tracking
 */

struct perf_comm_event {
5589 5590
	struct task_struct	*task;
	char			*comm;
5591 5592 5593 5594 5595 5596 5597
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5598
	} event_id;
5599 5600
};

5601 5602 5603 5604 5605
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5606
static void perf_event_comm_output(struct perf_event *event,
5607
				   void *data)
5608
{
5609
	struct perf_comm_event *comm_event = data;
5610
	struct perf_output_handle handle;
5611
	struct perf_sample_data sample;
5612
	int size = comm_event->event_id.header.size;
5613 5614
	int ret;

5615 5616 5617
	if (!perf_event_comm_match(event))
		return;

5618 5619
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5620
				comm_event->event_id.header.size);
5621 5622

	if (ret)
5623
		goto out;
5624

5625 5626
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5627

5628
	perf_output_put(&handle, comm_event->event_id);
5629
	__output_copy(&handle, comm_event->comm,
5630
				   comm_event->comm_size);
5631 5632 5633

	perf_event__output_id_sample(event, &handle, &sample);

5634
	perf_output_end(&handle);
5635 5636
out:
	comm_event->event_id.header.size = size;
5637 5638
}

5639
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5640
{
5641
	char comm[TASK_COMM_LEN];
5642 5643
	unsigned int size;

5644
	memset(comm, 0, sizeof(comm));
5645
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5646
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5647 5648 5649 5650

	comm_event->comm = comm;
	comm_event->comm_size = size;

5651
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5652

5653
	perf_event_aux(perf_event_comm_output,
5654 5655
		       comm_event,
		       NULL);
5656 5657
}

5658
void perf_event_comm(struct task_struct *task, bool exec)
5659
{
5660 5661
	struct perf_comm_event comm_event;

5662
	if (!atomic_read(&nr_comm_events))
5663
		return;
5664

5665
	comm_event = (struct perf_comm_event){
5666
		.task	= task,
5667 5668
		/* .comm      */
		/* .comm_size */
5669
		.event_id  = {
5670
			.header = {
5671
				.type = PERF_RECORD_COMM,
5672
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5673 5674 5675 5676
				/* .size */
			},
			/* .pid */
			/* .tid */
5677 5678 5679
		},
	};

5680
	perf_event_comm_event(&comm_event);
5681 5682
}

5683 5684 5685 5686 5687
/*
 * mmap tracking
 */

struct perf_mmap_event {
5688 5689 5690 5691
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5692 5693 5694
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5695
	u32			prot, flags;
5696 5697 5698 5699 5700 5701 5702 5703 5704

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5705
	} event_id;
5706 5707
};

5708 5709 5710 5711 5712 5713 5714 5715
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5716
	       (executable && (event->attr.mmap || event->attr.mmap2));
5717 5718
}

5719
static void perf_event_mmap_output(struct perf_event *event,
5720
				   void *data)
5721
{
5722
	struct perf_mmap_event *mmap_event = data;
5723
	struct perf_output_handle handle;
5724
	struct perf_sample_data sample;
5725
	int size = mmap_event->event_id.header.size;
5726
	int ret;
5727

5728 5729 5730
	if (!perf_event_mmap_match(event, data))
		return;

5731 5732 5733 5734 5735
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5736
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5737 5738
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5739 5740
	}

5741 5742
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5743
				mmap_event->event_id.header.size);
5744
	if (ret)
5745
		goto out;
5746

5747 5748
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5749

5750
	perf_output_put(&handle, mmap_event->event_id);
5751 5752 5753 5754 5755 5756

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
5757 5758
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
5759 5760
	}

5761
	__output_copy(&handle, mmap_event->file_name,
5762
				   mmap_event->file_size);
5763 5764 5765

	perf_event__output_id_sample(event, &handle, &sample);

5766
	perf_output_end(&handle);
5767 5768
out:
	mmap_event->event_id.header.size = size;
5769 5770
}

5771
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5772
{
5773 5774
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5775 5776
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5777
	u32 prot = 0, flags = 0;
5778 5779 5780
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5781
	char *name;
5782

5783
	if (file) {
5784 5785
		struct inode *inode;
		dev_t dev;
5786

5787
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5788
		if (!buf) {
5789 5790
			name = "//enomem";
			goto cpy_name;
5791
		}
5792
		/*
5793
		 * d_path() works from the end of the rb backwards, so we
5794 5795 5796
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
5797
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
5798
		if (IS_ERR(name)) {
5799 5800
			name = "//toolong";
			goto cpy_name;
5801
		}
5802 5803 5804 5805 5806 5807
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

5830
		goto got_name;
5831
	} else {
5832 5833 5834 5835 5836 5837
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

5838
		name = (char *)arch_vma_name(vma);
5839 5840
		if (name)
			goto cpy_name;
5841

5842
		if (vma->vm_start <= vma->vm_mm->start_brk &&
5843
				vma->vm_end >= vma->vm_mm->brk) {
5844 5845
			name = "[heap]";
			goto cpy_name;
5846 5847
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
5848
				vma->vm_end >= vma->vm_mm->start_stack) {
5849 5850
			name = "[stack]";
			goto cpy_name;
5851 5852
		}

5853 5854
		name = "//anon";
		goto cpy_name;
5855 5856
	}

5857 5858 5859
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
5860
got_name:
5861 5862 5863 5864 5865 5866 5867 5868
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
5869 5870 5871

	mmap_event->file_name = name;
	mmap_event->file_size = size;
5872 5873 5874 5875
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
5876 5877
	mmap_event->prot = prot;
	mmap_event->flags = flags;
5878

5879 5880 5881
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

5882
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5883

5884
	perf_event_aux(perf_event_mmap_output,
5885 5886
		       mmap_event,
		       NULL);
5887

5888 5889 5890
	kfree(buf);
}

5891
void perf_event_mmap(struct vm_area_struct *vma)
5892
{
5893 5894
	struct perf_mmap_event mmap_event;

5895
	if (!atomic_read(&nr_mmap_events))
5896 5897 5898
		return;

	mmap_event = (struct perf_mmap_event){
5899
		.vma	= vma,
5900 5901
		/* .file_name */
		/* .file_size */
5902
		.event_id  = {
5903
			.header = {
5904
				.type = PERF_RECORD_MMAP,
5905
				.misc = PERF_RECORD_MISC_USER,
5906 5907 5908 5909
				/* .size */
			},
			/* .pid */
			/* .tid */
5910 5911
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
5912
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5913
		},
5914 5915 5916 5917
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
5918 5919
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
5920 5921
	};

5922
	perf_event_mmap_event(&mmap_event);
5923 5924
}

A
Alexander Shishkin 已提交
5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

5992 5993 5994 5995
/*
 * IRQ throttle logging
 */

5996
static void perf_log_throttle(struct perf_event *event, int enable)
5997 5998
{
	struct perf_output_handle handle;
5999
	struct perf_sample_data sample;
6000 6001 6002 6003 6004
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
6005
		u64				id;
6006
		u64				stream_id;
6007 6008
	} throttle_event = {
		.header = {
6009
			.type = PERF_RECORD_THROTTLE,
6010 6011 6012
			.misc = 0,
			.size = sizeof(throttle_event),
		},
6013
		.time		= perf_event_clock(event),
6014 6015
		.id		= primary_event_id(event),
		.stream_id	= event->id,
6016 6017
	};

6018
	if (enable)
6019
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6020

6021 6022 6023
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
6024
				throttle_event.header.size);
6025 6026 6027 6028
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
6029
	perf_event__output_id_sample(event, &handle, &sample);
6030 6031 6032
	perf_output_end(&handle);
}

6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	event->hw.itrace_started = 1;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6071
/*
6072
 * Generic event overflow handling, sampling.
6073 6074
 */

6075
static int __perf_event_overflow(struct perf_event *event,
6076 6077
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
6078
{
6079 6080
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
6081
	u64 seq;
6082 6083
	int ret = 0;

6084 6085 6086 6087 6088 6089 6090
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

6091 6092 6093 6094 6095 6096 6097 6098 6099
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
6100 6101
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
6102
			tick_nohz_full_kick();
6103 6104
			ret = 1;
		}
6105
	}
6106

6107
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
6108
		u64 now = perf_clock();
6109
		s64 delta = now - hwc->freq_time_stamp;
6110

6111
		hwc->freq_time_stamp = now;
6112

6113
		if (delta > 0 && delta < 2*TICK_NSEC)
6114
			perf_adjust_period(event, delta, hwc->last_period, true);
6115 6116
	}

6117 6118
	/*
	 * XXX event_limit might not quite work as expected on inherited
6119
	 * events
6120 6121
	 */

6122 6123
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
6124
		ret = 1;
6125
		event->pending_kill = POLL_HUP;
6126 6127
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
6128 6129
	}

6130
	if (event->overflow_handler)
6131
		event->overflow_handler(event, data, regs);
6132
	else
6133
		perf_event_output(event, data, regs);
6134

6135
	if (*perf_event_fasync(event) && event->pending_kill) {
6136 6137
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
6138 6139
	}

6140
	return ret;
6141 6142
}

6143
int perf_event_overflow(struct perf_event *event,
6144 6145
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
6146
{
6147
	return __perf_event_overflow(event, 1, data, regs);
6148 6149
}

6150
/*
6151
 * Generic software event infrastructure
6152 6153
 */

6154 6155 6156 6157 6158 6159 6160
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
6161 6162 6163

	/* Keeps track of cpu being initialized/exited */
	bool				online;
6164 6165 6166 6167
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

6168
/*
6169 6170
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
6171 6172 6173 6174
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

6175
u64 perf_swevent_set_period(struct perf_event *event)
6176
{
6177
	struct hw_perf_event *hwc = &event->hw;
6178 6179 6180 6181 6182
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
6183 6184

again:
6185
	old = val = local64_read(&hwc->period_left);
6186 6187
	if (val < 0)
		return 0;
6188

6189 6190 6191
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
6192
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6193
		goto again;
6194

6195
	return nr;
6196 6197
}

6198
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6199
				    struct perf_sample_data *data,
6200
				    struct pt_regs *regs)
6201
{
6202
	struct hw_perf_event *hwc = &event->hw;
6203
	int throttle = 0;
6204

6205 6206
	if (!overflow)
		overflow = perf_swevent_set_period(event);
6207

6208 6209
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
6210

6211
	for (; overflow; overflow--) {
6212
		if (__perf_event_overflow(event, throttle,
6213
					    data, regs)) {
6214 6215 6216 6217 6218 6219
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
6220
		throttle = 1;
6221
	}
6222 6223
}

P
Peter Zijlstra 已提交
6224
static void perf_swevent_event(struct perf_event *event, u64 nr,
6225
			       struct perf_sample_data *data,
6226
			       struct pt_regs *regs)
6227
{
6228
	struct hw_perf_event *hwc = &event->hw;
6229

6230
	local64_add(nr, &event->count);
6231

6232 6233 6234
	if (!regs)
		return;

6235
	if (!is_sampling_event(event))
6236
		return;
6237

6238 6239 6240 6241 6242 6243
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

6244
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6245
		return perf_swevent_overflow(event, 1, data, regs);
6246

6247
	if (local64_add_negative(nr, &hwc->period_left))
6248
		return;
6249

6250
	perf_swevent_overflow(event, 0, data, regs);
6251 6252
}

6253 6254 6255
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
6256
	if (event->hw.state & PERF_HES_STOPPED)
6257
		return 1;
P
Peter Zijlstra 已提交
6258

6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

6270
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
6271
				enum perf_type_id type,
L
Li Zefan 已提交
6272 6273 6274
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
6275
{
6276
	if (event->attr.type != type)
6277
		return 0;
6278

6279
	if (event->attr.config != event_id)
6280 6281
		return 0;

6282 6283
	if (perf_exclude_event(event, regs))
		return 0;
6284 6285 6286 6287

	return 1;
}

6288 6289 6290 6291 6292 6293 6294
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

6295 6296
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6297
{
6298 6299 6300 6301
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
6302

6303 6304
/* For the read side: events when they trigger */
static inline struct hlist_head *
6305
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6306 6307
{
	struct swevent_hlist *hlist;
6308

6309
	hlist = rcu_dereference(swhash->swevent_hlist);
6310 6311 6312
	if (!hlist)
		return NULL;

6313 6314 6315 6316 6317
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
6318
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6319 6320 6321 6322 6323 6324 6325 6326 6327 6328
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
6329
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6330 6331 6332 6333 6334
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
6335 6336 6337
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6338
				    u64 nr,
6339 6340
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
6341
{
6342
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6343
	struct perf_event *event;
6344
	struct hlist_head *head;
6345

6346
	rcu_read_lock();
6347
	head = find_swevent_head_rcu(swhash, type, event_id);
6348 6349 6350
	if (!head)
		goto end;

6351
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
6352
		if (perf_swevent_match(event, type, event_id, data, regs))
6353
			perf_swevent_event(event, nr, data, regs);
6354
	}
6355 6356
end:
	rcu_read_unlock();
6357 6358
}

6359 6360
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

6361
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
6362
{
6363
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
6364

6365
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
6366
}
I
Ingo Molnar 已提交
6367
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
6368

6369
inline void perf_swevent_put_recursion_context(int rctx)
6370
{
6371
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6372

6373
	put_recursion_context(swhash->recursion, rctx);
6374
}
6375

6376
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6377
{
6378
	struct perf_sample_data data;
6379

6380
	if (WARN_ON_ONCE(!regs))
6381
		return;
6382

6383
	perf_sample_data_init(&data, addr, 0);
6384
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
6397 6398

	perf_swevent_put_recursion_context(rctx);
6399
fail:
6400
	preempt_enable_notrace();
6401 6402
}

6403
static void perf_swevent_read(struct perf_event *event)
6404 6405 6406
{
}

P
Peter Zijlstra 已提交
6407
static int perf_swevent_add(struct perf_event *event, int flags)
6408
{
6409
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6410
	struct hw_perf_event *hwc = &event->hw;
6411 6412
	struct hlist_head *head;

6413
	if (is_sampling_event(event)) {
6414
		hwc->last_period = hwc->sample_period;
6415
		perf_swevent_set_period(event);
6416
	}
6417

P
Peter Zijlstra 已提交
6418 6419
	hwc->state = !(flags & PERF_EF_START);

6420
	head = find_swevent_head(swhash, event);
6421 6422 6423 6424 6425 6426
	if (!head) {
		/*
		 * We can race with cpu hotplug code. Do not
		 * WARN if the cpu just got unplugged.
		 */
		WARN_ON_ONCE(swhash->online);
6427
		return -EINVAL;
6428
	}
6429 6430

	hlist_add_head_rcu(&event->hlist_entry, head);
6431
	perf_event_update_userpage(event);
6432

6433 6434 6435
	return 0;
}

P
Peter Zijlstra 已提交
6436
static void perf_swevent_del(struct perf_event *event, int flags)
6437
{
6438
	hlist_del_rcu(&event->hlist_entry);
6439 6440
}

P
Peter Zijlstra 已提交
6441
static void perf_swevent_start(struct perf_event *event, int flags)
6442
{
P
Peter Zijlstra 已提交
6443
	event->hw.state = 0;
6444
}
I
Ingo Molnar 已提交
6445

P
Peter Zijlstra 已提交
6446
static void perf_swevent_stop(struct perf_event *event, int flags)
6447
{
P
Peter Zijlstra 已提交
6448
	event->hw.state = PERF_HES_STOPPED;
6449 6450
}

6451 6452
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
6453
swevent_hlist_deref(struct swevent_htable *swhash)
6454
{
6455 6456
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6457 6458
}

6459
static void swevent_hlist_release(struct swevent_htable *swhash)
6460
{
6461
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6462

6463
	if (!hlist)
6464 6465
		return;

6466
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6467
	kfree_rcu(hlist, rcu_head);
6468 6469 6470 6471
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
6472
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6473

6474
	mutex_lock(&swhash->hlist_mutex);
6475

6476 6477
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6478

6479
	mutex_unlock(&swhash->hlist_mutex);
6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
6492
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6493 6494
	int err = 0;

6495
	mutex_lock(&swhash->hlist_mutex);
6496

6497
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6498 6499 6500 6501 6502 6503 6504
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6505
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6506
	}
6507
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6508
exit:
6509
	mutex_unlock(&swhash->hlist_mutex);
6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6530
fail:
6531 6532 6533 6534 6535 6536 6537 6538 6539 6540
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

6541
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6542

6543 6544 6545
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6546

6547 6548
	WARN_ON(event->parent);

6549
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6550 6551 6552 6553 6554
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
6555
	u64 event_id = event->attr.config;
6556 6557 6558 6559

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6560 6561 6562 6563 6564 6565
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6566 6567 6568 6569 6570 6571 6572 6573 6574
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6575
	if (event_id >= PERF_COUNT_SW_MAX)
6576 6577 6578 6579 6580 6581 6582 6583 6584
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

6585
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6586 6587 6588 6589 6590 6591 6592
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
6593
	.task_ctx_nr	= perf_sw_context,
6594

6595 6596
	.capabilities	= PERF_PMU_CAP_NO_NMI,

6597
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6598 6599 6600 6601
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6602 6603 6604
	.read		= perf_swevent_read,
};

6605 6606
#ifdef CONFIG_EVENT_TRACING

6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6621 6622
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6623 6624 6625 6626
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6627 6628 6629 6630 6631 6632 6633 6634 6635
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6636 6637
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6638 6639
{
	struct perf_sample_data data;
6640 6641
	struct perf_event *event;

6642 6643 6644 6645 6646
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

6647
	perf_sample_data_init(&data, addr, 0);
6648 6649
	data.raw = &raw;

6650
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6651
		if (perf_tp_event_match(event, &data, regs))
6652
			perf_swevent_event(event, count, &data, regs);
6653
	}
6654

6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

6680
	perf_swevent_put_recursion_context(rctx);
6681 6682 6683
}
EXPORT_SYMBOL_GPL(perf_tp_event);

6684
static void tp_perf_event_destroy(struct perf_event *event)
6685
{
6686
	perf_trace_destroy(event);
6687 6688
}

6689
static int perf_tp_event_init(struct perf_event *event)
6690
{
6691 6692
	int err;

6693 6694 6695
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

6696 6697 6698 6699 6700 6701
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6702 6703
	err = perf_trace_init(event);
	if (err)
6704
		return err;
6705

6706
	event->destroy = tp_perf_event_destroy;
6707

6708 6709 6710 6711
	return 0;
}

static struct pmu perf_tracepoint = {
6712 6713
	.task_ctx_nr	= perf_sw_context,

6714
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
6715 6716 6717 6718
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6719 6720 6721 6722 6723
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
6724
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6725
}
L
Li Zefan 已提交
6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

	if (!(event->tp_event->flags & TRACE_EVENT_FL_KPROBE))
		/* bpf programs can only be attached to kprobes */
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

6768
	if (prog->type != BPF_PROG_TYPE_KPROBE) {
6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
		bpf_prog_put(prog);
	}
}

6793
#else
L
Li Zefan 已提交
6794

6795
static inline void perf_tp_register(void)
6796 6797
{
}
L
Li Zefan 已提交
6798 6799 6800 6801 6802 6803 6804 6805 6806 6807

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

6808 6809 6810 6811 6812 6813 6814 6815
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
6816
#endif /* CONFIG_EVENT_TRACING */
6817

6818
#ifdef CONFIG_HAVE_HW_BREAKPOINT
6819
void perf_bp_event(struct perf_event *bp, void *data)
6820
{
6821 6822 6823
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

6824
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6825

P
Peter Zijlstra 已提交
6826
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6827
		perf_swevent_event(bp, 1, &sample, regs);
6828 6829 6830
}
#endif

6831 6832 6833
/*
 * hrtimer based swevent callback
 */
6834

6835
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6836
{
6837 6838 6839 6840 6841
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
6842

6843
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
6844 6845 6846 6847

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

6848
	event->pmu->read(event);
6849

6850
	perf_sample_data_init(&data, 0, event->hw.last_period);
6851 6852 6853
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
6854
		if (!(event->attr.exclude_idle && is_idle_task(current)))
6855
			if (__perf_event_overflow(event, 1, &data, regs))
6856 6857
				ret = HRTIMER_NORESTART;
	}
6858

6859 6860
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6861

6862
	return ret;
6863 6864
}

6865
static void perf_swevent_start_hrtimer(struct perf_event *event)
6866
{
6867
	struct hw_perf_event *hwc = &event->hw;
6868 6869 6870 6871
	s64 period;

	if (!is_sampling_event(event))
		return;
6872

6873 6874 6875 6876
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
6877

6878 6879 6880 6881
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
6882 6883
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
6884
}
6885 6886

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6887
{
6888 6889
	struct hw_perf_event *hwc = &event->hw;

6890
	if (is_sampling_event(event)) {
6891
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
6892
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6893 6894 6895

		hrtimer_cancel(&hwc->hrtimer);
	}
6896 6897
}

P
Peter Zijlstra 已提交
6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
6918
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
6919 6920 6921 6922
		event->attr.freq = 0;
	}
}

6923 6924 6925 6926 6927
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
6928
{
6929 6930 6931
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
6932
	now = local_clock();
6933 6934
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
6935 6936
}

P
Peter Zijlstra 已提交
6937
static void cpu_clock_event_start(struct perf_event *event, int flags)
6938
{
P
Peter Zijlstra 已提交
6939
	local64_set(&event->hw.prev_count, local_clock());
6940 6941 6942
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6943
static void cpu_clock_event_stop(struct perf_event *event, int flags)
6944
{
6945 6946 6947
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
6948

P
Peter Zijlstra 已提交
6949 6950 6951 6952
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
6953
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
6954 6955 6956 6957 6958 6959 6960 6961 6962

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

6963 6964 6965 6966
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
6967

6968 6969 6970 6971 6972 6973 6974 6975
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

6976 6977 6978 6979 6980 6981
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6982 6983
	perf_swevent_init_hrtimer(event);

6984
	return 0;
6985 6986
}

6987
static struct pmu perf_cpu_clock = {
6988 6989
	.task_ctx_nr	= perf_sw_context,

6990 6991
	.capabilities	= PERF_PMU_CAP_NO_NMI,

6992
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
6993 6994 6995 6996
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
6997 6998 6999 7000 7001 7002 7003 7004
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
7005
{
7006 7007
	u64 prev;
	s64 delta;
7008

7009 7010 7011 7012
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
7013

P
Peter Zijlstra 已提交
7014
static void task_clock_event_start(struct perf_event *event, int flags)
7015
{
P
Peter Zijlstra 已提交
7016
	local64_set(&event->hw.prev_count, event->ctx->time);
7017 7018 7019
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7020
static void task_clock_event_stop(struct perf_event *event, int flags)
7021 7022 7023
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
7024 7025 7026 7027 7028 7029
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
7030
	perf_event_update_userpage(event);
7031

P
Peter Zijlstra 已提交
7032 7033 7034 7035 7036 7037
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
7038 7039 7040 7041
}

static void task_clock_event_read(struct perf_event *event)
{
7042 7043 7044
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
7045 7046 7047 7048 7049

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
7050
{
7051 7052 7053 7054 7055 7056
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

7057 7058 7059 7060 7061 7062
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7063 7064
	perf_swevent_init_hrtimer(event);

7065
	return 0;
L
Li Zefan 已提交
7066 7067
}

7068
static struct pmu perf_task_clock = {
7069 7070
	.task_ctx_nr	= perf_sw_context,

7071 7072
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7073
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
7074 7075 7076 7077
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
7078 7079
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
7080

P
Peter Zijlstra 已提交
7081
static void perf_pmu_nop_void(struct pmu *pmu)
7082 7083
{
}
L
Li Zefan 已提交
7084

P
Peter Zijlstra 已提交
7085
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
7086
{
P
Peter Zijlstra 已提交
7087
	return 0;
L
Li Zefan 已提交
7088 7089
}

P
Peter Zijlstra 已提交
7090
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
7091
{
P
Peter Zijlstra 已提交
7092
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
7093 7094
}

P
Peter Zijlstra 已提交
7095 7096 7097 7098 7099
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
7100

P
Peter Zijlstra 已提交
7101
static void perf_pmu_cancel_txn(struct pmu *pmu)
7102
{
P
Peter Zijlstra 已提交
7103
	perf_pmu_enable(pmu);
7104 7105
}

7106 7107
static int perf_event_idx_default(struct perf_event *event)
{
7108
	return 0;
7109 7110
}

P
Peter Zijlstra 已提交
7111 7112 7113 7114
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
7115
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7116
{
P
Peter Zijlstra 已提交
7117
	struct pmu *pmu;
7118

P
Peter Zijlstra 已提交
7119 7120
	if (ctxn < 0)
		return NULL;
7121

P
Peter Zijlstra 已提交
7122 7123 7124 7125
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
7126

P
Peter Zijlstra 已提交
7127
	return NULL;
7128 7129
}

7130
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7131
{
7132 7133 7134 7135 7136 7137 7138
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

7139 7140
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
7141 7142 7143 7144 7145 7146
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
7147

P
Peter Zijlstra 已提交
7148
	mutex_lock(&pmus_lock);
7149
	/*
P
Peter Zijlstra 已提交
7150
	 * Like a real lame refcount.
7151
	 */
7152 7153 7154
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
7155
			goto out;
7156
		}
P
Peter Zijlstra 已提交
7157
	}
7158

7159
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
7160 7161
out:
	mutex_unlock(&pmus_lock);
7162
}
P
Peter Zijlstra 已提交
7163
static struct idr pmu_idr;
7164

P
Peter Zijlstra 已提交
7165 7166 7167 7168 7169 7170 7171
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
7172
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
7173

7174 7175 7176 7177 7178 7179 7180 7181 7182 7183
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

7184 7185
static DEFINE_MUTEX(mux_interval_mutex);

7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

7205
	mutex_lock(&mux_interval_mutex);
7206 7207 7208
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
7209 7210
	get_online_cpus();
	for_each_online_cpu(cpu) {
7211 7212 7213 7214
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

7215 7216
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7217
	}
7218 7219
	put_online_cpus();
	mutex_unlock(&mux_interval_mutex);
7220 7221 7222

	return count;
}
7223
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7224

7225 7226 7227 7228
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
7229
};
7230
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
7231 7232 7233 7234

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
7235
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

7251
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

7272
static struct lock_class_key cpuctx_mutex;
7273
static struct lock_class_key cpuctx_lock;
7274

7275
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7276
{
P
Peter Zijlstra 已提交
7277
	int cpu, ret;
7278

7279
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
7280 7281 7282 7283
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
7284

P
Peter Zijlstra 已提交
7285 7286 7287 7288 7289 7290
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
7291 7292 7293
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
7294 7295 7296 7297 7298
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
7299 7300 7301 7302 7303 7304
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
7305
skip_type:
P
Peter Zijlstra 已提交
7306 7307 7308
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
7309

W
Wei Yongjun 已提交
7310
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
7311 7312
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
7313
		goto free_dev;
7314

P
Peter Zijlstra 已提交
7315 7316 7317 7318
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7319
		__perf_event_init_context(&cpuctx->ctx);
7320
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7321
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
7322
		cpuctx->ctx.pmu = pmu;
7323

7324
		__perf_mux_hrtimer_init(cpuctx, cpu);
7325

7326
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
7327
	}
7328

P
Peter Zijlstra 已提交
7329
got_cpu_context:
P
Peter Zijlstra 已提交
7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
7344
		}
7345
	}
7346

P
Peter Zijlstra 已提交
7347 7348 7349 7350 7351
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

7352 7353 7354
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

7355
	list_add_rcu(&pmu->entry, &pmus);
7356
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
7357 7358
	ret = 0;
unlock:
7359 7360
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
7361
	return ret;
P
Peter Zijlstra 已提交
7362

P
Peter Zijlstra 已提交
7363 7364 7365 7366
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
7367 7368 7369 7370
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
7371 7372 7373
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
7374
}
7375
EXPORT_SYMBOL_GPL(perf_pmu_register);
7376

7377
void perf_pmu_unregister(struct pmu *pmu)
7378
{
7379 7380 7381
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
7382

7383
	/*
P
Peter Zijlstra 已提交
7384 7385
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
7386
	 */
7387
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
7388
	synchronize_rcu();
7389

P
Peter Zijlstra 已提交
7390
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
7391 7392
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
7393 7394
	device_del(pmu->dev);
	put_device(pmu->dev);
7395
	free_pmu_context(pmu);
7396
}
7397
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7398

7399 7400
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
7401
	struct perf_event_context *ctx = NULL;
7402 7403 7404 7405
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
7406 7407

	if (event->group_leader != event) {
7408 7409 7410 7411 7412 7413
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
7414 7415 7416
		BUG_ON(!ctx);
	}

7417 7418
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
7419 7420 7421 7422

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

7423 7424 7425 7426 7427 7428
	if (ret)
		module_put(pmu->module);

	return ret;
}

7429 7430 7431 7432
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
7433
	int ret;
7434 7435

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
7436 7437 7438 7439

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
7440
	if (pmu) {
7441
		ret = perf_try_init_event(pmu, event);
7442 7443
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7444
		goto unlock;
7445
	}
P
Peter Zijlstra 已提交
7446

7447
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7448
		ret = perf_try_init_event(pmu, event);
7449
		if (!ret)
P
Peter Zijlstra 已提交
7450
			goto unlock;
7451

7452 7453
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7454
			goto unlock;
7455
		}
7456
	}
P
Peter Zijlstra 已提交
7457 7458
	pmu = ERR_PTR(-ENOENT);
unlock:
7459
	srcu_read_unlock(&pmus_srcu, idx);
7460

7461
	return pmu;
7462 7463
}

7464 7465 7466 7467 7468 7469 7470 7471 7472
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

7473 7474
static void account_event(struct perf_event *event)
{
7475 7476 7477
	if (event->parent)
		return;

7478 7479 7480 7481 7482 7483 7484 7485
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
7486 7487 7488 7489
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
7490
	if (has_branch_stack(event))
7491
		static_key_slow_inc(&perf_sched_events.key);
7492
	if (is_cgroup_event(event))
7493
		static_key_slow_inc(&perf_sched_events.key);
7494 7495

	account_event_cpu(event, event->cpu);
7496 7497
}

T
Thomas Gleixner 已提交
7498
/*
7499
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
7500
 */
7501
static struct perf_event *
7502
perf_event_alloc(struct perf_event_attr *attr, int cpu,
7503 7504 7505
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
7506
		 perf_overflow_handler_t overflow_handler,
7507
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
7508
{
P
Peter Zijlstra 已提交
7509
	struct pmu *pmu;
7510 7511
	struct perf_event *event;
	struct hw_perf_event *hwc;
7512
	long err = -EINVAL;
T
Thomas Gleixner 已提交
7513

7514 7515 7516 7517 7518
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

7519
	event = kzalloc(sizeof(*event), GFP_KERNEL);
7520
	if (!event)
7521
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
7522

7523
	/*
7524
	 * Single events are their own group leaders, with an
7525 7526 7527
	 * empty sibling list:
	 */
	if (!group_leader)
7528
		group_leader = event;
7529

7530 7531
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
7532

7533 7534 7535
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
7536
	INIT_LIST_HEAD(&event->rb_entry);
7537
	INIT_LIST_HEAD(&event->active_entry);
7538 7539
	INIT_HLIST_NODE(&event->hlist_entry);

7540

7541
	init_waitqueue_head(&event->waitq);
7542
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
7543

7544
	mutex_init(&event->mmap_mutex);
7545

7546
	atomic_long_set(&event->refcount, 1);
7547 7548 7549 7550 7551
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
7552

7553
	event->parent		= parent_event;
7554

7555
	event->ns		= get_pid_ns(task_active_pid_ns(current));
7556
	event->id		= atomic64_inc_return(&perf_event_id);
7557

7558
	event->state		= PERF_EVENT_STATE_INACTIVE;
7559

7560 7561 7562
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
7563 7564 7565
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
7566
		 */
7567
		event->hw.target = task;
7568 7569
	}

7570 7571 7572 7573
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

7574
	if (!overflow_handler && parent_event) {
7575
		overflow_handler = parent_event->overflow_handler;
7576 7577
		context = parent_event->overflow_handler_context;
	}
7578

7579
	event->overflow_handler	= overflow_handler;
7580
	event->overflow_handler_context = context;
7581

J
Jiri Olsa 已提交
7582
	perf_event__state_init(event);
7583

7584
	pmu = NULL;
7585

7586
	hwc = &event->hw;
7587
	hwc->sample_period = attr->sample_period;
7588
	if (attr->freq && attr->sample_freq)
7589
		hwc->sample_period = 1;
7590
	hwc->last_period = hwc->sample_period;
7591

7592
	local64_set(&hwc->period_left, hwc->sample_period);
7593

7594
	/*
7595
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7596
	 */
7597
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7598
		goto err_ns;
7599 7600 7601

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
7602

7603 7604 7605 7606 7607 7608
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

7609
	pmu = perf_init_event(event);
7610
	if (!pmu)
7611 7612
		goto err_ns;
	else if (IS_ERR(pmu)) {
7613
		err = PTR_ERR(pmu);
7614
		goto err_ns;
I
Ingo Molnar 已提交
7615
	}
7616

7617 7618 7619 7620
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

7621
	if (!event->parent) {
7622 7623
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
7624
			if (err)
7625
				goto err_per_task;
7626
		}
7627
	}
7628

7629
	return event;
7630

7631 7632 7633
err_per_task:
	exclusive_event_destroy(event);

7634 7635 7636
err_pmu:
	if (event->destroy)
		event->destroy(event);
7637
	module_put(pmu->module);
7638
err_ns:
7639 7640
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
7641 7642 7643 7644 7645
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
7646 7647
}

7648 7649
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
7650 7651
{
	u32 size;
7652
	int ret;
7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
7677 7678 7679
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
7680 7681
	 */
	if (size > sizeof(*attr)) {
7682 7683 7684
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
7685

7686 7687
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
7688

7689
		for (; addr < end; addr++) {
7690 7691 7692 7693 7694 7695
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
7696
		size = sizeof(*attr);
7697 7698 7699 7700 7701 7702
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

7703
	if (attr->__reserved_1)
7704 7705 7706 7707 7708 7709 7710 7711
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
7740 7741
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7742 7743
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
7744
	}
7745

7746
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7747
		ret = perf_reg_validate(attr->sample_regs_user);
7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
7766

7767 7768
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
7769 7770 7771 7772 7773 7774 7775 7776 7777
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

7778 7779
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7780
{
7781
	struct ring_buffer *rb = NULL;
7782 7783
	int ret = -EINVAL;

7784
	if (!output_event)
7785 7786
		goto set;

7787 7788
	/* don't allow circular references */
	if (event == output_event)
7789 7790
		goto out;

7791 7792 7793 7794 7795 7796 7797
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
7798
	 * If its not a per-cpu rb, it must be the same task.
7799 7800 7801 7802
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

7803 7804 7805 7806 7807 7808
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

7809 7810 7811 7812 7813 7814 7815
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

7816
set:
7817
	mutex_lock(&event->mmap_mutex);
7818 7819 7820
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
7821

7822
	if (output_event) {
7823 7824 7825
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
7826
			goto unlock;
7827 7828
	}

7829
	ring_buffer_attach(event, rb);
7830

7831
	ret = 0;
7832 7833 7834
unlock:
	mutex_unlock(&event->mmap_mutex);

7835 7836 7837 7838
out:
	return ret;
}

P
Peter Zijlstra 已提交
7839 7840 7841 7842 7843 7844 7845 7846 7847
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

T
Thomas Gleixner 已提交
7885
/**
7886
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
7887
 *
7888
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
7889
 * @pid:		target pid
I
Ingo Molnar 已提交
7890
 * @cpu:		target cpu
7891
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
7892
 */
7893 7894
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
7895
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
7896
{
7897 7898
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
7899
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
7900
	struct perf_event_context *ctx, *uninitialized_var(gctx);
7901
	struct file *event_file = NULL;
7902
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
7903
	struct task_struct *task = NULL;
7904
	struct pmu *pmu;
7905
	int event_fd;
7906
	int move_group = 0;
7907
	int err;
7908
	int f_flags = O_RDWR;
7909
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
7910

7911
	/* for future expandability... */
S
Stephane Eranian 已提交
7912
	if (flags & ~PERF_FLAG_ALL)
7913 7914
		return -EINVAL;

7915 7916 7917
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
7918

7919 7920 7921 7922 7923
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

7924
	if (attr.freq) {
7925
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7926
			return -EINVAL;
7927 7928 7929
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
7930 7931
	}

S
Stephane Eranian 已提交
7932 7933 7934 7935 7936 7937 7938 7939 7940
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

7941 7942 7943 7944
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
7945 7946 7947
	if (event_fd < 0)
		return event_fd;

7948
	if (group_fd != -1) {
7949 7950
		err = perf_fget_light(group_fd, &group);
		if (err)
7951
			goto err_fd;
7952
		group_leader = group.file->private_data;
7953 7954 7955 7956 7957 7958
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
7959
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7960 7961 7962 7963 7964 7965 7966
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

7967 7968 7969 7970 7971 7972
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

7973 7974
	get_online_cpus();

7975 7976 7977
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

7978
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7979
				 NULL, NULL, cgroup_fd);
7980 7981
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
7982
		goto err_cpus;
7983 7984
	}

7985 7986 7987 7988 7989 7990 7991
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

7992 7993
	account_event(event);

7994 7995 7996 7997 7998
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
7999

8000 8001 8002 8003 8004 8005
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
8028 8029 8030 8031

	/*
	 * Get the target context (task or percpu):
	 */
8032
	ctx = find_get_context(pmu, task, event);
8033 8034
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8035
		goto err_alloc;
8036 8037
	}

8038 8039 8040 8041 8042
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

8043 8044 8045 8046 8047
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
8048
	/*
8049
	 * Look up the group leader (we will attach this event to it):
8050
	 */
8051
	if (group_leader) {
8052
		err = -EINVAL;
8053 8054

		/*
I
Ingo Molnar 已提交
8055 8056 8057 8058
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
8059
			goto err_context;
8060 8061 8062 8063 8064

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
8065 8066 8067
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
8068
		 */
8069
		if (move_group) {
8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
8083 8084 8085 8086 8087 8088
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

8089 8090 8091
		/*
		 * Only a group leader can be exclusive or pinned
		 */
8092
		if (attr.exclusive || attr.pinned)
8093
			goto err_context;
8094 8095 8096 8097 8098
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
8099
			goto err_context;
8100
	}
T
Thomas Gleixner 已提交
8101

8102 8103
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
8104 8105
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
8106
		goto err_context;
8107
	}
8108

8109
	if (move_group) {
P
Peter Zijlstra 已提交
8110 8111 8112 8113 8114 8115 8116
		gctx = group_leader->ctx;

		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
8117

8118
		perf_remove_from_context(group_leader, false);
J
Jiri Olsa 已提交
8119

8120 8121
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8122
			perf_remove_from_context(sibling, false);
8123 8124
			put_ctx(gctx);
		}
P
Peter Zijlstra 已提交
8125 8126
	} else {
		mutex_lock(&ctx->mutex);
8127
	}
8128

8129
	WARN_ON_ONCE(ctx->parent_ctx);
8130 8131

	if (move_group) {
P
Peter Zijlstra 已提交
8132 8133 8134 8135
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
8136
		synchronize_rcu();
P
Peter Zijlstra 已提交
8137

8138 8139 8140 8141 8142 8143 8144 8145 8146 8147
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
8148 8149
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8150
			perf_event__state_init(sibling);
8151
			perf_install_in_context(ctx, sibling, sibling->cpu);
8152 8153
			get_ctx(ctx);
		}
8154 8155 8156 8157 8158 8159 8160 8161 8162

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
8163 8164
	}

8165 8166 8167 8168 8169 8170 8171
	if (!exclusive_event_installable(event, ctx)) {
		err = -EBUSY;
		mutex_unlock(&ctx->mutex);
		fput(event_file);
		goto err_context;
	}

8172
	perf_install_in_context(ctx, event, event->cpu);
8173
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
8174 8175 8176 8177 8178

	if (move_group) {
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
	}
8179
	mutex_unlock(&ctx->mutex);
8180

8181 8182
	put_online_cpus();

8183
	event->owner = current;
P
Peter Zijlstra 已提交
8184

8185 8186 8187
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
8188

8189 8190 8191 8192
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
8193
	perf_event__id_header_size(event);
8194

8195 8196 8197 8198 8199 8200
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
8201
	fdput(group);
8202 8203
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
8204

8205
err_context:
8206
	perf_unpin_context(ctx);
8207
	put_ctx(ctx);
8208
err_alloc:
8209
	free_event(event);
8210
err_cpus:
8211
	put_online_cpus();
8212
err_task:
P
Peter Zijlstra 已提交
8213 8214
	if (task)
		put_task_struct(task);
8215
err_group_fd:
8216
	fdput(group);
8217 8218
err_fd:
	put_unused_fd(event_fd);
8219
	return err;
T
Thomas Gleixner 已提交
8220 8221
}

8222 8223 8224 8225 8226
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
8227
 * @task: task to profile (NULL for percpu)
8228 8229 8230
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
8231
				 struct task_struct *task,
8232 8233
				 perf_overflow_handler_t overflow_handler,
				 void *context)
8234 8235
{
	struct perf_event_context *ctx;
8236
	struct perf_event *event;
8237
	int err;
8238

8239 8240 8241
	/*
	 * Get the target context (task or percpu):
	 */
8242

8243
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8244
				 overflow_handler, context, -1);
8245 8246 8247 8248
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
8249

8250 8251 8252
	/* Mark owner so we could distinguish it from user events. */
	event->owner = EVENT_OWNER_KERNEL;

8253 8254
	account_event(event);

8255
	ctx = find_get_context(event->pmu, task, event);
8256 8257
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8258
		goto err_free;
8259
	}
8260 8261 8262

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
8263 8264 8265 8266 8267 8268 8269 8270
	if (!exclusive_event_installable(event, ctx)) {
		mutex_unlock(&ctx->mutex);
		perf_unpin_context(ctx);
		put_ctx(ctx);
		err = -EBUSY;
		goto err_free;
	}

8271
	perf_install_in_context(ctx, event, cpu);
8272
	perf_unpin_context(ctx);
8273 8274 8275 8276
	mutex_unlock(&ctx->mutex);

	return event;

8277 8278 8279
err_free:
	free_event(event);
err:
8280
	return ERR_PTR(err);
8281
}
8282
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8283

8284 8285 8286 8287 8288 8289 8290 8291 8292 8293
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
8294 8295 8296 8297 8298
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8299 8300
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
8301
		perf_remove_from_context(event, false);
8302
		unaccount_event_cpu(event, src_cpu);
8303
		put_ctx(src_ctx);
8304
		list_add(&event->migrate_entry, &events);
8305 8306
	}

8307 8308 8309
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
8310 8311
	synchronize_rcu();

8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
8336 8337
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
8338 8339
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
8340
		account_event_cpu(event, dst_cpu);
8341 8342 8343 8344
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
8345
	mutex_unlock(&src_ctx->mutex);
8346 8347 8348
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

8349
static void sync_child_event(struct perf_event *child_event,
8350
			       struct task_struct *child)
8351
{
8352
	struct perf_event *parent_event = child_event->parent;
8353
	u64 child_val;
8354

8355 8356
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
8357

P
Peter Zijlstra 已提交
8358
	child_val = perf_event_count(child_event);
8359 8360 8361 8362

	/*
	 * Add back the child's count to the parent's count:
	 */
8363
	atomic64_add(child_val, &parent_event->child_count);
8364 8365 8366 8367
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
8368 8369

	/*
8370
	 * Remove this event from the parent's list
8371
	 */
8372 8373 8374 8375
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
8376

8377 8378 8379 8380 8381 8382
	/*
	 * Make sure user/parent get notified, that we just
	 * lost one event.
	 */
	perf_event_wakeup(parent_event);

8383
	/*
8384
	 * Release the parent event, if this was the last
8385 8386
	 * reference to it.
	 */
8387
	put_event(parent_event);
8388 8389
}

8390
static void
8391 8392
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
8393
			 struct task_struct *child)
8394
{
8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
	perf_remove_from_context(child_event, !!child_event->parent);
8408

8409
	/*
8410
	 * It can happen that the parent exits first, and has events
8411
	 * that are still around due to the child reference. These
8412
	 * events need to be zapped.
8413
	 */
8414
	if (child_event->parent) {
8415 8416
		sync_child_event(child_event, child);
		free_event(child_event);
8417 8418 8419
	} else {
		child_event->state = PERF_EVENT_STATE_EXIT;
		perf_event_wakeup(child_event);
8420
	}
8421 8422
}

P
Peter Zijlstra 已提交
8423
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8424
{
8425
	struct perf_event *child_event, *next;
8426
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8427
	unsigned long flags;
8428

P
Peter Zijlstra 已提交
8429
	if (likely(!child->perf_event_ctxp[ctxn])) {
8430
		perf_event_task(child, NULL, 0);
8431
		return;
P
Peter Zijlstra 已提交
8432
	}
8433

8434
	local_irq_save(flags);
8435 8436 8437 8438 8439 8440
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
8441
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8442 8443 8444

	/*
	 * Take the context lock here so that if find_get_context is
8445
	 * reading child->perf_event_ctxp, we wait until it has
8446 8447
	 * incremented the context's refcount before we do put_ctx below.
	 */
8448
	raw_spin_lock(&child_ctx->lock);
8449
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
8450
	child->perf_event_ctxp[ctxn] = NULL;
8451

8452 8453 8454
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
8455
	 * the events from it.
8456
	 */
8457
	clone_ctx = unclone_ctx(child_ctx);
8458
	update_context_time(child_ctx);
8459
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8460

8461 8462
	if (clone_ctx)
		put_ctx(clone_ctx);
8463

P
Peter Zijlstra 已提交
8464
	/*
8465 8466 8467
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
8468
	 */
8469
	perf_event_task(child, child_ctx, 0);
8470

8471 8472 8473
	/*
	 * We can recurse on the same lock type through:
	 *
8474 8475
	 *   __perf_event_exit_task()
	 *     sync_child_event()
8476 8477
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
8478 8479 8480
	 *
	 * But since its the parent context it won't be the same instance.
	 */
8481
	mutex_lock(&child_ctx->mutex);
8482

8483
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8484
		__perf_event_exit_task(child_event, child_ctx, child);
8485

8486 8487 8488
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
8489 8490
}

P
Peter Zijlstra 已提交
8491 8492 8493 8494 8495
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
8496
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8497 8498
	int ctxn;

P
Peter Zijlstra 已提交
8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
8514 8515 8516 8517
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

8530
	put_event(parent);
8531

P
Peter Zijlstra 已提交
8532
	raw_spin_lock_irq(&ctx->lock);
8533
	perf_group_detach(event);
8534
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
8535
	raw_spin_unlock_irq(&ctx->lock);
8536 8537 8538
	free_event(event);
}

8539
/*
P
Peter Zijlstra 已提交
8540
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
8541
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
8542 8543 8544
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
8545
 */
8546
void perf_event_free_task(struct task_struct *task)
8547
{
P
Peter Zijlstra 已提交
8548
	struct perf_event_context *ctx;
8549
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8550
	int ctxn;
8551

P
Peter Zijlstra 已提交
8552 8553 8554 8555
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
8556

P
Peter Zijlstra 已提交
8557
		mutex_lock(&ctx->mutex);
8558
again:
P
Peter Zijlstra 已提交
8559 8560 8561
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
8562

P
Peter Zijlstra 已提交
8563 8564 8565
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
8566

P
Peter Zijlstra 已提交
8567 8568 8569
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
8570

P
Peter Zijlstra 已提交
8571
		mutex_unlock(&ctx->mutex);
8572

P
Peter Zijlstra 已提交
8573 8574
		put_ctx(ctx);
	}
8575 8576
}

8577 8578 8579 8580 8581 8582 8583 8584
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
8596
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
8597
	struct perf_event *child_event;
8598
	unsigned long flags;
P
Peter Zijlstra 已提交
8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
8611
					   child,
P
Peter Zijlstra 已提交
8612
					   group_leader, parent_event,
8613
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
8614 8615
	if (IS_ERR(child_event))
		return child_event;
8616

8617 8618
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8619 8620 8621 8622
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
8623 8624 8625 8626 8627 8628 8629
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
8630
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
8647 8648
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
8649

8650 8651 8652 8653
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
8654
	perf_event__id_header_size(child_event);
8655

P
Peter Zijlstra 已提交
8656 8657 8658
	/*
	 * Link it up in the child's context:
	 */
8659
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8660
	add_event_to_ctx(child_event, child_ctx);
8661
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
8695 8696 8697 8698 8699
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
8700
		   struct task_struct *child, int ctxn,
8701 8702 8703
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
8704
	struct perf_event_context *child_ctx;
8705 8706 8707 8708

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
8709 8710
	}

8711
	child_ctx = child->perf_event_ctxp[ctxn];
8712 8713 8714 8715 8716 8717 8718
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
8719

8720
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
8721 8722
		if (!child_ctx)
			return -ENOMEM;
8723

P
Peter Zijlstra 已提交
8724
		child->perf_event_ctxp[ctxn] = child_ctx;
8725 8726 8727 8728 8729 8730 8731 8732 8733
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
8734 8735
}

8736
/*
8737
 * Initialize the perf_event context in task_struct
8738
 */
8739
static int perf_event_init_context(struct task_struct *child, int ctxn)
8740
{
8741
	struct perf_event_context *child_ctx, *parent_ctx;
8742 8743
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
8744
	struct task_struct *parent = current;
8745
	int inherited_all = 1;
8746
	unsigned long flags;
8747
	int ret = 0;
8748

P
Peter Zijlstra 已提交
8749
	if (likely(!parent->perf_event_ctxp[ctxn]))
8750 8751
		return 0;

8752
	/*
8753 8754
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
8755
	 */
P
Peter Zijlstra 已提交
8756
	parent_ctx = perf_pin_task_context(parent, ctxn);
8757 8758
	if (!parent_ctx)
		return 0;
8759

8760 8761 8762 8763 8764 8765 8766
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

8767 8768 8769 8770
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
8771
	mutex_lock(&parent_ctx->mutex);
8772 8773 8774 8775 8776

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
8777
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
8778 8779
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
8780 8781 8782
		if (ret)
			break;
	}
8783

8784 8785 8786 8787 8788 8789 8790 8791 8792
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

8793
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
8794 8795
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
8796
		if (ret)
8797
			break;
8798 8799
	}

8800 8801 8802
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
8803
	child_ctx = child->perf_event_ctxp[ctxn];
8804

8805
	if (child_ctx && inherited_all) {
8806 8807 8808
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
8809 8810 8811
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
8812
		 */
P
Peter Zijlstra 已提交
8813
		cloned_ctx = parent_ctx->parent_ctx;
8814 8815
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
8816
			child_ctx->parent_gen = parent_ctx->parent_gen;
8817 8818 8819 8820 8821
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
8822 8823
	}

P
Peter Zijlstra 已提交
8824
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8825
	mutex_unlock(&parent_ctx->mutex);
8826

8827
	perf_unpin_context(parent_ctx);
8828
	put_ctx(parent_ctx);
8829

8830
	return ret;
8831 8832
}

P
Peter Zijlstra 已提交
8833 8834 8835 8836 8837 8838 8839
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

8840 8841 8842 8843
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
8844 8845
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
8846 8847
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
8848
			return ret;
P
Peter Zijlstra 已提交
8849
		}
P
Peter Zijlstra 已提交
8850 8851 8852 8853 8854
	}

	return 0;
}

8855 8856
static void __init perf_event_init_all_cpus(void)
{
8857
	struct swevent_htable *swhash;
8858 8859 8860
	int cpu;

	for_each_possible_cpu(cpu) {
8861 8862
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
8863
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
8864 8865 8866
	}
}

8867
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
8868
{
P
Peter Zijlstra 已提交
8869
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
8870

8871
	mutex_lock(&swhash->hlist_mutex);
8872
	swhash->online = true;
8873
	if (swhash->hlist_refcount > 0) {
8874 8875
		struct swevent_hlist *hlist;

8876 8877 8878
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8879
	}
8880
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
8881 8882
}

P
Peter Zijlstra 已提交
8883
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
P
Peter Zijlstra 已提交
8884
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
8885
{
8886
	struct remove_event re = { .detach_group = true };
P
Peter Zijlstra 已提交
8887
	struct perf_event_context *ctx = __info;
T
Thomas Gleixner 已提交
8888

P
Peter Zijlstra 已提交
8889
	rcu_read_lock();
8890 8891
	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
		__perf_remove_from_context(&re);
P
Peter Zijlstra 已提交
8892
	rcu_read_unlock();
T
Thomas Gleixner 已提交
8893
}
P
Peter Zijlstra 已提交
8894 8895 8896 8897 8898 8899 8900 8901 8902

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
8903
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
8904 8905 8906 8907 8908 8909 8910 8911

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

8912
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
8913
{
8914
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8915

P
Peter Zijlstra 已提交
8916 8917
	perf_event_exit_cpu_context(cpu);

8918
	mutex_lock(&swhash->hlist_mutex);
8919
	swhash->online = false;
8920 8921
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
8922 8923
}
#else
8924
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
8925 8926
#endif

P
Peter Zijlstra 已提交
8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

8947
static int
T
Thomas Gleixner 已提交
8948 8949 8950 8951
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

8952
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
8953 8954

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
8955
	case CPU_DOWN_FAILED:
8956
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
8957 8958
		break;

P
Peter Zijlstra 已提交
8959
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
8960
	case CPU_DOWN_PREPARE:
8961
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
8962 8963 8964 8965 8966 8967 8968 8969
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

8970
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
8971
{
8972 8973
	int ret;

P
Peter Zijlstra 已提交
8974 8975
	idr_init(&pmu_idr);

8976
	perf_event_init_all_cpus();
8977
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
8978 8979 8980
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
8981 8982
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
8983
	register_reboot_notifier(&perf_reboot_notifier);
8984 8985 8986

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
8987 8988 8989

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
8990 8991 8992 8993 8994 8995 8996

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
8997
}
P
Peter Zijlstra 已提交
8998

8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}

P
Peter Zijlstra 已提交
9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
9038 9039

#ifdef CONFIG_CGROUP_PERF
9040 9041
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
9042 9043 9044
{
	struct perf_cgroup *jc;

9045
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

9058
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
9059
{
9060 9061
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

9073 9074
static void perf_cgroup_attach(struct cgroup_subsys_state *css,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
9075
{
9076 9077
	struct task_struct *task;

9078
	cgroup_taskset_for_each(task, tset)
9079
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9080 9081
}

9082 9083
static void perf_cgroup_exit(struct cgroup_subsys_state *css,
			     struct cgroup_subsys_state *old_css,
9084
			     struct task_struct *task)
S
Stephane Eranian 已提交
9085 9086 9087 9088 9089 9090 9091 9092 9093
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

9094
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9095 9096
}

9097
struct cgroup_subsys perf_event_cgrp_subsys = {
9098 9099
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
9100
	.exit		= perf_cgroup_exit,
9101
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
9102 9103
};
#endif /* CONFIG_CGROUP_PERF */