core.c 186.0 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/perf_event.h>
L
Li Zefan 已提交
38
#include <linux/ftrace_event.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/mm_types.h>
41
#include <linux/cgroup.h>
T
Thomas Gleixner 已提交
42

43 44
#include "internal.h"

45 46
#include <asm/irq_regs.h>

47
struct remote_function_call {
48 49 50 51
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
85 86 87 88
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
109 110 111 112
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
113 114 115 116 117 118 119
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
120 121
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
122 123
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
124

125 126 127 128 129 130 131
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

132 133 134 135 136 137
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
138 139 140 141
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
142
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
143
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
144
static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
S
Stephane Eranian 已提交
145

146 147 148
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
149
static atomic_t nr_freq_events __read_mostly;
150

P
Peter Zijlstra 已提交
151 152 153 154
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

155
/*
156
 * perf event paranoia level:
157 158
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
159
 *   1 - disallow cpu events for unpriv
160
 *   2 - disallow kernel profiling for unpriv
161
 */
162
int sysctl_perf_event_paranoid __read_mostly = 1;
163

164 165
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
166 167

/*
168
 * max perf event sample rate
169
 */
170 171 172 173 174 175 176 177 178
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
179 180
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
181 182 183 184 185 186

void update_perf_cpu_limits(void)
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
187
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
188
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
189
}
P
Peter Zijlstra 已提交
190

191 192
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
193 194 195 196
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
197
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
198 199 200 201 202

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
221 222 223

	return 0;
}
224

225 226 227 228 229 230 231
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
232
static DEFINE_PER_CPU(u64, running_sample_length);
233 234 235 236

void perf_sample_event_took(u64 sample_len_ns)
{
	u64 avg_local_sample_len;
237
	u64 local_samples_len;
P
Peter Zijlstra 已提交
238
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
239

P
Peter Zijlstra 已提交
240
	if (allowed_ns == 0)
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
		return;

	/* decay the counter by 1 average sample */
	local_samples_len = __get_cpu_var(running_sample_length);
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
	__get_cpu_var(running_sample_length) = local_samples_len;

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
256
	if (avg_local_sample_len <= allowed_ns)
257 258 259 260 261 262 263 264 265 266
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	printk_ratelimited(KERN_WARNING
P
Peter Zijlstra 已提交
267
			"perf samples too long (%lld > %lld), lowering "
268
			"kernel.perf_event_max_sample_rate to %d\n",
P
Peter Zijlstra 已提交
269
			avg_local_sample_len, allowed_ns,
270 271 272 273 274
			sysctl_perf_event_sample_rate);

	update_perf_cpu_limits();
}

275
static atomic64_t perf_event_id;
276

277 278 279 280
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
281 282 283 284 285
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
286

287
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
288

289
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
290
{
291
	return "pmu";
T
Thomas Gleixner 已提交
292 293
}

294 295 296 297 298
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
299 300 301 302 303 304
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
321 322
#ifdef CONFIG_CGROUP_PERF

323 324 325 326 327 328 329 330 331 332 333
/*
 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 * This is a per-cpu dynamically allocated data structure.
 */
struct perf_cgroup_info {
	u64				time;
	u64				timestamp;
};

struct perf_cgroup {
	struct cgroup_subsys_state	css;
334
	struct perf_cgroup_info	__percpu *info;
335 336
};

337 338 339 340 341
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
342 343 344
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
345
	return container_of(task_css(task, perf_event_cgrp_id),
346
			    struct perf_cgroup, css);
S
Stephane Eranian 已提交
347 348 349 350 351 352 353 354
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
419 420
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
421
	/*
422 423
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
424
	 */
425
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
426 427
		return;

428 429 430 431 432 433
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
434 435 436
}

static inline void
437 438
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
439 440 441 442
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

443 444 445 446 447 448
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
449 450 451 452
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
453
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
486 487
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
488 489 490 491 492 493 494 495 496

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
497 498
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
499 500 501 502 503 504 505 506 507 508 509

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
510
				WARN_ON_ONCE(cpuctx->cgrp);
511 512 513 514
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
515 516 517 518
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
519 520
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
521 522 523 524 525 526 527 528
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

529 530
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
531
{
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
554 555
}

556 557
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
558
{
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
577 578 579 580 581 582 583 584
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
585 586
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
587

588
	if (!f.file)
S
Stephane Eranian 已提交
589 590
		return -EBADF;

591
	css = css_tryget_from_dir(f.file->f_dentry, &perf_event_cgrp_subsys);
592 593 594 595
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
596 597 598 599 600 601 602 603 604 605 606 607 608

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
609
out:
610
	fdput(f);
S
Stephane Eranian 已提交
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

684 685
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
686 687 688
{
}

689 690
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
691 692 693 694 695 696 697 698 699 700 701
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
702 703
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
{
	struct perf_cpu_context *cpuctx;
	enum hrtimer_restart ret = HRTIMER_NORESTART;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);

	rotations = perf_rotate_context(cpuctx);

	/*
	 * arm timer if needed
	 */
	if (rotations) {
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
		ret = HRTIMER_RESTART;
	}

	return ret;
}

/* CPU is going down */
void perf_cpu_hrtimer_cancel(int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (WARN_ON(cpu != smp_processor_id()))
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		if (pmu->task_ctx_nr == perf_sw_context)
			continue;

		hrtimer_cancel(&cpuctx->hrtimer);
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;
797
	int timer;
798 799 800 801 802

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

803 804 805 806 807 808 809 810 811
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
	timer = pmu->hrtimer_interval_ms;
	if (timer < 1)
		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;

	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833

	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
	hr->function = perf_cpu_hrtimer_handler;
}

static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

	if (hrtimer_active(hr))
		return;

	if (!hrtimer_callback_running(hr))
		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
					 0, HRTIMER_MODE_REL_PINNED, 0);
}

P
Peter Zijlstra 已提交
834
void perf_pmu_disable(struct pmu *pmu)
835
{
P
Peter Zijlstra 已提交
836 837 838
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
839 840
}

P
Peter Zijlstra 已提交
841
void perf_pmu_enable(struct pmu *pmu)
842
{
P
Peter Zijlstra 已提交
843 844 845
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
846 847
}

848 849 850 851 852 853 854
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
855
static void perf_pmu_rotate_start(struct pmu *pmu)
856
{
P
Peter Zijlstra 已提交
857
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
858
	struct list_head *head = &__get_cpu_var(rotation_list);
859

860
	WARN_ON(!irqs_disabled());
861

862
	if (list_empty(&cpuctx->rotation_list))
863
		list_add(&cpuctx->rotation_list, head);
864 865
}

866
static void get_ctx(struct perf_event_context *ctx)
867
{
868
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
869 870
}

871
static void put_ctx(struct perf_event_context *ctx)
872
{
873 874 875
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
876 877
		if (ctx->task)
			put_task_struct(ctx->task);
878
		kfree_rcu(ctx, rcu_head);
879
	}
880 881
}

882
static void unclone_ctx(struct perf_event_context *ctx)
883 884 885 886 887
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
888
	ctx->generation++;
889 890
}

891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

913
/*
914
 * If we inherit events we want to return the parent event id
915 916
 * to userspace.
 */
917
static u64 primary_event_id(struct perf_event *event)
918
{
919
	u64 id = event->id;
920

921 922
	if (event->parent)
		id = event->parent->id;
923 924 925 926

	return id;
}

927
/*
928
 * Get the perf_event_context for a task and lock it.
929 930 931
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
932
static struct perf_event_context *
P
Peter Zijlstra 已提交
933
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
934
{
935
	struct perf_event_context *ctx;
936

P
Peter Zijlstra 已提交
937
retry:
938 939 940 941 942 943 944 945 946 947 948
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
	 * part of the read side critical section was preemptible -- see
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
	 * side critical section is non-preemptible.
	 */
	preempt_disable();
	rcu_read_lock();
P
Peter Zijlstra 已提交
949
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
950 951 952 953
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
954
		 * perf_event_task_sched_out, though the
955 956 957 958 959 960
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
961
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
962
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
963
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
964 965
			rcu_read_unlock();
			preempt_enable();
966 967
			goto retry;
		}
968 969

		if (!atomic_inc_not_zero(&ctx->refcount)) {
970
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
971 972
			ctx = NULL;
		}
973 974
	}
	rcu_read_unlock();
975
	preempt_enable();
976 977 978 979 980 981 982 983
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
984 985
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
986
{
987
	struct perf_event_context *ctx;
988 989
	unsigned long flags;

P
Peter Zijlstra 已提交
990
	ctx = perf_lock_task_context(task, ctxn, &flags);
991 992
	if (ctx) {
		++ctx->pin_count;
993
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
994 995 996 997
	}
	return ctx;
}

998
static void perf_unpin_context(struct perf_event_context *ctx)
999 1000 1001
{
	unsigned long flags;

1002
	raw_spin_lock_irqsave(&ctx->lock, flags);
1003
	--ctx->pin_count;
1004
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1005 1006
}

1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1018 1019 1020
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1021 1022 1023 1024

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1025 1026 1027
	return ctx ? ctx->time : 0;
}

1028 1029
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1030
 * The caller of this function needs to hold the ctx->lock.
1031 1032 1033 1034 1035 1036 1037 1038 1039
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1051
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1052 1053
	else if (ctx->is_active)
		run_end = ctx->time;
1054 1055 1056 1057
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1058 1059 1060 1061

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1062
		run_end = perf_event_time(event);
1063 1064

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1065

1066 1067
}

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1080 1081 1082 1083 1084 1085 1086 1087 1088
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1089
/*
1090
 * Add a event from the lists for its context.
1091 1092
 * Must be called with ctx->mutex and ctx->lock held.
 */
1093
static void
1094
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1095
{
1096 1097
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1098 1099

	/*
1100 1101 1102
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1103
	 */
1104
	if (event->group_leader == event) {
1105 1106
		struct list_head *list;

1107 1108 1109
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1110 1111
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1112
	}
P
Peter Zijlstra 已提交
1113

1114
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1115 1116
		ctx->nr_cgroups++;

1117 1118 1119
	if (has_branch_stack(event))
		ctx->nr_branch_stack++;

1120
	list_add_rcu(&event->event_entry, &ctx->event_list);
1121
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
1122
		perf_pmu_rotate_start(ctx->pmu);
1123 1124
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1125
		ctx->nr_stat++;
1126 1127

	ctx->generation++;
1128 1129
}

J
Jiri Olsa 已提交
1130 1131 1132 1133 1134 1135 1136 1137 1138
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1178 1179 1180 1181 1182 1183
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1184 1185 1186
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1187 1188 1189
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1190 1191 1192
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1193 1194 1195
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1196 1197 1198 1199 1200 1201 1202 1203 1204
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1205 1206 1207 1208 1209 1210
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1211 1212 1213
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1214 1215 1216 1217 1218 1219 1220 1221 1222
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1223
	event->id_header_size = size;
1224 1225
}

1226 1227
static void perf_group_attach(struct perf_event *event)
{
1228
	struct perf_event *group_leader = event->group_leader, *pos;
1229

P
Peter Zijlstra 已提交
1230 1231 1232 1233 1234 1235
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1247 1248 1249 1250 1251

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1252 1253
}

1254
/*
1255
 * Remove a event from the lists for its context.
1256
 * Must be called with ctx->mutex and ctx->lock held.
1257
 */
1258
static void
1259
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1260
{
1261
	struct perf_cpu_context *cpuctx;
1262 1263 1264 1265
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1266
		return;
1267 1268 1269

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1270
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1271
		ctx->nr_cgroups--;
1272 1273 1274 1275 1276 1277 1278 1279 1280
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1281

1282 1283 1284
	if (has_branch_stack(event))
		ctx->nr_branch_stack--;

1285 1286
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1287
		ctx->nr_stat--;
1288

1289
	list_del_rcu(&event->event_entry);
1290

1291 1292
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1293

1294
	update_group_times(event);
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1305 1306

	ctx->generation++;
1307 1308
}

1309
static void perf_group_detach(struct perf_event *event)
1310 1311
{
	struct perf_event *sibling, *tmp;
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1328
		goto out;
1329 1330 1331 1332
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1333

1334
	/*
1335 1336
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1337
	 * to whatever list we are on.
1338
	 */
1339
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1340 1341
		if (list)
			list_move_tail(&sibling->group_entry, list);
1342
		sibling->group_leader = sibling;
1343 1344 1345

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1346
	}
1347 1348 1349 1350 1351 1352

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1353 1354
}

1355 1356 1357
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1358 1359
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1360 1361
}

1362 1363
static void
event_sched_out(struct perf_event *event,
1364
		  struct perf_cpu_context *cpuctx,
1365
		  struct perf_event_context *ctx)
1366
{
1367
	u64 tstamp = perf_event_time(event);
1368 1369 1370 1371 1372 1373 1374 1375 1376
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1377
		delta = tstamp - event->tstamp_stopped;
1378
		event->tstamp_running += delta;
1379
		event->tstamp_stopped = tstamp;
1380 1381
	}

1382
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1383
		return;
1384

1385 1386
	perf_pmu_disable(event->pmu);

1387 1388 1389 1390
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1391
	}
1392
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1393
	event->pmu->del(event, 0);
1394
	event->oncpu = -1;
1395

1396
	if (!is_software_event(event))
1397 1398
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1399 1400
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1401
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1402
		cpuctx->exclusive = 0;
1403 1404

	perf_pmu_enable(event->pmu);
1405 1406
}

1407
static void
1408
group_sched_out(struct perf_event *group_event,
1409
		struct perf_cpu_context *cpuctx,
1410
		struct perf_event_context *ctx)
1411
{
1412
	struct perf_event *event;
1413
	int state = group_event->state;
1414

1415
	event_sched_out(group_event, cpuctx, ctx);
1416 1417 1418 1419

	/*
	 * Schedule out siblings (if any):
	 */
1420 1421
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1422

1423
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1424 1425 1426
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1427
/*
1428
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1429
 *
1430
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1431 1432
 * remove it from the context list.
 */
1433
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1434
{
1435 1436
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1437
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1438

1439
	raw_spin_lock(&ctx->lock);
1440 1441
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1442 1443 1444 1445
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1446
	raw_spin_unlock(&ctx->lock);
1447 1448

	return 0;
T
Thomas Gleixner 已提交
1449 1450 1451 1452
}


/*
1453
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1454
 *
1455
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1456
 * call when the task is on a CPU.
1457
 *
1458 1459
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1460 1461
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1462
 * When called from perf_event_exit_task, it's OK because the
1463
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1464
 */
1465
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1466
{
1467
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1468 1469
	struct task_struct *task = ctx->task;

1470 1471
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1472 1473
	if (!task) {
		/*
1474
		 * Per cpu events are removed via an smp call and
1475
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1476
		 */
1477
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1478 1479 1480 1481
		return;
	}

retry:
1482 1483
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1484

1485
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1486
	/*
1487 1488
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1489
	 */
1490
	if (ctx->is_active) {
1491
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1492 1493 1494 1495
		goto retry;
	}

	/*
1496 1497
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1498
	 */
1499
	list_del_event(event, ctx);
1500
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1501 1502
}

1503
/*
1504
 * Cross CPU call to disable a performance event
1505
 */
1506
int __perf_event_disable(void *info)
1507
{
1508 1509
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1510
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1511 1512

	/*
1513 1514
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1515 1516 1517
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1518
	 */
1519
	if (ctx->task && cpuctx->task_ctx != ctx)
1520
		return -EINVAL;
1521

1522
	raw_spin_lock(&ctx->lock);
1523 1524

	/*
1525
	 * If the event is on, turn it off.
1526 1527
	 * If it is in error state, leave it in error state.
	 */
1528
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1529
		update_context_time(ctx);
S
Stephane Eranian 已提交
1530
		update_cgrp_time_from_event(event);
1531 1532 1533
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1534
		else
1535 1536
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1537 1538
	}

1539
	raw_spin_unlock(&ctx->lock);
1540 1541

	return 0;
1542 1543 1544
}

/*
1545
 * Disable a event.
1546
 *
1547 1548
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1549
 * remains valid.  This condition is satisifed when called through
1550 1551 1552 1553
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1554
 * is the current context on this CPU and preemption is disabled,
1555
 * hence we can't get into perf_event_task_sched_out for this context.
1556
 */
1557
void perf_event_disable(struct perf_event *event)
1558
{
1559
	struct perf_event_context *ctx = event->ctx;
1560 1561 1562 1563
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1564
		 * Disable the event on the cpu that it's on
1565
		 */
1566
		cpu_function_call(event->cpu, __perf_event_disable, event);
1567 1568 1569
		return;
	}

P
Peter Zijlstra 已提交
1570
retry:
1571 1572
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1573

1574
	raw_spin_lock_irq(&ctx->lock);
1575
	/*
1576
	 * If the event is still active, we need to retry the cross-call.
1577
	 */
1578
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1579
		raw_spin_unlock_irq(&ctx->lock);
1580 1581 1582 1583 1584
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1585 1586 1587 1588 1589 1590 1591
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1592 1593 1594
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1595
	}
1596
	raw_spin_unlock_irq(&ctx->lock);
1597
}
1598
EXPORT_SYMBOL_GPL(perf_event_disable);
1599

S
Stephane Eranian 已提交
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1635 1636 1637 1638
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1639
static int
1640
event_sched_in(struct perf_event *event,
1641
		 struct perf_cpu_context *cpuctx,
1642
		 struct perf_event_context *ctx)
1643
{
1644
	u64 tstamp = perf_event_time(event);
1645
	int ret = 0;
1646

1647
	if (event->state <= PERF_EVENT_STATE_OFF)
1648 1649
		return 0;

1650
	event->state = PERF_EVENT_STATE_ACTIVE;
1651
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1663 1664 1665 1666 1667
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1668 1669
	perf_pmu_disable(event->pmu);

P
Peter Zijlstra 已提交
1670
	if (event->pmu->add(event, PERF_EF_START)) {
1671 1672
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1673 1674
		ret = -EAGAIN;
		goto out;
1675 1676
	}

1677
	event->tstamp_running += tstamp - event->tstamp_stopped;
1678

S
Stephane Eranian 已提交
1679
	perf_set_shadow_time(event, ctx, tstamp);
1680

1681
	if (!is_software_event(event))
1682
		cpuctx->active_oncpu++;
1683
	ctx->nr_active++;
1684 1685
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1686

1687
	if (event->attr.exclusive)
1688 1689
		cpuctx->exclusive = 1;

1690 1691 1692 1693
out:
	perf_pmu_enable(event->pmu);

	return ret;
1694 1695
}

1696
static int
1697
group_sched_in(struct perf_event *group_event,
1698
	       struct perf_cpu_context *cpuctx,
1699
	       struct perf_event_context *ctx)
1700
{
1701
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1702
	struct pmu *pmu = group_event->pmu;
1703 1704
	u64 now = ctx->time;
	bool simulate = false;
1705

1706
	if (group_event->state == PERF_EVENT_STATE_OFF)
1707 1708
		return 0;

P
Peter Zijlstra 已提交
1709
	pmu->start_txn(pmu);
1710

1711
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1712
		pmu->cancel_txn(pmu);
1713
		perf_cpu_hrtimer_restart(cpuctx);
1714
		return -EAGAIN;
1715
	}
1716 1717 1718 1719

	/*
	 * Schedule in siblings as one group (if any):
	 */
1720
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1721
		if (event_sched_in(event, cpuctx, ctx)) {
1722
			partial_group = event;
1723 1724 1725 1726
			goto group_error;
		}
	}

1727
	if (!pmu->commit_txn(pmu))
1728
		return 0;
1729

1730 1731 1732 1733
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1744
	 */
1745 1746
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1747 1748 1749 1750 1751 1752 1753 1754
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1755
	}
1756
	event_sched_out(group_event, cpuctx, ctx);
1757

P
Peter Zijlstra 已提交
1758
	pmu->cancel_txn(pmu);
1759

1760 1761
	perf_cpu_hrtimer_restart(cpuctx);

1762 1763 1764
	return -EAGAIN;
}

1765
/*
1766
 * Work out whether we can put this event group on the CPU now.
1767
 */
1768
static int group_can_go_on(struct perf_event *event,
1769 1770 1771 1772
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1773
	 * Groups consisting entirely of software events can always go on.
1774
	 */
1775
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1776 1777 1778
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1779
	 * events can go on.
1780 1781 1782 1783 1784
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1785
	 * events on the CPU, it can't go on.
1786
	 */
1787
	if (event->attr.exclusive && cpuctx->active_oncpu)
1788 1789 1790 1791 1792 1793 1794 1795
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1796 1797
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1798
{
1799 1800
	u64 tstamp = perf_event_time(event);

1801
	list_add_event(event, ctx);
1802
	perf_group_attach(event);
1803 1804 1805
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1806 1807
}

1808 1809 1810 1811 1812 1813
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1814

1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1827
/*
1828
 * Cross CPU call to install and enable a performance event
1829 1830
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1831
 */
1832
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1833
{
1834 1835
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1836
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1837 1838 1839
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1840
	perf_ctx_lock(cpuctx, task_ctx);
1841
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1842 1843

	/*
1844
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1845
	 */
1846
	if (task_ctx)
1847
		task_ctx_sched_out(task_ctx);
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1862 1863
		task = task_ctx->task;
	}
1864

1865
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1866

1867
	update_context_time(ctx);
S
Stephane Eranian 已提交
1868 1869 1870 1871 1872 1873
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1874

1875
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1876

1877
	/*
1878
	 * Schedule everything back in
1879
	 */
1880
	perf_event_sched_in(cpuctx, task_ctx, task);
1881 1882 1883

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1884 1885

	return 0;
T
Thomas Gleixner 已提交
1886 1887 1888
}

/*
1889
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1890
 *
1891 1892
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1893
 *
1894
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1895 1896 1897 1898
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1899 1900
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1901 1902 1903 1904
			int cpu)
{
	struct task_struct *task = ctx->task;

1905 1906
	lockdep_assert_held(&ctx->mutex);

1907
	event->ctx = ctx;
1908 1909
	if (event->cpu != -1)
		event->cpu = cpu;
1910

T
Thomas Gleixner 已提交
1911 1912
	if (!task) {
		/*
1913
		 * Per cpu events are installed via an smp call and
1914
		 * the install is always successful.
T
Thomas Gleixner 已提交
1915
		 */
1916
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1917 1918 1919 1920
		return;
	}

retry:
1921 1922
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1923

1924
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1925
	/*
1926 1927
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1928
	 */
1929
	if (ctx->is_active) {
1930
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1931 1932 1933 1934
		goto retry;
	}

	/*
1935 1936
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1937
	 */
1938
	add_event_to_ctx(event, ctx);
1939
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1940 1941
}

1942
/*
1943
 * Put a event into inactive state and update time fields.
1944 1945 1946 1947 1948 1949
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1950
static void __perf_event_mark_enabled(struct perf_event *event)
1951
{
1952
	struct perf_event *sub;
1953
	u64 tstamp = perf_event_time(event);
1954

1955
	event->state = PERF_EVENT_STATE_INACTIVE;
1956
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1957
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1958 1959
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1960
	}
1961 1962
}

1963
/*
1964
 * Cross CPU call to enable a performance event
1965
 */
1966
static int __perf_event_enable(void *info)
1967
{
1968 1969 1970
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1971
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1972
	int err;
1973

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
1984
		return -EINVAL;
1985

1986
	raw_spin_lock(&ctx->lock);
1987
	update_context_time(ctx);
1988

1989
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1990
		goto unlock;
S
Stephane Eranian 已提交
1991 1992 1993 1994

	/*
	 * set current task's cgroup time reference point
	 */
1995
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1996

1997
	__perf_event_mark_enabled(event);
1998

S
Stephane Eranian 已提交
1999 2000 2001
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2002
		goto unlock;
S
Stephane Eranian 已提交
2003
	}
2004

2005
	/*
2006
	 * If the event is in a group and isn't the group leader,
2007
	 * then don't put it on unless the group is on.
2008
	 */
2009
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2010
		goto unlock;
2011

2012
	if (!group_can_go_on(event, cpuctx, 1)) {
2013
		err = -EEXIST;
2014
	} else {
2015
		if (event == leader)
2016
			err = group_sched_in(event, cpuctx, ctx);
2017
		else
2018
			err = event_sched_in(event, cpuctx, ctx);
2019
	}
2020 2021 2022

	if (err) {
		/*
2023
		 * If this event can't go on and it's part of a
2024 2025
		 * group, then the whole group has to come off.
		 */
2026
		if (leader != event) {
2027
			group_sched_out(leader, cpuctx, ctx);
2028 2029
			perf_cpu_hrtimer_restart(cpuctx);
		}
2030
		if (leader->attr.pinned) {
2031
			update_group_times(leader);
2032
			leader->state = PERF_EVENT_STATE_ERROR;
2033
		}
2034 2035
	}

P
Peter Zijlstra 已提交
2036
unlock:
2037
	raw_spin_unlock(&ctx->lock);
2038 2039

	return 0;
2040 2041 2042
}

/*
2043
 * Enable a event.
2044
 *
2045 2046
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2047
 * remains valid.  This condition is satisfied when called through
2048 2049
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2050
 */
2051
void perf_event_enable(struct perf_event *event)
2052
{
2053
	struct perf_event_context *ctx = event->ctx;
2054 2055 2056 2057
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2058
		 * Enable the event on the cpu that it's on
2059
		 */
2060
		cpu_function_call(event->cpu, __perf_event_enable, event);
2061 2062 2063
		return;
	}

2064
	raw_spin_lock_irq(&ctx->lock);
2065
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2066 2067 2068
		goto out;

	/*
2069 2070
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2071 2072 2073 2074
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2075 2076
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2077

P
Peter Zijlstra 已提交
2078
retry:
2079
	if (!ctx->is_active) {
2080
		__perf_event_mark_enabled(event);
2081 2082 2083
		goto out;
	}

2084
	raw_spin_unlock_irq(&ctx->lock);
2085 2086 2087

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2088

2089
	raw_spin_lock_irq(&ctx->lock);
2090 2091

	/*
2092
	 * If the context is active and the event is still off,
2093 2094
	 * we need to retry the cross-call.
	 */
2095 2096 2097 2098 2099 2100
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2101
		goto retry;
2102
	}
2103

P
Peter Zijlstra 已提交
2104
out:
2105
	raw_spin_unlock_irq(&ctx->lock);
2106
}
2107
EXPORT_SYMBOL_GPL(perf_event_enable);
2108

2109
int perf_event_refresh(struct perf_event *event, int refresh)
2110
{
2111
	/*
2112
	 * not supported on inherited events
2113
	 */
2114
	if (event->attr.inherit || !is_sampling_event(event))
2115 2116
		return -EINVAL;

2117 2118
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
2119 2120

	return 0;
2121
}
2122
EXPORT_SYMBOL_GPL(perf_event_refresh);
2123

2124 2125 2126
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2127
{
2128
	struct perf_event *event;
2129
	int is_active = ctx->is_active;
2130

2131
	ctx->is_active &= ~event_type;
2132
	if (likely(!ctx->nr_events))
2133 2134
		return;

2135
	update_context_time(ctx);
S
Stephane Eranian 已提交
2136
	update_cgrp_time_from_cpuctx(cpuctx);
2137
	if (!ctx->nr_active)
2138
		return;
2139

P
Peter Zijlstra 已提交
2140
	perf_pmu_disable(ctx->pmu);
2141
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2142 2143
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2144
	}
2145

2146
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2147
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2148
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2149
	}
P
Peter Zijlstra 已提交
2150
	perf_pmu_enable(ctx->pmu);
2151 2152
}

2153
/*
2154 2155 2156 2157 2158 2159
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2160
 */
2161 2162
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2163
{
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2186 2187
}

2188 2189
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2190 2191 2192
{
	u64 value;

2193
	if (!event->attr.inherit_stat)
2194 2195 2196
		return;

	/*
2197
	 * Update the event value, we cannot use perf_event_read()
2198 2199
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2200
	 * we know the event must be on the current CPU, therefore we
2201 2202
	 * don't need to use it.
	 */
2203 2204
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2205 2206
		event->pmu->read(event);
		/* fall-through */
2207

2208 2209
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2210 2211 2212 2213 2214 2215 2216
		break;

	default:
		break;
	}

	/*
2217
	 * In order to keep per-task stats reliable we need to flip the event
2218 2219
	 * values when we flip the contexts.
	 */
2220 2221 2222
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2223

2224 2225
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2226

2227
	/*
2228
	 * Since we swizzled the values, update the user visible data too.
2229
	 */
2230 2231
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2232 2233
}

2234 2235
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2236
{
2237
	struct perf_event *event, *next_event;
2238 2239 2240 2241

	if (!ctx->nr_stat)
		return;

2242 2243
	update_context_time(ctx);

2244 2245
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2246

2247 2248
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2249

2250 2251
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2252

2253
		__perf_event_sync_stat(event, next_event);
2254

2255 2256
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2257 2258 2259
	}
}

2260 2261
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2262
{
P
Peter Zijlstra 已提交
2263
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2264
	struct perf_event_context *next_ctx;
2265
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2266
	struct perf_cpu_context *cpuctx;
2267
	int do_switch = 1;
T
Thomas Gleixner 已提交
2268

P
Peter Zijlstra 已提交
2269 2270
	if (likely(!ctx))
		return;
2271

P
Peter Zijlstra 已提交
2272 2273
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2274 2275
		return;

2276
	rcu_read_lock();
P
Peter Zijlstra 已提交
2277
	next_ctx = next->perf_event_ctxp[ctxn];
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
	if (!parent && !next_parent)
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2289 2290 2291 2292 2293 2294 2295 2296 2297
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2298 2299
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2300
		if (context_equiv(ctx, next_ctx)) {
2301 2302
			/*
			 * XXX do we need a memory barrier of sorts
2303
			 * wrt to rcu_dereference() of perf_event_ctxp
2304
			 */
P
Peter Zijlstra 已提交
2305 2306
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2307 2308 2309
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2310

2311
			perf_event_sync_stat(ctx, next_ctx);
2312
		}
2313 2314
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2315
	}
2316
unlock:
2317
	rcu_read_unlock();
2318

2319
	if (do_switch) {
2320
		raw_spin_lock(&ctx->lock);
2321
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2322
		cpuctx->task_ctx = NULL;
2323
		raw_spin_unlock(&ctx->lock);
2324
	}
T
Thomas Gleixner 已提交
2325 2326
}

P
Peter Zijlstra 已提交
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2341 2342
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2343 2344 2345 2346 2347
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2348 2349 2350 2351 2352 2353 2354

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2355
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2356 2357
}

2358
static void task_ctx_sched_out(struct perf_event_context *ctx)
2359
{
P
Peter Zijlstra 已提交
2360
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2361

2362 2363
	if (!cpuctx->task_ctx)
		return;
2364 2365 2366 2367

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2368
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2369 2370 2371
	cpuctx->task_ctx = NULL;
}

2372 2373 2374 2375 2376 2377 2378
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2379 2380
}

2381
static void
2382
ctx_pinned_sched_in(struct perf_event_context *ctx,
2383
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2384
{
2385
	struct perf_event *event;
T
Thomas Gleixner 已提交
2386

2387 2388
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2389
			continue;
2390
		if (!event_filter_match(event))
2391 2392
			continue;

S
Stephane Eranian 已提交
2393 2394 2395 2396
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2397
		if (group_can_go_on(event, cpuctx, 1))
2398
			group_sched_in(event, cpuctx, ctx);
2399 2400 2401 2402 2403

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2404 2405 2406
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2407
		}
2408
	}
2409 2410 2411 2412
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2413
		      struct perf_cpu_context *cpuctx)
2414 2415 2416
{
	struct perf_event *event;
	int can_add_hw = 1;
2417

2418 2419 2420
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2421
			continue;
2422 2423
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2424
		 * of events:
2425
		 */
2426
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2427 2428
			continue;

S
Stephane Eranian 已提交
2429 2430 2431 2432
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2433
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2434
			if (group_sched_in(event, cpuctx, ctx))
2435
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2436
		}
T
Thomas Gleixner 已提交
2437
	}
2438 2439 2440 2441 2442
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2443 2444
	     enum event_type_t event_type,
	     struct task_struct *task)
2445
{
S
Stephane Eranian 已提交
2446
	u64 now;
2447
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2448

2449
	ctx->is_active |= event_type;
2450
	if (likely(!ctx->nr_events))
2451
		return;
2452

S
Stephane Eranian 已提交
2453 2454
	now = perf_clock();
	ctx->timestamp = now;
2455
	perf_cgroup_set_timestamp(task, ctx);
2456 2457 2458 2459
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2460
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2461
		ctx_pinned_sched_in(ctx, cpuctx);
2462 2463

	/* Then walk through the lower prio flexible groups */
2464
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2465
		ctx_flexible_sched_in(ctx, cpuctx);
2466 2467
}

2468
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2469 2470
			     enum event_type_t event_type,
			     struct task_struct *task)
2471 2472 2473
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2474
	ctx_sched_in(ctx, cpuctx, event_type, task);
2475 2476
}

S
Stephane Eranian 已提交
2477 2478
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2479
{
P
Peter Zijlstra 已提交
2480
	struct perf_cpu_context *cpuctx;
2481

P
Peter Zijlstra 已提交
2482
	cpuctx = __get_cpu_context(ctx);
2483 2484 2485
	if (cpuctx->task_ctx == ctx)
		return;

2486
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2487
	perf_pmu_disable(ctx->pmu);
2488 2489 2490 2491 2492 2493 2494
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2495 2496
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2497

2498 2499
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2500 2501 2502
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2503 2504 2505 2506
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2507
	perf_pmu_rotate_start(ctx->pmu);
2508 2509
}

2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569
/*
 * When sampling the branck stack in system-wide, it may be necessary
 * to flush the stack on context switch. This happens when the branch
 * stack does not tag its entries with the pid of the current task.
 * Otherwise it becomes impossible to associate a branch entry with a
 * task. This ambiguity is more likely to appear when the branch stack
 * supports priv level filtering and the user sets it to monitor only
 * at the user level (which could be a useful measurement in system-wide
 * mode). In that case, the risk is high of having a branch stack with
 * branch from multiple tasks. Flushing may mean dropping the existing
 * entries or stashing them somewhere in the PMU specific code layer.
 *
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when there is at least one system-wide context
 * with at least one active event using taken branch sampling.
 */
static void perf_branch_stack_sched_in(struct task_struct *prev,
				       struct task_struct *task)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/* no need to flush branch stack if not changing task */
	if (prev == task)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * check if the context has at least one
		 * event using PERF_SAMPLE_BRANCH_STACK
		 */
		if (cpuctx->ctx.nr_branch_stack > 0
		    && pmu->flush_branch_stack) {

			pmu = cpuctx->ctx.pmu;

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->flush_branch_stack();

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2581 2582
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2583 2584 2585 2586 2587 2588 2589 2590 2591
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2592
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2593
	}
S
Stephane Eranian 已提交
2594 2595 2596 2597 2598 2599
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2600
		perf_cgroup_sched_in(prev, task);
2601 2602 2603 2604

	/* check for system-wide branch_stack events */
	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
		perf_branch_stack_sched_in(prev, task);
2605 2606
}

2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2634
#define REDUCE_FLS(a, b)		\
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2674 2675 2676
	if (!divisor)
		return dividend;

2677 2678 2679
	return div64_u64(dividend, divisor);
}

2680 2681 2682
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2683
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2684
{
2685
	struct hw_perf_event *hwc = &event->hw;
2686
	s64 period, sample_period;
2687 2688
	s64 delta;

2689
	period = perf_calculate_period(event, nsec, count);
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2700

2701
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2702 2703 2704
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2705
		local64_set(&hwc->period_left, 0);
2706 2707 2708

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2709
	}
2710 2711
}

2712 2713 2714 2715 2716 2717 2718
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2719
{
2720 2721
	struct perf_event *event;
	struct hw_perf_event *hwc;
2722
	u64 now, period = TICK_NSEC;
2723
	s64 delta;
2724

2725 2726 2727 2728 2729 2730
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2731 2732
		return;

2733
	raw_spin_lock(&ctx->lock);
2734
	perf_pmu_disable(ctx->pmu);
2735

2736
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2737
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2738 2739
			continue;

2740
		if (!event_filter_match(event))
2741 2742
			continue;

2743 2744
		perf_pmu_disable(event->pmu);

2745
		hwc = &event->hw;
2746

2747
		if (hwc->interrupts == MAX_INTERRUPTS) {
2748
			hwc->interrupts = 0;
2749
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2750
			event->pmu->start(event, 0);
2751 2752
		}

2753
		if (!event->attr.freq || !event->attr.sample_freq)
2754
			goto next;
2755

2756 2757 2758 2759 2760
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2761
		now = local64_read(&event->count);
2762 2763
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2764

2765 2766 2767
		/*
		 * restart the event
		 * reload only if value has changed
2768 2769 2770
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2771
		 */
2772
		if (delta > 0)
2773
			perf_adjust_period(event, period, delta, false);
2774 2775

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2776 2777
	next:
		perf_pmu_enable(event->pmu);
2778
	}
2779

2780
	perf_pmu_enable(ctx->pmu);
2781
	raw_spin_unlock(&ctx->lock);
2782 2783
}

2784
/*
2785
 * Round-robin a context's events:
2786
 */
2787
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2788
{
2789 2790 2791 2792 2793 2794
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2795 2796
}

2797
/*
2798 2799 2800
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2801
 */
2802
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2803
{
P
Peter Zijlstra 已提交
2804
	struct perf_event_context *ctx = NULL;
2805
	int rotate = 0, remove = 1;
2806

2807
	if (cpuctx->ctx.nr_events) {
2808
		remove = 0;
2809 2810 2811
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2812

P
Peter Zijlstra 已提交
2813
	ctx = cpuctx->task_ctx;
2814
	if (ctx && ctx->nr_events) {
2815
		remove = 0;
2816 2817 2818
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2819

2820
	if (!rotate)
2821 2822
		goto done;

2823
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2824
	perf_pmu_disable(cpuctx->ctx.pmu);
2825

2826 2827 2828
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2829

2830 2831 2832
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
2833

2834
	perf_event_sched_in(cpuctx, ctx, current);
2835

2836 2837
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2838
done:
2839 2840
	if (remove)
		list_del_init(&cpuctx->rotation_list);
2841 2842

	return rotate;
2843 2844
}

2845 2846 2847
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
2848
	if (atomic_read(&nr_freq_events) ||
2849
	    __this_cpu_read(perf_throttled_count))
2850
		return false;
2851 2852
	else
		return true;
2853 2854 2855
}
#endif

2856 2857 2858 2859
void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2860 2861
	struct perf_event_context *ctx;
	int throttled;
2862

2863 2864
	WARN_ON(!irqs_disabled());

2865 2866 2867
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

2868
	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2869 2870 2871 2872 2873 2874
		ctx = &cpuctx->ctx;
		perf_adjust_freq_unthr_context(ctx, throttled);

		ctx = cpuctx->task_ctx;
		if (ctx)
			perf_adjust_freq_unthr_context(ctx, throttled);
2875
	}
T
Thomas Gleixner 已提交
2876 2877
}

2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

2888
	__perf_event_mark_enabled(event);
2889 2890 2891 2892

	return 1;
}

2893
/*
2894
 * Enable all of a task's events that have been marked enable-on-exec.
2895 2896
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2897
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2898
{
2899
	struct perf_event *event;
2900 2901
	unsigned long flags;
	int enabled = 0;
2902
	int ret;
2903 2904

	local_irq_save(flags);
2905
	if (!ctx || !ctx->nr_events)
2906 2907
		goto out;

2908 2909 2910 2911 2912 2913 2914
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2915
	perf_cgroup_sched_out(current, NULL);
2916

2917
	raw_spin_lock(&ctx->lock);
2918
	task_ctx_sched_out(ctx);
2919

2920
	list_for_each_entry(event, &ctx->event_list, event_entry) {
2921 2922 2923
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2924 2925 2926
	}

	/*
2927
	 * Unclone this context if we enabled any event.
2928
	 */
2929 2930
	if (enabled)
		unclone_ctx(ctx);
2931

2932
	raw_spin_unlock(&ctx->lock);
2933

2934 2935 2936
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2937
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2938
out:
2939 2940 2941
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2942
/*
2943
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2944
 */
2945
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2946
{
2947 2948
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2949
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2950

2951 2952 2953 2954
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2955 2956
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2957 2958 2959 2960
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2961
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2962
	if (ctx->is_active) {
2963
		update_context_time(ctx);
S
Stephane Eranian 已提交
2964 2965
		update_cgrp_time_from_event(event);
	}
2966
	update_event_times(event);
2967 2968
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2969
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2970 2971
}

P
Peter Zijlstra 已提交
2972 2973
static inline u64 perf_event_count(struct perf_event *event)
{
2974
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2975 2976
}

2977
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2978 2979
{
	/*
2980 2981
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2982
	 */
2983 2984 2985 2986
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2987 2988 2989
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2990
		raw_spin_lock_irqsave(&ctx->lock, flags);
2991 2992 2993 2994 2995
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2996
		if (ctx->is_active) {
2997
			update_context_time(ctx);
S
Stephane Eranian 已提交
2998 2999
			update_cgrp_time_from_event(event);
		}
3000
		update_event_times(event);
3001
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3002 3003
	}

P
Peter Zijlstra 已提交
3004
	return perf_event_count(event);
T
Thomas Gleixner 已提交
3005 3006
}

3007
/*
3008
 * Initialize the perf_event context in a task_struct:
3009
 */
3010
static void __perf_event_init_context(struct perf_event_context *ctx)
3011
{
3012
	raw_spin_lock_init(&ctx->lock);
3013
	mutex_init(&ctx->mutex);
3014 3015
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3016 3017
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3033
	}
3034 3035 3036
	ctx->pmu = pmu;

	return ctx;
3037 3038
}

3039 3040 3041 3042 3043
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3044 3045

	rcu_read_lock();
3046
	if (!vpid)
T
Thomas Gleixner 已提交
3047 3048
		task = current;
	else
3049
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3050 3051 3052 3053 3054 3055 3056 3057
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3058 3059 3060 3061
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3062 3063 3064 3065 3066 3067 3068
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3069 3070 3071
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3072
static struct perf_event_context *
M
Matt Helsley 已提交
3073
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
3074
{
3075
	struct perf_event_context *ctx;
3076
	struct perf_cpu_context *cpuctx;
3077
	unsigned long flags;
P
Peter Zijlstra 已提交
3078
	int ctxn, err;
T
Thomas Gleixner 已提交
3079

3080
	if (!task) {
3081
		/* Must be root to operate on a CPU event: */
3082
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3083 3084 3085
			return ERR_PTR(-EACCES);

		/*
3086
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3087 3088 3089
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3090
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3091 3092
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3093
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3094
		ctx = &cpuctx->ctx;
3095
		get_ctx(ctx);
3096
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3097 3098 3099 3100

		return ctx;
	}

P
Peter Zijlstra 已提交
3101 3102 3103 3104 3105
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
3106
retry:
P
Peter Zijlstra 已提交
3107
	ctx = perf_lock_task_context(task, ctxn, &flags);
3108
	if (ctx) {
3109
		unclone_ctx(ctx);
3110
		++ctx->pin_count;
3111
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3112
	} else {
3113
		ctx = alloc_perf_context(pmu, task);
3114 3115 3116
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3117

3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3128
		else {
3129
			get_ctx(ctx);
3130
			++ctx->pin_count;
3131
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3132
		}
3133 3134 3135
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3136
			put_ctx(ctx);
3137 3138 3139 3140

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3141 3142 3143
		}
	}

T
Thomas Gleixner 已提交
3144
	return ctx;
3145

P
Peter Zijlstra 已提交
3146
errout:
3147
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3148 3149
}

L
Li Zefan 已提交
3150 3151
static void perf_event_free_filter(struct perf_event *event);

3152
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3153
{
3154
	struct perf_event *event;
P
Peter Zijlstra 已提交
3155

3156 3157 3158
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3159
	perf_event_free_filter(event);
3160
	kfree(event);
P
Peter Zijlstra 已提交
3161 3162
}

3163
static void ring_buffer_put(struct ring_buffer *rb);
3164
static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
3165

3166
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3167
{
3168 3169 3170 3171 3172 3173 3174 3175 3176 3177
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3178

3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3192 3193
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3194 3195 3196 3197 3198 3199 3200
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3201

3202 3203
static void __free_event(struct perf_event *event)
{
3204
	if (!event->parent) {
3205 3206
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3207
	}
3208

3209 3210 3211 3212 3213 3214 3215 3216
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

	call_rcu(&event->rcu_head, free_event_rcu);
}
3217
static void free_event(struct perf_event *event)
3218
{
3219
	irq_work_sync(&event->pending);
3220

3221
	unaccount_event(event);
3222

3223
	if (event->rb) {
3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
		struct ring_buffer *rb;

		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
		rb = event->rb;
		if (rb) {
			rcu_assign_pointer(event->rb, NULL);
			ring_buffer_detach(event, rb);
			ring_buffer_put(rb); /* could be last */
		}
		mutex_unlock(&event->mmap_mutex);
3240 3241
	}

S
Stephane Eranian 已提交
3242 3243 3244
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
3245

3246
	__free_event(event);
3247 3248
}

3249
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
3250
{
3251
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
3252

3253
	WARN_ON_ONCE(ctx->parent_ctx);
3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3267
	raw_spin_lock_irq(&ctx->lock);
3268
	perf_group_detach(event);
3269
	raw_spin_unlock_irq(&ctx->lock);
3270
	perf_remove_from_context(event);
3271
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
3272

3273
	free_event(event);
T
Thomas Gleixner 已提交
3274 3275 3276

	return 0;
}
3277
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
3278

3279 3280 3281
/*
 * Called when the last reference to the file is gone.
 */
3282
static void put_event(struct perf_event *event)
3283
{
P
Peter Zijlstra 已提交
3284
	struct task_struct *owner;
3285

3286 3287
	if (!atomic_long_dec_and_test(&event->refcount))
		return;
3288

P
Peter Zijlstra 已提交
3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

3322 3323 3324 3325 3326 3327 3328
	perf_event_release_kernel(event);
}

static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3329 3330
}

3331
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3332
{
3333
	struct perf_event *child;
3334 3335
	u64 total = 0;

3336 3337 3338
	*enabled = 0;
	*running = 0;

3339
	mutex_lock(&event->child_mutex);
3340
	total += perf_event_read(event);
3341 3342 3343 3344 3345 3346
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3347
		total += perf_event_read(child);
3348 3349 3350
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3351
	mutex_unlock(&event->child_mutex);
3352 3353 3354

	return total;
}
3355
EXPORT_SYMBOL_GPL(perf_event_read_value);
3356

3357
static int perf_event_read_group(struct perf_event *event,
3358 3359
				   u64 read_format, char __user *buf)
{
3360
	struct perf_event *leader = event->group_leader, *sub;
3361 3362
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3363
	u64 values[5];
3364
	u64 count, enabled, running;
3365

3366
	mutex_lock(&ctx->mutex);
3367
	count = perf_event_read_value(leader, &enabled, &running);
3368 3369

	values[n++] = 1 + leader->nr_siblings;
3370 3371 3372 3373
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3374 3375 3376
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3377 3378 3379 3380

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3381
		goto unlock;
3382

3383
	ret = size;
3384

3385
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3386
		n = 0;
3387

3388
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3389 3390 3391 3392 3393
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3394
		if (copy_to_user(buf + ret, values, size)) {
3395 3396 3397
			ret = -EFAULT;
			goto unlock;
		}
3398 3399

		ret += size;
3400
	}
3401 3402
unlock:
	mutex_unlock(&ctx->mutex);
3403

3404
	return ret;
3405 3406
}

3407
static int perf_event_read_one(struct perf_event *event,
3408 3409
				 u64 read_format, char __user *buf)
{
3410
	u64 enabled, running;
3411 3412 3413
	u64 values[4];
	int n = 0;

3414 3415 3416 3417 3418
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3419
	if (read_format & PERF_FORMAT_ID)
3420
		values[n++] = primary_event_id(event);
3421 3422 3423 3424 3425 3426 3427

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3428
/*
3429
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3430 3431
 */
static ssize_t
3432
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3433
{
3434
	u64 read_format = event->attr.read_format;
3435
	int ret;
T
Thomas Gleixner 已提交
3436

3437
	/*
3438
	 * Return end-of-file for a read on a event that is in
3439 3440 3441
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3442
	if (event->state == PERF_EVENT_STATE_ERROR)
3443 3444
		return 0;

3445
	if (count < event->read_size)
3446 3447
		return -ENOSPC;

3448
	WARN_ON_ONCE(event->ctx->parent_ctx);
3449
	if (read_format & PERF_FORMAT_GROUP)
3450
		ret = perf_event_read_group(event, read_format, buf);
3451
	else
3452
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3453

3454
	return ret;
T
Thomas Gleixner 已提交
3455 3456 3457 3458 3459
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3460
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3461

3462
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3463 3464 3465 3466
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3467
	struct perf_event *event = file->private_data;
3468
	struct ring_buffer *rb;
3469
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3470

3471
	/*
3472 3473
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3474 3475
	 */
	mutex_lock(&event->mmap_mutex);
3476 3477
	rb = event->rb;
	if (rb)
3478
		events = atomic_xchg(&rb->poll, 0);
3479 3480
	mutex_unlock(&event->mmap_mutex);

3481
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3482 3483 3484 3485

	return events;
}

3486
static void perf_event_reset(struct perf_event *event)
3487
{
3488
	(void)perf_event_read(event);
3489
	local64_set(&event->count, 0);
3490
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3491 3492
}

3493
/*
3494 3495 3496 3497
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3498
 */
3499 3500
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3501
{
3502
	struct perf_event *child;
P
Peter Zijlstra 已提交
3503

3504 3505 3506 3507
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3508
		func(child);
3509
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3510 3511
}

3512 3513
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3514
{
3515 3516
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3517

3518 3519
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3520
	event = event->group_leader;
3521

3522 3523
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3524
		perf_event_for_each_child(sibling, func);
3525
	mutex_unlock(&ctx->mutex);
3526 3527
}

3528
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3529
{
3530
	struct perf_event_context *ctx = event->ctx;
3531
	int ret = 0, active;
3532 3533
	u64 value;

3534
	if (!is_sampling_event(event))
3535 3536
		return -EINVAL;

3537
	if (copy_from_user(&value, arg, sizeof(value)))
3538 3539 3540 3541 3542
		return -EFAULT;

	if (!value)
		return -EINVAL;

3543
	raw_spin_lock_irq(&ctx->lock);
3544 3545
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3546 3547 3548 3549
			ret = -EINVAL;
			goto unlock;
		}

3550
		event->attr.sample_freq = value;
3551
	} else {
3552 3553
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3554
	}
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}

3569
unlock:
3570
	raw_spin_unlock_irq(&ctx->lock);
3571 3572 3573 3574

	return ret;
}

3575 3576
static const struct file_operations perf_fops;

3577
static inline int perf_fget_light(int fd, struct fd *p)
3578
{
3579 3580 3581
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3582

3583 3584 3585
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3586
	}
3587 3588
	*p = f;
	return 0;
3589 3590 3591 3592
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3593
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3594

3595 3596
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3597 3598
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3599
	u32 flags = arg;
3600 3601

	switch (cmd) {
3602 3603
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3604
		break;
3605 3606
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3607
		break;
3608 3609
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3610
		break;
P
Peter Zijlstra 已提交
3611

3612 3613
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3614

3615 3616
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3617

3618 3619 3620 3621 3622 3623 3624 3625 3626
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

3627
	case PERF_EVENT_IOC_SET_OUTPUT:
3628 3629 3630
	{
		int ret;
		if (arg != -1) {
3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
3641 3642 3643
		}
		return ret;
	}
3644

L
Li Zefan 已提交
3645 3646 3647
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3648
	default:
P
Peter Zijlstra 已提交
3649
		return -ENOTTY;
3650
	}
P
Peter Zijlstra 已提交
3651 3652

	if (flags & PERF_IOC_FLAG_GROUP)
3653
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3654
	else
3655
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3656 3657

	return 0;
3658 3659
}

3660
int perf_event_task_enable(void)
3661
{
3662
	struct perf_event *event;
3663

3664 3665 3666 3667
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3668 3669 3670 3671

	return 0;
}

3672
int perf_event_task_disable(void)
3673
{
3674
	struct perf_event *event;
3675

3676 3677 3678 3679
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3680 3681 3682 3683

	return 0;
}

3684
static int perf_event_index(struct perf_event *event)
3685
{
P
Peter Zijlstra 已提交
3686 3687 3688
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3689
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3690 3691
		return 0;

3692
	return event->pmu->event_idx(event);
3693 3694
}

3695
static void calc_timer_values(struct perf_event *event,
3696
				u64 *now,
3697 3698
				u64 *enabled,
				u64 *running)
3699
{
3700
	u64 ctx_time;
3701

3702 3703
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
3704 3705 3706 3707
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);

unlock:
	rcu_read_unlock();
}

3728
void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3729 3730 3731
{
}

3732 3733 3734 3735 3736
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3737
void perf_event_update_userpage(struct perf_event *event)
3738
{
3739
	struct perf_event_mmap_page *userpg;
3740
	struct ring_buffer *rb;
3741
	u64 enabled, running, now;
3742 3743

	rcu_read_lock();
3744 3745 3746 3747
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

3748 3749 3750 3751 3752 3753 3754 3755 3756
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
3757
	calc_timer_values(event, &now, &enabled, &running);
3758

3759
	userpg = rb->user_page;
3760 3761 3762 3763 3764
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3765
	++userpg->lock;
3766
	barrier();
3767
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3768
	userpg->offset = perf_event_count(event);
3769
	if (userpg->index)
3770
		userpg->offset -= local64_read(&event->hw.prev_count);
3771

3772
	userpg->time_enabled = enabled +
3773
			atomic64_read(&event->child_total_time_enabled);
3774

3775
	userpg->time_running = running +
3776
			atomic64_read(&event->child_total_time_running);
3777

3778
	arch_perf_update_userpage(userpg, now);
3779

3780
	barrier();
3781
	++userpg->lock;
3782
	preempt_enable();
3783
unlock:
3784
	rcu_read_unlock();
3785 3786
}

3787 3788 3789
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3790
	struct ring_buffer *rb;
3791 3792 3793 3794 3795 3796 3797 3798 3799
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3800 3801
	rb = rcu_dereference(event->rb);
	if (!rb)
3802 3803 3804 3805 3806
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3807
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3822 3823 3824 3825 3826 3827 3828 3829 3830
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (!list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
3831 3832
	if (list_empty(&event->rb_entry))
		list_add(&event->rb_entry, &rb->event_list);
3833 3834 3835
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

3836
static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
{
	unsigned long flags;

	if (list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	list_del_init(&event->rb_entry);
	wake_up_all(&event->waitq);
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
3855 3856 3857 3858
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
3859 3860 3861
	rcu_read_unlock();
}

3862
static void rb_free_rcu(struct rcu_head *rcu_head)
3863
{
3864
	struct ring_buffer *rb;
3865

3866 3867
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3868 3869
}

3870
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3871
{
3872
	struct ring_buffer *rb;
3873

3874
	rcu_read_lock();
3875 3876 3877 3878
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3879 3880 3881
	}
	rcu_read_unlock();

3882
	return rb;
3883 3884
}

3885
static void ring_buffer_put(struct ring_buffer *rb)
3886
{
3887
	if (!atomic_dec_and_test(&rb->refcount))
3888
		return;
3889

3890
	WARN_ON_ONCE(!list_empty(&rb->event_list));
3891

3892
	call_rcu(&rb->rcu_head, rb_free_rcu);
3893 3894 3895 3896
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3897
	struct perf_event *event = vma->vm_file->private_data;
3898

3899
	atomic_inc(&event->mmap_count);
3900
	atomic_inc(&event->rb->mmap_count);
3901 3902
}

3903 3904 3905 3906 3907 3908 3909 3910
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
3911 3912
static void perf_mmap_close(struct vm_area_struct *vma)
{
3913
	struct perf_event *event = vma->vm_file->private_data;
3914

3915 3916 3917 3918
	struct ring_buffer *rb = event->rb;
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
3919

3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
		return;

	/* Detach current event from the buffer. */
	rcu_assign_pointer(event->rb, NULL);
	ring_buffer_detach(event, rb);
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
	if (atomic_read(&rb->mmap_count)) {
		ring_buffer_put(rb); /* can't be last */
		return;
	}
3935

3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
3952

3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
		if (event->rb == rb) {
			rcu_assign_pointer(event->rb, NULL);
			ring_buffer_detach(event, rb);
			ring_buffer_put(rb); /* can't be last, we still have one */
P
Peter Zijlstra 已提交
3968
		}
3969
		mutex_unlock(&event->mmap_mutex);
3970
		put_event(event);
3971

3972 3973 3974 3975 3976
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
3977
	}
3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

	ring_buffer_put(rb); /* could be last */
3994 3995
}

3996
static const struct vm_operations_struct perf_mmap_vmops = {
3997 3998 3999 4000
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4001 4002 4003 4004
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4005
	struct perf_event *event = file->private_data;
4006
	unsigned long user_locked, user_lock_limit;
4007
	struct user_struct *user = current_user();
4008
	unsigned long locked, lock_limit;
4009
	struct ring_buffer *rb;
4010 4011
	unsigned long vma_size;
	unsigned long nr_pages;
4012
	long user_extra, extra;
4013
	int ret = 0, flags = 0;
4014

4015 4016 4017
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4018
	 * same rb.
4019 4020 4021 4022
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4023
	if (!(vma->vm_flags & VM_SHARED))
4024
		return -EINVAL;
4025 4026 4027 4028

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

4029
	/*
4030
	 * If we have rb pages ensure they're a power-of-two number, so we
4031 4032 4033
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4034 4035
		return -EINVAL;

4036
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4037 4038
		return -EINVAL;

4039 4040
	if (vma->vm_pgoff != 0)
		return -EINVAL;
4041

4042
	WARN_ON_ONCE(event->ctx->parent_ctx);
4043
again:
4044
	mutex_lock(&event->mmap_mutex);
4045
	if (event->rb) {
4046
		if (event->rb->nr_pages != nr_pages) {
4047
			ret = -EINVAL;
4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4061 4062 4063
		goto unlock;
	}

4064
	user_extra = nr_pages + 1;
4065
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4066 4067 4068 4069 4070 4071

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4072
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4073

4074 4075 4076
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4077

4078
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4079
	lock_limit >>= PAGE_SHIFT;
4080
	locked = vma->vm_mm->pinned_vm + extra;
4081

4082 4083
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4084 4085 4086
		ret = -EPERM;
		goto unlock;
	}
4087

4088
	WARN_ON(event->rb);
4089

4090
	if (vma->vm_flags & VM_WRITE)
4091
		flags |= RING_BUFFER_WRITABLE;
4092

4093 4094 4095 4096
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

4097
	if (!rb) {
4098
		ret = -ENOMEM;
4099
		goto unlock;
4100
	}
P
Peter Zijlstra 已提交
4101

4102
	atomic_set(&rb->mmap_count, 1);
P
Peter Zijlstra 已提交
4103 4104
	rb->mmap_locked = extra;
	rb->mmap_user = get_current_user();
4105

4106
	atomic_long_add(user_extra, &user->locked_vm);
P
Peter Zijlstra 已提交
4107 4108
	vma->vm_mm->pinned_vm += extra;

4109
	ring_buffer_attach(event, rb);
P
Peter Zijlstra 已提交
4110
	rcu_assign_pointer(event->rb, rb);
4111

4112
	perf_event_init_userpage(event);
4113 4114
	perf_event_update_userpage(event);

4115
unlock:
4116 4117
	if (!ret)
		atomic_inc(&event->mmap_count);
4118
	mutex_unlock(&event->mmap_mutex);
4119

4120 4121 4122 4123
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4124
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4125
	vma->vm_ops = &perf_mmap_vmops;
4126 4127

	return ret;
4128 4129
}

P
Peter Zijlstra 已提交
4130 4131
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4132
	struct inode *inode = file_inode(filp);
4133
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4134 4135 4136
	int retval;

	mutex_lock(&inode->i_mutex);
4137
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4138 4139 4140 4141 4142 4143 4144 4145
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4146
static const struct file_operations perf_fops = {
4147
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4148 4149 4150
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4151 4152
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
4153
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4154
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4155 4156
};

4157
/*
4158
 * Perf event wakeup
4159 4160 4161 4162 4163
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4164
void perf_event_wakeup(struct perf_event *event)
4165
{
4166
	ring_buffer_wakeup(event);
4167

4168 4169 4170
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
4171
	}
4172 4173
}

4174
static void perf_pending_event(struct irq_work *entry)
4175
{
4176 4177
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4178

4179 4180 4181
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4182 4183
	}

4184 4185 4186
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4187 4188 4189
	}
}

4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

static void perf_sample_regs_user(struct perf_regs_user *regs_user,
				  struct pt_regs *regs)
{
	if (!user_mode(regs)) {
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		regs_user->regs = regs;
		regs_user->abi  = perf_reg_abi(current);
	}
}

4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

4337 4338 4339
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

4355
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4367 4368 4369
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
4394 4395 4396

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
4397 4398
}

4399 4400 4401
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
4402 4403 4404 4405 4406
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4407
static void perf_output_read_one(struct perf_output_handle *handle,
4408 4409
				 struct perf_event *event,
				 u64 enabled, u64 running)
4410
{
4411
	u64 read_format = event->attr.read_format;
4412 4413 4414
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4415
	values[n++] = perf_event_count(event);
4416
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4417
		values[n++] = enabled +
4418
			atomic64_read(&event->child_total_time_enabled);
4419 4420
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4421
		values[n++] = running +
4422
			atomic64_read(&event->child_total_time_running);
4423 4424
	}
	if (read_format & PERF_FORMAT_ID)
4425
		values[n++] = primary_event_id(event);
4426

4427
	__output_copy(handle, values, n * sizeof(u64));
4428 4429 4430
}

/*
4431
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4432 4433
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4434 4435
			    struct perf_event *event,
			    u64 enabled, u64 running)
4436
{
4437 4438
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4439 4440 4441 4442 4443 4444
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4445
		values[n++] = enabled;
4446 4447

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4448
		values[n++] = running;
4449

4450
	if (leader != event)
4451 4452
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4453
	values[n++] = perf_event_count(leader);
4454
	if (read_format & PERF_FORMAT_ID)
4455
		values[n++] = primary_event_id(leader);
4456

4457
	__output_copy(handle, values, n * sizeof(u64));
4458

4459
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4460 4461
		n = 0;

4462 4463
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
4464 4465
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4466
		values[n++] = perf_event_count(sub);
4467
		if (read_format & PERF_FORMAT_ID)
4468
			values[n++] = primary_event_id(sub);
4469

4470
		__output_copy(handle, values, n * sizeof(u64));
4471 4472 4473
	}
}

4474 4475 4476
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4477
static void perf_output_read(struct perf_output_handle *handle,
4478
			     struct perf_event *event)
4479
{
4480
	u64 enabled = 0, running = 0, now;
4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4492
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4493
		calc_timer_values(event, &now, &enabled, &running);
4494

4495
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4496
		perf_output_read_group(handle, event, enabled, running);
4497
	else
4498
		perf_output_read_one(handle, event, enabled, running);
4499 4500
}

4501 4502 4503
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4504
			struct perf_event *event)
4505 4506 4507 4508 4509
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

4510 4511 4512
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4538
		perf_output_read(handle, event);
4539 4540 4541 4542 4543 4544 4545 4546 4547 4548

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4549
			__output_copy(handle, data->callchain, size);
4550 4551 4552 4553 4554 4555 4556 4557 4558
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4559 4560
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4572

4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
4607

4608
	if (sample_type & PERF_SAMPLE_STACK_USER) {
4609 4610 4611
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
4612
	}
A
Andi Kleen 已提交
4613 4614 4615

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
4616 4617 4618

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
4619

A
Andi Kleen 已提交
4620 4621 4622
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
4636 4637 4638 4639
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4640
			 struct perf_event *event,
4641
			 struct pt_regs *regs)
4642
{
4643
	u64 sample_type = event->attr.sample_type;
4644

4645
	header->type = PERF_RECORD_SAMPLE;
4646
	header->size = sizeof(*header) + event->header_size;
4647 4648 4649

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4650

4651
	__perf_event_header__init_id(header, data, event);
4652

4653
	if (sample_type & PERF_SAMPLE_IP)
4654 4655
		data->ip = perf_instruction_pointer(regs);

4656
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4657
		int size = 1;
4658

4659
		data->callchain = perf_callchain(event, regs);
4660 4661 4662 4663 4664

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4665 4666
	}

4667
	if (sample_type & PERF_SAMPLE_RAW) {
4668 4669 4670 4671 4672 4673 4674 4675
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4676
		header->size += size;
4677
	}
4678 4679 4680 4681 4682 4683 4684 4685 4686

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_user(&data->regs_user, regs);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		struct perf_regs_user *uregs = &data->regs_user;
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		if (!uregs->abi)
			perf_sample_regs_user(uregs, regs);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
						     uregs->regs);

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
4730
}
4731

4732
static void perf_event_output(struct perf_event *event,
4733 4734 4735 4736 4737
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4738

4739 4740 4741
	/* protect the callchain buffers */
	rcu_read_lock();

4742
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4743

4744
	if (perf_output_begin(&handle, event, header.size))
4745
		goto exit;
4746

4747
	perf_output_sample(&handle, &header, data, event);
4748

4749
	perf_output_end(&handle);
4750 4751 4752

exit:
	rcu_read_unlock();
4753 4754
}

4755
/*
4756
 * read event_id
4757 4758 4759 4760 4761 4762 4763 4764 4765 4766
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4767
perf_event_read_event(struct perf_event *event,
4768 4769 4770
			struct task_struct *task)
{
	struct perf_output_handle handle;
4771
	struct perf_sample_data sample;
4772
	struct perf_read_event read_event = {
4773
		.header = {
4774
			.type = PERF_RECORD_READ,
4775
			.misc = 0,
4776
			.size = sizeof(read_event) + event->read_size,
4777
		},
4778 4779
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4780
	};
4781
	int ret;
4782

4783
	perf_event_header__init_id(&read_event.header, &sample, event);
4784
	ret = perf_output_begin(&handle, event, read_event.header.size);
4785 4786 4787
	if (ret)
		return;

4788
	perf_output_put(&handle, read_event);
4789
	perf_output_read(&handle, event);
4790
	perf_event__output_id_sample(event, &handle, &sample);
4791

4792 4793 4794
	perf_output_end(&handle);
}

4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
4809
		output(event, data);
4810 4811 4812 4813
	}
}

static void
4814
perf_event_aux(perf_event_aux_output_cb output, void *data,
4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
4827
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
4828 4829 4830 4831 4832 4833 4834
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
4835
			perf_event_aux_ctx(ctx, output, data);
4836 4837 4838 4839 4840 4841
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
4842
		perf_event_aux_ctx(task_ctx, output, data);
4843 4844 4845 4846 4847
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
4848
/*
P
Peter Zijlstra 已提交
4849 4850
 * task tracking -- fork/exit
 *
4851
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4852 4853
 */

P
Peter Zijlstra 已提交
4854
struct perf_task_event {
4855
	struct task_struct		*task;
4856
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4857 4858 4859 4860 4861 4862

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4863 4864
		u32				tid;
		u32				ptid;
4865
		u64				time;
4866
	} event_id;
P
Peter Zijlstra 已提交
4867 4868
};

4869 4870
static int perf_event_task_match(struct perf_event *event)
{
4871 4872 4873
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
4874 4875
}

4876
static void perf_event_task_output(struct perf_event *event,
4877
				   void *data)
P
Peter Zijlstra 已提交
4878
{
4879
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
4880
	struct perf_output_handle handle;
4881
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4882
	struct task_struct *task = task_event->task;
4883
	int ret, size = task_event->event_id.header.size;
4884

4885 4886 4887
	if (!perf_event_task_match(event))
		return;

4888
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4889

4890
	ret = perf_output_begin(&handle, event,
4891
				task_event->event_id.header.size);
4892
	if (ret)
4893
		goto out;
P
Peter Zijlstra 已提交
4894

4895 4896
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4897

4898 4899
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4900

4901
	perf_output_put(&handle, task_event->event_id);
4902

4903 4904
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4905
	perf_output_end(&handle);
4906 4907
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4908 4909
}

4910 4911
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4912
			      int new)
P
Peter Zijlstra 已提交
4913
{
P
Peter Zijlstra 已提交
4914
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4915

4916 4917 4918
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4919 4920
		return;

P
Peter Zijlstra 已提交
4921
	task_event = (struct perf_task_event){
4922 4923
		.task	  = task,
		.task_ctx = task_ctx,
4924
		.event_id    = {
P
Peter Zijlstra 已提交
4925
			.header = {
4926
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4927
				.misc = 0,
4928
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4929
			},
4930 4931
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4932 4933
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4934
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4935 4936 4937
		},
	};

4938
	perf_event_aux(perf_event_task_output,
4939 4940
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
4941 4942
}

4943
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4944
{
4945
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4946 4947
}

4948 4949 4950 4951 4952
/*
 * comm tracking
 */

struct perf_comm_event {
4953 4954
	struct task_struct	*task;
	char			*comm;
4955 4956 4957 4958 4959 4960 4961
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4962
	} event_id;
4963 4964
};

4965 4966 4967 4968 4969
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

4970
static void perf_event_comm_output(struct perf_event *event,
4971
				   void *data)
4972
{
4973
	struct perf_comm_event *comm_event = data;
4974
	struct perf_output_handle handle;
4975
	struct perf_sample_data sample;
4976
	int size = comm_event->event_id.header.size;
4977 4978
	int ret;

4979 4980 4981
	if (!perf_event_comm_match(event))
		return;

4982 4983
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4984
				comm_event->event_id.header.size);
4985 4986

	if (ret)
4987
		goto out;
4988

4989 4990
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4991

4992
	perf_output_put(&handle, comm_event->event_id);
4993
	__output_copy(&handle, comm_event->comm,
4994
				   comm_event->comm_size);
4995 4996 4997

	perf_event__output_id_sample(event, &handle, &sample);

4998
	perf_output_end(&handle);
4999 5000
out:
	comm_event->event_id.header.size = size;
5001 5002
}

5003
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5004
{
5005
	char comm[TASK_COMM_LEN];
5006 5007
	unsigned int size;

5008
	memset(comm, 0, sizeof(comm));
5009
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5010
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5011 5012 5013 5014

	comm_event->comm = comm;
	comm_event->comm_size = size;

5015
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5016

5017
	perf_event_aux(perf_event_comm_output,
5018 5019
		       comm_event,
		       NULL);
5020 5021
}

5022
void perf_event_comm(struct task_struct *task)
5023
{
5024
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
5025 5026
	struct perf_event_context *ctx;
	int ctxn;
5027

5028
	rcu_read_lock();
P
Peter Zijlstra 已提交
5029 5030 5031 5032
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
5033

P
Peter Zijlstra 已提交
5034 5035
		perf_event_enable_on_exec(ctx);
	}
5036
	rcu_read_unlock();
5037

5038
	if (!atomic_read(&nr_comm_events))
5039
		return;
5040

5041
	comm_event = (struct perf_comm_event){
5042
		.task	= task,
5043 5044
		/* .comm      */
		/* .comm_size */
5045
		.event_id  = {
5046
			.header = {
5047
				.type = PERF_RECORD_COMM,
5048 5049 5050 5051 5052
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
5053 5054 5055
		},
	};

5056
	perf_event_comm_event(&comm_event);
5057 5058
}

5059 5060 5061 5062 5063
/*
 * mmap tracking
 */

struct perf_mmap_event {
5064 5065 5066 5067
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5068 5069 5070
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5071 5072 5073 5074 5075 5076 5077 5078 5079

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5080
	} event_id;
5081 5082
};

5083 5084 5085 5086 5087 5088 5089 5090
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5091
	       (executable && (event->attr.mmap || event->attr.mmap2));
5092 5093
}

5094
static void perf_event_mmap_output(struct perf_event *event,
5095
				   void *data)
5096
{
5097
	struct perf_mmap_event *mmap_event = data;
5098
	struct perf_output_handle handle;
5099
	struct perf_sample_data sample;
5100
	int size = mmap_event->event_id.header.size;
5101
	int ret;
5102

5103 5104 5105
	if (!perf_event_mmap_match(event, data))
		return;

5106 5107 5108 5109 5110
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5111
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5112 5113
	}

5114 5115
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5116
				mmap_event->event_id.header.size);
5117
	if (ret)
5118
		goto out;
5119

5120 5121
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5122

5123
	perf_output_put(&handle, mmap_event->event_id);
5124 5125 5126 5127 5128 5129 5130 5131

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
	}

5132
	__output_copy(&handle, mmap_event->file_name,
5133
				   mmap_event->file_size);
5134 5135 5136

	perf_event__output_id_sample(event, &handle, &sample);

5137
	perf_output_end(&handle);
5138 5139
out:
	mmap_event->event_id.header.size = size;
5140 5141
}

5142
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5143
{
5144 5145
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5146 5147
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5148 5149 5150
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5151
	char *name;
5152

5153
	if (file) {
5154 5155
		struct inode *inode;
		dev_t dev;
5156

5157
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5158
		if (!buf) {
5159 5160
			name = "//enomem";
			goto cpy_name;
5161
		}
5162
		/*
5163
		 * d_path() works from the end of the rb backwards, so we
5164 5165 5166
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
5167
		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5168
		if (IS_ERR(name)) {
5169 5170
			name = "//toolong";
			goto cpy_name;
5171
		}
5172 5173 5174 5175 5176 5177
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5178
		goto got_name;
5179
	} else {
5180
		name = (char *)arch_vma_name(vma);
5181 5182
		if (name)
			goto cpy_name;
5183

5184
		if (vma->vm_start <= vma->vm_mm->start_brk &&
5185
				vma->vm_end >= vma->vm_mm->brk) {
5186 5187
			name = "[heap]";
			goto cpy_name;
5188 5189
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
5190
				vma->vm_end >= vma->vm_mm->start_stack) {
5191 5192
			name = "[stack]";
			goto cpy_name;
5193 5194
		}

5195 5196
		name = "//anon";
		goto cpy_name;
5197 5198
	}

5199 5200 5201
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
5202
got_name:
5203 5204 5205 5206 5207 5208 5209 5210
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
5211 5212 5213

	mmap_event->file_name = name;
	mmap_event->file_size = size;
5214 5215 5216 5217
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
5218

5219 5220 5221
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

5222
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5223

5224
	perf_event_aux(perf_event_mmap_output,
5225 5226
		       mmap_event,
		       NULL);
5227

5228 5229 5230
	kfree(buf);
}

5231
void perf_event_mmap(struct vm_area_struct *vma)
5232
{
5233 5234
	struct perf_mmap_event mmap_event;

5235
	if (!atomic_read(&nr_mmap_events))
5236 5237 5238
		return;

	mmap_event = (struct perf_mmap_event){
5239
		.vma	= vma,
5240 5241
		/* .file_name */
		/* .file_size */
5242
		.event_id  = {
5243
			.header = {
5244
				.type = PERF_RECORD_MMAP,
5245
				.misc = PERF_RECORD_MISC_USER,
5246 5247 5248 5249
				/* .size */
			},
			/* .pid */
			/* .tid */
5250 5251
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
5252
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5253
		},
5254 5255 5256 5257
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
5258 5259
	};

5260
	perf_event_mmap_event(&mmap_event);
5261 5262
}

5263 5264 5265 5266
/*
 * IRQ throttle logging
 */

5267
static void perf_log_throttle(struct perf_event *event, int enable)
5268 5269
{
	struct perf_output_handle handle;
5270
	struct perf_sample_data sample;
5271 5272 5273 5274 5275
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
5276
		u64				id;
5277
		u64				stream_id;
5278 5279
	} throttle_event = {
		.header = {
5280
			.type = PERF_RECORD_THROTTLE,
5281 5282 5283
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
5284
		.time		= perf_clock(),
5285 5286
		.id		= primary_event_id(event),
		.stream_id	= event->id,
5287 5288
	};

5289
	if (enable)
5290
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5291

5292 5293 5294
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
5295
				throttle_event.header.size);
5296 5297 5298 5299
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
5300
	perf_event__output_id_sample(event, &handle, &sample);
5301 5302 5303
	perf_output_end(&handle);
}

5304
/*
5305
 * Generic event overflow handling, sampling.
5306 5307
 */

5308
static int __perf_event_overflow(struct perf_event *event,
5309 5310
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
5311
{
5312 5313
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
5314
	u64 seq;
5315 5316
	int ret = 0;

5317 5318 5319 5320 5321 5322 5323
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

5324 5325 5326 5327 5328 5329 5330 5331 5332
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
5333 5334
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
5335
			tick_nohz_full_kick();
5336 5337
			ret = 1;
		}
5338
	}
5339

5340
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
5341
		u64 now = perf_clock();
5342
		s64 delta = now - hwc->freq_time_stamp;
5343

5344
		hwc->freq_time_stamp = now;
5345

5346
		if (delta > 0 && delta < 2*TICK_NSEC)
5347
			perf_adjust_period(event, delta, hwc->last_period, true);
5348 5349
	}

5350 5351
	/*
	 * XXX event_limit might not quite work as expected on inherited
5352
	 * events
5353 5354
	 */

5355 5356
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
5357
		ret = 1;
5358
		event->pending_kill = POLL_HUP;
5359 5360
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
5361 5362
	}

5363
	if (event->overflow_handler)
5364
		event->overflow_handler(event, data, regs);
5365
	else
5366
		perf_event_output(event, data, regs);
5367

P
Peter Zijlstra 已提交
5368
	if (event->fasync && event->pending_kill) {
5369 5370
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
5371 5372
	}

5373
	return ret;
5374 5375
}

5376
int perf_event_overflow(struct perf_event *event,
5377 5378
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5379
{
5380
	return __perf_event_overflow(event, 1, data, regs);
5381 5382
}

5383
/*
5384
 * Generic software event infrastructure
5385 5386
 */

5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5398
/*
5399 5400
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5401 5402 5403 5404
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5405
u64 perf_swevent_set_period(struct perf_event *event)
5406
{
5407
	struct hw_perf_event *hwc = &event->hw;
5408 5409 5410 5411 5412
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5413 5414

again:
5415
	old = val = local64_read(&hwc->period_left);
5416 5417
	if (val < 0)
		return 0;
5418

5419 5420 5421
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5422
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5423
		goto again;
5424

5425
	return nr;
5426 5427
}

5428
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5429
				    struct perf_sample_data *data,
5430
				    struct pt_regs *regs)
5431
{
5432
	struct hw_perf_event *hwc = &event->hw;
5433
	int throttle = 0;
5434

5435 5436
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5437

5438 5439
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5440

5441
	for (; overflow; overflow--) {
5442
		if (__perf_event_overflow(event, throttle,
5443
					    data, regs)) {
5444 5445 5446 5447 5448 5449
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5450
		throttle = 1;
5451
	}
5452 5453
}

P
Peter Zijlstra 已提交
5454
static void perf_swevent_event(struct perf_event *event, u64 nr,
5455
			       struct perf_sample_data *data,
5456
			       struct pt_regs *regs)
5457
{
5458
	struct hw_perf_event *hwc = &event->hw;
5459

5460
	local64_add(nr, &event->count);
5461

5462 5463 5464
	if (!regs)
		return;

5465
	if (!is_sampling_event(event))
5466
		return;
5467

5468 5469 5470 5471 5472 5473
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5474
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5475
		return perf_swevent_overflow(event, 1, data, regs);
5476

5477
	if (local64_add_negative(nr, &hwc->period_left))
5478
		return;
5479

5480
	perf_swevent_overflow(event, 0, data, regs);
5481 5482
}

5483 5484 5485
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5486
	if (event->hw.state & PERF_HES_STOPPED)
5487
		return 1;
P
Peter Zijlstra 已提交
5488

5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5500
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5501
				enum perf_type_id type,
L
Li Zefan 已提交
5502 5503 5504
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5505
{
5506
	if (event->attr.type != type)
5507
		return 0;
5508

5509
	if (event->attr.config != event_id)
5510 5511
		return 0;

5512 5513
	if (perf_exclude_event(event, regs))
		return 0;
5514 5515 5516 5517

	return 1;
}

5518 5519 5520 5521 5522 5523 5524
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5525 5526
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5527
{
5528 5529 5530 5531
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5532

5533 5534
/* For the read side: events when they trigger */
static inline struct hlist_head *
5535
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5536 5537
{
	struct swevent_hlist *hlist;
5538

5539
	hlist = rcu_dereference(swhash->swevent_hlist);
5540 5541 5542
	if (!hlist)
		return NULL;

5543 5544 5545 5546 5547
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5548
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5549 5550 5551 5552 5553 5554 5555 5556 5557 5558
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5559
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5560 5561 5562 5563 5564
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5565 5566 5567
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5568
				    u64 nr,
5569 5570
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5571
{
5572
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5573
	struct perf_event *event;
5574
	struct hlist_head *head;
5575

5576
	rcu_read_lock();
5577
	head = find_swevent_head_rcu(swhash, type, event_id);
5578 5579 5580
	if (!head)
		goto end;

5581
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
5582
		if (perf_swevent_match(event, type, event_id, data, regs))
5583
			perf_swevent_event(event, nr, data, regs);
5584
	}
5585 5586
end:
	rcu_read_unlock();
5587 5588
}

5589
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5590
{
5591
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5592

5593
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5594
}
I
Ingo Molnar 已提交
5595
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5596

5597
inline void perf_swevent_put_recursion_context(int rctx)
5598
{
5599
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5600

5601
	put_recursion_context(swhash->recursion, rctx);
5602
}
5603

5604
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5605
{
5606
	struct perf_sample_data data;
5607 5608
	int rctx;

5609
	preempt_disable_notrace();
5610 5611 5612
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5613

5614
	perf_sample_data_init(&data, addr, 0);
5615

5616
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5617 5618

	perf_swevent_put_recursion_context(rctx);
5619
	preempt_enable_notrace();
5620 5621
}

5622
static void perf_swevent_read(struct perf_event *event)
5623 5624 5625
{
}

P
Peter Zijlstra 已提交
5626
static int perf_swevent_add(struct perf_event *event, int flags)
5627
{
5628
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5629
	struct hw_perf_event *hwc = &event->hw;
5630 5631
	struct hlist_head *head;

5632
	if (is_sampling_event(event)) {
5633
		hwc->last_period = hwc->sample_period;
5634
		perf_swevent_set_period(event);
5635
	}
5636

P
Peter Zijlstra 已提交
5637 5638
	hwc->state = !(flags & PERF_EF_START);

5639
	head = find_swevent_head(swhash, event);
5640 5641 5642 5643 5644
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

5645 5646 5647
	return 0;
}

P
Peter Zijlstra 已提交
5648
static void perf_swevent_del(struct perf_event *event, int flags)
5649
{
5650
	hlist_del_rcu(&event->hlist_entry);
5651 5652
}

P
Peter Zijlstra 已提交
5653
static void perf_swevent_start(struct perf_event *event, int flags)
5654
{
P
Peter Zijlstra 已提交
5655
	event->hw.state = 0;
5656
}
I
Ingo Molnar 已提交
5657

P
Peter Zijlstra 已提交
5658
static void perf_swevent_stop(struct perf_event *event, int flags)
5659
{
P
Peter Zijlstra 已提交
5660
	event->hw.state = PERF_HES_STOPPED;
5661 5662
}

5663 5664
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5665
swevent_hlist_deref(struct swevent_htable *swhash)
5666
{
5667 5668
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5669 5670
}

5671
static void swevent_hlist_release(struct swevent_htable *swhash)
5672
{
5673
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5674

5675
	if (!hlist)
5676 5677
		return;

5678
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5679
	kfree_rcu(hlist, rcu_head);
5680 5681 5682 5683
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5684
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5685

5686
	mutex_lock(&swhash->hlist_mutex);
5687

5688 5689
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5690

5691
	mutex_unlock(&swhash->hlist_mutex);
5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5704
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5705 5706
	int err = 0;

5707
	mutex_lock(&swhash->hlist_mutex);
5708

5709
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5710 5711 5712 5713 5714 5715 5716
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5717
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5718
	}
5719
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5720
exit:
5721
	mutex_unlock(&swhash->hlist_mutex);
5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5742
fail:
5743 5744 5745 5746 5747 5748 5749 5750 5751 5752
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5753
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5754

5755 5756 5757
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5758

5759 5760
	WARN_ON(event->parent);

5761
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5762 5763 5764 5765 5766
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
5767
	u64 event_id = event->attr.config;
5768 5769 5770 5771

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

5772 5773 5774 5775 5776 5777
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5778 5779 5780 5781 5782 5783 5784 5785 5786
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5787
	if (event_id >= PERF_COUNT_SW_MAX)
5788 5789 5790 5791 5792 5793 5794 5795 5796
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

5797
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5798 5799 5800 5801 5802 5803
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

5804 5805 5806 5807 5808
static int perf_swevent_event_idx(struct perf_event *event)
{
	return 0;
}

5809
static struct pmu perf_swevent = {
5810
	.task_ctx_nr	= perf_sw_context,
5811

5812
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5813 5814 5815 5816
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5817
	.read		= perf_swevent_read,
5818 5819

	.event_idx	= perf_swevent_event_idx,
5820 5821
};

5822 5823
#ifdef CONFIG_EVENT_TRACING

5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5838 5839
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5840 5841 5842 5843
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5844 5845 5846 5847 5848 5849 5850 5851 5852
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5853 5854
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
5855 5856
{
	struct perf_sample_data data;
5857 5858
	struct perf_event *event;

5859 5860 5861 5862 5863
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

5864
	perf_sample_data_init(&data, addr, 0);
5865 5866
	data.raw = &raw;

5867
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5868
		if (perf_tp_event_match(event, &data, regs))
5869
			perf_swevent_event(event, count, &data, regs);
5870
	}
5871

5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

5897
	perf_swevent_put_recursion_context(rctx);
5898 5899 5900
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5901
static void tp_perf_event_destroy(struct perf_event *event)
5902
{
5903
	perf_trace_destroy(event);
5904 5905
}

5906
static int perf_tp_event_init(struct perf_event *event)
5907
{
5908 5909
	int err;

5910 5911 5912
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5913 5914 5915 5916 5917 5918
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5919 5920
	err = perf_trace_init(event);
	if (err)
5921
		return err;
5922

5923
	event->destroy = tp_perf_event_destroy;
5924

5925 5926 5927 5928
	return 0;
}

static struct pmu perf_tracepoint = {
5929 5930
	.task_ctx_nr	= perf_sw_context,

5931
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5932 5933 5934 5935
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5936
	.read		= perf_swevent_read,
5937 5938

	.event_idx	= perf_swevent_event_idx,
5939 5940 5941 5942
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5943
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5944
}
L
Li Zefan 已提交
5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5969
#else
L
Li Zefan 已提交
5970

5971
static inline void perf_tp_register(void)
5972 5973
{
}
L
Li Zefan 已提交
5974 5975 5976 5977 5978 5979 5980 5981 5982 5983

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5984
#endif /* CONFIG_EVENT_TRACING */
5985

5986
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5987
void perf_bp_event(struct perf_event *bp, void *data)
5988
{
5989 5990 5991
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5992
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5993

P
Peter Zijlstra 已提交
5994
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5995
		perf_swevent_event(bp, 1, &sample, regs);
5996 5997 5998
}
#endif

5999 6000 6001
/*
 * hrtimer based swevent callback
 */
6002

6003
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6004
{
6005 6006 6007 6008 6009
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
6010

6011
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
6012 6013 6014 6015

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

6016
	event->pmu->read(event);
6017

6018
	perf_sample_data_init(&data, 0, event->hw.last_period);
6019 6020 6021
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
6022
		if (!(event->attr.exclude_idle && is_idle_task(current)))
6023
			if (__perf_event_overflow(event, 1, &data, regs))
6024 6025
				ret = HRTIMER_NORESTART;
	}
6026

6027 6028
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6029

6030
	return ret;
6031 6032
}

6033
static void perf_swevent_start_hrtimer(struct perf_event *event)
6034
{
6035
	struct hw_perf_event *hwc = &event->hw;
6036 6037 6038 6039
	s64 period;

	if (!is_sampling_event(event))
		return;
6040

6041 6042 6043 6044
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
6045

6046 6047 6048 6049 6050
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
6051
				ns_to_ktime(period), 0,
6052
				HRTIMER_MODE_REL_PINNED, 0);
6053
}
6054 6055

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6056
{
6057 6058
	struct hw_perf_event *hwc = &event->hw;

6059
	if (is_sampling_event(event)) {
6060
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
6061
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6062 6063 6064

		hrtimer_cancel(&hwc->hrtimer);
	}
6065 6066
}

P
Peter Zijlstra 已提交
6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
6087
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
6088 6089 6090 6091
		event->attr.freq = 0;
	}
}

6092 6093 6094 6095 6096
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
6097
{
6098 6099 6100
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
6101
	now = local_clock();
6102 6103
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
6104 6105
}

P
Peter Zijlstra 已提交
6106
static void cpu_clock_event_start(struct perf_event *event, int flags)
6107
{
P
Peter Zijlstra 已提交
6108
	local64_set(&event->hw.prev_count, local_clock());
6109 6110 6111
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6112
static void cpu_clock_event_stop(struct perf_event *event, int flags)
6113
{
6114 6115 6116
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
6117

P
Peter Zijlstra 已提交
6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

6131 6132 6133 6134
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
6135

6136 6137 6138 6139 6140 6141 6142 6143
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

6144 6145 6146 6147 6148 6149
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6150 6151
	perf_swevent_init_hrtimer(event);

6152
	return 0;
6153 6154
}

6155
static struct pmu perf_cpu_clock = {
6156 6157
	.task_ctx_nr	= perf_sw_context,

6158
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
6159 6160 6161 6162
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
6163
	.read		= cpu_clock_event_read,
6164 6165

	.event_idx	= perf_swevent_event_idx,
6166 6167 6168 6169 6170 6171 6172
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
6173
{
6174 6175
	u64 prev;
	s64 delta;
6176

6177 6178 6179 6180
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
6181

P
Peter Zijlstra 已提交
6182
static void task_clock_event_start(struct perf_event *event, int flags)
6183
{
P
Peter Zijlstra 已提交
6184
	local64_set(&event->hw.prev_count, event->ctx->time);
6185 6186 6187
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6188
static void task_clock_event_stop(struct perf_event *event, int flags)
6189 6190 6191
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
6192 6193 6194 6195 6196 6197
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
6198

P
Peter Zijlstra 已提交
6199 6200 6201 6202 6203 6204
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
6205 6206 6207 6208
}

static void task_clock_event_read(struct perf_event *event)
{
6209 6210 6211
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
6212 6213 6214 6215 6216

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
6217
{
6218 6219 6220 6221 6222 6223
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

6224 6225 6226 6227 6228 6229
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6230 6231
	perf_swevent_init_hrtimer(event);

6232
	return 0;
L
Li Zefan 已提交
6233 6234
}

6235
static struct pmu perf_task_clock = {
6236 6237
	.task_ctx_nr	= perf_sw_context,

6238
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
6239 6240 6241 6242
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
6243
	.read		= task_clock_event_read,
6244 6245

	.event_idx	= perf_swevent_event_idx,
6246
};
L
Li Zefan 已提交
6247

P
Peter Zijlstra 已提交
6248
static void perf_pmu_nop_void(struct pmu *pmu)
6249 6250
{
}
L
Li Zefan 已提交
6251

P
Peter Zijlstra 已提交
6252
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
6253
{
P
Peter Zijlstra 已提交
6254
	return 0;
L
Li Zefan 已提交
6255 6256
}

P
Peter Zijlstra 已提交
6257
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
6258
{
P
Peter Zijlstra 已提交
6259
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
6260 6261
}

P
Peter Zijlstra 已提交
6262 6263 6264 6265 6266
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
6267

P
Peter Zijlstra 已提交
6268
static void perf_pmu_cancel_txn(struct pmu *pmu)
6269
{
P
Peter Zijlstra 已提交
6270
	perf_pmu_enable(pmu);
6271 6272
}

6273 6274 6275 6276 6277
static int perf_event_idx_default(struct perf_event *event)
{
	return event->hw.idx + 1;
}

P
Peter Zijlstra 已提交
6278 6279 6280 6281 6282
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
6283
{
P
Peter Zijlstra 已提交
6284
	struct pmu *pmu;
6285

P
Peter Zijlstra 已提交
6286 6287
	if (ctxn < 0)
		return NULL;
6288

P
Peter Zijlstra 已提交
6289 6290 6291 6292
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
6293

P
Peter Zijlstra 已提交
6294
	return NULL;
6295 6296
}

6297
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6298
{
6299 6300 6301 6302 6303 6304 6305
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

6306 6307
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
6308 6309 6310 6311 6312 6313
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
6314

P
Peter Zijlstra 已提交
6315
	mutex_lock(&pmus_lock);
6316
	/*
P
Peter Zijlstra 已提交
6317
	 * Like a real lame refcount.
6318
	 */
6319 6320 6321
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
6322
			goto out;
6323
		}
P
Peter Zijlstra 已提交
6324
	}
6325

6326
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
6327 6328
out:
	mutex_unlock(&pmus_lock);
6329
}
P
Peter Zijlstra 已提交
6330
static struct idr pmu_idr;
6331

P
Peter Zijlstra 已提交
6332 6333 6334 6335 6336 6337 6338
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
6339
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
6340

6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

		if (hrtimer_active(&cpuctx->hrtimer))
			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
	}

	return count;
}
6384
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6385

6386 6387 6388 6389
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
6390
};
6391
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
6392 6393 6394 6395

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
6396
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

6412
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

6433
static struct lock_class_key cpuctx_mutex;
6434
static struct lock_class_key cpuctx_lock;
6435

6436
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6437
{
P
Peter Zijlstra 已提交
6438
	int cpu, ret;
6439

6440
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
6441 6442 6443 6444
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
6445

P
Peter Zijlstra 已提交
6446 6447 6448 6449 6450 6451
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
6452 6453 6454
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
6455 6456 6457 6458 6459
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6460 6461 6462 6463 6464 6465
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6466
skip_type:
P
Peter Zijlstra 已提交
6467 6468 6469
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6470

W
Wei Yongjun 已提交
6471
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
6472 6473
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6474
		goto free_dev;
6475

P
Peter Zijlstra 已提交
6476 6477 6478 6479
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6480
		__perf_event_init_context(&cpuctx->ctx);
6481
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6482
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6483
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
6484
		cpuctx->ctx.pmu = pmu;
6485 6486 6487

		__perf_cpu_hrtimer_init(cpuctx, cpu);

6488
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6489
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
6490
	}
6491

P
Peter Zijlstra 已提交
6492
got_cpu_context:
P
Peter Zijlstra 已提交
6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6507
		}
6508
	}
6509

P
Peter Zijlstra 已提交
6510 6511 6512 6513 6514
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6515 6516 6517
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

6518
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6519 6520
	ret = 0;
unlock:
6521 6522
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6523
	return ret;
P
Peter Zijlstra 已提交
6524

P
Peter Zijlstra 已提交
6525 6526 6527 6528
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6529 6530 6531 6532
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6533 6534 6535
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6536 6537
}

6538
void perf_pmu_unregister(struct pmu *pmu)
6539
{
6540 6541 6542
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6543

6544
	/*
P
Peter Zijlstra 已提交
6545 6546
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6547
	 */
6548
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6549
	synchronize_rcu();
6550

P
Peter Zijlstra 已提交
6551
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6552 6553
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6554 6555
	device_del(pmu->dev);
	put_device(pmu->dev);
6556
	free_pmu_context(pmu);
6557
}
6558

6559 6560 6561 6562
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6563
	int ret;
6564 6565

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6566 6567 6568 6569

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6570
	if (pmu) {
6571
		event->pmu = pmu;
6572 6573 6574
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6575
		goto unlock;
6576
	}
P
Peter Zijlstra 已提交
6577

6578
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6579
		event->pmu = pmu;
6580
		ret = pmu->event_init(event);
6581
		if (!ret)
P
Peter Zijlstra 已提交
6582
			goto unlock;
6583

6584 6585
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6586
			goto unlock;
6587
		}
6588
	}
P
Peter Zijlstra 已提交
6589 6590
	pmu = ERR_PTR(-ENOENT);
unlock:
6591
	srcu_read_unlock(&pmus_srcu, idx);
6592

6593
	return pmu;
6594 6595
}

6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

6609 6610
static void account_event(struct perf_event *event)
{
6611 6612 6613
	if (event->parent)
		return;

6614 6615 6616 6617 6618 6619 6620 6621
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
6622 6623 6624 6625
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
6626
	if (has_branch_stack(event))
6627
		static_key_slow_inc(&perf_sched_events.key);
6628
	if (is_cgroup_event(event))
6629
		static_key_slow_inc(&perf_sched_events.key);
6630 6631

	account_event_cpu(event, event->cpu);
6632 6633
}

T
Thomas Gleixner 已提交
6634
/*
6635
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6636
 */
6637
static struct perf_event *
6638
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6639 6640 6641
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
6642 6643
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
6644
{
P
Peter Zijlstra 已提交
6645
	struct pmu *pmu;
6646 6647
	struct perf_event *event;
	struct hw_perf_event *hwc;
6648
	long err = -EINVAL;
T
Thomas Gleixner 已提交
6649

6650 6651 6652 6653 6654
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6655
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6656
	if (!event)
6657
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6658

6659
	/*
6660
	 * Single events are their own group leaders, with an
6661 6662 6663
	 * empty sibling list:
	 */
	if (!group_leader)
6664
		group_leader = event;
6665

6666 6667
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6668

6669 6670 6671
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
6672
	INIT_LIST_HEAD(&event->rb_entry);
6673
	INIT_LIST_HEAD(&event->active_entry);
6674 6675
	INIT_HLIST_NODE(&event->hlist_entry);

6676

6677
	init_waitqueue_head(&event->waitq);
6678
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6679

6680
	mutex_init(&event->mmap_mutex);
6681

6682
	atomic_long_set(&event->refcount, 1);
6683 6684 6685 6686 6687
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6688

6689
	event->parent		= parent_event;
6690

6691
	event->ns		= get_pid_ns(task_active_pid_ns(current));
6692
	event->id		= atomic64_inc_return(&perf_event_id);
6693

6694
	event->state		= PERF_EVENT_STATE_INACTIVE;
6695

6696 6697
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
6698 6699 6700

		if (attr->type == PERF_TYPE_TRACEPOINT)
			event->hw.tp_target = task;
6701 6702 6703 6704
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
6705
		else if (attr->type == PERF_TYPE_BREAKPOINT)
6706 6707 6708 6709
			event->hw.bp_target = task;
#endif
	}

6710
	if (!overflow_handler && parent_event) {
6711
		overflow_handler = parent_event->overflow_handler;
6712 6713
		context = parent_event->overflow_handler_context;
	}
6714

6715
	event->overflow_handler	= overflow_handler;
6716
	event->overflow_handler_context = context;
6717

J
Jiri Olsa 已提交
6718
	perf_event__state_init(event);
6719

6720
	pmu = NULL;
6721

6722
	hwc = &event->hw;
6723
	hwc->sample_period = attr->sample_period;
6724
	if (attr->freq && attr->sample_freq)
6725
		hwc->sample_period = 1;
6726
	hwc->last_period = hwc->sample_period;
6727

6728
	local64_set(&hwc->period_left, hwc->sample_period);
6729

6730
	/*
6731
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6732
	 */
6733
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6734
		goto err_ns;
6735

6736
	pmu = perf_init_event(event);
6737
	if (!pmu)
6738 6739
		goto err_ns;
	else if (IS_ERR(pmu)) {
6740
		err = PTR_ERR(pmu);
6741
		goto err_ns;
I
Ingo Molnar 已提交
6742
	}
6743

6744
	if (!event->parent) {
6745 6746
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
6747 6748
			if (err)
				goto err_pmu;
6749
		}
6750
	}
6751

6752
	return event;
6753 6754 6755 6756 6757 6758 6759 6760 6761 6762

err_pmu:
	if (event->destroy)
		event->destroy(event);
err_ns:
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
6763 6764
}

6765 6766
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6767 6768
{
	u32 size;
6769
	int ret;
6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6794 6795 6796
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6797 6798
	 */
	if (size > sizeof(*attr)) {
6799 6800 6801
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6802

6803 6804
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6805

6806
		for (; addr < end; addr++) {
6807 6808 6809 6810 6811 6812
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6813
		size = sizeof(*attr);
6814 6815 6816 6817 6818 6819
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

6820 6821 6822 6823
	/* disabled for now */
	if (attr->mmap2)
		return -EINVAL;

6824
	if (attr->__reserved_1)
6825 6826 6827 6828 6829 6830 6831 6832
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
6861 6862
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6863 6864
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
6865
	}
6866

6867
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6868
		ret = perf_reg_validate(attr->sample_regs_user);
6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
6887

6888 6889 6890 6891 6892 6893 6894 6895 6896
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6897 6898
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6899
{
6900
	struct ring_buffer *rb = NULL, *old_rb = NULL;
6901 6902
	int ret = -EINVAL;

6903
	if (!output_event)
6904 6905
		goto set;

6906 6907
	/* don't allow circular references */
	if (event == output_event)
6908 6909
		goto out;

6910 6911 6912 6913 6914 6915 6916
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
6917
	 * If its not a per-cpu rb, it must be the same task.
6918 6919 6920 6921
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6922
set:
6923
	mutex_lock(&event->mmap_mutex);
6924 6925 6926
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6927

6928 6929
	old_rb = event->rb;

6930
	if (output_event) {
6931 6932 6933
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
6934
			goto unlock;
6935 6936
	}

6937 6938
	if (old_rb)
		ring_buffer_detach(event, old_rb);
6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954

	if (rb)
		ring_buffer_attach(event, rb);

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}

6955
	ret = 0;
6956 6957 6958
unlock:
	mutex_unlock(&event->mmap_mutex);

6959 6960 6961 6962
out:
	return ret;
}

T
Thomas Gleixner 已提交
6963
/**
6964
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6965
 *
6966
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6967
 * @pid:		target pid
I
Ingo Molnar 已提交
6968
 * @cpu:		target cpu
6969
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6970
 */
6971 6972
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6973
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
6974
{
6975 6976
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
6977 6978 6979
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
6980
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
6981
	struct task_struct *task = NULL;
6982
	struct pmu *pmu;
6983
	int event_fd;
6984
	int move_group = 0;
6985
	int err;
6986
	int f_flags = O_RDWR;
T
Thomas Gleixner 已提交
6987

6988
	/* for future expandability... */
S
Stephane Eranian 已提交
6989
	if (flags & ~PERF_FLAG_ALL)
6990 6991
		return -EINVAL;

6992 6993 6994
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
6995

6996 6997 6998 6999 7000
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

7001
	if (attr.freq) {
7002
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7003 7004 7005
			return -EINVAL;
	}

S
Stephane Eranian 已提交
7006 7007 7008 7009 7010 7011 7012 7013 7014
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

7015 7016 7017 7018
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
7019 7020 7021
	if (event_fd < 0)
		return event_fd;

7022
	if (group_fd != -1) {
7023 7024
		err = perf_fget_light(group_fd, &group);
		if (err)
7025
			goto err_fd;
7026
		group_leader = group.file->private_data;
7027 7028 7029 7030 7031 7032
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
7033
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7034 7035 7036 7037 7038 7039 7040
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

7041 7042
	get_online_cpus();

7043 7044
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
7045 7046
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
7047
		goto err_task;
7048 7049
	}

S
Stephane Eranian 已提交
7050 7051
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
7052 7053 7054 7055
		if (err) {
			__free_event(event);
			goto err_task;
		}
S
Stephane Eranian 已提交
7056 7057
	}

7058 7059
	account_event(event);

7060 7061 7062 7063 7064
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
7088 7089 7090 7091

	/*
	 * Get the target context (task or percpu):
	 */
7092
	ctx = find_get_context(pmu, task, event->cpu);
7093 7094
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7095
		goto err_alloc;
7096 7097
	}

7098 7099 7100 7101 7102
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
7103
	/*
7104
	 * Look up the group leader (we will attach this event to it):
7105
	 */
7106
	if (group_leader) {
7107
		err = -EINVAL;
7108 7109

		/*
I
Ingo Molnar 已提交
7110 7111 7112 7113
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
7114
			goto err_context;
I
Ingo Molnar 已提交
7115 7116 7117
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
7118
		 */
7119 7120 7121 7122 7123 7124 7125 7126
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

7127 7128 7129
		/*
		 * Only a group leader can be exclusive or pinned
		 */
7130
		if (attr.exclusive || attr.pinned)
7131
			goto err_context;
7132 7133 7134 7135 7136
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
7137
			goto err_context;
7138
	}
T
Thomas Gleixner 已提交
7139

7140 7141
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
7142 7143
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
7144
		goto err_context;
7145
	}
7146

7147 7148 7149 7150
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
7151
		perf_remove_from_context(group_leader);
J
Jiri Olsa 已提交
7152 7153 7154 7155 7156 7157 7158

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
7159 7160
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7161
			perf_remove_from_context(sibling);
J
Jiri Olsa 已提交
7162
			perf_event__state_init(sibling);
7163 7164 7165 7166
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
7167
	}
7168

7169
	WARN_ON_ONCE(ctx->parent_ctx);
7170
	mutex_lock(&ctx->mutex);
7171 7172

	if (move_group) {
7173
		synchronize_rcu();
7174
		perf_install_in_context(ctx, group_leader, event->cpu);
7175 7176 7177
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7178
			perf_install_in_context(ctx, sibling, event->cpu);
7179 7180 7181 7182
			get_ctx(ctx);
		}
	}

7183
	perf_install_in_context(ctx, event, event->cpu);
7184
	perf_unpin_context(ctx);
7185
	mutex_unlock(&ctx->mutex);
7186

7187 7188
	put_online_cpus();

7189
	event->owner = current;
P
Peter Zijlstra 已提交
7190

7191 7192 7193
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
7194

7195 7196 7197 7198
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
7199
	perf_event__id_header_size(event);
7200

7201 7202 7203 7204 7205 7206
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
7207
	fdput(group);
7208 7209
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
7210

7211
err_context:
7212
	perf_unpin_context(ctx);
7213
	put_ctx(ctx);
7214
err_alloc:
7215
	free_event(event);
P
Peter Zijlstra 已提交
7216
err_task:
7217
	put_online_cpus();
P
Peter Zijlstra 已提交
7218 7219
	if (task)
		put_task_struct(task);
7220
err_group_fd:
7221
	fdput(group);
7222 7223
err_fd:
	put_unused_fd(event_fd);
7224
	return err;
T
Thomas Gleixner 已提交
7225 7226
}

7227 7228 7229 7230 7231
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
7232
 * @task: task to profile (NULL for percpu)
7233 7234 7235
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
7236
				 struct task_struct *task,
7237 7238
				 perf_overflow_handler_t overflow_handler,
				 void *context)
7239 7240
{
	struct perf_event_context *ctx;
7241
	struct perf_event *event;
7242
	int err;
7243

7244 7245 7246
	/*
	 * Get the target context (task or percpu):
	 */
7247

7248 7249
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
7250 7251 7252 7253
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
7254

7255 7256
	account_event(event);

M
Matt Helsley 已提交
7257
	ctx = find_get_context(event->pmu, task, cpu);
7258 7259
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7260
		goto err_free;
7261
	}
7262 7263 7264 7265

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
7266
	perf_unpin_context(ctx);
7267 7268 7269 7270
	mutex_unlock(&ctx->mutex);

	return event;

7271 7272 7273
err_free:
	free_event(event);
err:
7274
	return ERR_PTR(err);
7275
}
7276
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7277

7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

	mutex_lock(&src_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
		perf_remove_from_context(event);
7292
		unaccount_event_cpu(event, src_cpu);
7293
		put_ctx(src_ctx);
7294
		list_add(&event->migrate_entry, &events);
7295 7296 7297 7298 7299 7300
	}
	mutex_unlock(&src_ctx->mutex);

	synchronize_rcu();

	mutex_lock(&dst_ctx->mutex);
7301 7302
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
7303 7304
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
7305
		account_event_cpu(event, dst_cpu);
7306 7307 7308 7309 7310 7311 7312
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

7313
static void sync_child_event(struct perf_event *child_event,
7314
			       struct task_struct *child)
7315
{
7316
	struct perf_event *parent_event = child_event->parent;
7317
	u64 child_val;
7318

7319 7320
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
7321

P
Peter Zijlstra 已提交
7322
	child_val = perf_event_count(child_event);
7323 7324 7325 7326

	/*
	 * Add back the child's count to the parent's count:
	 */
7327
	atomic64_add(child_val, &parent_event->child_count);
7328 7329 7330 7331
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
7332 7333

	/*
7334
	 * Remove this event from the parent's list
7335
	 */
7336 7337 7338 7339
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
7340 7341

	/*
7342
	 * Release the parent event, if this was the last
7343 7344
	 * reference to it.
	 */
7345
	put_event(parent_event);
7346 7347
}

7348
static void
7349 7350
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
7351
			 struct task_struct *child)
7352
{
7353 7354 7355 7356 7357
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
7358

7359
	perf_remove_from_context(child_event);
7360

7361
	/*
7362
	 * It can happen that the parent exits first, and has events
7363
	 * that are still around due to the child reference. These
7364
	 * events need to be zapped.
7365
	 */
7366
	if (child_event->parent) {
7367 7368
		sync_child_event(child_event, child);
		free_event(child_event);
7369
	}
7370 7371
}

P
Peter Zijlstra 已提交
7372
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7373
{
7374 7375
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
7376
	unsigned long flags;
7377

P
Peter Zijlstra 已提交
7378
	if (likely(!child->perf_event_ctxp[ctxn])) {
7379
		perf_event_task(child, NULL, 0);
7380
		return;
P
Peter Zijlstra 已提交
7381
	}
7382

7383
	local_irq_save(flags);
7384 7385 7386 7387 7388 7389
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
7390
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7391 7392 7393

	/*
	 * Take the context lock here so that if find_get_context is
7394
	 * reading child->perf_event_ctxp, we wait until it has
7395 7396
	 * incremented the context's refcount before we do put_ctx below.
	 */
7397
	raw_spin_lock(&child_ctx->lock);
7398
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
7399
	child->perf_event_ctxp[ctxn] = NULL;
7400 7401 7402
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
7403
	 * the events from it.
7404 7405
	 */
	unclone_ctx(child_ctx);
7406
	update_context_time(child_ctx);
7407
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7408 7409

	/*
7410 7411 7412
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
7413
	 */
7414
	perf_event_task(child, child_ctx, 0);
7415

7416 7417 7418
	/*
	 * We can recurse on the same lock type through:
	 *
7419 7420
	 *   __perf_event_exit_task()
	 *     sync_child_event()
7421 7422
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
7423 7424 7425
	 *
	 * But since its the parent context it won't be the same instance.
	 */
7426
	mutex_lock(&child_ctx->mutex);
7427

7428
again:
7429 7430 7431 7432 7433
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7434
				 group_entry)
7435
		__perf_event_exit_task(child_event, child_ctx, child);
7436 7437

	/*
7438
	 * If the last event was a group event, it will have appended all
7439 7440 7441
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
7442 7443
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
7444
		goto again;
7445 7446 7447 7448

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
7449 7450
}

P
Peter Zijlstra 已提交
7451 7452 7453 7454 7455
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
7456
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7457 7458
	int ctxn;

P
Peter Zijlstra 已提交
7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
7474 7475 7476 7477
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

7490
	put_event(parent);
7491

7492
	perf_group_detach(event);
7493 7494 7495 7496
	list_del_event(event, ctx);
	free_event(event);
}

7497 7498
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
7499
 * perf_event_init_task below, used by fork() in case of fail.
7500
 */
7501
void perf_event_free_task(struct task_struct *task)
7502
{
P
Peter Zijlstra 已提交
7503
	struct perf_event_context *ctx;
7504
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7505
	int ctxn;
7506

P
Peter Zijlstra 已提交
7507 7508 7509 7510
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
7511

P
Peter Zijlstra 已提交
7512
		mutex_lock(&ctx->mutex);
7513
again:
P
Peter Zijlstra 已提交
7514 7515 7516
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
7517

P
Peter Zijlstra 已提交
7518 7519 7520
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
7521

P
Peter Zijlstra 已提交
7522 7523 7524
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
7525

P
Peter Zijlstra 已提交
7526
		mutex_unlock(&ctx->mutex);
7527

P
Peter Zijlstra 已提交
7528 7529
		put_ctx(ctx);
	}
7530 7531
}

7532 7533 7534 7535 7536 7537 7538 7539
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
7552
	unsigned long flags;
P
Peter Zijlstra 已提交
7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
7565
					   child,
P
Peter Zijlstra 已提交
7566
					   group_leader, parent_event,
7567
				           NULL, NULL);
P
Peter Zijlstra 已提交
7568 7569
	if (IS_ERR(child_event))
		return child_event;
7570 7571 7572 7573 7574 7575

	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
7600 7601
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
7602

7603 7604 7605 7606
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
7607
	perf_event__id_header_size(child_event);
7608

P
Peter Zijlstra 已提交
7609 7610 7611
	/*
	 * Link it up in the child's context:
	 */
7612
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7613
	add_event_to_ctx(child_event, child_ctx);
7614
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7648 7649 7650 7651 7652
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7653
		   struct task_struct *child, int ctxn,
7654 7655 7656
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7657
	struct perf_event_context *child_ctx;
7658 7659 7660 7661

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7662 7663
	}

7664
	child_ctx = child->perf_event_ctxp[ctxn];
7665 7666 7667 7668 7669 7670 7671
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7672

7673
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7674 7675
		if (!child_ctx)
			return -ENOMEM;
7676

P
Peter Zijlstra 已提交
7677
		child->perf_event_ctxp[ctxn] = child_ctx;
7678 7679 7680 7681 7682 7683 7684 7685 7686
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7687 7688
}

7689
/*
7690
 * Initialize the perf_event context in task_struct
7691
 */
P
Peter Zijlstra 已提交
7692
int perf_event_init_context(struct task_struct *child, int ctxn)
7693
{
7694
	struct perf_event_context *child_ctx, *parent_ctx;
7695 7696
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7697
	struct task_struct *parent = current;
7698
	int inherited_all = 1;
7699
	unsigned long flags;
7700
	int ret = 0;
7701

P
Peter Zijlstra 已提交
7702
	if (likely(!parent->perf_event_ctxp[ctxn]))
7703 7704
		return 0;

7705
	/*
7706 7707
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7708
	 */
P
Peter Zijlstra 已提交
7709
	parent_ctx = perf_pin_task_context(parent, ctxn);
7710

7711 7712 7713 7714 7715 7716 7717
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7718 7719 7720 7721
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7722
	mutex_lock(&parent_ctx->mutex);
7723 7724 7725 7726 7727

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7728
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7729 7730
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7731 7732 7733
		if (ret)
			break;
	}
7734

7735 7736 7737 7738 7739 7740 7741 7742 7743
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7744
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7745 7746
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7747
		if (ret)
7748
			break;
7749 7750
	}

7751 7752 7753
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7754
	child_ctx = child->perf_event_ctxp[ctxn];
7755

7756
	if (child_ctx && inherited_all) {
7757 7758 7759
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7760 7761 7762
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7763
		 */
P
Peter Zijlstra 已提交
7764
		cloned_ctx = parent_ctx->parent_ctx;
7765 7766
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7767
			child_ctx->parent_gen = parent_ctx->parent_gen;
7768 7769 7770 7771 7772
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7773 7774
	}

P
Peter Zijlstra 已提交
7775
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7776
	mutex_unlock(&parent_ctx->mutex);
7777

7778
	perf_unpin_context(parent_ctx);
7779
	put_ctx(parent_ctx);
7780

7781
	return ret;
7782 7783
}

P
Peter Zijlstra 已提交
7784 7785 7786 7787 7788 7789 7790
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7791 7792 7793 7794
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7795 7796 7797 7798 7799 7800 7801 7802 7803
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7804 7805
static void __init perf_event_init_all_cpus(void)
{
7806
	struct swevent_htable *swhash;
7807 7808 7809
	int cpu;

	for_each_possible_cpu(cpu) {
7810 7811
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7812
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7813 7814 7815
	}
}

7816
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7817
{
P
Peter Zijlstra 已提交
7818
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7819

7820
	mutex_lock(&swhash->hlist_mutex);
7821
	if (swhash->hlist_refcount > 0) {
7822 7823
		struct swevent_hlist *hlist;

7824 7825 7826
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7827
	}
7828
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7829 7830
}

P
Peter Zijlstra 已提交
7831
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7832
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7833
{
7834 7835 7836 7837 7838 7839 7840
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7841
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7842
{
P
Peter Zijlstra 已提交
7843
	struct perf_event_context *ctx = __info;
7844
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
7845

P
Peter Zijlstra 已提交
7846
	perf_pmu_rotate_stop(ctx->pmu);
7847

7848
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7849
		__perf_remove_from_context(event);
7850
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7851
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
7852
}
P
Peter Zijlstra 已提交
7853 7854 7855 7856 7857 7858 7859 7860 7861

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7862
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7863 7864 7865 7866 7867 7868 7869 7870

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7871
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7872
{
7873
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7874

7875 7876 7877
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
7878

P
Peter Zijlstra 已提交
7879
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
7880 7881
}
#else
7882
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7883 7884
#endif

P
Peter Zijlstra 已提交
7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

7905
static int
T
Thomas Gleixner 已提交
7906 7907 7908 7909
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

7910
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7911 7912

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7913
	case CPU_DOWN_FAILED:
7914
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7915 7916
		break;

P
Peter Zijlstra 已提交
7917
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7918
	case CPU_DOWN_PREPARE:
7919
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7920 7921 7922 7923 7924 7925 7926 7927
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

7928
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7929
{
7930 7931
	int ret;

P
Peter Zijlstra 已提交
7932 7933
	idr_init(&pmu_idr);

7934
	perf_event_init_all_cpus();
7935
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7936 7937 7938
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7939 7940
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7941
	register_reboot_notifier(&perf_reboot_notifier);
7942 7943 7944

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7945 7946 7947

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
7948 7949 7950 7951 7952 7953 7954

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
7955
}
P
Peter Zijlstra 已提交
7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
7984 7985

#ifdef CONFIG_CGROUP_PERF
7986 7987
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
7988 7989 7990
{
	struct perf_cgroup *jc;

7991
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

8004
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
8005
{
8006 8007
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

8019 8020
static void perf_cgroup_attach(struct cgroup_subsys_state *css,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
8021
{
8022 8023
	struct task_struct *task;

8024
	cgroup_taskset_for_each(task, css, tset)
8025
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8026 8027
}

8028 8029
static void perf_cgroup_exit(struct cgroup_subsys_state *css,
			     struct cgroup_subsys_state *old_css,
8030
			     struct task_struct *task)
S
Stephane Eranian 已提交
8031 8032 8033 8034 8035 8036 8037 8038 8039
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

8040
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8041 8042
}

8043
struct cgroup_subsys perf_event_cgrp_subsys = {
8044 8045
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
8046
	.exit		= perf_cgroup_exit,
8047
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
8048 8049
};
#endif /* CONFIG_CGROUP_PERF */