1. 26 1月, 2008 13 次提交
    • S
      sched: push RT tasks from overloaded CPUs · 4642dafd
      Steven Rostedt 提交于
      This patch adds pushing of overloaded RT tasks from a runqueue that is
      having tasks (most likely RT tasks) added to the run queue.
      
      TODO: We don't cover the case of waking of new RT tasks (yet).
      Signed-off-by: NSteven Rostedt <srostedt@redhat.com>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      4642dafd
    • S
      sched: pull RT tasks from overloaded runqueues · f65eda4f
      Steven Rostedt 提交于
      This patch adds the algorithm to pull tasks from RT overloaded runqueues.
      
      When a pull RT is initiated, all overloaded runqueues are examined for
      a RT task that is higher in prio than the highest prio task queued on the
      target runqueue. If another runqueue holds a RT task that is of higher
      prio than the highest prio task on the target runqueue is found it is pulled
      to the target runqueue.
      Signed-off-by: NSteven Rostedt <srostedt@redhat.com>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      f65eda4f
    • S
      sched: add RT task pushing · e8fa1362
      Steven Rostedt 提交于
      This patch adds an algorithm to push extra RT tasks off a run queue to
      other CPU runqueues.
      
      When more than one RT task is added to a run queue, this algorithm takes
      an assertive approach to push the RT tasks that are not running onto other
      run queues that have lower priority.  The way this works is that the highest
      RT task that is not running is looked at and we examine the runqueues on
      the CPUS for that tasks affinity mask. We find the runqueue with the lowest
      prio in the CPU affinity of the picked task, and if it is lower in prio than
      the picked task, we push the task onto that CPU runqueue.
      
      We continue pushing RT tasks off the current runqueue until we don't push any
      more.  The algorithm stops when the next highest RT task can't preempt any
      other processes on other CPUS.
      
      TODO: The algorithm may stop when there are still RT tasks that can be
       migrated. Specifically, if the highest non running RT task CPU affinity
       is restricted to CPUs that are running higher priority tasks, there may
       be a lower priority task queued that has an affinity with a CPU that is
       running a lower priority task that it could be migrated to.  This
       patch set does not address this issue.
      
      Note: checkpatch reveals two over 80 character instances. I'm not sure
       that breaking them up will help visually, so I left them as is.
      Signed-off-by: NSteven Rostedt <srostedt@redhat.com>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      e8fa1362
    • S
      sched: track highest prio task queued · 764a9d6f
      Steven Rostedt 提交于
      This patch adds accounting to each runqueue to keep track of the
      highest prio task queued on the run queue. We only care about
      RT tasks, so if the run queue does not contain any active RT tasks
      its priority will be considered MAX_RT_PRIO.
      
      This information will be used for later patches.
      Signed-off-by: NSteven Rostedt <srostedt@redhat.com>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      764a9d6f
    • S
      sched: count # of queued RT tasks · 63489e45
      Steven Rostedt 提交于
      This patch adds accounting to keep track of the number of RT tasks running
      on a runqueue. This information will be used in later patches.
      Signed-off-by: NSteven Rostedt <srostedt@redhat.com>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      63489e45
    • I
      softlockup: automatically detect hung TASK_UNINTERRUPTIBLE tasks · 82a1fcb9
      Ingo Molnar 提交于
      this patch extends the soft-lockup detector to automatically
      detect hung TASK_UNINTERRUPTIBLE tasks. Such hung tasks are
      printed the following way:
      
       ------------------>
       INFO: task prctl:3042 blocked for more than 120 seconds.
       "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message
       prctl         D fd5e3793     0  3042   2997
              f6050f38 00000046 00000001 fd5e3793 00000009 c06d8264 c06dae80 00000286
              f6050f40 f6050f00 f7d34d90 f7d34fc8 c1e1be80 00000001 f6050000 00000000
              f7e92d00 00000286 f6050f18 c0489d1a f6050f40 00006605 00000000 c0133a5b
       Call Trace:
        [<c04883a5>] schedule_timeout+0x6d/0x8b
        [<c04883d8>] schedule_timeout_uninterruptible+0x15/0x17
        [<c0133a76>] msleep+0x10/0x16
        [<c0138974>] sys_prctl+0x30/0x1e2
        [<c0104c52>] sysenter_past_esp+0x5f/0xa5
        =======================
       2 locks held by prctl/3042:
       #0:  (&sb->s_type->i_mutex_key#5){--..}, at: [<c0197d11>] do_fsync+0x38/0x7a
       #1:  (jbd_handle){--..}, at: [<c01ca3d2>] journal_start+0xc7/0xe9
       <------------------
      
      the current default timeout is 120 seconds. Such messages are printed
      up to 10 times per bootup. If the system has crashed already then the
      messages are not printed.
      
      if lockdep is enabled then all held locks are printed as well.
      
      this feature is a natural extension to the softlockup-detector (kernel
      locked up without scheduling) and to the NMI watchdog (kernel locked up
      with IRQs disabled).
      
      [ Gautham R Shenoy <ego@in.ibm.com>: CPU hotplug fixes. ]
      [ Andrew Morton <akpm@linux-foundation.org>: build warning fix. ]
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      Signed-off-by: NArjan van de Ven <arjan@linux.intel.com>
      82a1fcb9
    • G
      cpu-hotplug: replace per-subsystem mutexes with get_online_cpus() · 95402b38
      Gautham R Shenoy 提交于
      This patch converts the known per-subsystem mutexes to get_online_cpus
      put_online_cpus. It also eliminates the CPU_LOCK_ACQUIRE and
      CPU_LOCK_RELEASE hotplug notification events.
      Signed-off-by: NGautham  R Shenoy <ego@in.ibm.com>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      95402b38
    • G
      cpu-hotplug: replace lock_cpu_hotplug() with get_online_cpus() · 86ef5c9a
      Gautham R Shenoy 提交于
      Replace all lock_cpu_hotplug/unlock_cpu_hotplug from the kernel and use
      get_online_cpus and put_online_cpus instead as it highlights the
      refcount semantics in these operations.
      
      The new API guarantees protection against the cpu-hotplug operation, but
      it doesn't guarantee serialized access to any of the local data
      structures. Hence the changes needs to be reviewed.
      
      In case of pseries_add_processor/pseries_remove_processor, use
      cpu_maps_update_begin()/cpu_maps_update_done() as we're modifying the
      cpu_present_map there.
      Signed-off-by: NGautham R Shenoy <ego@in.ibm.com>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      86ef5c9a
    • S
      sched: group scheduler, fix fairness of cpu bandwidth allocation for task groups · 6b2d7700
      Srivatsa Vaddagiri 提交于
      The current load balancing scheme isn't good enough for precise
      group fairness.
      
      For example: on a 8-cpu system, I created 3 groups as under:
      
      	a = 8 tasks (cpu.shares = 1024)
      	b = 4 tasks (cpu.shares = 1024)
      	c = 3 tasks (cpu.shares = 1024)
      
      a, b and c are task groups that have equal weight. We would expect each
      of the groups to receive 33.33% of cpu bandwidth under a fair scheduler.
      
      This is what I get with the latest scheduler git tree:
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      --------------------------------------------------------------------------------
      Col1  | Col2    | Col3  |  Col4
      ------|---------|-------|-------------------------------------------------------
      a     | 277.676 | 57.8% | 54.1%  54.1%  54.1%  54.2%  56.7%  62.2%  62.8% 64.5%
      b     | 116.108 | 24.2% | 47.4%  48.1%  48.7%  49.3%
      c     |  86.326 | 18.0% | 47.5%  47.9%  48.5%
      --------------------------------------------------------------------------------
      
      Explanation of o/p:
      
      Col1 -> Group name
      Col2 -> Cumulative execution time (in seconds) received by all tasks of that
      	group in a 60sec window across 8 cpus
      Col3 -> CPU bandwidth received by the group in the 60sec window, expressed in
              percentage. Col3 data is derived as:
      		Col3 = 100 * Col2 / (NR_CPUS * 60)
      Col4 -> CPU bandwidth received by each individual task of the group.
      		Col4 = 100 * cpu_time_recd_by_task / 60
      
      [I can share the test case that produces a similar o/p if reqd]
      
      The deviation from desired group fairness is as below:
      
      	a = +24.47%
      	b = -9.13%
      	c = -15.33%
      
      which is quite high.
      
      After the patch below is applied, here are the results:
      
      --------------------------------------------------------------------------------
      Col1  | Col2    | Col3  |  Col4
      ------|---------|-------|-------------------------------------------------------
      a     | 163.112 | 34.0% | 33.2%  33.4%  33.5%  33.5%  33.7%  34.4%  34.8% 35.3%
      b     | 156.220 | 32.5% | 63.3%  64.5%  66.1%  66.5%
      c     | 160.653 | 33.5% | 85.8%  90.6%  91.4%
      --------------------------------------------------------------------------------
      
      Deviation from desired group fairness is as below:
      
      	a = +0.67%
      	b = -0.83%
      	c = +0.17%
      
      which is far better IMO. Most of other runs have yielded a deviation within
      +-2% at the most, which is good.
      
      Why do we see bad (group) fairness with current scheuler?
      =========================================================
      
      Currently cpu's weight is just the summation of individual task weights.
      This can yield incorrect results. For ex: consider three groups as below
      on a 2-cpu system:
      
      	CPU0	CPU1
      ---------------------------
      	A (10)  B(5)
      		C(5)
      ---------------------------
      
      Group A has 10 tasks, all on CPU0, Group B and C have 5 tasks each all
      of which are on CPU1. Each task has the same weight (NICE_0_LOAD =
      1024).
      
      The current scheme would yield a cpu weight of 10240 (10*1024) for each cpu and
      the load balancer will think both CPUs are perfectly balanced and won't
      move around any tasks. This, however, would yield this bandwidth:
      
      	A = 50%
      	B = 25%
      	C = 25%
      
      which is not the desired result.
      
      What's changing in the patch?
      =============================
      
      	- How cpu weights are calculated when CONFIF_FAIR_GROUP_SCHED is
      	  defined (see below)
      	- API Change
      		- Two tunables introduced in sysfs (under SCHED_DEBUG) to
      		  control the frequency at which the load balance monitor
      		  thread runs.
      
      The basic change made in this patch is how cpu weight (rq->load.weight) is
      calculated. Its now calculated as the summation of group weights on a cpu,
      rather than summation of task weights. Weight exerted by a group on a
      cpu is dependent on the shares allocated to it and also the number of
      tasks the group has on that cpu compared to the total number of
      (runnable) tasks the group has in the system.
      
      Let,
      	W(K,i)  = Weight of group K on cpu i
      	T(K,i)  = Task load present in group K's cfs_rq on cpu i
      	T(K)    = Total task load of group K across various cpus
      	S(K) 	= Shares allocated to group K
      	NRCPUS	= Number of online cpus in the scheduler domain to
      	 	  which group K is assigned.
      
      Then,
      	W(K,i) = S(K) * NRCPUS * T(K,i) / T(K)
      
      A load balance monitor thread is created at bootup, which periodically
      runs and adjusts group's weight on each cpu. To avoid its overhead, two
      min/max tunables are introduced (under SCHED_DEBUG) to control the rate
      at which it runs.
      
      Fixes from: Peter Zijlstra <a.p.zijlstra@chello.nl>
      
      - don't start the load_balance_monitor when there is only a single cpu.
      - rename the kthread because its currently longer than TASK_COMM_LEN
      Signed-off-by: NSrivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      6b2d7700
    • S
      sched: introduce a mutex and corresponding API to serialize access to doms_curarray · a1835615
      Srivatsa Vaddagiri 提交于
      doms_cur[] array represents various scheduling domains which are
      mutually exclusive. Currently cpusets code can modify this array (by
      calling partition_sched_domains()) as a result of user modifying
      sched_load_balance flag for various cpusets.
      
      This patch introduces a mutex and corresponding API (only when
      CONFIG_FAIR_GROUP_SCHED is defined) which allows a reader to safely read
      the doms_cur[] array w/o worrying abt concurrent modifications to the
      array.
      
      The fair group scheduler code (introduced in next patch of this series)
      makes use of this mutex to walk thr' doms_cur[] array while rebalancing
      shares of task groups across cpus.
      Signed-off-by: NSrivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      a1835615
    • S
      sched: group scheduling, change how cpu load is calculated · 58e2d4ca
      Srivatsa Vaddagiri 提交于
      This patch changes how the cpu load exerted by fair_sched_class tasks
      is calculated. Load exerted by fair_sched_class tasks on a cpu is now
      a summation of the group weights, rather than summation of task weights.
      Weight exerted by a group on a cpu is dependent on the shares allocated
      to it.
      
      This version of patch has a minor impact on code size, but should have
      no runtime/functional impact for !CONFIG_FAIR_GROUP_SCHED.
      Signed-off-by: NSrivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      58e2d4ca
    • S
      sched: group scheduling, minor fixes · ec2c507f
      Srivatsa Vaddagiri 提交于
      Minor bug fixes for the group scheduler:
      
      - Use a mutex to serialize add/remove of task groups and also when
        changing shares of a task group. Use the same mutex when printing
        cfs_rq debugging stats for various task groups.
      
      - Use list_for_each_entry_rcu in for_each_leaf_cfs_rq macro (when
        walking task group list)
      Signed-off-by: NSrivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      ec2c507f
    • S
      sched: group scheduling code cleanup · 93f992cc
      Srivatsa Vaddagiri 提交于
      Minor cleanups:
      
      - Fix coding style
      - remove obsolete comment
      Signed-off-by: NSrivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      93f992cc
  2. 22 1月, 2008 1 次提交
  3. 10 1月, 2008 1 次提交
  4. 18 12月, 2007 2 次提交
  5. 08 12月, 2007 1 次提交
    • I
      sched: enable early use of sched_clock() · 8ced5f69
      Ingo Molnar 提交于
      some platforms have sched_clock() implementations that cannot be called
      very early during wakeup. If it's called it might hang or crash in hard
      to debug ways. So only call update_rq_clock() [which calls sched_clock()]
      if sched_init() has already been called. (rq->idle is NULL before the
      scheduler is initialized.)
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      8ced5f69
  6. 05 12月, 2007 2 次提交
  7. 03 12月, 2007 1 次提交
    • S
      sched: cpu accounting controller (V2) · d842de87
      Srivatsa Vaddagiri 提交于
      Commit cfb52856 removed a useful feature for
      us, which provided a cpu accounting resource controller.  This feature would be
      useful if someone wants to group tasks only for accounting purpose and doesnt
      really want to exercise any control over their cpu consumption.
      
      The patch below reintroduces the feature. It is based on Paul Menage's
      original patch (Commit 62d0df64), with
      these differences:
      
              - Removed load average information. I felt it needs more thought (esp
      	  to deal with SMP and virtualized platforms) and can be added for
      	  2.6.25 after more discussions.
              - Convert group cpu usage to be nanosecond accurate (as rest of the cfs
      	  stats are) and invoke cpuacct_charge() from the respective scheduler
      	  classes
      	- Make accounting scalable on SMP systems by splitting the usage
      	  counter to be per-cpu
      	- Move the code from kernel/cpu_acct.c to kernel/sched.c (since the
      	  code is not big enough to warrant a new file and also this rightly
      	  needs to live inside the scheduler. Also things like accessing
      	  rq->lock while reading cpu usage becomes easier if the code lived in
      	  kernel/sched.c)
      
      The patch also modifies the cpu controller not to provide the same accounting
      information.
      Tested-by: NBalbir Singh <balbir@linux.vnet.ibm.com>
      
       Tested the patches on top of 2.6.24-rc3. The patches work fine. Ran
       some simple tests like cpuspin (spin on the cpu), ran several tasks in
       the same group and timed them. Compared their time stamps with
       cpuacct.usage.
      Signed-off-by: NSrivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
      Signed-off-by: NBalbir Singh <balbir@linux.vnet.ibm.com>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      d842de87
  8. 28 11月, 2007 2 次提交
  9. 16 11月, 2007 5 次提交
    • I
      sched: reorder SCHED_FEAT_ bits · 9612633a
      Ingo Molnar 提交于
      reorder SCHED_FEAT_ bits so that the used ones come first. Makes
      tuning instructions easier.
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      9612633a
    • D
      sched: remove activate_idle_task() · 94bc9a7b
      Dmitry Adamushko 提交于
      cpu_down() code is ok wrt sched_idle_next() placing the 'idle' task not
      at the beginning of the queue.
      
      So get rid of activate_idle_task() and make use of activate_task() instead.
      It is the same as activate_task(), except for the update_rq_clock(rq) call
      that is redundant.
      
      Code size goes down:
      
         text    data     bss     dec     hex filename
        47853    3934     336   52123    cb9b sched.o.before
        47828    3934     336   52098    cb82 sched.o.after
      Signed-off-by: NDmitry Adamushko <dmitry.adamushko@gmail.com>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      94bc9a7b
    • D
      sched: fix __set_task_cpu() SMP race · ce96b5ac
      Dmitry Adamushko 提交于
      Grant Wilson has reported rare SCHED_FAIR_USER crashes on his quad-core
      system, which crashes can only be explained via runqueue corruption.
      
      there is a narrow SMP race in __set_task_cpu(): after ->cpu is set up to
      a new value, task_rq_lock(p, ...) can be successfuly executed on another
      CPU. We must ensure that updates of per-task data have been completed by
      this moment.
      
      this bug has been hiding in the Linux scheduler for an eternity (we never
      had any explicit barrier for task->cpu in set_task_cpu() - so the bug was
      introduced in 2.5.1), but only became visible via set_task_cfs_rq() being
      accidentally put after the task->cpu update. It also probably needs a
      sufficiently out-of-order CPU to trigger.
      Reported-by: NGrant Wilson <grant.wilson@zen.co.uk>
      Signed-off-by: NDmitry Adamushko <dmitry.adamushko@gmail.com>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      ce96b5ac
    • O
      sched: fix SCHED_FIFO tasks & FAIR_GROUP_SCHED · dae51f56
      Oleg Nesterov 提交于
      Suppose that the SCHED_FIFO task does
      
      	switch_uid(new_user);
      
      Now, p->se.cfs_rq and p->se.parent both point into the old
      user_struct->tg because sched_move_task() doesn't call set_task_cfs_rq()
      for !fair_sched_class case.
      
      Suppose that old user_struct/task_group is freed/reused, and the task
      does
      
      	sched_setscheduler(SCHED_NORMAL);
      
      __setscheduler() sets fair_sched_class, but doesn't update
      ->se.cfs_rq/parent which point to the freed memory.
      
      This means that check_preempt_wakeup() doing
      
      		while (!is_same_group(se, pse)) {
      			se = parent_entity(se);
      			pse = parent_entity(pse);
      		}
      
      may OOPS in a similar way if rq->curr or p did something like above.
      
      Perhaps we need something like the patch below, note that
      __setscheduler() can't do set_task_cfs_rq().
      Signed-off-by: NOleg Nesterov <oleg@tv-sign.ru>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      dae51f56
    • C
      sched: fix accounting of interrupts during guest execution on s390 · 9778385d
      Christian Borntraeger 提交于
      Currently the scheduler checks for PF_VCPU to decide if this timeslice
      has to be accounted as guest time. On s390 host interrupts are not
      disabled during guest execution. This causes theses interrupts to be
      accounted as guest time if CONFIG_VIRT_CPU_ACCOUNTING is set. Solution
      is to check if an interrupt triggered account_system_time. As the tick
      is timer interrupt based, we have to subtract hardirq_offset.
      
      I tested the patch on s390 with CONFIG_VIRT_CPU_ACCOUNTING and on
      x86_64. Seems to work.
      
      CC: Avi Kivity <avi@qumranet.com>
      CC: Laurent Vivier <Laurent.Vivier@bull.net>
      Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      9778385d
  10. 15 11月, 2007 1 次提交
    • A
      revert "Task Control Groups: example CPU accounting subsystem" · cfb52856
      Andrew Morton 提交于
      Revert 62d0df64.
      
      This was originally intended as a simple initial example of how to create a
      control groups subsystem; it wasn't intended for mainline, but I didn't make
      this clear enough to Andrew.
      
      The CFS cgroup subsystem now has better functionality for the per-cgroup usage
      accounting (based directly on CFS stats) than the "usage" status file in this
      patch, and the "load" status file is rather simplistic - although having a
      per-cgroup load average report would be a useful feature, I don't believe this
      patch actually provides it.  If it gets into the final 2.6.24 we'd probably
      have to support this interface for ever.
      
      Cc: Paul Menage <menage@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      cfb52856
  11. 10 11月, 2007 6 次提交
  12. 30 10月, 2007 5 次提交