workqueue.c 106.2 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18 19 20 21 22 23
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
 * automatically managed.  There is one worker pool for each CPU and
 * one extra for works which are better served by workers which are
 * not bound to any specific CPU.
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
24 25
 */

26
#include <linux/export.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
37
#include <linux/hardirq.h>
38
#include <linux/mempolicy.h>
39
#include <linux/freezer.h>
40 41
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
42
#include <linux/lockdep.h>
T
Tejun Heo 已提交
43
#include <linux/idr.h>
44
#include <linux/hashtable.h>
45

46
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
47

T
Tejun Heo 已提交
48
enum {
49 50
	/*
	 * worker_pool flags
51
	 *
52
	 * A bound pool is either associated or disassociated with its CPU.
53 54 55 56 57 58
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
59
	 * be executing on any CPU.  The pool behaves as an unbound one.
60 61
	 *
	 * Note that DISASSOCIATED can be flipped only while holding
62 63
	 * assoc_mutex to avoid changing binding state while
	 * create_worker() is in progress.
64
	 */
65
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
66
	POOL_MANAGING_WORKERS   = 1 << 1,       /* managing workers */
67
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
68
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
69

T
Tejun Heo 已提交
70 71 72 73
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
74
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
75
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
76
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
77

78
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_UNBOUND |
79
				  WORKER_CPU_INTENSIVE,
80

81
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
82

T
Tejun Heo 已提交
83
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
84

85 86 87
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

88 89 90
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
91 92 93 94 95 96 97 98
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
99
	HIGHPRI_NICE_LEVEL	= -20,
T
Tejun Heo 已提交
100
};
L
Linus Torvalds 已提交
101 102

/*
T
Tejun Heo 已提交
103 104
 * Structure fields follow one of the following exclusion rules.
 *
105 106
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
107
 *
108 109 110
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
111
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
112
 *
113 114 115 116
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
117
 *
118 119
 * F: wq->flush_mutex protected.
 *
T
Tejun Heo 已提交
120
 * W: workqueue_lock protected.
L
Linus Torvalds 已提交
121 122
 */

123
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
124

125
struct worker_pool {
126
	spinlock_t		lock;		/* the pool lock */
127
	unsigned int		cpu;		/* I: the associated cpu */
T
Tejun Heo 已提交
128
	int			id;		/* I: pool ID */
129
	unsigned int		flags;		/* X: flags */
130 131 132

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
133 134

	/* nr_idle includes the ones off idle_list for rebinding */
135 136 137 138 139 140
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

141 142 143 144
	/* workers are chained either in busy_hash or idle_list */
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

145
	struct mutex		assoc_mutex;	/* protect POOL_DISASSOCIATED */
146 147 148
	struct ida		worker_ida;	/* L: for worker IDs */
};

149
/*
150 151 152
 * Global per-cpu workqueue.  There's one and only one for each cpu
 * and all works are queued and processed here regardless of their
 * target workqueues.
153 154
 */
struct global_cwq {
155
	struct worker_pool	pools[NR_STD_WORKER_POOLS];
156
						/* normal and highpri pools */
157 158
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
159
/*
160
 * The per-CPU workqueue.  The lower WORK_STRUCT_FLAG_BITS of
T
Tejun Heo 已提交
161 162
 * work_struct->data are used for flags and thus cwqs need to be
 * aligned at two's power of the number of flag bits.
L
Linus Torvalds 已提交
163 164
 */
struct cpu_workqueue_struct {
165
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
166
	struct workqueue_struct *wq;		/* I: the owning workqueue */
167 168 169 170
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
171
	int			nr_active;	/* L: nr of active works */
172
	int			max_active;	/* L: max active works */
173
	struct list_head	delayed_works;	/* L: delayed works */
T
Tejun Heo 已提交
174
};
L
Linus Torvalds 已提交
175

176 177 178 179 180 181 182 183 184
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
	struct list_head	list;		/* F: list of flushers */
	int			flush_color;	/* F: flush color waiting for */
	struct completion	done;		/* flush completion */
};

185 186 187 188 189 190 191 192 193 194
/*
 * All cpumasks are assumed to be always set on UP and thus can't be
 * used to determine whether there's something to be done.
 */
#ifdef CONFIG_SMP
typedef cpumask_var_t mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	\
	cpumask_test_and_set_cpu((cpu), (mask))
#define mayday_clear_cpu(cpu, mask)		cpumask_clear_cpu((cpu), (mask))
#define for_each_mayday_cpu(cpu, mask)		for_each_cpu((cpu), (mask))
195
#define alloc_mayday_mask(maskp, gfp)		zalloc_cpumask_var((maskp), (gfp))
196 197 198 199 200 201 202 203 204
#define free_mayday_mask(mask)			free_cpumask_var((mask))
#else
typedef unsigned long mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	test_and_set_bit(0, &(mask))
#define mayday_clear_cpu(cpu, mask)		clear_bit(0, &(mask))
#define for_each_mayday_cpu(cpu, mask)		if ((cpu) = 0, (mask))
#define alloc_mayday_mask(maskp, gfp)		true
#define free_mayday_mask(mask)			do { } while (0)
#endif
L
Linus Torvalds 已提交
205 206 207 208 209 210

/*
 * The externally visible workqueue abstraction is an array of
 * per-CPU workqueues:
 */
struct workqueue_struct {
211
	unsigned int		flags;		/* W: WQ_* flags */
212 213 214 215 216
	union {
		struct cpu_workqueue_struct __percpu	*pcpu;
		struct cpu_workqueue_struct		*single;
		unsigned long				v;
	} cpu_wq;				/* I: cwq's */
T
Tejun Heo 已提交
217
	struct list_head	list;		/* W: list of all workqueues */
218 219 220 221 222 223 224 225 226

	struct mutex		flush_mutex;	/* protects wq flushing */
	int			work_color;	/* F: current work color */
	int			flush_color;	/* F: current flush color */
	atomic_t		nr_cwqs_to_flush; /* flush in progress */
	struct wq_flusher	*first_flusher;	/* F: first flusher */
	struct list_head	flusher_queue;	/* F: flush waiters */
	struct list_head	flusher_overflow; /* F: flush overflow list */

227
	mayday_mask_t		mayday_mask;	/* cpus requesting rescue */
228 229
	struct worker		*rescuer;	/* I: rescue worker */

230
	int			nr_drainers;	/* W: drain in progress */
231
	int			saved_max_active; /* W: saved cwq max_active */
232
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
233
	struct lockdep_map	lockdep_map;
234
#endif
235
	char			name[];		/* I: workqueue name */
L
Linus Torvalds 已提交
236 237
};

238 239
struct workqueue_struct *system_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_wq);
V
Valentin Ilie 已提交
240
struct workqueue_struct *system_highpri_wq __read_mostly;
241
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
242
struct workqueue_struct *system_long_wq __read_mostly;
243
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
244
struct workqueue_struct *system_unbound_wq __read_mostly;
245
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
246
struct workqueue_struct *system_freezable_wq __read_mostly;
247
EXPORT_SYMBOL_GPL(system_freezable_wq);
248

249 250 251
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

252 253 254
#define for_each_std_worker_pool(pool, cpu)				\
	for ((pool) = &get_gcwq((cpu))->pools[0];			\
	     (pool) < &get_gcwq((cpu))->pools[NR_STD_WORKER_POOLS]; (pool)++)
255

256 257
#define for_each_busy_worker(worker, i, pos, pool)			\
	hash_for_each(pool->busy_hash, i, pos, worker, hentry)
258

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
				  unsigned int sw)
{
	if (cpu < nr_cpu_ids) {
		if (sw & 1) {
			cpu = cpumask_next(cpu, mask);
			if (cpu < nr_cpu_ids)
				return cpu;
		}
		if (sw & 2)
			return WORK_CPU_UNBOUND;
	}
	return WORK_CPU_NONE;
}

static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
				struct workqueue_struct *wq)
{
	return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
}

280 281 282 283 284 285 286 287 288 289 290 291 292
/*
 * CPU iterators
 *
 * An extra gcwq is defined for an invalid cpu number
 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
 * specific CPU.  The following iterators are similar to
 * for_each_*_cpu() iterators but also considers the unbound gcwq.
 *
 * for_each_gcwq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
 * for_each_online_gcwq_cpu()	: online CPUs + WORK_CPU_UNBOUND
 * for_each_cwq_cpu()		: possible CPUs for bound workqueues,
 *				  WORK_CPU_UNBOUND for unbound workqueues
 */
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
#define for_each_gcwq_cpu(cpu)						\
	for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3);		\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))

#define for_each_online_gcwq_cpu(cpu)					\
	for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3);		\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))

#define for_each_cwq_cpu(cpu, wq)					\
	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq));	\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))

308 309 310 311
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

312 313 314 315 316
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
352
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
388
	.debug_hint	= work_debug_hint,
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

424 425
/* Serializes the accesses to the list of workqueues. */
static DEFINE_SPINLOCK(workqueue_lock);
L
Linus Torvalds 已提交
426
static LIST_HEAD(workqueues);
427
static bool workqueue_freezing;		/* W: have wqs started freezing? */
T
Tejun Heo 已提交
428

429 430 431 432 433
/*
 * The almighty global cpu workqueues.  nr_running is the only field
 * which is expected to be used frequently by other cpus via
 * try_to_wake_up().  Put it in a separate cacheline.
 */
434
static DEFINE_PER_CPU(struct global_cwq, global_cwq);
435
static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_STD_WORKER_POOLS]);
436

437
/*
438 439 440
 * Global cpu workqueue and nr_running counter for unbound gcwq.  The pools
 * for online CPUs have POOL_DISASSOCIATED set, and all their workers have
 * WORKER_UNBOUND set.
441 442
 */
static struct global_cwq unbound_global_cwq;
443 444
static atomic_t unbound_pool_nr_running[NR_STD_WORKER_POOLS] = {
	[0 ... NR_STD_WORKER_POOLS - 1]	= ATOMIC_INIT(0),	/* always 0 */
445
};
446

T
Tejun Heo 已提交
447 448 449 450
/* idr of all pools */
static DEFINE_MUTEX(worker_pool_idr_mutex);
static DEFINE_IDR(worker_pool_idr);

T
Tejun Heo 已提交
451
static int worker_thread(void *__worker);
L
Linus Torvalds 已提交
452

453 454
static struct global_cwq *get_gcwq(unsigned int cpu)
{
455 456 457 458
	if (cpu != WORK_CPU_UNBOUND)
		return &per_cpu(global_cwq, cpu);
	else
		return &unbound_global_cwq;
459 460
}

T
Tejun Heo 已提交
461 462 463 464 465
static int std_worker_pool_pri(struct worker_pool *pool)
{
	return pool - get_gcwq(pool->cpu)->pools;
}

T
Tejun Heo 已提交
466 467 468 469 470 471 472 473 474 475 476 477 478
/* allocate ID and assign it to @pool */
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

	mutex_lock(&worker_pool_idr_mutex);
	idr_pre_get(&worker_pool_idr, GFP_KERNEL);
	ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
	mutex_unlock(&worker_pool_idr_mutex);

	return ret;
}

479 480 481 482 483 484 485 486 487
/*
 * Lookup worker_pool by id.  The idr currently is built during boot and
 * never modified.  Don't worry about locking for now.
 */
static struct worker_pool *worker_pool_by_id(int pool_id)
{
	return idr_find(&worker_pool_idr, pool_id);
}

488 489 490 491 492 493 494
static struct worker_pool *get_std_worker_pool(int cpu, bool highpri)
{
	struct global_cwq *gcwq = get_gcwq(cpu);

	return &gcwq->pools[highpri];
}

495
static atomic_t *get_pool_nr_running(struct worker_pool *pool)
496
{
497
	int cpu = pool->cpu;
498
	int idx = std_worker_pool_pri(pool);
499

500
	if (cpu != WORK_CPU_UNBOUND)
501
		return &per_cpu(pool_nr_running, cpu)[idx];
502
	else
503
		return &unbound_pool_nr_running[idx];
504 505
}

T
Tejun Heo 已提交
506 507
static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
					    struct workqueue_struct *wq)
508
{
509
	if (!(wq->flags & WQ_UNBOUND)) {
510
		if (likely(cpu < nr_cpu_ids))
511 512 513 514
			return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
	} else if (likely(cpu == WORK_CPU_UNBOUND))
		return wq->cpu_wq.single;
	return NULL;
515 516
}

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
532

533
/*
534 535
 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
 * contain the pointer to the queued cwq.  Once execution starts, the flag
536
 * is cleared and the high bits contain OFFQ flags and pool ID.
537
 *
538 539
 * set_work_cwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the cwq, pool or clear
540 541
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
542
 *
543 544 545 546
 * get_work_pool() and get_work_cwq() can be used to obtain the pool or cwq
 * corresponding to a work.  Pool is available once the work has been
 * queued anywhere after initialization until it is sync canceled.  cwq is
 * available only while the work item is queued.
547
 *
548 549 550 551
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
552
 */
553 554
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
555
{
556
	BUG_ON(!work_pending(work));
557 558
	atomic_long_set(&work->data, data | flags | work_static(work));
}
559

560 561 562 563 564
static void set_work_cwq(struct work_struct *work,
			 struct cpu_workqueue_struct *cwq,
			 unsigned long extra_flags)
{
	set_work_data(work, (unsigned long)cwq,
565
		      WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
566 567
}

568 569
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
570
{
571 572 573 574 575 576 577
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
578
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
579
}
580

581
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
582
{
583 584
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
585 586
}

587
static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
588
{
589
	unsigned long data = atomic_long_read(&work->data);
590

591 592 593 594
	if (data & WORK_STRUCT_CWQ)
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
595 596
}

597 598 599 600 601 602 603
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
 * Return the worker_pool @work was last associated with.  %NULL if none.
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
604
{
605
	unsigned long data = atomic_long_read(&work->data);
606 607
	struct worker_pool *pool;
	int pool_id;
608

609 610
	if (data & WORK_STRUCT_CWQ)
		return ((struct cpu_workqueue_struct *)
611
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
612

613 614
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
615 616
		return NULL;

617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
	pool = worker_pool_by_id(pool_id);
	WARN_ON_ONCE(!pool);
	return pool;
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
 * Return the worker_pool ID @work was last associated with.
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
	struct worker_pool *pool = get_work_pool(work);

	return pool ? pool->id : WORK_OFFQ_POOL_NONE;
}

636 637
static void mark_work_canceling(struct work_struct *work)
{
638
	unsigned long pool_id = get_work_pool_id(work);
639

640 641
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
642 643 644 645 646 647 648 649 650
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

	return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
}

651
/*
652 653
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
654
 * they're being called with pool->lock held.
655 656
 */

657
static bool __need_more_worker(struct worker_pool *pool)
658
{
659
	return !atomic_read(get_pool_nr_running(pool));
660 661
}

662
/*
663 664
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
665 666 667 668
 *
 * Note that, because unbound workers never contribute to nr_running, this
 * function will always return %true for unbound gcwq as long as the
 * worklist isn't empty.
669
 */
670
static bool need_more_worker(struct worker_pool *pool)
671
{
672
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
673
}
674

675
/* Can I start working?  Called from busy but !running workers. */
676
static bool may_start_working(struct worker_pool *pool)
677
{
678
	return pool->nr_idle;
679 680 681
}

/* Do I need to keep working?  Called from currently running workers. */
682
static bool keep_working(struct worker_pool *pool)
683
{
684
	atomic_t *nr_running = get_pool_nr_running(pool);
685

686
	return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
687 688 689
}

/* Do we need a new worker?  Called from manager. */
690
static bool need_to_create_worker(struct worker_pool *pool)
691
{
692
	return need_more_worker(pool) && !may_start_working(pool);
693
}
694

695
/* Do I need to be the manager? */
696
static bool need_to_manage_workers(struct worker_pool *pool)
697
{
698
	return need_to_create_worker(pool) ||
699
		(pool->flags & POOL_MANAGE_WORKERS);
700 701 702
}

/* Do we have too many workers and should some go away? */
703
static bool too_many_workers(struct worker_pool *pool)
704
{
705
	bool managing = pool->flags & POOL_MANAGING_WORKERS;
706 707
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
708

709 710 711 712 713 714 715
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

716
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
717 718
}

719
/*
720 721 722
 * Wake up functions.
 */

723
/* Return the first worker.  Safe with preemption disabled */
724
static struct worker *first_worker(struct worker_pool *pool)
725
{
726
	if (unlikely(list_empty(&pool->idle_list)))
727 728
		return NULL;

729
	return list_first_entry(&pool->idle_list, struct worker, entry);
730 731 732 733
}

/**
 * wake_up_worker - wake up an idle worker
734
 * @pool: worker pool to wake worker from
735
 *
736
 * Wake up the first idle worker of @pool.
737 738
 *
 * CONTEXT:
739
 * spin_lock_irq(pool->lock).
740
 */
741
static void wake_up_worker(struct worker_pool *pool)
742
{
743
	struct worker *worker = first_worker(pool);
744 745 746 747 748

	if (likely(worker))
		wake_up_process(worker->task);
}

749
/**
750 751 752 753 754 755 756 757 758 759 760 761 762 763
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
{
	struct worker *worker = kthread_data(task);

764
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
765
		WARN_ON_ONCE(worker->pool->cpu != cpu);
766
		atomic_inc(get_pool_nr_running(worker->pool));
767
	}
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
struct task_struct *wq_worker_sleeping(struct task_struct *task,
				       unsigned int cpu)
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
789 790
	struct worker_pool *pool;
	atomic_t *nr_running;
791

792 793 794 795 796
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
797
	if (worker->flags & WORKER_NOT_RUNNING)
798 799
		return NULL;

800 801 802
	pool = worker->pool;
	nr_running = get_pool_nr_running(pool);

803 804 805 806 807 808 809 810
	/* this can only happen on the local cpu */
	BUG_ON(cpu != raw_smp_processor_id());

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
811 812 813
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
814
	 * manipulating idle_list, so dereferencing idle_list without pool
815
	 * lock is safe.
816
	 */
817
	if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
818
		to_wakeup = first_worker(pool);
819 820 821 822 823
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
824
 * @worker: self
825 826 827
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
828 829 830
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
831
 *
832
 * CONTEXT:
833
 * spin_lock_irq(pool->lock)
834 835 836 837
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
838
	struct worker_pool *pool = worker->pool;
839

840 841
	WARN_ON_ONCE(worker->task != current);

842 843 844 845 846 847 848
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
849
		atomic_t *nr_running = get_pool_nr_running(pool);
850 851 852

		if (wakeup) {
			if (atomic_dec_and_test(nr_running) &&
853
			    !list_empty(&pool->worklist))
854
				wake_up_worker(pool);
855 856 857 858
		} else
			atomic_dec(nr_running);
	}

859 860 861 862
	worker->flags |= flags;
}

/**
863
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
864
 * @worker: self
865 866
 * @flags: flags to clear
 *
867
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
868
 *
869
 * CONTEXT:
870
 * spin_lock_irq(pool->lock)
871 872 873
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
874
	struct worker_pool *pool = worker->pool;
875 876
	unsigned int oflags = worker->flags;

877 878
	WARN_ON_ONCE(worker->task != current);

879
	worker->flags &= ~flags;
880

881 882 883 884 885
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
886 887
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
888
			atomic_inc(get_pool_nr_running(pool));
889 890
}

891 892
/**
 * find_worker_executing_work - find worker which is executing a work
893
 * @pool: pool of interest
894 895
 * @work: work to find worker for
 *
896 897
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
 * This function checks the work item address, work function and workqueue
 * to avoid false positives.  Note that this isn't complete as one may
 * construct a work function which can introduce dependency onto itself
 * through a recycled work item.  Well, if somebody wants to shoot oneself
 * in the foot that badly, there's only so much we can do, and if such
 * deadlock actually occurs, it should be easy to locate the culprit work
 * function.
917 918
 *
 * CONTEXT:
919
 * spin_lock_irq(pool->lock).
920 921 922 923
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
924
 */
925
static struct worker *find_worker_executing_work(struct worker_pool *pool,
926
						 struct work_struct *work)
927
{
928 929 930
	struct worker *worker;
	struct hlist_node *tmp;

931
	hash_for_each_possible(pool->busy_hash, worker, tmp, hentry,
932 933 934
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
935 936 937
			return worker;

	return NULL;
938 939
}

940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
955
 * spin_lock_irq(pool->lock).
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

981
static void cwq_activate_delayed_work(struct work_struct *work)
982
{
983
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
984 985 986 987 988 989 990

	trace_workqueue_activate_work(work);
	move_linked_works(work, &cwq->pool->worklist, NULL);
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
	cwq->nr_active++;
}

991 992 993 994 995 996 997 998
static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
{
	struct work_struct *work = list_first_entry(&cwq->delayed_works,
						    struct work_struct, entry);

	cwq_activate_delayed_work(work);
}

999 1000 1001 1002 1003 1004 1005 1006 1007
/**
 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
 * @cwq: cwq of interest
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
 * decrement nr_in_flight of its cwq and handle workqueue flushing.
 *
 * CONTEXT:
1008
 * spin_lock_irq(pool->lock).
1009
 */
1010
static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
1011 1012 1013 1014 1015 1016 1017
{
	/* ignore uncolored works */
	if (color == WORK_NO_COLOR)
		return;

	cwq->nr_in_flight[color]--;

1018 1019 1020 1021 1022
	cwq->nr_active--;
	if (!list_empty(&cwq->delayed_works)) {
		/* one down, submit a delayed one */
		if (cwq->nr_active < cwq->max_active)
			cwq_activate_first_delayed(cwq);
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
	}

	/* is flush in progress and are we at the flushing tip? */
	if (likely(cwq->flush_color != color))
		return;

	/* are there still in-flight works? */
	if (cwq->nr_in_flight[color])
		return;

	/* this cwq is done, clear flush_color */
	cwq->flush_color = -1;

	/*
	 * If this was the last cwq, wake up the first flusher.  It
	 * will handle the rest.
	 */
	if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
		complete(&cwq->wq->first_flusher->done);
}

1044
/**
1045
 * try_to_grab_pending - steal work item from worklist and disable irq
1046 1047
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1048
 * @flags: place to store irq state
1049 1050 1051 1052 1053 1054 1055
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
 * stable state - idle, on timer or on worklist.  Return values are
 *
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1056 1057
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1058
 *
1059
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1060 1061 1062
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1063 1064 1065 1066
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1067
 * This function is safe to call from any context including IRQ handler.
1068
 */
1069 1070
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1071
{
1072
	struct worker_pool *pool;
1073

1074 1075
	local_irq_save(*flags);

1076 1077 1078 1079
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1080 1081 1082 1083 1084
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1085 1086 1087 1088 1089
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1090 1091 1092 1093 1094 1095 1096
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1097 1098
	pool = get_work_pool(work);
	if (!pool)
1099
		goto fail;
1100

1101
	spin_lock(&pool->lock);
1102 1103
	if (!list_empty(&work->entry)) {
		/*
1104 1105 1106
		 * This work is queued, but perhaps we locked the wrong
		 * pool.  In that case we must see the new value after
		 * rmb(), see insert_work()->wmb().
1107 1108
		 */
		smp_rmb();
1109
		if (pool == get_work_pool(work)) {
1110
			debug_work_deactivate(work);
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122

			/*
			 * A delayed work item cannot be grabbed directly
			 * because it might have linked NO_COLOR work items
			 * which, if left on the delayed_list, will confuse
			 * cwq->nr_active management later on and cause
			 * stall.  Make sure the work item is activated
			 * before grabbing.
			 */
			if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
				cwq_activate_delayed_work(work);

1123 1124
			list_del_init(&work->entry);
			cwq_dec_nr_in_flight(get_work_cwq(work),
1125
				get_work_color(work));
1126

1127
			spin_unlock(&pool->lock);
1128
			return 1;
1129 1130
		}
	}
1131
	spin_unlock(&pool->lock);
1132 1133 1134 1135 1136
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1137
	return -EAGAIN;
1138 1139
}

T
Tejun Heo 已提交
1140
/**
1141
 * insert_work - insert a work into gcwq
T
Tejun Heo 已提交
1142 1143 1144 1145 1146
 * @cwq: cwq @work belongs to
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1147 1148
 * Insert @work which belongs to @cwq into @gcwq after @head.
 * @extra_flags is or'd to work_struct flags.
T
Tejun Heo 已提交
1149 1150
 *
 * CONTEXT:
1151
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1152
 */
O
Oleg Nesterov 已提交
1153
static void insert_work(struct cpu_workqueue_struct *cwq,
T
Tejun Heo 已提交
1154 1155
			struct work_struct *work, struct list_head *head,
			unsigned int extra_flags)
O
Oleg Nesterov 已提交
1156
{
1157
	struct worker_pool *pool = cwq->pool;
1158

T
Tejun Heo 已提交
1159
	/* we own @work, set data and link */
1160
	set_work_cwq(work, cwq, extra_flags);
1161

1162 1163 1164 1165 1166
	/*
	 * Ensure that we get the right work->data if we see the
	 * result of list_add() below, see try_to_grab_pending().
	 */
	smp_wmb();
T
Tejun Heo 已提交
1167

1168
	list_add_tail(&work->entry, head);
1169 1170 1171 1172 1173 1174 1175 1176

	/*
	 * Ensure either worker_sched_deactivated() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers
	 * lying around lazily while there are works to be processed.
	 */
	smp_mb();

1177 1178
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1179 1180
}

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
/*
 * Test whether @work is being queued from another work executing on the
 * same workqueue.  This is rather expensive and should only be used from
 * cold paths.
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
	unsigned long flags;
	unsigned int cpu;

	for_each_gcwq_cpu(cpu) {
1192 1193
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
		struct worker_pool *pool = cwq->pool;
1194 1195 1196 1197
		struct worker *worker;
		struct hlist_node *pos;
		int i;

1198
		spin_lock_irqsave(&pool->lock, flags);
1199
		for_each_busy_worker(worker, i, pos, pool) {
1200 1201
			if (worker->task != current)
				continue;
1202
			spin_unlock_irqrestore(&pool->lock, flags);
1203 1204 1205 1206 1207 1208
			/*
			 * I'm @worker, no locking necessary.  See if @work
			 * is headed to the same workqueue.
			 */
			return worker->current_cwq->wq == wq;
		}
1209
		spin_unlock_irqrestore(&pool->lock, flags);
1210 1211 1212 1213
	}
	return false;
}

T
Tejun Heo 已提交
1214
static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1215 1216
			 struct work_struct *work)
{
1217 1218
	bool highpri = wq->flags & WQ_HIGHPRI;
	struct worker_pool *pool;
1219
	struct cpu_workqueue_struct *cwq;
1220
	struct list_head *worklist;
1221
	unsigned int work_flags;
1222
	unsigned int req_cpu = cpu;
1223 1224 1225 1226 1227 1228 1229 1230

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1231

1232
	debug_work_activate(work);
1233

1234
	/* if dying, only works from the same workqueue are allowed */
1235
	if (unlikely(wq->flags & WQ_DRAINING) &&
1236
	    WARN_ON_ONCE(!is_chained_work(wq)))
1237 1238
		return;

1239
	/* determine pool to use */
1240
	if (!(wq->flags & WQ_UNBOUND)) {
1241
		struct worker_pool *last_pool;
1242

1243
		if (cpu == WORK_CPU_UNBOUND)
1244 1245
			cpu = raw_smp_processor_id();

1246
		/*
1247 1248 1249 1250
		 * It's multi cpu.  If @work was previously on a different
		 * cpu, it might still be running there, in which case the
		 * work needs to be queued on that cpu to guarantee
		 * non-reentrancy.
1251
		 */
1252
		pool = get_std_worker_pool(cpu, highpri);
1253
		last_pool = get_work_pool(work);
1254

1255
		if (last_pool && last_pool != pool) {
1256 1257
			struct worker *worker;

1258
			spin_lock(&last_pool->lock);
1259

1260
			worker = find_worker_executing_work(last_pool, work);
1261 1262

			if (worker && worker->current_cwq->wq == wq)
1263
				pool = last_pool;
1264 1265
			else {
				/* meh... not running there, queue here */
1266 1267
				spin_unlock(&last_pool->lock);
				spin_lock(&pool->lock);
1268
			}
1269
		} else {
1270
			spin_lock(&pool->lock);
1271
		}
1272
	} else {
1273 1274
		pool = get_std_worker_pool(WORK_CPU_UNBOUND, highpri);
		spin_lock(&pool->lock);
1275 1276
	}

1277 1278
	/* pool determined, get cwq and queue */
	cwq = get_cwq(pool->cpu, wq);
1279
	trace_workqueue_queue_work(req_cpu, cwq, work);
1280

1281
	if (WARN_ON(!list_empty(&work->entry))) {
1282
		spin_unlock(&pool->lock);
1283 1284
		return;
	}
1285

1286
	cwq->nr_in_flight[cwq->work_color]++;
1287
	work_flags = work_color_to_flags(cwq->work_color);
1288 1289

	if (likely(cwq->nr_active < cwq->max_active)) {
1290
		trace_workqueue_activate_work(work);
1291
		cwq->nr_active++;
1292
		worklist = &cwq->pool->worklist;
1293 1294
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1295
		worklist = &cwq->delayed_works;
1296
	}
1297

1298
	insert_work(cwq, work, worklist, work_flags);
1299

1300
	spin_unlock(&pool->lock);
L
Linus Torvalds 已提交
1301 1302
}

1303
/**
1304 1305
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1306 1307 1308
 * @wq: workqueue to use
 * @work: work to queue
 *
1309
 * Returns %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1310
 *
1311 1312
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
L
Linus Torvalds 已提交
1313
 */
1314 1315
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1316
{
1317
	bool ret = false;
1318
	unsigned long flags;
1319

1320
	local_irq_save(flags);
1321

1322
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1323
		__queue_work(cpu, wq, work);
1324
		ret = true;
1325
	}
1326

1327
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1328 1329
	return ret;
}
1330
EXPORT_SYMBOL_GPL(queue_work_on);
L
Linus Torvalds 已提交
1331

1332
/**
1333
 * queue_work - queue work on a workqueue
1334 1335 1336
 * @wq: workqueue to use
 * @work: work to queue
 *
1337
 * Returns %false if @work was already on a queue, %true otherwise.
1338
 *
1339 1340
 * We queue the work to the CPU on which it was submitted, but if the CPU dies
 * it can be processed by another CPU.
1341
 */
1342
bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1343
{
1344
	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1345
}
1346
EXPORT_SYMBOL_GPL(queue_work);
1347

1348
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1349
{
1350
	struct delayed_work *dwork = (struct delayed_work *)__data;
1351
	struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
L
Linus Torvalds 已提交
1352

1353
	/* should have been called from irqsafe timer with irq already off */
1354
	__queue_work(dwork->cpu, cwq->wq, &dwork->work);
L
Linus Torvalds 已提交
1355
}
1356
EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1357

1358 1359
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1360
{
1361 1362 1363 1364 1365 1366
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;
	unsigned int lcpu;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1367 1368
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1369

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1381
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1382

1383 1384
	/*
	 * This stores cwq for the moment, for the timer_fn.  Note that the
1385
	 * work's pool is preserved to allow reentrance detection for
1386 1387 1388
	 * delayed works.
	 */
	if (!(wq->flags & WQ_UNBOUND)) {
1389
		struct worker_pool *pool = get_work_pool(work);
1390

1391
		/*
1392
		 * If we cannot get the last pool from @work directly,
1393 1394 1395 1396
		 * select the last CPU such that it avoids unnecessarily
		 * triggering non-reentrancy check in __queue_work().
		 */
		lcpu = cpu;
1397 1398
		if (pool)
			lcpu = pool->cpu;
1399
		if (lcpu == WORK_CPU_UNBOUND)
1400 1401 1402 1403 1404 1405 1406
			lcpu = raw_smp_processor_id();
	} else {
		lcpu = WORK_CPU_UNBOUND;
	}

	set_work_cwq(work, get_cwq(lcpu, wq), 0);

1407
	dwork->cpu = cpu;
1408 1409 1410 1411 1412 1413
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1414 1415
}

1416 1417 1418 1419
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1420
 * @dwork: work to queue
1421 1422
 * @delay: number of jiffies to wait before queueing
 *
1423 1424 1425
 * Returns %false if @work was already on a queue, %true otherwise.  If
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1426
 */
1427 1428
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1429
{
1430
	struct work_struct *work = &dwork->work;
1431
	bool ret = false;
1432
	unsigned long flags;
1433

1434 1435
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1436

1437
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1438
		__queue_delayed_work(cpu, wq, dwork, delay);
1439
		ret = true;
1440
	}
1441

1442
	local_irq_restore(flags);
1443 1444
	return ret;
}
1445
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1446

1447 1448 1449 1450 1451 1452
/**
 * queue_delayed_work - queue work on a workqueue after delay
 * @wq: workqueue to use
 * @dwork: delayable work to queue
 * @delay: number of jiffies to wait before queueing
 *
1453
 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1454
 */
1455
bool queue_delayed_work(struct workqueue_struct *wq,
1456 1457
			struct delayed_work *dwork, unsigned long delay)
{
1458
	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1459 1460
}
EXPORT_SYMBOL_GPL(queue_delayed_work);
1461

1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
 * Returns %false if @dwork was idle and queued, %true if @dwork was
 * pending and its timer was modified.
 *
1477
 * This function is safe to call from any context including IRQ handler.
1478 1479 1480 1481 1482 1483 1484
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1485

1486 1487 1488
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1489

1490 1491 1492
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1493
	}
1494 1495

	/* -ENOENT from try_to_grab_pending() becomes %true */
1496 1497
	return ret;
}
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

/**
 * mod_delayed_work - modify delay of or queue a delayed work
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * mod_delayed_work_on() on local CPU.
 */
bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
		      unsigned long delay)
{
	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
}
EXPORT_SYMBOL_GPL(mod_delayed_work);
L
Linus Torvalds 已提交
1514

T
Tejun Heo 已提交
1515 1516 1517 1518 1519 1520 1521 1522
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1523
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1524 1525
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1526
{
1527
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1528 1529 1530 1531 1532

	BUG_ON(worker->flags & WORKER_IDLE);
	BUG_ON(!list_empty(&worker->entry) &&
	       (worker->hentry.next || worker->hentry.pprev));

1533 1534
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1535
	pool->nr_idle++;
1536
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1537 1538

	/* idle_list is LIFO */
1539
	list_add(&worker->entry, &pool->idle_list);
1540

1541 1542
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1543

1544
	/*
1545
	 * Sanity check nr_running.  Because gcwq_unbind_fn() releases
1546
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1547 1548
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1549
	 */
1550
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1551
		     pool->nr_workers == pool->nr_idle &&
1552
		     atomic_read(get_pool_nr_running(pool)));
T
Tejun Heo 已提交
1553 1554 1555 1556 1557 1558 1559 1560 1561
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1562
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1563 1564 1565
 */
static void worker_leave_idle(struct worker *worker)
{
1566
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1567 1568

	BUG_ON(!(worker->flags & WORKER_IDLE));
1569
	worker_clr_flags(worker, WORKER_IDLE);
1570
	pool->nr_idle--;
T
Tejun Heo 已提交
1571 1572 1573
	list_del_init(&worker->entry);
}

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
/**
 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
 * @worker: self
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
 * This function is to be used by rogue workers and rescuers to bind
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
 * verbatim as it's best effort and blocking and gcwq may be
 * [dis]associated in the meantime.
 *
1590
 * This function tries set_cpus_allowed() and locks gcwq and verifies the
1591
 * binding against %POOL_DISASSOCIATED which is set during
1592 1593 1594
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1595 1596
 *
 * CONTEXT:
1597
 * Might sleep.  Called without any lock but returns with pool->lock
1598 1599 1600 1601 1602 1603 1604
 * held.
 *
 * RETURNS:
 * %true if the associated gcwq is online (@worker is successfully
 * bound), %false if offline.
 */
static bool worker_maybe_bind_and_lock(struct worker *worker)
1605
__acquires(&pool->lock)
1606
{
1607
	struct worker_pool *pool = worker->pool;
1608 1609 1610
	struct task_struct *task = worker->task;

	while (true) {
1611
		/*
1612 1613 1614
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1615
		 * against POOL_DISASSOCIATED.
1616
		 */
1617
		if (!(pool->flags & POOL_DISASSOCIATED))
1618
			set_cpus_allowed_ptr(task, get_cpu_mask(pool->cpu));
1619

1620
		spin_lock_irq(&pool->lock);
1621
		if (pool->flags & POOL_DISASSOCIATED)
1622
			return false;
1623
		if (task_cpu(task) == pool->cpu &&
1624
		    cpumask_equal(&current->cpus_allowed,
1625
				  get_cpu_mask(pool->cpu)))
1626
			return true;
1627
		spin_unlock_irq(&pool->lock);
1628

1629 1630 1631 1632 1633 1634
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1635
		cpu_relax();
1636
		cond_resched();
1637 1638 1639
	}
}

1640
/*
1641
 * Rebind an idle @worker to its CPU.  worker_thread() will test
1642
 * list_empty(@worker->entry) before leaving idle and call this function.
1643 1644 1645
 */
static void idle_worker_rebind(struct worker *worker)
{
1646 1647 1648
	/* CPU may go down again inbetween, clear UNBOUND only on success */
	if (worker_maybe_bind_and_lock(worker))
		worker_clr_flags(worker, WORKER_UNBOUND);
1649

1650 1651
	/* rebind complete, become available again */
	list_add(&worker->entry, &worker->pool->idle_list);
1652
	spin_unlock_irq(&worker->pool->lock);
1653 1654
}

1655
/*
1656
 * Function for @worker->rebind.work used to rebind unbound busy workers to
1657 1658 1659
 * the associated cpu which is coming back online.  This is scheduled by
 * cpu up but can race with other cpu hotplug operations and may be
 * executed twice without intervening cpu down.
1660
 */
1661
static void busy_worker_rebind_fn(struct work_struct *work)
1662 1663 1664
{
	struct worker *worker = container_of(work, struct worker, rebind_work);

1665 1666
	if (worker_maybe_bind_and_lock(worker))
		worker_clr_flags(worker, WORKER_UNBOUND);
1667

1668
	spin_unlock_irq(&worker->pool->lock);
1669 1670
}

1671
/**
1672 1673
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
1674
 *
1675
 * @pool->cpu is coming online.  Rebind all workers to the CPU.  Rebinding
1676 1677
 * is different for idle and busy ones.
 *
1678 1679 1680 1681
 * Idle ones will be removed from the idle_list and woken up.  They will
 * add themselves back after completing rebind.  This ensures that the
 * idle_list doesn't contain any unbound workers when re-bound busy workers
 * try to perform local wake-ups for concurrency management.
1682
 *
1683 1684 1685 1686
 * Busy workers can rebind after they finish their current work items.
 * Queueing the rebind work item at the head of the scheduled list is
 * enough.  Note that nr_running will be properly bumped as busy workers
 * rebind.
1687
 *
1688 1689 1690 1691
 * On return, all non-manager workers are scheduled for rebind - see
 * manage_workers() for the manager special case.  Any idle worker
 * including the manager will not appear on @idle_list until rebind is
 * complete, making local wake-ups safe.
1692
 */
1693
static void rebind_workers(struct worker_pool *pool)
1694
{
1695
	struct worker *worker, *n;
1696 1697 1698
	struct hlist_node *pos;
	int i;

1699 1700
	lockdep_assert_held(&pool->assoc_mutex);
	lockdep_assert_held(&pool->lock);
1701

1702
	/* dequeue and kick idle ones */
1703 1704 1705 1706 1707 1708
	list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
		/*
		 * idle workers should be off @pool->idle_list until rebind
		 * is complete to avoid receiving premature local wake-ups.
		 */
		list_del_init(&worker->entry);
1709

1710 1711 1712 1713 1714 1715
		/*
		 * worker_thread() will see the above dequeuing and call
		 * idle_worker_rebind().
		 */
		wake_up_process(worker->task);
	}
1716

1717 1718 1719 1720
	/* rebind busy workers */
	for_each_busy_worker(worker, i, pos, pool) {
		struct work_struct *rebind_work = &worker->rebind_work;
		struct workqueue_struct *wq;
1721

1722 1723 1724
		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
				     work_data_bits(rebind_work)))
			continue;
1725

1726
		debug_work_activate(rebind_work);
1727

1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
		/*
		 * wq doesn't really matter but let's keep @worker->pool
		 * and @cwq->pool consistent for sanity.
		 */
		if (std_worker_pool_pri(worker->pool))
			wq = system_highpri_wq;
		else
			wq = system_wq;

		insert_work(get_cwq(pool->cpu, wq), rebind_work,
			    worker->scheduled.next,
			    work_color_to_flags(WORK_NO_COLOR));
1740
	}
1741 1742
}

T
Tejun Heo 已提交
1743 1744 1745 1746 1747
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1748 1749
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1750
		INIT_LIST_HEAD(&worker->scheduled);
1751
		INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1752 1753
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1754
	}
T
Tejun Heo 已提交
1755 1756 1757 1758 1759
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1760
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1761
 *
1762
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1763 1764 1765 1766 1767 1768 1769 1770 1771
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1772
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1773
{
1774
	const char *pri = std_worker_pool_pri(pool) ? "H" : "";
T
Tejun Heo 已提交
1775
	struct worker *worker = NULL;
1776
	int id = -1;
T
Tejun Heo 已提交
1777

1778
	spin_lock_irq(&pool->lock);
1779
	while (ida_get_new(&pool->worker_ida, &id)) {
1780
		spin_unlock_irq(&pool->lock);
1781
		if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
T
Tejun Heo 已提交
1782
			goto fail;
1783
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
1784
	}
1785
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1786 1787 1788 1789 1790

	worker = alloc_worker();
	if (!worker)
		goto fail;

1791
	worker->pool = pool;
T
Tejun Heo 已提交
1792 1793
	worker->id = id;

1794
	if (pool->cpu != WORK_CPU_UNBOUND)
1795
		worker->task = kthread_create_on_node(worker_thread,
1796 1797
					worker, cpu_to_node(pool->cpu),
					"kworker/%u:%d%s", pool->cpu, id, pri);
1798 1799
	else
		worker->task = kthread_create(worker_thread, worker,
1800
					      "kworker/u:%d%s", id, pri);
T
Tejun Heo 已提交
1801 1802 1803
	if (IS_ERR(worker->task))
		goto fail;

1804
	if (std_worker_pool_pri(pool))
1805 1806
		set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);

1807
	/*
1808
	 * Determine CPU binding of the new worker depending on
1809
	 * %POOL_DISASSOCIATED.  The caller is responsible for ensuring the
1810 1811 1812 1813 1814
	 * flag remains stable across this function.  See the comments
	 * above the flag definition for details.
	 *
	 * As an unbound worker may later become a regular one if CPU comes
	 * online, make sure every worker has %PF_THREAD_BOUND set.
1815
	 */
1816
	if (!(pool->flags & POOL_DISASSOCIATED)) {
1817
		kthread_bind(worker->task, pool->cpu);
1818
	} else {
1819
		worker->task->flags |= PF_THREAD_BOUND;
1820
		worker->flags |= WORKER_UNBOUND;
1821
	}
T
Tejun Heo 已提交
1822 1823 1824 1825

	return worker;
fail:
	if (id >= 0) {
1826
		spin_lock_irq(&pool->lock);
1827
		ida_remove(&pool->worker_ida, id);
1828
		spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1829 1830 1831 1832 1833 1834 1835 1836 1837
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
T
Tejun Heo 已提交
1838
 * Make the gcwq aware of @worker and start it.
T
Tejun Heo 已提交
1839 1840
 *
 * CONTEXT:
1841
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1842 1843 1844
 */
static void start_worker(struct worker *worker)
{
1845
	worker->flags |= WORKER_STARTED;
1846
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1847
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1848 1849 1850 1851 1852 1853 1854
	wake_up_process(worker->task);
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
T
Tejun Heo 已提交
1855 1856 1857
 * Destroy @worker and adjust @gcwq stats accordingly.
 *
 * CONTEXT:
1858
 * spin_lock_irq(pool->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1859 1860 1861
 */
static void destroy_worker(struct worker *worker)
{
1862
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1863 1864 1865 1866
	int id = worker->id;

	/* sanity check frenzy */
	BUG_ON(worker->current_work);
1867
	BUG_ON(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
1868

T
Tejun Heo 已提交
1869
	if (worker->flags & WORKER_STARTED)
1870
		pool->nr_workers--;
T
Tejun Heo 已提交
1871
	if (worker->flags & WORKER_IDLE)
1872
		pool->nr_idle--;
T
Tejun Heo 已提交
1873 1874

	list_del_init(&worker->entry);
1875
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1876

1877
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1878

T
Tejun Heo 已提交
1879 1880 1881
	kthread_stop(worker->task);
	kfree(worker);

1882
	spin_lock_irq(&pool->lock);
1883
	ida_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1884 1885
}

1886
static void idle_worker_timeout(unsigned long __pool)
1887
{
1888
	struct worker_pool *pool = (void *)__pool;
1889

1890
	spin_lock_irq(&pool->lock);
1891

1892
	if (too_many_workers(pool)) {
1893 1894 1895 1896
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1897
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1898 1899 1900
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1901
			mod_timer(&pool->idle_timer, expires);
1902 1903
		else {
			/* it's been idle for too long, wake up manager */
1904
			pool->flags |= POOL_MANAGE_WORKERS;
1905
			wake_up_worker(pool);
1906
		}
1907 1908
	}

1909
	spin_unlock_irq(&pool->lock);
1910
}
1911

1912 1913 1914 1915
static bool send_mayday(struct work_struct *work)
{
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
	struct workqueue_struct *wq = cwq->wq;
1916
	unsigned int cpu;
1917 1918 1919 1920 1921

	if (!(wq->flags & WQ_RESCUER))
		return false;

	/* mayday mayday mayday */
1922
	cpu = cwq->pool->cpu;
1923 1924 1925
	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
	if (cpu == WORK_CPU_UNBOUND)
		cpu = 0;
1926
	if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1927 1928 1929 1930
		wake_up_process(wq->rescuer->task);
	return true;
}

1931
static void gcwq_mayday_timeout(unsigned long __pool)
1932
{
1933
	struct worker_pool *pool = (void *)__pool;
1934 1935
	struct work_struct *work;

1936
	spin_lock_irq(&pool->lock);
1937

1938
	if (need_to_create_worker(pool)) {
1939 1940 1941 1942 1943 1944
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1945
		list_for_each_entry(work, &pool->worklist, entry)
1946
			send_mayday(work);
L
Linus Torvalds 已提交
1947
	}
1948

1949
	spin_unlock_irq(&pool->lock);
1950

1951
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1952 1953
}

1954 1955
/**
 * maybe_create_worker - create a new worker if necessary
1956
 * @pool: pool to create a new worker for
1957
 *
1958
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1959 1960
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1961
 * sent to all rescuers with works scheduled on @pool to resolve
1962 1963 1964 1965 1966 1967
 * possible allocation deadlock.
 *
 * On return, need_to_create_worker() is guaranteed to be false and
 * may_start_working() true.
 *
 * LOCKING:
1968
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1969 1970 1971 1972
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
1973
 * false if no action was taken and pool->lock stayed locked, true
1974 1975
 * otherwise.
 */
1976
static bool maybe_create_worker(struct worker_pool *pool)
1977 1978
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1979
{
1980
	if (!need_to_create_worker(pool))
1981 1982
		return false;
restart:
1983
	spin_unlock_irq(&pool->lock);
1984

1985
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1986
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1987 1988 1989 1990

	while (true) {
		struct worker *worker;

1991
		worker = create_worker(pool);
1992
		if (worker) {
1993
			del_timer_sync(&pool->mayday_timer);
1994
			spin_lock_irq(&pool->lock);
1995
			start_worker(worker);
1996
			BUG_ON(need_to_create_worker(pool));
1997 1998 1999
			return true;
		}

2000
		if (!need_to_create_worker(pool))
2001
			break;
L
Linus Torvalds 已提交
2002

2003 2004
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
2005

2006
		if (!need_to_create_worker(pool))
2007 2008 2009
			break;
	}

2010
	del_timer_sync(&pool->mayday_timer);
2011
	spin_lock_irq(&pool->lock);
2012
	if (need_to_create_worker(pool))
2013 2014 2015 2016 2017 2018
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
2019
 * @pool: pool to destroy workers for
2020
 *
2021
 * Destroy @pool workers which have been idle for longer than
2022 2023 2024
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
2025
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2026 2027 2028
 * multiple times.  Called only from manager.
 *
 * RETURNS:
2029
 * false if no action was taken and pool->lock stayed locked, true
2030 2031
 * otherwise.
 */
2032
static bool maybe_destroy_workers(struct worker_pool *pool)
2033 2034
{
	bool ret = false;
L
Linus Torvalds 已提交
2035

2036
	while (too_many_workers(pool)) {
2037 2038
		struct worker *worker;
		unsigned long expires;
2039

2040
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2041
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2042

2043
		if (time_before(jiffies, expires)) {
2044
			mod_timer(&pool->idle_timer, expires);
2045
			break;
2046
		}
L
Linus Torvalds 已提交
2047

2048 2049
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
2050
	}
2051

2052
	return ret;
2053 2054
}

2055
/**
2056 2057
 * manage_workers - manage worker pool
 * @worker: self
2058
 *
2059 2060 2061 2062 2063 2064 2065
 * Assume the manager role and manage gcwq worker pool @worker belongs
 * to.  At any given time, there can be only zero or one manager per
 * gcwq.  The exclusion is handled automatically by this function.
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
2066 2067
 *
 * CONTEXT:
2068
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2069 2070 2071
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
2072 2073
 * spin_lock_irq(pool->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
2074
 */
2075
static bool manage_workers(struct worker *worker)
2076
{
2077
	struct worker_pool *pool = worker->pool;
2078
	bool ret = false;
2079

2080
	if (pool->flags & POOL_MANAGING_WORKERS)
2081
		return ret;
2082

2083
	pool->flags |= POOL_MANAGING_WORKERS;
2084

2085 2086 2087 2088 2089 2090
	/*
	 * To simplify both worker management and CPU hotplug, hold off
	 * management while hotplug is in progress.  CPU hotplug path can't
	 * grab %POOL_MANAGING_WORKERS to achieve this because that can
	 * lead to idle worker depletion (all become busy thinking someone
	 * else is managing) which in turn can result in deadlock under
2091
	 * extreme circumstances.  Use @pool->assoc_mutex to synchronize
2092 2093
	 * manager against CPU hotplug.
	 *
2094
	 * assoc_mutex would always be free unless CPU hotplug is in
2095
	 * progress.  trylock first without dropping @pool->lock.
2096
	 */
2097
	if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
2098
		spin_unlock_irq(&pool->lock);
2099
		mutex_lock(&pool->assoc_mutex);
2100 2101
		/*
		 * CPU hotplug could have happened while we were waiting
2102
		 * for assoc_mutex.  Hotplug itself can't handle us
2103 2104 2105
		 * because manager isn't either on idle or busy list, and
		 * @gcwq's state and ours could have deviated.
		 *
2106
		 * As hotplug is now excluded via assoc_mutex, we can
2107 2108 2109 2110 2111 2112 2113 2114
		 * simply try to bind.  It will succeed or fail depending
		 * on @gcwq's current state.  Try it and adjust
		 * %WORKER_UNBOUND accordingly.
		 */
		if (worker_maybe_bind_and_lock(worker))
			worker->flags &= ~WORKER_UNBOUND;
		else
			worker->flags |= WORKER_UNBOUND;
2115

2116 2117
		ret = true;
	}
2118

2119
	pool->flags &= ~POOL_MANAGE_WORKERS;
2120 2121

	/*
2122 2123
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2124
	 */
2125 2126
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2127

2128
	pool->flags &= ~POOL_MANAGING_WORKERS;
2129
	mutex_unlock(&pool->assoc_mutex);
2130
	return ret;
2131 2132
}

2133 2134
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2135
 * @worker: self
2136 2137 2138 2139 2140 2141 2142 2143 2144
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2145
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2146
 */
T
Tejun Heo 已提交
2147
static void process_one_work(struct worker *worker, struct work_struct *work)
2148 2149
__releases(&pool->lock)
__acquires(&pool->lock)
2150
{
2151
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
2152
	struct worker_pool *pool = worker->pool;
2153
	bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
2154
	int work_color;
2155
	struct worker *collision;
2156 2157 2158 2159 2160 2161 2162 2163
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2164 2165 2166
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2167
#endif
2168 2169 2170
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2171
	 * unbound or a disassociated pool.
2172
	 */
2173
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2174
		     !(pool->flags & POOL_DISASSOCIATED) &&
2175
		     raw_smp_processor_id() != pool->cpu);
2176

2177 2178 2179 2180 2181 2182
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2183
	collision = find_worker_executing_work(pool, work);
2184 2185 2186 2187 2188
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2189
	/* claim and dequeue */
2190
	debug_work_deactivate(work);
2191
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2192
	worker->current_work = work;
2193
	worker->current_func = work->func;
2194
	worker->current_cwq = cwq;
2195
	work_color = get_work_color(work);
2196

2197 2198
	list_del_init(&work->entry);

2199 2200 2201 2202 2203 2204 2205
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2206
	/*
2207
	 * Unbound pool isn't concurrency managed and work items should be
2208 2209
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2210 2211
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2212

2213
	/*
2214
	 * Record the last pool and clear PENDING which should be the last
2215
	 * update to @work.  Also, do this inside @pool->lock so that
2216 2217
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2218
	 */
2219
	set_work_pool_and_clear_pending(work, pool->id);
2220

2221
	spin_unlock_irq(&pool->lock);
2222

2223
	lock_map_acquire_read(&cwq->wq->lockdep_map);
2224
	lock_map_acquire(&lockdep_map);
2225
	trace_workqueue_execute_start(work);
2226
	worker->current_func(work);
2227 2228 2229 2230 2231
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2232 2233 2234 2235
	lock_map_release(&lockdep_map);
	lock_map_release(&cwq->wq->lockdep_map);

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2236 2237
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2238 2239
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2240 2241 2242 2243
		debug_show_held_locks(current);
		dump_stack();
	}

2244
	spin_lock_irq(&pool->lock);
2245

2246 2247 2248 2249
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2250
	/* we're done with it, release */
2251
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2252
	worker->current_work = NULL;
2253
	worker->current_func = NULL;
2254
	worker->current_cwq = NULL;
2255
	cwq_dec_nr_in_flight(cwq, work_color);
2256 2257
}

2258 2259 2260 2261 2262 2263 2264 2265 2266
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2267
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2268 2269 2270
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2271
{
2272 2273
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2274
						struct work_struct, entry);
T
Tejun Heo 已提交
2275
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2276 2277 2278
	}
}

T
Tejun Heo 已提交
2279 2280
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2281
 * @__worker: self
T
Tejun Heo 已提交
2282
 *
2283 2284 2285 2286 2287
 * The gcwq worker thread function.  There's a single dynamic pool of
 * these per each cpu.  These workers process all works regardless of
 * their specific target workqueue.  The only exception is works which
 * belong to workqueues with a rescuer which will be explained in
 * rescuer_thread().
T
Tejun Heo 已提交
2288
 */
T
Tejun Heo 已提交
2289
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2290
{
T
Tejun Heo 已提交
2291
	struct worker *worker = __worker;
2292
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2293

2294 2295
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2296
woke_up:
2297
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2298

2299 2300
	/* we are off idle list if destruction or rebind is requested */
	if (unlikely(list_empty(&worker->entry))) {
2301
		spin_unlock_irq(&pool->lock);
2302

2303
		/* if DIE is set, destruction is requested */
2304 2305 2306 2307 2308
		if (worker->flags & WORKER_DIE) {
			worker->task->flags &= ~PF_WQ_WORKER;
			return 0;
		}

2309
		/* otherwise, rebind */
2310 2311
		idle_worker_rebind(worker);
		goto woke_up;
T
Tejun Heo 已提交
2312
	}
2313

T
Tejun Heo 已提交
2314
	worker_leave_idle(worker);
2315
recheck:
2316
	/* no more worker necessary? */
2317
	if (!need_more_worker(pool))
2318 2319 2320
		goto sleep;

	/* do we need to manage? */
2321
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2322 2323
		goto recheck;

T
Tejun Heo 已提交
2324 2325 2326 2327 2328 2329 2330
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
	BUG_ON(!list_empty(&worker->scheduled));

2331 2332 2333 2334 2335 2336 2337 2338
	/*
	 * When control reaches this point, we're guaranteed to have
	 * at least one idle worker or that someone else has already
	 * assumed the manager role.
	 */
	worker_clr_flags(worker, WORKER_PREP);

	do {
T
Tejun Heo 已提交
2339
		struct work_struct *work =
2340
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2341 2342 2343 2344 2345 2346
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2347
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2348 2349 2350
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2351
		}
2352
	} while (keep_working(pool));
2353 2354

	worker_set_flags(worker, WORKER_PREP, false);
2355
sleep:
2356
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2357
		goto recheck;
2358

T
Tejun Heo 已提交
2359
	/*
2360 2361 2362 2363 2364
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2365 2366 2367
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2368
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2369 2370
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2371 2372
}

2373 2374
/**
 * rescuer_thread - the rescuer thread function
2375
 * @__rescuer: self
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
 * workqueue which has WQ_RESCUER set.
 *
 * Regular work processing on a gcwq may block trying to create a new
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
 * When such condition is possible, the gcwq summons rescuers of all
 * workqueues which have works queued on the gcwq and let them process
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
2392
static int rescuer_thread(void *__rescuer)
2393
{
2394 2395
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2396
	struct list_head *scheduled = &rescuer->scheduled;
2397
	bool is_unbound = wq->flags & WQ_UNBOUND;
2398 2399 2400
	unsigned int cpu;

	set_user_nice(current, RESCUER_NICE_LEVEL);
2401 2402 2403 2404 2405 2406

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2407 2408 2409
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2410 2411
	if (kthread_should_stop()) {
		__set_current_state(TASK_RUNNING);
2412
		rescuer->task->flags &= ~PF_WQ_WORKER;
2413
		return 0;
2414
	}
2415

2416 2417 2418 2419
	/*
	 * See whether any cpu is asking for help.  Unbounded
	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
	 */
2420
	for_each_mayday_cpu(cpu, wq->mayday_mask) {
2421 2422
		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
		struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2423
		struct worker_pool *pool = cwq->pool;
2424 2425 2426
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2427
		mayday_clear_cpu(cpu, wq->mayday_mask);
2428 2429

		/* migrate to the target cpu if possible */
2430
		rescuer->pool = pool;
2431 2432 2433 2434 2435 2436 2437
		worker_maybe_bind_and_lock(rescuer);

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
		BUG_ON(!list_empty(&rescuer->scheduled));
2438
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2439 2440 2441 2442
			if (get_work_cwq(work) == cwq)
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2443 2444

		/*
2445
		 * Leave this pool.  If keep_working() is %true, notify a
2446 2447 2448
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2449 2450
		if (keep_working(pool))
			wake_up_worker(pool);
2451

2452
		spin_unlock_irq(&pool->lock);
2453 2454
	}

2455 2456
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2457 2458
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2459 2460
}

O
Oleg Nesterov 已提交
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2472 2473 2474 2475
/**
 * insert_wq_barrier - insert a barrier work
 * @cwq: cwq to insert barrier into
 * @barr: wq_barrier to insert
2476 2477
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2478
 *
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
 * underneath us, so we can't reliably determine cwq from @target.
T
Tejun Heo 已提交
2492 2493
 *
 * CONTEXT:
2494
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2495
 */
2496
static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2497 2498
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2499
{
2500 2501 2502
	struct list_head *head;
	unsigned int linked = 0;

2503
	/*
2504
	 * debugobject calls are safe here even with pool->lock locked
2505 2506 2507 2508
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2509
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2510
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2511
	init_completion(&barr->done);
2512

2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2528
	debug_work_activate(&barr->work);
2529 2530
	insert_work(cwq, &barr->work, head,
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2531 2532
}

2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
/**
 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
 * Prepare cwqs for workqueue flushing.
 *
 * If @flush_color is non-negative, flush_color on all cwqs should be
 * -1.  If no cwq has in-flight commands at the specified color, all
 * cwq->flush_color's stay at -1 and %false is returned.  If any cwq
 * has in flight commands, its cwq->flush_color is set to
 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
 * If @work_color is non-negative, all cwqs should have the same
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
 * mutex_lock(wq->flush_mutex).
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2566
{
2567 2568
	bool wait = false;
	unsigned int cpu;
L
Linus Torvalds 已提交
2569

2570 2571 2572
	if (flush_color >= 0) {
		BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
		atomic_set(&wq->nr_cwqs_to_flush, 1);
L
Linus Torvalds 已提交
2573
	}
2574

2575
	for_each_cwq_cpu(cpu, wq) {
2576
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2577
		struct worker_pool *pool = cwq->pool;
O
Oleg Nesterov 已提交
2578

2579
		spin_lock_irq(&pool->lock);
2580

2581 2582
		if (flush_color >= 0) {
			BUG_ON(cwq->flush_color != -1);
O
Oleg Nesterov 已提交
2583

2584 2585 2586 2587 2588 2589
			if (cwq->nr_in_flight[flush_color]) {
				cwq->flush_color = flush_color;
				atomic_inc(&wq->nr_cwqs_to_flush);
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2590

2591 2592 2593 2594
		if (work_color >= 0) {
			BUG_ON(work_color != work_next_color(cwq->work_color));
			cwq->work_color = work_color;
		}
L
Linus Torvalds 已提交
2595

2596
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2597
	}
2598

2599 2600
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
		complete(&wq->first_flusher->done);
2601

2602
	return wait;
L
Linus Torvalds 已提交
2603 2604
}

2605
/**
L
Linus Torvalds 已提交
2606
 * flush_workqueue - ensure that any scheduled work has run to completion.
2607
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2608 2609 2610 2611
 *
 * Forces execution of the workqueue and blocks until its completion.
 * This is typically used in driver shutdown handlers.
 *
O
Oleg Nesterov 已提交
2612 2613
 * We sleep until all works which were queued on entry have been handled,
 * but we are not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2614
 */
2615
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2616
{
2617 2618 2619 2620 2621 2622
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2623

2624 2625
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686

	mutex_lock(&wq->flush_mutex);

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
		BUG_ON(!list_empty(&wq->flusher_overflow));
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
			BUG_ON(wq->flush_color != this_flusher.flush_color);

			wq->first_flusher = &this_flusher;

			if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
			BUG_ON(wq->flush_color == this_flusher.flush_color);
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

	mutex_unlock(&wq->flush_mutex);

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

	mutex_lock(&wq->flush_mutex);

2687 2688 2689 2690
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
	wq->first_flusher = NULL;

	BUG_ON(!list_empty(&this_flusher.list));
	BUG_ON(wq->flush_color != this_flusher.flush_color);

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

		BUG_ON(!list_empty(&wq->flusher_overflow) &&
		       wq->flush_color != work_next_color(wq->work_color));

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
		}

		if (list_empty(&wq->flusher_queue)) {
			BUG_ON(wq->flush_color != wq->work_color);
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
		 * the new first flusher and arm cwqs.
		 */
		BUG_ON(wq->flush_color == wq->work_color);
		BUG_ON(wq->flush_color != next->flush_color);

		list_del_init(&next->list);
		wq->first_flusher = next;

		if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
	mutex_unlock(&wq->flush_mutex);
L
Linus Torvalds 已提交
2758
}
2759
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2760

2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
	unsigned int cpu;

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
	 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
	 */
	spin_lock(&workqueue_lock);
	if (!wq->nr_drainers++)
		wq->flags |= WQ_DRAINING;
	spin_unlock(&workqueue_lock);
reflush:
	flush_workqueue(wq);

	for_each_cwq_cpu(cpu, wq) {
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2791
		bool drained;
2792

2793
		spin_lock_irq(&cwq->pool->lock);
2794
		drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2795
		spin_unlock_irq(&cwq->pool->lock);
2796 2797

		if (drained)
2798 2799 2800 2801
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
V
Valentin Ilie 已提交
2802 2803
			pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
				wq->name, flush_cnt);
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
		goto reflush;
	}

	spin_lock(&workqueue_lock);
	if (!--wq->nr_drainers)
		wq->flags &= ~WQ_DRAINING;
	spin_unlock(&workqueue_lock);
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2814
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2815
{
2816
	struct worker *worker = NULL;
2817
	struct worker_pool *pool;
2818 2819 2820
	struct cpu_workqueue_struct *cwq;

	might_sleep();
2821 2822
	pool = get_work_pool(work);
	if (!pool)
2823
		return false;
2824

2825
	spin_lock_irq(&pool->lock);
2826 2827 2828
	if (!list_empty(&work->entry)) {
		/*
		 * See the comment near try_to_grab_pending()->smp_rmb().
2829
		 * If it was re-queued to a different pool under us, we
2830
		 * are not going to wait.
2831 2832
		 */
		smp_rmb();
2833
		cwq = get_work_cwq(work);
2834
		if (unlikely(!cwq || pool != cwq->pool))
T
Tejun Heo 已提交
2835
			goto already_gone;
2836
	} else {
2837
		worker = find_worker_executing_work(pool, work);
2838
		if (!worker)
T
Tejun Heo 已提交
2839
			goto already_gone;
2840
		cwq = worker->current_cwq;
2841
	}
2842

2843
	insert_wq_barrier(cwq, barr, work, worker);
2844
	spin_unlock_irq(&pool->lock);
2845

2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
	if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
		lock_map_acquire(&cwq->wq->lockdep_map);
	else
		lock_map_acquire_read(&cwq->wq->lockdep_map);
2856
	lock_map_release(&cwq->wq->lockdep_map);
2857

2858
	return true;
T
Tejun Heo 已提交
2859
already_gone:
2860
	spin_unlock_irq(&pool->lock);
2861
	return false;
2862
}
2863 2864 2865 2866 2867

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2868 2869
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2870 2871 2872 2873 2874 2875 2876 2877 2878
 *
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

2879 2880 2881
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2882
	if (start_flush_work(work, &barr)) {
2883 2884 2885
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
2886
	} else {
2887
		return false;
2888 2889
	}
}
2890
EXPORT_SYMBOL_GPL(flush_work);
2891

2892
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2893
{
2894
	unsigned long flags;
2895 2896 2897
	int ret;

	do {
2898 2899 2900 2901 2902 2903
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2904
			flush_work(work);
2905 2906
	} while (unlikely(ret < 0));

2907 2908 2909 2910
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2911
	flush_work(work);
2912
	clear_work_data(work);
2913 2914 2915
	return ret;
}

2916
/**
2917 2918
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2919
 *
2920 2921 2922 2923
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2924
 *
2925 2926
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2927
 *
2928
 * The caller must ensure that the workqueue on which @work was last
2929
 * queued can't be destroyed before this function returns.
2930 2931 2932
 *
 * RETURNS:
 * %true if @work was pending, %false otherwise.
2933
 */
2934
bool cancel_work_sync(struct work_struct *work)
2935
{
2936
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2937
}
2938
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2939

2940
/**
2941 2942
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2943
 *
2944 2945 2946
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2947
 *
2948 2949 2950
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2951
 */
2952 2953
bool flush_delayed_work(struct delayed_work *dwork)
{
2954
	local_irq_disable();
2955
	if (del_timer_sync(&dwork->timer))
2956
		__queue_work(dwork->cpu,
2957
			     get_work_cwq(&dwork->work)->wq, &dwork->work);
2958
	local_irq_enable();
2959 2960 2961 2962
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2963
/**
2964 2965
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2966
 *
2967 2968 2969 2970 2971
 * Kill off a pending delayed_work.  Returns %true if @dwork was pending
 * and canceled; %false if wasn't pending.  Note that the work callback
 * function may still be running on return, unless it returns %true and the
 * work doesn't re-arm itself.  Explicitly flush or use
 * cancel_delayed_work_sync() to wait on it.
2972
 *
2973
 * This function is safe to call from any context including IRQ handler.
2974
 */
2975
bool cancel_delayed_work(struct delayed_work *dwork)
2976
{
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2987 2988
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2989
	local_irq_restore(flags);
2990
	return ret;
2991
}
2992
EXPORT_SYMBOL(cancel_delayed_work);
2993

2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * RETURNS:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
3004
{
3005
	return __cancel_work_timer(&dwork->work, true);
3006
}
3007
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
3008

3009
/**
3010 3011 3012 3013 3014 3015
 * schedule_work_on - put work task on a specific cpu
 * @cpu: cpu to put the work task on
 * @work: job to be done
 *
 * This puts a job on a specific cpu
 */
3016
bool schedule_work_on(int cpu, struct work_struct *work)
3017
{
3018
	return queue_work_on(cpu, system_wq, work);
3019 3020 3021
}
EXPORT_SYMBOL(schedule_work_on);

3022 3023 3024 3025
/**
 * schedule_work - put work task in global workqueue
 * @work: job to be done
 *
3026 3027
 * Returns %false if @work was already on the kernel-global workqueue and
 * %true otherwise.
3028 3029 3030 3031
 *
 * This puts a job in the kernel-global workqueue if it was not already
 * queued and leaves it in the same position on the kernel-global
 * workqueue otherwise.
3032
 */
3033
bool schedule_work(struct work_struct *work)
L
Linus Torvalds 已提交
3034
{
3035
	return queue_work(system_wq, work);
L
Linus Torvalds 已提交
3036
}
3037
EXPORT_SYMBOL(schedule_work);
L
Linus Torvalds 已提交
3038

3039 3040 3041
/**
 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
 * @cpu: cpu to use
3042
 * @dwork: job to be done
3043 3044 3045 3046 3047
 * @delay: number of jiffies to wait
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue on the specified CPU.
 */
3048 3049
bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
			      unsigned long delay)
L
Linus Torvalds 已提交
3050
{
3051
	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
L
Linus Torvalds 已提交
3052
}
3053
EXPORT_SYMBOL(schedule_delayed_work_on);
L
Linus Torvalds 已提交
3054

3055 3056
/**
 * schedule_delayed_work - put work task in global workqueue after delay
3057 3058
 * @dwork: job to be done
 * @delay: number of jiffies to wait or 0 for immediate execution
3059 3060 3061 3062
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue.
 */
3063
bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
3064
{
3065
	return queue_delayed_work(system_wq, dwork, delay);
L
Linus Torvalds 已提交
3066
}
3067
EXPORT_SYMBOL(schedule_delayed_work);
L
Linus Torvalds 已提交
3068

3069
/**
3070
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3071 3072
 * @func: the function to call
 *
3073 3074
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
3075
 * schedule_on_each_cpu() is very slow.
3076 3077 3078
 *
 * RETURNS:
 * 0 on success, -errno on failure.
3079
 */
3080
int schedule_on_each_cpu(work_func_t func)
3081 3082
{
	int cpu;
3083
	struct work_struct __percpu *works;
3084

3085 3086
	works = alloc_percpu(struct work_struct);
	if (!works)
3087
		return -ENOMEM;
3088

3089 3090
	get_online_cpus();

3091
	for_each_online_cpu(cpu) {
3092 3093 3094
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3095
		schedule_work_on(cpu, work);
3096
	}
3097 3098 3099 3100

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3101
	put_online_cpus();
3102
	free_percpu(works);
3103 3104 3105
	return 0;
}

3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3130 3131
void flush_scheduled_work(void)
{
3132
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3133
}
3134
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3135

3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
3148
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3149 3150
{
	if (!in_interrupt()) {
3151
		fn(&ew->work);
3152 3153 3154
		return 0;
	}

3155
	INIT_WORK(&ew->work, fn);
3156 3157 3158 3159 3160 3161
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

L
Linus Torvalds 已提交
3162 3163
int keventd_up(void)
{
3164
	return system_wq != NULL;
L
Linus Torvalds 已提交
3165 3166
}

3167
static int alloc_cwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3168
{
3169
	/*
T
Tejun Heo 已提交
3170 3171 3172
	 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
	 * Make sure that the alignment isn't lower than that of
	 * unsigned long long.
3173
	 */
T
Tejun Heo 已提交
3174 3175 3176
	const size_t size = sizeof(struct cpu_workqueue_struct);
	const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
				   __alignof__(unsigned long long));
3177

3178
	if (!(wq->flags & WQ_UNBOUND))
3179
		wq->cpu_wq.pcpu = __alloc_percpu(size, align);
3180
	else {
3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
		void *ptr;

		/*
		 * Allocate enough room to align cwq and put an extra
		 * pointer at the end pointing back to the originally
		 * allocated pointer which will be used for free.
		 */
		ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
		if (ptr) {
			wq->cpu_wq.single = PTR_ALIGN(ptr, align);
			*(void **)(wq->cpu_wq.single + 1) = ptr;
		}
3193
	}
3194

3195
	/* just in case, make sure it's actually aligned */
3196 3197
	BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
	return wq->cpu_wq.v ? 0 : -ENOMEM;
T
Tejun Heo 已提交
3198 3199
}

3200
static void free_cwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3201
{
3202
	if (!(wq->flags & WQ_UNBOUND))
3203 3204 3205
		free_percpu(wq->cpu_wq.pcpu);
	else if (wq->cpu_wq.single) {
		/* the pointer to free is stored right after the cwq */
3206
		kfree(*(void **)(wq->cpu_wq.single + 1));
3207
	}
T
Tejun Heo 已提交
3208 3209
}

3210 3211
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3212
{
3213 3214 3215
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3216 3217
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3218

3219
	return clamp_val(max_active, 1, lim);
3220 3221
}

3222
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3223 3224 3225
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3226
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3227
{
3228
	va_list args, args1;
L
Linus Torvalds 已提交
3229
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
3230
	unsigned int cpu;
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
	size_t namelen;

	/* determine namelen, allocate wq and format name */
	va_start(args, lock_name);
	va_copy(args1, args);
	namelen = vsnprintf(NULL, 0, fmt, args) + 1;

	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
	if (!wq)
		goto err;

	vsnprintf(wq->name, namelen, fmt, args1);
	va_end(args);
	va_end(args1);
L
Linus Torvalds 已提交
3245

3246 3247 3248 3249 3250 3251 3252
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM)
		flags |= WQ_RESCUER;

3253
	max_active = max_active ?: WQ_DFL_ACTIVE;
3254
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3255

3256
	/* init wq */
3257
	wq->flags = flags;
3258
	wq->saved_max_active = max_active;
3259 3260 3261 3262
	mutex_init(&wq->flush_mutex);
	atomic_set(&wq->nr_cwqs_to_flush, 0);
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3263

3264
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3265
	INIT_LIST_HEAD(&wq->list);
3266

3267 3268 3269
	if (alloc_cwqs(wq) < 0)
		goto err;

3270
	for_each_cwq_cpu(cpu, wq) {
T
Tejun Heo 已提交
3271
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3272
		struct global_cwq *gcwq = get_gcwq(cpu);
3273
		int pool_idx = (bool)(flags & WQ_HIGHPRI);
T
Tejun Heo 已提交
3274

T
Tejun Heo 已提交
3275
		BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3276
		cwq->pool = &gcwq->pools[pool_idx];
T
Tejun Heo 已提交
3277
		cwq->wq = wq;
3278
		cwq->flush_color = -1;
3279 3280
		cwq->max_active = max_active;
		INIT_LIST_HEAD(&cwq->delayed_works);
3281
	}
T
Tejun Heo 已提交
3282

3283 3284 3285
	if (flags & WQ_RESCUER) {
		struct worker *rescuer;

3286
		if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3287 3288 3289 3290 3291 3292
			goto err;

		wq->rescuer = rescuer = alloc_worker();
		if (!rescuer)
			goto err;

3293 3294
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3295
					       wq->name);
3296 3297 3298 3299 3300
		if (IS_ERR(rescuer->task))
			goto err;

		rescuer->task->flags |= PF_THREAD_BOUND;
		wake_up_process(rescuer->task);
3301 3302
	}

3303 3304 3305 3306 3307
	/*
	 * workqueue_lock protects global freeze state and workqueues
	 * list.  Grab it, set max_active accordingly and add the new
	 * workqueue to workqueues list.
	 */
T
Tejun Heo 已提交
3308
	spin_lock(&workqueue_lock);
3309

3310
	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3311
		for_each_cwq_cpu(cpu, wq)
3312 3313
			get_cwq(cpu, wq)->max_active = 0;

T
Tejun Heo 已提交
3314
	list_add(&wq->list, &workqueues);
3315

T
Tejun Heo 已提交
3316 3317
	spin_unlock(&workqueue_lock);

3318
	return wq;
T
Tejun Heo 已提交
3319 3320
err:
	if (wq) {
3321
		free_cwqs(wq);
3322
		free_mayday_mask(wq->mayday_mask);
3323
		kfree(wq->rescuer);
T
Tejun Heo 已提交
3324 3325 3326
		kfree(wq);
	}
	return NULL;
3327
}
3328
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3329

3330 3331 3332 3333 3334 3335 3336 3337
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
T
Tejun Heo 已提交
3338
	unsigned int cpu;
3339

3340 3341
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3342

3343 3344 3345 3346
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
3347
	spin_lock(&workqueue_lock);
3348
	list_del(&wq->list);
3349
	spin_unlock(&workqueue_lock);
3350

3351
	/* sanity check */
3352
	for_each_cwq_cpu(cpu, wq) {
3353 3354 3355 3356 3357
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
		int i;

		for (i = 0; i < WORK_NR_COLORS; i++)
			BUG_ON(cwq->nr_in_flight[i]);
3358 3359
		BUG_ON(cwq->nr_active);
		BUG_ON(!list_empty(&cwq->delayed_works));
3360
	}
3361

3362 3363
	if (wq->flags & WQ_RESCUER) {
		kthread_stop(wq->rescuer->task);
3364
		free_mayday_mask(wq->mayday_mask);
3365
		kfree(wq->rescuer);
3366 3367
	}

3368
	free_cwqs(wq);
3369 3370 3371 3372
	kfree(wq);
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

3373 3374 3375 3376 3377 3378 3379 3380 3381
/**
 * cwq_set_max_active - adjust max_active of a cwq
 * @cwq: target cpu_workqueue_struct
 * @max_active: new max_active value.
 *
 * Set @cwq->max_active to @max_active and activate delayed works if
 * increased.
 *
 * CONTEXT:
3382
 * spin_lock_irq(pool->lock).
3383 3384 3385 3386 3387 3388 3389 3390 3391 3392
 */
static void cwq_set_max_active(struct cpu_workqueue_struct *cwq, int max_active)
{
	cwq->max_active = max_active;

	while (!list_empty(&cwq->delayed_works) &&
	       cwq->nr_active < cwq->max_active)
		cwq_activate_first_delayed(cwq);
}

3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
	unsigned int cpu;

3407
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3408 3409 3410 3411 3412

	spin_lock(&workqueue_lock);

	wq->saved_max_active = max_active;

3413
	for_each_cwq_cpu(cpu, wq) {
3414 3415
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
		struct worker_pool *pool = cwq->pool;
3416

3417
		spin_lock_irq(&pool->lock);
3418

3419
		if (!(wq->flags & WQ_FREEZABLE) ||
3420 3421
		    !(pool->flags & POOL_FREEZING))
			cwq_set_max_active(cwq, max_active);
3422

3423
		spin_unlock_irq(&pool->lock);
3424
	}
3425

3426
	spin_unlock(&workqueue_lock);
3427
}
3428
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3429

3430
/**
3431 3432 3433
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
3434
 *
3435 3436 3437
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
3438
 *
3439 3440
 * RETURNS:
 * %true if congested, %false otherwise.
3441
 */
3442
bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
3443
{
3444 3445 3446
	struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

	return !list_empty(&cwq->delayed_works);
L
Linus Torvalds 已提交
3447
}
3448
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
3449

3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 * Especially for reentrant wqs, the pending state might hide the
 * running state.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
3464
{
3465
	struct worker_pool *pool = get_work_pool(work);
3466 3467
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
3468

3469
	if (!pool)
3470
		return 0;
L
Linus Torvalds 已提交
3471

3472
	spin_lock_irqsave(&pool->lock, flags);
L
Linus Torvalds 已提交
3473

3474 3475
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
3476
	if (find_worker_executing_work(pool, work))
3477
		ret |= WORK_BUSY_RUNNING;
L
Linus Torvalds 已提交
3478

3479
	spin_unlock_irqrestore(&pool->lock, flags);
L
Linus Torvalds 已提交
3480

3481
	return ret;
L
Linus Torvalds 已提交
3482
}
3483
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
3484

3485 3486 3487
/*
 * CPU hotplug.
 *
3488 3489 3490 3491
 * There are two challenges in supporting CPU hotplug.  Firstly, there
 * are a lot of assumptions on strong associations among work, cwq and
 * gcwq which make migrating pending and scheduled works very
 * difficult to implement without impacting hot paths.  Secondly,
3492
 * worker pools serve mix of short, long and very long running works making
3493 3494
 * blocked draining impractical.
 *
3495
 * This is solved by allowing the pools to be disassociated from the CPU
3496 3497
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
3498
 */
L
Linus Torvalds 已提交
3499

3500
static void gcwq_unbind_fn(struct work_struct *work)
3501
{
3502
	int cpu = smp_processor_id();
3503
	struct worker_pool *pool;
3504 3505 3506
	struct worker *worker;
	struct hlist_node *pos;
	int i;
3507

3508 3509
	for_each_std_worker_pool(pool, cpu) {
		BUG_ON(cpu != smp_processor_id());
3510

3511 3512
		mutex_lock(&pool->assoc_mutex);
		spin_lock_irq(&pool->lock);
3513

3514 3515 3516 3517 3518 3519 3520
		/*
		 * We've claimed all manager positions.  Make all workers
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
3521
		list_for_each_entry(worker, &pool->idle_list, entry)
3522
			worker->flags |= WORKER_UNBOUND;
3523

3524 3525
		for_each_busy_worker(worker, i, pos, pool)
			worker->flags |= WORKER_UNBOUND;
3526

3527
		pool->flags |= POOL_DISASSOCIATED;
3528

3529 3530 3531
		spin_unlock_irq(&pool->lock);
		mutex_unlock(&pool->assoc_mutex);
	}
3532

3533
	/*
3534
	 * Call schedule() so that we cross rq->lock and thus can guarantee
3535 3536
	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
	 * as scheduler callbacks may be invoked from other cpus.
3537 3538
	 */
	schedule();
3539

3540
	/*
3541 3542
	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
	 * nr_running stays zero and need_more_worker() and keep_working()
3543 3544 3545
	 * are always true as long as the worklist is not empty.  Pools on
	 * @cpu now behave as unbound (in terms of concurrency management)
	 * pools which are served by workers tied to the CPU.
3546 3547 3548 3549
	 *
	 * On return from this function, the current worker would trigger
	 * unbound chain execution of pending work items if other workers
	 * didn't already.
3550
	 */
3551
	for_each_std_worker_pool(pool, cpu)
3552
		atomic_set(get_pool_nr_running(pool), 0);
3553 3554
}

T
Tejun Heo 已提交
3555 3556 3557 3558
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
3559
static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
3560 3561
					       unsigned long action,
					       void *hcpu)
3562 3563
{
	unsigned int cpu = (unsigned long)hcpu;
3564
	struct worker_pool *pool;
3565

T
Tejun Heo 已提交
3566
	switch (action & ~CPU_TASKS_FROZEN) {
3567
	case CPU_UP_PREPARE:
3568
		for_each_std_worker_pool(pool, cpu) {
3569 3570 3571 3572 3573 3574 3575 3576 3577
			struct worker *worker;

			if (pool->nr_workers)
				continue;

			worker = create_worker(pool);
			if (!worker)
				return NOTIFY_BAD;

3578
			spin_lock_irq(&pool->lock);
3579
			start_worker(worker);
3580
			spin_unlock_irq(&pool->lock);
3581
		}
T
Tejun Heo 已提交
3582
		break;
3583

3584 3585
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
3586
		for_each_std_worker_pool(pool, cpu) {
3587 3588 3589
			mutex_lock(&pool->assoc_mutex);
			spin_lock_irq(&pool->lock);

3590
			pool->flags &= ~POOL_DISASSOCIATED;
3591 3592 3593 3594 3595
			rebind_workers(pool);

			spin_unlock_irq(&pool->lock);
			mutex_unlock(&pool->assoc_mutex);
		}
3596
		break;
3597
	}
3598 3599 3600 3601 3602 3603 3604
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
3605
static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3606 3607 3608
						 unsigned long action,
						 void *hcpu)
{
T
Tejun Heo 已提交
3609 3610 3611
	unsigned int cpu = (unsigned long)hcpu;
	struct work_struct unbind_work;

3612 3613
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
T
Tejun Heo 已提交
3614 3615
		/* unbinding should happen on the local CPU */
		INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
3616
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
T
Tejun Heo 已提交
3617 3618
		flush_work(&unbind_work);
		break;
3619 3620 3621 3622
	}
	return NOTIFY_OK;
}

3623
#ifdef CONFIG_SMP
3624

3625
struct work_for_cpu {
3626
	struct work_struct work;
3627 3628 3629 3630 3631
	long (*fn)(void *);
	void *arg;
	long ret;
};

3632
static void work_for_cpu_fn(struct work_struct *work)
3633
{
3634 3635
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

3636 3637 3638 3639 3640 3641 3642 3643 3644
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
3645 3646
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
3647
 * The caller must not hold any locks which would prevent @fn from completing.
3648 3649 3650
 */
long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
{
3651
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3652

3653 3654 3655
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
3656 3657 3658 3659 3660
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

3661 3662 3663 3664 3665
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
3666 3667 3668
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their frozen_works list instead of
 * gcwq->worklist.
3669 3670
 *
 * CONTEXT:
3671
 * Grabs and releases workqueue_lock and pool->lock's.
3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
 */
void freeze_workqueues_begin(void)
{
	unsigned int cpu;

	spin_lock(&workqueue_lock);

	BUG_ON(workqueue_freezing);
	workqueue_freezing = true;

3682
	for_each_gcwq_cpu(cpu) {
3683
		struct worker_pool *pool;
3684
		struct workqueue_struct *wq;
3685

3686
		for_each_std_worker_pool(pool, cpu) {
3687
			spin_lock_irq(&pool->lock);
3688

3689 3690
			WARN_ON_ONCE(pool->flags & POOL_FREEZING);
			pool->flags |= POOL_FREEZING;
3691

3692 3693
			list_for_each_entry(wq, &workqueues, list) {
				struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3694

3695 3696 3697 3698
				if (cwq && cwq->pool == pool &&
				    (wq->flags & WQ_FREEZABLE))
					cwq->max_active = 0;
			}
3699

3700 3701
			spin_unlock_irq(&pool->lock);
		}
3702 3703 3704 3705 3706 3707
	}

	spin_unlock(&workqueue_lock);
}

/**
3708
 * freeze_workqueues_busy - are freezable workqueues still busy?
3709 3710 3711 3712 3713 3714 3715 3716
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases workqueue_lock.
 *
 * RETURNS:
3717 3718
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
 */
bool freeze_workqueues_busy(void)
{
	unsigned int cpu;
	bool busy = false;

	spin_lock(&workqueue_lock);

	BUG_ON(!workqueue_freezing);

3729
	for_each_gcwq_cpu(cpu) {
3730
		struct workqueue_struct *wq;
3731 3732 3733 3734 3735 3736 3737
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3738
			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756
				continue;

			BUG_ON(cwq->nr_active < 0);
			if (cwq->nr_active) {
				busy = true;
				goto out_unlock;
			}
		}
	}
out_unlock:
	spin_unlock(&workqueue_lock);
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
3757
 * frozen works are transferred to their respective gcwq worklists.
3758 3759
 *
 * CONTEXT:
3760
 * Grabs and releases workqueue_lock and pool->lock's.
3761 3762 3763 3764 3765 3766 3767 3768 3769 3770
 */
void thaw_workqueues(void)
{
	unsigned int cpu;

	spin_lock(&workqueue_lock);

	if (!workqueue_freezing)
		goto out_unlock;

3771
	for_each_gcwq_cpu(cpu) {
3772
		struct worker_pool *pool;
3773
		struct workqueue_struct *wq;
3774

3775
		for_each_std_worker_pool(pool, cpu) {
3776
			spin_lock_irq(&pool->lock);
3777

3778 3779
			WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
			pool->flags &= ~POOL_FREEZING;
3780

3781 3782
			list_for_each_entry(wq, &workqueues, list) {
				struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3783

3784 3785 3786
				if (!cwq || cwq->pool != pool ||
				    !(wq->flags & WQ_FREEZABLE))
					continue;
3787

3788 3789 3790
				/* restore max_active and repopulate worklist */
				cwq_set_max_active(cwq, wq->saved_max_active);
			}
3791

3792
			wake_up_worker(pool);
3793 3794

			spin_unlock_irq(&pool->lock);
3795
		}
3796 3797 3798 3799 3800 3801 3802 3803
	}

	workqueue_freezing = false;
out_unlock:
	spin_unlock(&workqueue_lock);
}
#endif /* CONFIG_FREEZER */

3804
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
3805
{
T
Tejun Heo 已提交
3806 3807
	unsigned int cpu;

3808 3809 3810
	/* make sure we have enough bits for OFFQ pool ID */
	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
		     WORK_CPU_LAST * NR_STD_WORKER_POOLS);
3811

3812
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3813
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3814 3815

	/* initialize gcwqs */
3816
	for_each_gcwq_cpu(cpu) {
3817
		struct worker_pool *pool;
3818

3819
		for_each_std_worker_pool(pool, cpu) {
3820
			spin_lock_init(&pool->lock);
3821
			pool->cpu = cpu;
3822
			pool->flags |= POOL_DISASSOCIATED;
3823 3824
			INIT_LIST_HEAD(&pool->worklist);
			INIT_LIST_HEAD(&pool->idle_list);
3825
			hash_init(pool->busy_hash);
3826

3827 3828 3829
			init_timer_deferrable(&pool->idle_timer);
			pool->idle_timer.function = idle_worker_timeout;
			pool->idle_timer.data = (unsigned long)pool;
3830

3831 3832 3833
			setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
				    (unsigned long)pool);

3834
			mutex_init(&pool->assoc_mutex);
3835
			ida_init(&pool->worker_ida);
T
Tejun Heo 已提交
3836 3837 3838

			/* alloc pool ID */
			BUG_ON(worker_pool_assign_id(pool));
3839
		}
3840 3841
	}

3842
	/* create the initial worker */
3843
	for_each_online_gcwq_cpu(cpu) {
3844
		struct worker_pool *pool;
3845

3846
		for_each_std_worker_pool(pool, cpu) {
3847 3848
			struct worker *worker;

3849 3850 3851
			if (cpu != WORK_CPU_UNBOUND)
				pool->flags &= ~POOL_DISASSOCIATED;

3852
			worker = create_worker(pool);
3853
			BUG_ON(!worker);
3854
			spin_lock_irq(&pool->lock);
3855
			start_worker(worker);
3856
			spin_unlock_irq(&pool->lock);
3857
		}
3858 3859
	}

3860
	system_wq = alloc_workqueue("events", 0, 0);
3861
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
3862
	system_long_wq = alloc_workqueue("events_long", 0, 0);
3863 3864
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
3865 3866
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
3867
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3868
	       !system_unbound_wq || !system_freezable_wq);
3869
	return 0;
L
Linus Torvalds 已提交
3870
}
3871
early_initcall(init_workqueues);