“6ed106549d17474ca17a16057f4c0ed4eba5a7ca”上不存在“README.md”
intel_pm.c 220.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34

35
/**
36 37
 * DOC: RC6
 *
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

58
static void gen9_init_clock_gating(struct drm_device *dev)
59
{
60
	struct drm_i915_private *dev_priv = to_i915(dev);
61

62
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
63 64 65
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

66 67
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
68 69 70 71

	/* WaEnableChickenDCPR:skl,bxt,kbl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
72 73

	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
74 75 76 77
	/* WaFbcWakeMemOn:skl,bxt,kbl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
78 79 80 81

	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
82 83 84 85
}

static void bxt_init_clock_gating(struct drm_device *dev)
{
86
	struct drm_i915_private *dev_priv = to_i915(dev);
87 88 89

	gen9_init_clock_gating(dev);

90 91 92 93
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

94 95
	/*
	 * FIXME:
96
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
97 98
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
99
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
100 101 102 103 104 105 106 107

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
			   PWM1_GATING_DIS | PWM2_GATING_DIS);
108 109
}

110 111
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
112
	struct drm_i915_private *dev_priv = to_i915(dev);
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
151
	struct drm_i915_private *dev_priv = to_i915(dev);
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

177
	dev_priv->ips.r_t = dev_priv->mem_freq;
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
209
		dev_priv->ips.c_m = 0;
210
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
211
		dev_priv->ips.c_m = 1;
212
	} else {
213
		dev_priv->ips.c_m = 2;
214 215 216
	}
}

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

255
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

317 318 319
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

320
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
321
{
322
	struct drm_device *dev = &dev_priv->drm;
323
	u32 val;
324

325
	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
326
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
327
		POSTING_READ(FW_BLC_SELF_VLV);
328
		dev_priv->wm.vlv.cxsr = enable;
329 330
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
331
		POSTING_READ(FW_BLC_SELF);
332 333 334 335
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
336
		POSTING_READ(DSPFW3);
337 338 339 340
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
341
		POSTING_READ(FW_BLC_SELF);
342 343 344 345
	} else if (IS_I915GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
346
		POSTING_READ(INSTPM);
347 348 349
	} else {
		return;
	}
350

351 352
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
353 354
}

355

356 357 358 359 360 361 362 363 364 365 366 367 368 369
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
370
static const int pessimal_latency_ns = 5000;
371

372 373 374 375 376 377
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

static int vlv_get_fifo_size(struct drm_device *dev,
			      enum pipe pipe, int plane)
{
378
	struct drm_i915_private *dev_priv = to_i915(dev);
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

427
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
428
{
429
	struct drm_i915_private *dev_priv = to_i915(dev);
430 431 432 433 434 435 436 437 438 439 440 441 442
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

443
static int i830_get_fifo_size(struct drm_device *dev, int plane)
444
{
445
	struct drm_i915_private *dev_priv = to_i915(dev);
446 447 448 449 450 451 452 453 454 455 456 457 458 459
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

460
static int i845_get_fifo_size(struct drm_device *dev, int plane)
461
{
462
	struct drm_i915_private *dev_priv = to_i915(dev);
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
478 479 480 481 482
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
483 484
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
485 486 487 488 489
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
490 491
};
static const struct intel_watermark_params pineview_cursor_wm = {
492 493 494 495 496
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
497 498
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
499 500 501 502 503
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
504 505
};
static const struct intel_watermark_params g4x_wm_info = {
506 507 508 509 510
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
511 512
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
513 514 515 516 517
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
518 519
};
static const struct intel_watermark_params i965_cursor_wm_info = {
520 521 522 523 524
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
525 526
};
static const struct intel_watermark_params i945_wm_info = {
527 528 529 530 531
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
532 533
};
static const struct intel_watermark_params i915_wm_info = {
534 535 536 537 538
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
539
};
540
static const struct intel_watermark_params i830_a_wm_info = {
541 542 543 544 545
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
546
};
547 548 549 550 551 552 553
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
554
static const struct intel_watermark_params i845_wm_info = {
555 556 557 558 559
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
560 561 562 563 564 565
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
566
 * @cpp: bytes per pixel
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
582
					int fifo_size, int cpp,
583 584 585 586 587 588 589 590 591 592
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
593
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
594 595 596 597 598 599 600 601 602 603 604 605 606 607
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
608 609 610 611 612 613 614 615 616 617 618

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

619 620 621 622 623 624 625
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

626
	for_each_crtc(dev, crtc) {
627
		if (intel_crtc_active(crtc)) {
628 629 630 631 632 633 634 635 636
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

637
static void pineview_update_wm(struct drm_crtc *unused_crtc)
638
{
639
	struct drm_device *dev = unused_crtc->dev;
640
	struct drm_i915_private *dev_priv = to_i915(dev);
641 642 643 644 645 646 647 648 649
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
650
		intel_set_memory_cxsr(dev_priv, false);
651 652 653 654 655
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
656
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
657
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
658
		int clock = adjusted_mode->crtc_clock;
659 660 661 662

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
663
					cpp, latency->display_sr);
664 665
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
666
		reg |= FW_WM(wm, SR);
667 668 669 670 671 672
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
673
					cpp, latency->cursor_sr);
674 675
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
676
		reg |= FW_WM(wm, CURSOR_SR);
677 678 679 680 681
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
682
					cpp, latency->display_hpll_disable);
683 684
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
685
		reg |= FW_WM(wm, HPLL_SR);
686 687 688 689 690
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
691
					cpp, latency->cursor_hpll_disable);
692 693
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
694
		reg |= FW_WM(wm, HPLL_CURSOR);
695 696 697
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

698
		intel_set_memory_cxsr(dev_priv, true);
699
	} else {
700
		intel_set_memory_cxsr(dev_priv, false);
701 702 703 704 705 706 707 708 709 710 711 712 713
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
714
	const struct drm_display_mode *adjusted_mode;
715
	int htotal, hdisplay, clock, cpp;
716 717 718 719
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
720
	if (!intel_crtc_active(crtc)) {
721 722 723 724 725
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

726
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
727
	clock = adjusted_mode->crtc_clock;
728
	htotal = adjusted_mode->crtc_htotal;
729
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
730
	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
731 732

	/* Use the small buffer method to calculate plane watermark */
733
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
734 735 736 737 738 739 740 741 742
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
743
	line_time_us = max(htotal * 1000 / clock, 1);
744
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
745
	entries = line_count * crtc->cursor->state->crtc_w * cpp;
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
800
	const struct drm_display_mode *adjusted_mode;
801
	int hdisplay, htotal, cpp, clock;
802 803 804 805 806 807 808 809 810 811 812
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
813
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
814
	clock = adjusted_mode->crtc_clock;
815
	htotal = adjusted_mode->crtc_htotal;
816
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
817
	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
818

819
	line_time_us = max(htotal * 1000 / clock, 1);
820
	line_count = (latency_ns / line_time_us + 1000) / 1000;
821
	line_size = hdisplay * cpp;
822 823

	/* Use the minimum of the small and large buffer method for primary */
824
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
825 826 827 828 829 830
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
831
	entries = line_count * cpp * crtc->cursor->state->crtc_w;
832 833 834 835 836 837 838 839
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

840 841 842
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

843 844 845 846 847 848 849 850 851 852 853 854
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

855
	I915_WRITE(DSPFW1,
856 857 858 859
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
860
	I915_WRITE(DSPFW2,
861 862 863
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
864
	I915_WRITE(DSPFW3,
865
		   FW_WM(wm->sr.cursor, CURSOR_SR));
866 867 868

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
869 870
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
871
		I915_WRITE(DSPFW8_CHV,
872 873
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
874
		I915_WRITE(DSPFW9_CHV,
875 876
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
877
		I915_WRITE(DSPHOWM,
878 879 880 881 882 883 884 885 886 887
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
888 889
	} else {
		I915_WRITE(DSPFW7,
890 891
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
892
		I915_WRITE(DSPHOWM,
893 894 895 896 897 898 899
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
900 901
	}

902 903 904 905 906 907
	/* zero (unused) WM1 watermarks */
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);
	I915_WRITE(DSPHOWM1, 0);

908
	POSTING_READ(DSPFW1);
909 910
}

911 912
#undef FW_WM_VLV

913 914 915 916 917 918
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

919 920 921 922
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
923
				   unsigned int cpp,
924 925 926 927 928
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
929
	ret = (ret + 1) * horiz_pixels * cpp;
930 931 932 933 934 935 936
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

static void vlv_setup_wm_latency(struct drm_device *dev)
{
937
	struct drm_i915_private *dev_priv = to_i915(dev);
938 939 940 941

	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

942 943
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

944 945 946
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
947 948

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
949 950 951 952 953 954 955 956 957
	}
}

static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
				     struct intel_crtc *crtc,
				     const struct intel_plane_state *state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
958
	int clock, htotal, cpp, width, wm;
959 960 961 962 963 964 965

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

	if (!state->visible)
		return 0;

966
	cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
	clock = crtc->config->base.adjusted_mode.crtc_clock;
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
	width = crtc->config->pipe_src_w;
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
982
		wm = vlv_wm_method2(clock, htotal, width, cpp,
983 984 985 986 987 988
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		if (state->visible) {
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

		if (!state->visible) {
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
		struct drm_device *dev = crtc->base.dev;
		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
		struct intel_plane *plane;

		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;

		for_each_intel_plane_on_crtc(dev, crtc, plane) {
			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = plane->wm.fifo_size -
					wm_state->wm[level].cursor;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = plane->wm.fifo_size -
					wm_state->wm[level].primary;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
					wm_state->wm[level].sprite[sprite];
				break;
			}
		}
	}
}

1090
static void vlv_compute_wm(struct intel_crtc *crtc)
1091 1092 1093 1094 1095 1096 1097 1098 1099
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1100
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1101
	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1102 1103 1104

	wm_state->num_active_planes = 0;

1105
	vlv_compute_fifo(crtc);
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

	if (wm_state->cxsr) {
		for (level = 0; level < wm_state->num_levels; level++) {
			wm_state->sr[level].plane = sr_fifo_size;
			wm_state->sr[level].cursor = 63;
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (!state->visible)
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

			if (wm > plane->wm.fifo_size)
				break;

			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = wm;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = wm;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = wm;
				break;
			}
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
		switch (plane->base.type) {
			int sprite, level;
		case DRM_PLANE_TYPE_CURSOR:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
1162
					wm_state->wm[level].cursor;
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].primary);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].sprite[sprite]);
			break;
		}
	}

	/* clear any (partially) filled invalid levels */
1181
	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1182 1183 1184 1185 1186 1187 1188
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			WARN_ON(plane->wm.fifo_size != 63);
			continue;
		}

		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			sprite0_start = plane->wm.fifo_size;
		else if (plane->plane == 0)
			sprite1_start = sprite0_start + plane->wm.fifo_size;
		else
			fifo_size = sprite1_start + plane->wm.fifo_size;
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
}

#undef VLV_FIFO

1279 1280 1281 1282 1283 1284
static void vlv_merge_wm(struct drm_device *dev,
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1285
	wm->level = to_i915(dev)->wm.max_level;
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
	wm->cxsr = true;

	for_each_intel_crtc(dev, crtc) {
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1304 1305 1306
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
	for_each_intel_crtc(dev, crtc) {
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
	}
}

static void vlv_update_wm(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
1328
	struct drm_i915_private *dev_priv = to_i915(dev);
1329 1330 1331 1332
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct vlv_wm_values wm = {};

1333
	vlv_compute_wm(intel_crtc);
1334 1335
	vlv_merge_wm(dev, &wm);

1336 1337 1338
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
		/* FIXME should be part of crtc atomic commit */
		vlv_pipe_set_fifo_size(intel_crtc);
1339
		return;
1340
	}
1341 1342 1343 1344 1345 1346 1347 1348 1349

	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, false);

	if (wm.level < VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, false);

1350
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1351 1352
		intel_set_memory_cxsr(dev_priv, false);

1353 1354 1355
	/* FIXME should be part of crtc atomic commit */
	vlv_pipe_set_fifo_size(intel_crtc);

1356 1357 1358 1359 1360 1361 1362 1363
	vlv_write_wm_values(intel_crtc, &wm);

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);

1364
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
		intel_set_memory_cxsr(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, true);

	dev_priv->wm.vlv = wm;
1376 1377
}

1378 1379
#define single_plane_enabled(mask) is_power_of_2(mask)

1380
static void g4x_update_wm(struct drm_crtc *crtc)
1381
{
1382
	struct drm_device *dev = crtc->dev;
1383
	static const int sr_latency_ns = 12000;
1384
	struct drm_i915_private *dev_priv = to_i915(dev);
1385 1386 1387
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1388
	bool cxsr_enabled;
1389

1390
	if (g4x_compute_wm0(dev, PIPE_A,
1391 1392
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1393
			    &planea_wm, &cursora_wm))
1394
		enabled |= 1 << PIPE_A;
1395

1396
	if (g4x_compute_wm0(dev, PIPE_B,
1397 1398
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1399
			    &planeb_wm, &cursorb_wm))
1400
		enabled |= 1 << PIPE_B;
1401 1402 1403 1404 1405 1406

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1407
			     &plane_sr, &cursor_sr)) {
1408
		cxsr_enabled = true;
1409
	} else {
1410
		cxsr_enabled = false;
1411
		intel_set_memory_cxsr(dev_priv, false);
1412 1413
		plane_sr = cursor_sr = 0;
	}
1414

1415 1416
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1417 1418 1419 1420 1421
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1422 1423 1424 1425
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1426
	I915_WRITE(DSPFW2,
1427
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1428
		   FW_WM(cursora_wm, CURSORA));
1429 1430
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1431
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1432
		   FW_WM(cursor_sr, CURSOR_SR));
1433 1434 1435

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1436 1437
}

1438
static void i965_update_wm(struct drm_crtc *unused_crtc)
1439
{
1440
	struct drm_device *dev = unused_crtc->dev;
1441
	struct drm_i915_private *dev_priv = to_i915(dev);
1442 1443 1444
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1445
	bool cxsr_enabled;
1446 1447 1448 1449 1450 1451

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1452
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1453
		int clock = adjusted_mode->crtc_clock;
1454
		int htotal = adjusted_mode->crtc_htotal;
1455
		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1456
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1457 1458 1459
		unsigned long line_time_us;
		int entries;

1460
		line_time_us = max(htotal * 1000 / clock, 1);
1461 1462 1463

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1464
			cpp * hdisplay;
1465 1466 1467 1468 1469 1470 1471 1472 1473
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1474
			cpp * crtc->cursor->state->crtc_w;
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1486
		cxsr_enabled = true;
1487
	} else {
1488
		cxsr_enabled = false;
1489
		/* Turn off self refresh if both pipes are enabled */
1490
		intel_set_memory_cxsr(dev_priv, false);
1491 1492 1493 1494 1495 1496
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1497 1498 1499 1500 1501 1502
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1503
	/* update cursor SR watermark */
1504
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1505 1506 1507

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1508 1509
}

1510 1511
#undef FW_WM

1512
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1513
{
1514
	struct drm_device *dev = unused_crtc->dev;
1515
	struct drm_i915_private *dev_priv = to_i915(dev);
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
1529
		wm_info = &i830_a_wm_info;
1530 1531 1532

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1533
	if (intel_crtc_active(crtc)) {
1534
		const struct drm_display_mode *adjusted_mode;
1535
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1536 1537 1538
		if (IS_GEN2(dev))
			cpp = 4;

1539
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1540
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1541
					       wm_info, fifo_size, cpp,
1542
					       pessimal_latency_ns);
1543
		enabled = crtc;
1544
	} else {
1545
		planea_wm = fifo_size - wm_info->guard_size;
1546 1547 1548 1549 1550 1551
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

	if (IS_GEN2(dev))
		wm_info = &i830_bc_wm_info;
1552 1553 1554

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1555
	if (intel_crtc_active(crtc)) {
1556
		const struct drm_display_mode *adjusted_mode;
1557
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1558 1559 1560
		if (IS_GEN2(dev))
			cpp = 4;

1561
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1562
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1563
					       wm_info, fifo_size, cpp,
1564
					       pessimal_latency_ns);
1565 1566 1567 1568
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1569
	} else {
1570
		planeb_wm = fifo_size - wm_info->guard_size;
1571 1572 1573
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1574 1575 1576

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1577
	if (IS_I915GM(dev) && enabled) {
1578
		struct drm_i915_gem_object *obj;
1579

1580
		obj = intel_fb_obj(enabled->primary->state->fb);
1581 1582

		/* self-refresh seems busted with untiled */
1583
		if (obj->tiling_mode == I915_TILING_NONE)
1584 1585 1586
			enabled = NULL;
	}

1587 1588 1589 1590 1591 1592
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1593
	intel_set_memory_cxsr(dev_priv, false);
1594 1595 1596 1597 1598

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1599
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1600
		int clock = adjusted_mode->crtc_clock;
1601
		int htotal = adjusted_mode->crtc_htotal;
1602
		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1603
		int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1604 1605 1606
		unsigned long line_time_us;
		int entries;

1607
		line_time_us = max(htotal * 1000 / clock, 1);
1608 1609 1610

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1611
			cpp * hdisplay;
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1638 1639
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1640 1641
}

1642
static void i845_update_wm(struct drm_crtc *unused_crtc)
1643
{
1644
	struct drm_device *dev = unused_crtc->dev;
1645
	struct drm_i915_private *dev_priv = to_i915(dev);
1646
	struct drm_crtc *crtc;
1647
	const struct drm_display_mode *adjusted_mode;
1648 1649 1650 1651 1652 1653 1654
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1655
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1656
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1657
				       &i845_wm_info,
1658
				       dev_priv->display.get_fifo_size(dev, 0),
1659
				       4, pessimal_latency_ns);
1660 1661 1662 1663 1664 1665 1666 1667
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1668
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1669
{
1670
	uint32_t pixel_rate;
1671

1672
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1673 1674 1675 1676

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1677
	if (pipe_config->pch_pfit.enabled) {
1678
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1679 1680 1681 1682
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1683 1684 1685 1686 1687 1688 1689 1690

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

1691 1692 1693
		if (WARN_ON(!pfit_w || !pfit_h))
			return pixel_rate;

1694 1695 1696 1697 1698 1699 1700
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1701
/* latency must be in 0.1us units. */
1702
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1703 1704 1705
{
	uint64_t ret;

1706 1707 1708
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1709
	ret = (uint64_t) pixel_rate * cpp * latency;
1710 1711 1712 1713 1714
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1715
/* latency must be in 0.1us units. */
1716
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1717
			       uint32_t horiz_pixels, uint8_t cpp,
1718 1719 1720 1721
			       uint32_t latency)
{
	uint32_t ret;

1722 1723
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1724 1725
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1726

1727
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1728
	ret = (ret + 1) * horiz_pixels * cpp;
1729 1730 1731 1732
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1733
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1734
			   uint8_t cpp)
1735
{
1736 1737 1738 1739 1740 1741
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
1742
	if (WARN_ON(!cpp))
1743 1744 1745 1746
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1747
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1748 1749
}

1750
struct ilk_wm_maximums {
1751 1752 1753 1754 1755 1756
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1757 1758 1759 1760
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1761
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1762
				   const struct intel_plane_state *pstate,
1763 1764
				   uint32_t mem_value,
				   bool is_lp)
1765
{
1766 1767
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1768 1769
	uint32_t method1, method2;

1770
	if (!cstate->base.active || !pstate->visible)
1771 1772
		return 0;

1773
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1774 1775 1776 1777

	if (!is_lp)
		return method1;

1778 1779
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1780
				 drm_rect_width(&pstate->dst),
1781
				 cpp, mem_value);
1782 1783

	return min(method1, method2);
1784 1785
}

1786 1787 1788 1789
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1790
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1791
				   const struct intel_plane_state *pstate,
1792 1793
				   uint32_t mem_value)
{
1794 1795
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1796 1797
	uint32_t method1, method2;

1798
	if (!cstate->base.active || !pstate->visible)
1799 1800
		return 0;

1801
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1802 1803
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1804
				 drm_rect_width(&pstate->dst),
1805
				 cpp, mem_value);
1806 1807 1808
	return min(method1, method2);
}

1809 1810 1811 1812
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1813
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1814
				   const struct intel_plane_state *pstate,
1815 1816
				   uint32_t mem_value)
{
1817 1818 1819 1820 1821 1822 1823
	/*
	 * We treat the cursor plane as always-on for the purposes of watermark
	 * calculation.  Until we have two-stage watermark programming merged,
	 * this is necessary to avoid flickering.
	 */
	int cpp = 4;
	int width = pstate->visible ? pstate->base.crtc_w : 64;
1824

1825
	if (!cstate->base.active)
1826 1827
		return 0;

1828 1829
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
			      cstate->base.adjusted_mode.crtc_htotal,
1830
			      width, cpp, mem_value);
1831 1832
}

1833
/* Only for WM_LP. */
1834
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1835
				   const struct intel_plane_state *pstate,
1836
				   uint32_t pri_val)
1837
{
1838 1839
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1840

1841
	if (!cstate->base.active || !pstate->visible)
1842 1843
		return 0;

1844
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), cpp);
1845 1846
}

1847 1848
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1849 1850 1851
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1852 1853 1854 1855 1856
		return 768;
	else
		return 512;
}

1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1891 1892 1893
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1894
				     const struct intel_wm_config *config,
1895 1896 1897 1898 1899 1900
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1901
	if (is_sprite && !config->sprites_enabled)
1902 1903 1904
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1905
	if (level == 0 || config->num_pipes_active > 1) {
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1917
	if (config->sprites_enabled) {
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1929
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1930 1931 1932 1933
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1934 1935
				      int level,
				      const struct intel_wm_config *config)
1936 1937
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1938
	if (level > 0 && config->num_pipes_active > 1)
1939 1940 1941
		return 64;

	/* otherwise just report max that registers can hold */
1942
	return ilk_cursor_wm_reg_max(dev, level);
1943 1944
}

1945
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1946 1947 1948
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1949
				    struct ilk_wm_maximums *max)
1950
{
1951 1952 1953
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1954
	max->fbc = ilk_fbc_wm_reg_max(dev);
1955 1956
}

1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

1967
static bool ilk_validate_wm_level(int level,
1968
				  const struct ilk_wm_maximums *max,
1969
				  struct intel_wm_level *result)
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2008
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2009
				 const struct intel_crtc *intel_crtc,
2010
				 int level,
2011
				 struct intel_crtc_state *cstate,
2012 2013 2014
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2015
				 struct intel_wm_level *result)
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2040 2041 2042
	result->enable = true;
}

2043
static uint32_t
2044
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2045
{
2046 2047
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2048 2049
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2050
	u32 linetime, ips_linetime;
2051

2052 2053 2054 2055
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2056
	if (WARN_ON(intel_state->cdclk == 0))
2057
		return 0;
2058

2059 2060 2061
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2062 2063 2064
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2065
					 intel_state->cdclk);
2066

2067 2068
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2069 2070
}

2071
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2072
{
2073
	struct drm_i915_private *dev_priv = to_i915(dev);
2074

2075 2076
	if (IS_GEN9(dev)) {
		uint32_t val;
2077
		int ret, i;
2078
		int level, max_level = ilk_wm_max_level(dev);
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2121
		/*
2122 2123
		 * WaWmMemoryReadLatency:skl
		 *
2124 2125 2126 2127 2128 2129 2130 2131
		 * punit doesn't take into account the read latency so we need
		 * to add 2us to the various latency levels we retrieve from
		 * the punit.
		 *   - W0 is a bit special in that it's the only level that
		 *   can't be disabled if we want to have display working, so
		 *   we always add 2us there.
		 *   - For levels >=1, punit returns 0us latency when they are
		 *   disabled, so we respect that and don't add 2us then
2132 2133 2134 2135 2136
		 *
		 * Additionally, if a level n (n > 1) has a 0us latency, all
		 * levels m (m >= n) need to be disabled. We make sure to
		 * sanitize the values out of the punit to satisfy this
		 * requirement.
2137 2138 2139 2140 2141
		 */
		wm[0] += 2;
		for (level = 1; level <= max_level; level++)
			if (wm[level] != 0)
				wm[level] += 2;
2142 2143 2144
			else {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
2145

2146 2147
				break;
			}
2148
	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2149 2150 2151 2152 2153
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2154 2155 2156 2157
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2158 2159 2160 2161 2162 2163 2164
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2165 2166 2167 2168 2169 2170 2171
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2172 2173 2174
	}
}

2175 2176 2177
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
2178
	if (IS_GEN5(dev))
2179 2180 2181 2182 2183 2184
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
2185
	if (IS_GEN5(dev))
2186 2187 2188 2189 2190 2191 2192
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

2193
int ilk_wm_max_level(const struct drm_device *dev)
2194 2195
{
	/* how many WM levels are we expecting */
2196
	if (INTEL_INFO(dev)->gen >= 9)
2197 2198
		return 7;
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2199
		return 4;
2200
	else if (INTEL_INFO(dev)->gen >= 6)
2201
		return 3;
2202
	else
2203 2204
		return 2;
}
2205

2206 2207
static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
2208
				   const uint16_t wm[8])
2209 2210
{
	int level, max_level = ilk_wm_max_level(dev);
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2221 2222 2223 2224 2225 2226 2227
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
		if (IS_GEN9(dev))
			latency *= 10;
		else if (level > 0)
2228 2229 2230 2231 2232 2233 2234 2235
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2236 2237 2238
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2239
	int level, max_level = ilk_wm_max_level(&dev_priv->drm);
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
2253
	struct drm_i915_private *dev_priv = to_i915(dev);
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}

2273
static void ilk_setup_wm_latency(struct drm_device *dev)
2274
{
2275
	struct drm_i915_private *dev_priv = to_i915(dev);
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2286 2287 2288 2289

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2290 2291 2292

	if (IS_GEN6(dev))
		snb_wm_latency_quirk(dev);
2293 2294
}

2295 2296
static void skl_setup_wm_latency(struct drm_device *dev)
{
2297
	struct drm_i915_private *dev_priv = to_i915(dev);
2298 2299 2300 2301 2302

	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
}

2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

2326
/* Compute new watermarks for the pipe */
2327
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2328
{
2329 2330
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2331
	struct intel_pipe_wm *pipe_wm;
2332
	struct drm_device *dev = state->dev;
2333
	const struct drm_i915_private *dev_priv = to_i915(dev);
2334
	struct intel_plane *intel_plane;
2335
	struct intel_plane_state *pristate = NULL;
2336
	struct intel_plane_state *sprstate = NULL;
2337
	struct intel_plane_state *curstate = NULL;
2338
	int level, max_level = ilk_wm_max_level(dev), usable_level;
2339
	struct ilk_wm_maximums max;
2340

2341
	pipe_wm = &cstate->wm.ilk.optimal;
2342

2343
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2344 2345 2346 2347 2348 2349
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
2350 2351

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2352
			pristate = ps;
2353
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2354
			sprstate = ps;
2355
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2356
			curstate = ps;
2357 2358
	}

2359
	pipe_wm->pipe_enabled = cstate->base.active;
2360 2361 2362 2363 2364 2365 2366
	if (sprstate) {
		pipe_wm->sprites_enabled = sprstate->visible;
		pipe_wm->sprites_scaled = sprstate->visible &&
			(drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
			 drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
	}

2367 2368
	usable_level = max_level;

2369
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2370
	if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2371
		usable_level = 1;
2372 2373

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2374
	if (pipe_wm->sprites_scaled)
2375
		usable_level = 0;
2376

2377
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2378 2379 2380 2381
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2382

2383
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2384
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2385

2386
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2387
		return -EINVAL;
2388 2389 2390 2391

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
2392
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2393

2394
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2395
				     pristate, sprstate, curstate, wm);
2396 2397 2398 2399 2400 2401

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
2402 2403 2404 2405 2406 2407
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
2408
			usable_level = level;
2409 2410
	}

2411
	return 0;
2412 2413
}

2414 2415 2416 2417 2418 2419 2420 2421 2422
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
2423
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2424 2425 2426 2427 2428 2429 2430 2431
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
	int level, max_level = ilk_wm_max_level(dev);

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
2432
	*a = newstate->wm.ilk.optimal;
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2461
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2462 2463 2464 2465 2466
		newstate->wm.need_postvbl_update = false;

	return 0;
}

2467 2468 2469 2470 2471 2472 2473 2474 2475
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2476 2477
	ret_wm->enable = true;

2478
	for_each_intel_crtc(dev, intel_crtc) {
2479
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2480 2481 2482 2483
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2484

2485 2486 2487 2488 2489
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2490
		if (!wm->enable)
2491
			ret_wm->enable = false;
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2504
			 const struct intel_wm_config *config,
2505
			 const struct ilk_wm_maximums *max,
2506 2507
			 struct intel_pipe_wm *merged)
{
2508
	struct drm_i915_private *dev_priv = to_i915(dev);
2509
	int level, max_level = ilk_wm_max_level(dev);
2510
	int last_enabled_level = max_level;
2511

2512 2513 2514
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
	    config->num_pipes_active > 1)
2515
		last_enabled_level = 0;
2516

2517 2518
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2519 2520 2521 2522 2523 2524 2525

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2526 2527 2528 2529 2530
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2531 2532 2533 2534 2535 2536

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2537 2538
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2539 2540 2541
			wm->fbc_val = 0;
		}
	}
2542 2543 2544 2545 2546 2547 2548

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2549
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2550
	    intel_fbc_is_active(dev_priv)) {
2551 2552 2553 2554 2555 2556
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2557 2558
}

2559 2560 2561 2562 2563 2564
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2565 2566 2567
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
2568
	struct drm_i915_private *dev_priv = to_i915(dev);
2569

2570
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2571 2572 2573 2574 2575
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2576
static void ilk_compute_wm_results(struct drm_device *dev,
2577
				   const struct intel_pipe_wm *merged,
2578
				   enum intel_ddb_partitioning partitioning,
2579
				   struct ilk_wm_values *results)
2580
{
2581 2582
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2583

2584
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2585
	results->partitioning = partitioning;
2586

2587
	/* LP1+ register values */
2588
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2589
		const struct intel_wm_level *r;
2590

2591
		level = ilk_wm_lp_to_level(wm_lp, merged);
2592

2593
		r = &merged->wm[level];
2594

2595 2596 2597 2598 2599
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2600
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2601 2602 2603
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2604 2605 2606
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2607 2608 2609 2610 2611 2612 2613
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2614 2615 2616 2617
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2618 2619 2620 2621 2622
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2623
	}
2624

2625
	/* LP0 register values */
2626
	for_each_intel_crtc(dev, intel_crtc) {
2627
		enum pipe pipe = intel_crtc->pipe;
2628 2629
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
2630 2631 2632 2633

		if (WARN_ON(!r->enable))
			continue;

2634
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2635

2636 2637 2638 2639
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2640 2641 2642
	}
}

2643 2644
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2645
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2646 2647
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2648
{
2649 2650
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2651

2652 2653 2654 2655 2656
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2657 2658
	}

2659 2660
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2661 2662 2663
			return r2;
		else
			return r1;
2664
	} else if (level1 > level2) {
2665 2666 2667 2668 2669 2670
		return r1;
	} else {
		return r2;
	}
}

2671 2672 2673 2674 2675 2676 2677 2678
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2679
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2680 2681
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2682 2683 2684 2685 2686
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2687
	for_each_pipe(dev_priv, pipe) {
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2731 2732
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2733
{
2734
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2735
	bool changed = false;
2736

2737 2738 2739
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2740
		changed = true;
2741 2742 2743 2744
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2745
		changed = true;
2746 2747 2748 2749
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2750
		changed = true;
2751
	}
2752

2753 2754 2755 2756
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2757

2758 2759 2760 2761 2762 2763 2764
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2765 2766
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2767
{
2768
	struct drm_device *dev = &dev_priv->drm;
2769
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2770 2771 2772
	unsigned int dirty;
	uint32_t val;

2773
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2774 2775 2776 2777 2778
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2779
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2780
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2781
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2782
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2783
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2784 2785
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2786
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2787
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2788
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2789
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2790
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2791 2792
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2793
	if (dirty & WM_DIRTY_DDB) {
2794
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2809 2810
	}

2811
	if (dirty & WM_DIRTY_FBC) {
2812 2813 2814 2815 2816 2817 2818 2819
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2820 2821 2822 2823 2824
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2825 2826 2827 2828 2829
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2830

2831
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2832
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2833
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2834
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2835
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2836
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2837 2838

	dev_priv->wm.hw = *results;
2839 2840
}

2841
bool ilk_disable_lp_wm(struct drm_device *dev)
2842
{
2843
	struct drm_i915_private *dev_priv = to_i915(dev);
2844 2845 2846 2847

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2848 2849 2850 2851 2852 2853
/*
 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
 * different active planes.
 */

#define SKL_DDB_SIZE		896	/* in blocks */
2854
#define BXT_DDB_SIZE		512
2855

2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
/*
 * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
 * other universal planes are in indices 1..n.  Note that this may leave unused
 * indices between the top "sprite" plane and the cursor.
 */
static int
skl_wm_plane_id(const struct intel_plane *plane)
{
	switch (plane->base.type) {
	case DRM_PLANE_TYPE_PRIMARY:
		return 0;
	case DRM_PLANE_TYPE_CURSOR:
		return PLANE_CURSOR;
	case DRM_PLANE_TYPE_OVERLAY:
		return plane->plane + 1;
	default:
		MISSING_CASE(plane->base.type);
		return plane->plane;
	}
}

2878 2879
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2880
				   const struct intel_crtc_state *cstate,
2881 2882
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
2883
{
2884 2885 2886
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
2887
	struct drm_crtc *for_crtc = cstate->base.crtc;
2888 2889
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
2890 2891
	int pipe = to_intel_crtc(for_crtc)->pipe;

2892
	if (WARN_ON(!state) || !cstate->base.active) {
2893 2894
		alloc->start = 0;
		alloc->end = 0;
2895
		*num_active = hweight32(dev_priv->active_crtcs);
2896 2897 2898
		return;
	}

2899 2900 2901 2902 2903
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

2904 2905 2906 2907
	if (IS_BROXTON(dev))
		ddb_size = BXT_DDB_SIZE;
	else
		ddb_size = SKL_DDB_SIZE;
2908 2909 2910

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

2911
	/*
2912 2913 2914 2915 2916 2917
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
2918
	 */
2919 2920 2921
	if (!intel_state->active_pipe_changes) {
		*alloc = dev_priv->wm.skl_hw.ddb.pipe[pipe];
		return;
2922
	}
2923 2924 2925 2926 2927 2928

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
2929 2930
}

2931
static unsigned int skl_cursor_allocation(int num_active)
2932
{
2933
	if (num_active == 1)
2934 2935 2936 2937 2938
		return 32;

	return 8;
}

2939 2940 2941 2942
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
2943 2944
	if (entry->end)
		entry->end += 1;
2945 2946
}

2947 2948
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
2949 2950 2951 2952 2953
{
	enum pipe pipe;
	int plane;
	u32 val;

2954 2955
	memset(ddb, 0, sizeof(*ddb));

2956
	for_each_pipe(dev_priv, pipe) {
2957 2958 2959 2960
		enum intel_display_power_domain power_domain;

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2961 2962
			continue;

2963
		for_each_plane(dev_priv, pipe, plane) {
2964 2965 2966 2967 2968 2969
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
2970 2971
		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
					   val);
2972 2973

		intel_display_power_put(dev_priv, power_domain);
2974 2975 2976
	}
}

2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
static uint32_t
skl_plane_downscale_amount(const struct intel_plane_state *pstate)
{
	uint32_t downscale_h, downscale_w;
	uint32_t src_w, src_h, dst_w, dst_h;

	if (WARN_ON(!pstate->visible))
		return DRM_PLANE_HELPER_NO_SCALING;

	/* n.b., src is 16.16 fixed point, dst is whole integer */
	src_w = drm_rect_width(&pstate->src);
	src_h = drm_rect_height(&pstate->src);
	dst_w = drm_rect_width(&pstate->dst);
	dst_h = drm_rect_height(&pstate->dst);
	if (intel_rotation_90_or_270(pstate->base.rotation))
		swap(dst_w, dst_h);

	downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
	downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);

	/* Provide result in 16.16 fixed point */
	return (uint64_t)downscale_w * downscale_h >> 16;
}

3017
static unsigned int
3018 3019 3020
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
3021
{
3022
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3023
	struct drm_framebuffer *fb = pstate->fb;
3024
	uint32_t down_scale_amount, data_rate;
3025
	uint32_t width = 0, height = 0;
3026 3027 3028 3029 3030 3031 3032 3033
	unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;

	if (!intel_pstate->visible)
		return 0;
	if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
3034 3035 3036 3037 3038 3039

	width = drm_rect_width(&intel_pstate->src) >> 16;
	height = drm_rect_height(&intel_pstate->src) >> 16;

	if (intel_rotation_90_or_270(pstate->rotation))
		swap(width, height);
3040 3041

	/* for planar format */
3042
	if (format == DRM_FORMAT_NV12) {
3043
		if (y)  /* y-plane data rate */
3044
			data_rate = width * height *
3045
				drm_format_plane_cpp(format, 0);
3046
		else    /* uv-plane data rate */
3047
			data_rate = (width / 2) * (height / 2) *
3048
				drm_format_plane_cpp(format, 1);
3049 3050 3051
	} else {
		/* for packed formats */
		data_rate = width * height * drm_format_plane_cpp(format, 0);
3052 3053
	}

3054 3055 3056
	down_scale_amount = skl_plane_downscale_amount(intel_pstate);

	return (uint64_t)data_rate * down_scale_amount >> 16;
3057 3058 3059 3060 3061 3062 3063 3064
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
3065
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate)
3066
{
3067 3068 3069 3070 3071
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
	struct drm_crtc *crtc = cstate->crtc;
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3072
	const struct drm_plane *plane;
3073
	const struct intel_plane *intel_plane;
3074
	struct drm_plane_state *pstate;
3075
	unsigned int rate, total_data_rate = 0;
3076
	int id;
3077 3078 3079 3080
	int i;

	if (WARN_ON(!state))
		return 0;
3081

3082
	/* Calculate and cache data rate for each plane */
3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
	for_each_plane_in_state(state, plane, pstate, i) {
		id = skl_wm_plane_id(to_intel_plane(plane));
		intel_plane = to_intel_plane(plane);

		if (intel_plane->pipe != intel_crtc->pipe)
			continue;

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
		intel_cstate->wm.skl.plane_data_rate[id] = rate;

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
		intel_cstate->wm.skl.plane_y_data_rate[id] = rate;
3099
	}
3100

3101 3102 3103
	/* Calculate CRTC's total data rate from cached values */
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		int id = skl_wm_plane_id(intel_plane);
3104

3105
		/* packed/uv */
3106 3107
		total_data_rate += intel_cstate->wm.skl.plane_data_rate[id];
		total_data_rate += intel_cstate->wm.skl.plane_y_data_rate[id];
3108 3109
	}

3110 3111
	WARN_ON(cstate->plane_mask && total_data_rate == 0);

3112 3113 3114
	return total_data_rate;
}

3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
	if (y && fb->pixel_format != DRM_FORMAT_NV12)
		return 0;

	/* For Non Y-tile return 8-blocks */
	if (fb->modifier[0] != I915_FORMAT_MOD_Y_TILED &&
	    fb->modifier[0] != I915_FORMAT_MOD_Yf_TILED)
		return 8;

	src_w = drm_rect_width(&intel_pstate->src) >> 16;
	src_h = drm_rect_height(&intel_pstate->src) >> 16;

	if (intel_rotation_90_or_270(pstate->rotation))
		swap(src_w, src_h);

	/* Halve UV plane width and height for NV12 */
	if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
		src_w /= 2;
		src_h /= 2;
	}

	if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
	else
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);

	if (intel_rotation_90_or_270(pstate->rotation)) {
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

3178
static int
3179
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3180 3181
		      struct skl_ddb_allocation *ddb /* out */)
{
3182
	struct drm_atomic_state *state = cstate->base.state;
3183
	struct drm_crtc *crtc = cstate->base.crtc;
3184 3185
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3186
	struct intel_plane *intel_plane;
3187 3188
	struct drm_plane *plane;
	struct drm_plane_state *pstate;
3189
	enum pipe pipe = intel_crtc->pipe;
3190
	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
3191
	uint16_t alloc_size, start, cursor_blocks;
3192 3193
	uint16_t *minimum = cstate->wm.skl.minimum_blocks;
	uint16_t *y_minimum = cstate->wm.skl.minimum_y_blocks;
3194
	unsigned int total_data_rate;
3195 3196
	int num_active;
	int id, i;
3197

3198 3199 3200
	if (WARN_ON(!state))
		return 0;

3201 3202 3203 3204 3205 3206 3207
	if (!cstate->base.active) {
		ddb->pipe[pipe].start = ddb->pipe[pipe].end = 0;
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
		memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
		return 0;
	}

3208
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3209
	alloc_size = skl_ddb_entry_size(alloc);
3210 3211
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3212
		return 0;
3213 3214
	}

3215
	cursor_blocks = skl_cursor_allocation(num_active);
3216 3217
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3218 3219 3220

	alloc_size -= cursor_blocks;

3221
	/* 1. Allocate the mininum required blocks for each active plane */
3222 3223 3224
	for_each_plane_in_state(state, plane, pstate, i) {
		intel_plane = to_intel_plane(plane);
		id = skl_wm_plane_id(intel_plane);
3225

3226 3227
		if (intel_plane->pipe != pipe)
			continue;
3228

3229 3230 3231 3232 3233 3234 3235 3236 3237
		if (!to_intel_plane_state(pstate)->visible) {
			minimum[id] = 0;
			y_minimum[id] = 0;
			continue;
		}
		if (plane->type == DRM_PLANE_TYPE_CURSOR) {
			minimum[id] = 0;
			y_minimum[id] = 0;
			continue;
3238
		}
3239

3240 3241
		minimum[id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[id] = skl_ddb_min_alloc(pstate, 1);
3242
	}
3243

3244 3245 3246
	for (i = 0; i < PLANE_CURSOR; i++) {
		alloc_size -= minimum[i];
		alloc_size -= y_minimum[i];
3247 3248
	}

3249
	/*
3250 3251
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3252 3253 3254
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3255
	total_data_rate = skl_get_total_relative_data_rate(cstate);
3256
	if (total_data_rate == 0)
3257
		return 0;
3258

3259
	start = alloc->start;
3260
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3261 3262
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3263
		int id = skl_wm_plane_id(intel_plane);
3264

3265
		data_rate = cstate->wm.skl.plane_data_rate[id];
3266 3267

		/*
3268
		 * allocation for (packed formats) or (uv-plane part of planar format):
3269 3270 3271
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3272
		plane_blocks = minimum[id];
3273 3274
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3275

3276 3277 3278 3279 3280
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
			ddb->plane[pipe][id].start = start;
			ddb->plane[pipe][id].end = start + plane_blocks;
		}
3281 3282

		start += plane_blocks;
3283 3284 3285 3286

		/*
		 * allocation for y_plane part of planar format:
		 */
3287 3288 3289 3290 3291
		y_data_rate = cstate->wm.skl.plane_y_data_rate[id];

		y_plane_blocks = y_minimum[id];
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);
3292

3293 3294 3295 3296
		if (y_data_rate) {
			ddb->y_plane[pipe][id].start = start;
			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
		}
3297 3298

		start += y_plane_blocks;
3299 3300
	}

3301
	return 0;
3302 3303
}

3304
static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3305 3306
{
	/* TODO: Take into account the scalers once we support them */
3307
	return config->base.adjusted_mode.crtc_clock;
3308 3309 3310 3311
}

/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3312
 * for the read latency) and cpp should always be <= 8, so that
3313 3314 3315
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
3316
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3317 3318 3319 3320 3321 3322
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

3323
	wm_intermediate_val = latency * pixel_rate * cpp / 512;
3324 3325 3326 3327 3328 3329
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3330
			       uint32_t horiz_pixels, uint8_t cpp,
3331
			       uint64_t tiling, uint32_t latency)
3332
{
3333 3334 3335
	uint32_t ret;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t wm_intermediate_val;
3336 3337 3338 3339

	if (latency == 0)
		return UINT_MAX;

3340
	plane_bytes_per_line = horiz_pixels * cpp;
3341 3342 3343 3344 3345 3346 3347 3348 3349 3350

	if (tiling == I915_FORMAT_MOD_Y_TILED ||
	    tiling == I915_FORMAT_MOD_Yf_TILED) {
		plane_bytes_per_line *= 4;
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
		plane_blocks_per_line /= 4;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

3351 3352
	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3353
				plane_blocks_per_line;
3354 3355 3356 3357

	return ret;
}

3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
					      struct intel_plane_state *pstate)
{
	uint64_t adjusted_pixel_rate;
	uint64_t downscale_amount;
	uint64_t pixel_rate;

	/* Shouldn't reach here on disabled planes... */
	if (WARN_ON(!pstate->visible))
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
	adjusted_pixel_rate = skl_pipe_pixel_rate(cstate);
	downscale_amount = skl_plane_downscale_amount(pstate);

	pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
	WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));

	return pixel_rate;
}

3382 3383 3384 3385 3386 3387 3388 3389
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
3390
{
3391 3392
	struct drm_plane_state *pstate = &intel_pstate->base;
	struct drm_framebuffer *fb = pstate->fb;
3393 3394 3395 3396 3397
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3398
	uint8_t cpp;
3399
	uint32_t width = 0, height = 0;
3400
	uint32_t plane_pixel_rate;
3401

3402 3403 3404 3405
	if (latency == 0 || !cstate->base.active || !intel_pstate->visible) {
		*enabled = false;
		return 0;
	}
3406

3407 3408 3409
	width = drm_rect_width(&intel_pstate->src) >> 16;
	height = drm_rect_height(&intel_pstate->src) >> 16;

3410
	if (intel_rotation_90_or_270(pstate->rotation))
3411 3412
		swap(width, height);

3413
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3414 3415 3416 3417
	plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);

	method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
	method2 = skl_wm_method2(plane_pixel_rate,
3418
				 cstate->base.adjusted_mode.crtc_htotal,
3419 3420 3421
				 width,
				 cpp,
				 fb->modifier[0],
3422
				 latency);
3423

3424
	plane_bytes_per_line = width * cpp;
3425
	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3426

3427 3428
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3429 3430
		uint32_t min_scanlines = 4;
		uint32_t y_tile_minimum;
3431
		if (intel_rotation_90_or_270(pstate->rotation)) {
3432
			int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3433 3434 3435
				drm_format_plane_cpp(fb->pixel_format, 1) :
				drm_format_plane_cpp(fb->pixel_format, 0);

3436
			switch (cpp) {
3437 3438 3439 3440 3441 3442 3443 3444
			case 1:
				min_scanlines = 16;
				break;
			case 2:
				min_scanlines = 8;
				break;
			case 8:
				WARN(1, "Unsupported pixel depth for rotation");
3445
			}
3446 3447
		}
		y_tile_minimum = plane_blocks_per_line * min_scanlines;
3448 3449 3450 3451 3452 3453 3454
		selected_result = max(method2, y_tile_minimum);
	} else {
		if ((ddb_allocation / plane_blocks_per_line) >= 1)
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3455

3456 3457
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3458

3459
	if (level >= 1 && level <= 7) {
3460 3461
		if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
		    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3462 3463 3464 3465
			res_lines += 4;
		else
			res_blocks++;
	}
3466

3467 3468
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484

		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
			DRM_DEBUG_KMS("Plane %d.%d: blocks required = %u/%u, lines required = %u/31\n",
				      to_intel_crtc(cstate->base.crtc)->pipe,
				      skl_wm_plane_id(to_intel_plane(pstate->plane)),
				      res_blocks, ddb_allocation, res_lines);

			return -EINVAL;
		}
3485
	}
3486 3487 3488

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3489
	*enabled = true;
3490

3491
	return 0;
3492 3493
}

3494 3495 3496 3497 3498 3499
static int
skl_compute_wm_level(const struct drm_i915_private *dev_priv,
		     struct skl_ddb_allocation *ddb,
		     struct intel_crtc_state *cstate,
		     int level,
		     struct skl_wm_level *result)
3500
{
3501
	struct drm_atomic_state *state = cstate->base.state;
3502
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3503
	struct drm_plane *plane;
3504
	struct intel_plane *intel_plane;
3505
	struct intel_plane_state *intel_pstate;
3506
	uint16_t ddb_blocks;
3507
	enum pipe pipe = intel_crtc->pipe;
3508
	int ret;
3509

3510 3511 3512 3513 3514 3515
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(result, 0, sizeof(*result));

3516 3517 3518
	for_each_intel_plane_mask(&dev_priv->drm,
				  intel_plane,
				  cstate->base.plane_mask) {
3519
		int i = skl_wm_plane_id(intel_plane);
3520

3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
		plane = &intel_plane->base;
		intel_pstate = NULL;
		if (state)
			intel_pstate =
				intel_atomic_get_existing_plane_state(state,
								      intel_plane);

		/*
		 * Note: If we start supporting multiple pending atomic commits
		 * against the same planes/CRTC's in the future, plane->state
		 * will no longer be the correct pre-state to use for the
		 * calculations here and we'll need to change where we get the
		 * 'unchanged' plane data from.
		 *
		 * For now this is fine because we only allow one queued commit
		 * against a CRTC.  Even if the plane isn't modified by this
		 * transaction and we don't have a plane lock, we still have
		 * the CRTC's lock, so we know that no other transactions are
		 * racing with us to update it.
		 */
		if (!intel_pstate)
			intel_pstate = to_intel_plane_state(plane->state);

		WARN_ON(!intel_pstate->base.fb);

3546 3547
		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);

3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
		ret = skl_compute_plane_wm(dev_priv,
					   cstate,
					   intel_pstate,
					   ddb_blocks,
					   level,
					   &result->plane_res_b[i],
					   &result->plane_res_l[i],
					   &result->plane_en[i]);
		if (ret)
			return ret;
3558
	}
3559 3560

	return 0;
3561 3562
}

3563
static uint32_t
3564
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3565
{
3566
	if (!cstate->base.active)
3567 3568
		return 0;

3569
	if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3570
		return 0;
3571

3572 3573
	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
			    skl_pipe_pixel_rate(cstate));
3574 3575
}

3576
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3577
				      struct skl_wm_level *trans_wm /* out */)
3578
{
3579
	struct drm_crtc *crtc = cstate->base.crtc;
3580
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3581
	struct intel_plane *intel_plane;
3582

3583
	if (!cstate->base.active)
3584
		return;
3585 3586

	/* Until we know more, just disable transition WMs */
3587 3588 3589
	for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
		int i = skl_wm_plane_id(intel_plane);

3590
		trans_wm->plane_en[i] = false;
3591
	}
3592 3593
}

3594 3595 3596
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
3597
{
3598
	struct drm_device *dev = cstate->base.crtc->dev;
3599
	const struct drm_i915_private *dev_priv = to_i915(dev);
3600
	int level, max_level = ilk_wm_max_level(dev);
3601
	int ret;
3602 3603

	for (level = 0; level <= max_level; level++) {
3604 3605 3606 3607
		ret = skl_compute_wm_level(dev_priv, ddb, cstate,
					   level, &pipe_wm->wm[level]);
		if (ret)
			return ret;
3608
	}
3609
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3610

3611
	skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3612 3613

	return 0;
3614 3615 3616 3617 3618 3619 3620 3621 3622
}

static void skl_compute_wm_results(struct drm_device *dev,
				   struct skl_pipe_wm *p_wm,
				   struct skl_wm_values *r,
				   struct intel_crtc *intel_crtc)
{
	int level, max_level = ilk_wm_max_level(dev);
	enum pipe pipe = intel_crtc->pipe;
3623 3624
	uint32_t temp;
	int i;
3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = 0;

			temp |= p_wm->wm[level].plane_res_l[i] <<
					PLANE_WM_LINES_SHIFT;
			temp |= p_wm->wm[level].plane_res_b[i];
			if (p_wm->wm[level].plane_en[i])
				temp |= PLANE_WM_EN;

			r->plane[pipe][i][level] = temp;
		}

		temp = 0;

3641 3642
		temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3643

3644
		if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3645 3646
			temp |= PLANE_WM_EN;

3647
		r->plane[pipe][PLANE_CURSOR][level] = temp;
3648 3649 3650

	}

3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
	/* transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = 0;
		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->trans_wm.plane_res_b[i];
		if (p_wm->trans_wm.plane_en[i])
			temp |= PLANE_WM_EN;

		r->plane_trans[pipe][i] = temp;
	}

	temp = 0;
3663 3664 3665
	temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
	temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
	if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3666 3667
		temp |= PLANE_WM_EN;

3668
	r->plane_trans[pipe][PLANE_CURSOR] = temp;
3669

3670 3671 3672
	r->wm_linetime[pipe] = p_wm->linetime;
}

3673 3674
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
3675 3676 3677 3678 3679 3680 3681 3682
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3683 3684 3685
static void skl_write_wm_values(struct drm_i915_private *dev_priv,
				const struct skl_wm_values *new)
{
3686
	struct drm_device *dev = &dev_priv->drm;
3687 3688
	struct intel_crtc *crtc;

3689
	for_each_intel_crtc(dev, crtc) {
3690 3691 3692
		int i, level, max_level = ilk_wm_max_level(dev);
		enum pipe pipe = crtc->pipe;

3693
		if ((new->dirty_pipes & drm_crtc_mask(&crtc->base)) == 0)
3694
			continue;
3695 3696
		if (!crtc->active)
			continue;
3697

3698
		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3699

3700 3701 3702 3703 3704
		for (level = 0; level <= max_level; level++) {
			for (i = 0; i < intel_num_planes(crtc); i++)
				I915_WRITE(PLANE_WM(pipe, i, level),
					   new->plane[pipe][i][level]);
			I915_WRITE(CUR_WM(pipe, level),
3705
				   new->plane[pipe][PLANE_CURSOR][level]);
3706
		}
3707 3708 3709
		for (i = 0; i < intel_num_planes(crtc); i++)
			I915_WRITE(PLANE_WM_TRANS(pipe, i),
				   new->plane_trans[pipe][i]);
3710 3711
		I915_WRITE(CUR_WM_TRANS(pipe),
			   new->plane_trans[pipe][PLANE_CURSOR]);
3712

3713
		for (i = 0; i < intel_num_planes(crtc); i++) {
3714 3715 3716
			skl_ddb_entry_write(dev_priv,
					    PLANE_BUF_CFG(pipe, i),
					    &new->ddb.plane[pipe][i]);
3717 3718 3719 3720
			skl_ddb_entry_write(dev_priv,
					    PLANE_NV12_BUF_CFG(pipe, i),
					    &new->ddb.y_plane[pipe][i]);
		}
3721 3722

		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3723
				    &new->ddb.plane[pipe][PLANE_CURSOR]);
3724 3725 3726
	}
}

3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
/*
 * When setting up a new DDB allocation arrangement, we need to correctly
 * sequence the times at which the new allocations for the pipes are taken into
 * account or we'll have pipes fetching from space previously allocated to
 * another pipe.
 *
 * Roughly the sequence looks like:
 *  1. re-allocate the pipe(s) with the allocation being reduced and not
 *     overlapping with a previous light-up pipe (another way to put it is:
 *     pipes with their new allocation strickly included into their old ones).
 *  2. re-allocate the other pipes that get their allocation reduced
 *  3. allocate the pipes having their allocation increased
 *
 * Steps 1. and 2. are here to take care of the following case:
 * - Initially DDB looks like this:
 *     |   B    |   C    |
 * - enable pipe A.
 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
 *   allocation
 *     |  A  |  B  |  C  |
 *
 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
 */

3751 3752
static void
skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3753 3754 3755
{
	int plane;

3756 3757
	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);

3758
	for_each_plane(dev_priv, pipe, plane) {
3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782
		I915_WRITE(PLANE_SURF(pipe, plane),
			   I915_READ(PLANE_SURF(pipe, plane)));
	}
	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
}

static bool
skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
			    const struct skl_ddb_allocation *new,
			    enum pipe pipe)
{
	uint16_t old_size, new_size;

	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
	new_size = skl_ddb_entry_size(&new->pipe[pipe]);

	return old_size != new_size &&
	       new->pipe[pipe].start >= old->pipe[pipe].start &&
	       new->pipe[pipe].end <= old->pipe[pipe].end;
}

static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
				struct skl_wm_values *new_values)
{
3783
	struct drm_device *dev = &dev_priv->drm;
3784
	struct skl_ddb_allocation *cur_ddb, *new_ddb;
3785
	bool reallocated[I915_MAX_PIPES] = {};
3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
	struct intel_crtc *crtc;
	enum pipe pipe;

	new_ddb = &new_values->ddb;
	cur_ddb = &dev_priv->wm.skl_hw.ddb;

	/*
	 * First pass: flush the pipes with the new allocation contained into
	 * the old space.
	 *
	 * We'll wait for the vblank on those pipes to ensure we can safely
	 * re-allocate the freed space without this pipe fetching from it.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
			continue;

3808
		skl_wm_flush_pipe(dev_priv, pipe, 1);
3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832
		intel_wait_for_vblank(dev, pipe);

		reallocated[pipe] = true;
	}


	/*
	 * Second pass: flush the pipes that are having their allocation
	 * reduced, but overlapping with a previous allocation.
	 *
	 * Here as well we need to wait for the vblank to make sure the freed
	 * space is not used anymore.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (reallocated[pipe])
			continue;

		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3833
			skl_wm_flush_pipe(dev_priv, pipe, 2);
3834
			intel_wait_for_vblank(dev, pipe);
3835
			reallocated[pipe] = true;
3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857
		}
	}

	/*
	 * Third pass: flush the pipes that got more space allocated.
	 *
	 * We don't need to actively wait for the update here, next vblank
	 * will just get more DDB space with the correct WM values.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		/*
		 * At this point, only the pipes more space than before are
		 * left to re-allocate.
		 */
		if (reallocated[pipe])
			continue;

3858
		skl_wm_flush_pipe(dev_priv, pipe, 3);
3859 3860 3861
	}
}

3862 3863 3864 3865
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
			      struct skl_ddb_allocation *ddb, /* out */
			      struct skl_pipe_wm *pipe_wm, /* out */
			      bool *changed /* out */)
3866
{
3867 3868
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->crtc);
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3869
	int ret;
3870

3871 3872 3873
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
3874

3875
	if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3876 3877 3878
		*changed = false;
	else
		*changed = true;
3879

3880
	return 0;
3881 3882
}

3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

	for_each_crtc_in_state(state, crtc, cstate, i)
		ret |= drm_crtc_mask(crtc);

	return ret;
}

3896 3897 3898 3899 3900 3901 3902
static int
skl_compute_ddb(struct drm_atomic_state *state)
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
3903
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
3904
	uint32_t realloc_pipes = pipes_modified(state);
3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
	if (dev_priv->wm.distrust_bios_wm)
		intel_state->active_pipe_changes = ~0;

	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
3929
	if (intel_state->active_pipe_changes) {
3930
		realloc_pipes = ~0;
3931 3932
		intel_state->wm_results.dirty_pipes = ~0;
	}
3933 3934 3935 3936 3937 3938 3939 3940

	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);

3941
		ret = skl_allocate_pipe_ddb(cstate, ddb);
3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953
		if (ret)
			return ret;
	}

	return 0;
}

static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
3954 3955 3956
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
	struct skl_pipe_wm *pipe_wm;
3957
	bool changed = false;
3958
	int ret, i;
3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972

	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i)
		changed = true;
	if (!changed)
		return 0;

3973 3974 3975
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

3976 3977 3978 3979
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i) {
		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);

		pipe_wm = &intel_cstate->wm.skl.optimal;
		ret = skl_update_pipe_wm(cstate, &results->ddb, pipe_wm,
					 &changed);
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
		skl_compute_wm_results(crtc->dev, pipe_wm, results, intel_crtc);
	}

4012 4013 4014
	return 0;
}

4015 4016 4017 4018
static void skl_update_wm(struct drm_crtc *crtc)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
4019
	struct drm_i915_private *dev_priv = to_i915(dev);
4020
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
4021
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4022
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4023

4024
	if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4025 4026
		return;

4027 4028 4029
	intel_crtc->wm.active.skl = *pipe_wm;

	mutex_lock(&dev_priv->wm.wm_mutex);
4030 4031

	skl_write_wm_values(dev_priv, results);
4032
	skl_flush_wm_values(dev_priv, results);
4033 4034 4035

	/* store the new configuration */
	dev_priv->wm.skl_hw = *results;
4036 4037

	mutex_unlock(&dev_priv->wm.wm_mutex);
4038 4039
}

4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

4058
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4059
{
4060
	struct drm_device *dev = &dev_priv->drm;
4061
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4062
	struct ilk_wm_maximums max;
4063
	struct intel_wm_config config = {};
4064
	struct ilk_wm_values results = {};
4065
	enum intel_ddb_partitioning partitioning;
4066

4067 4068 4069 4070
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4071 4072

	/* 5/6 split only in single pipe config on IVB+ */
4073
	if (INTEL_INFO(dev)->gen >= 7 &&
4074 4075 4076
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4077

4078
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4079
	} else {
4080
		best_lp_wm = &lp_wm_1_2;
4081 4082
	}

4083
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4084
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4085

4086
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4087

4088
	ilk_write_wm_values(dev_priv, &results);
4089 4090
}

4091
static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
4092
{
4093 4094
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4095

4096
	mutex_lock(&dev_priv->wm.wm_mutex);
4097
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4098 4099 4100
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
4101

4102 4103 4104 4105
static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4106

4107 4108
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
4109
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4110 4111 4112
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
4113 4114
}

4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132
static void skl_pipe_wm_active_state(uint32_t val,
				     struct skl_pipe_wm *active,
				     bool is_transwm,
				     bool is_cursor,
				     int i,
				     int level)
{
	bool is_enabled = (val & PLANE_WM_EN) != 0;

	if (!is_transwm) {
		if (!is_cursor) {
			active->wm[level].plane_en[i] = is_enabled;
			active->wm[level].plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
4133 4134
			active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
			active->wm[level].plane_res_b[PLANE_CURSOR] =
4135
					val & PLANE_WM_BLOCKS_MASK;
4136
			active->wm[level].plane_res_l[PLANE_CURSOR] =
4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	} else {
		if (!is_cursor) {
			active->trans_wm.plane_en[i] = is_enabled;
			active->trans_wm.plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
4149 4150
			active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
			active->trans_wm.plane_res_b[PLANE_CURSOR] =
4151
					val & PLANE_WM_BLOCKS_MASK;
4152
			active->trans_wm.plane_res_l[PLANE_CURSOR] =
4153 4154 4155 4156 4157 4158 4159 4160 4161
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	}
}

static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
4162
	struct drm_i915_private *dev_priv = to_i915(dev);
4163 4164
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4165
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4166
	struct skl_pipe_wm *active = &cstate->wm.skl.optimal;
4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178
	enum pipe pipe = intel_crtc->pipe;
	int level, i, max_level;
	uint32_t temp;

	max_level = ilk_wm_max_level(dev);

	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++)
			hw->plane[pipe][i][level] =
					I915_READ(PLANE_WM(pipe, i, level));
4179
		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
4180 4181 4182 4183
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
4184
	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
4185

4186
	if (!intel_crtc->active)
4187 4188
		return;

4189
	hw->dirty_pipes |= drm_crtc_mask(crtc);
4190 4191 4192 4193 4194 4195 4196 4197 4198

	active->linetime = hw->wm_linetime[pipe];

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = hw->plane[pipe][i][level];
			skl_pipe_wm_active_state(temp, active, false,
						false, i, level);
		}
4199
		temp = hw->plane[pipe][PLANE_CURSOR][level];
4200 4201 4202 4203 4204 4205 4206 4207
		skl_pipe_wm_active_state(temp, active, false, true, i, level);
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = hw->plane_trans[pipe][i];
		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
	}

4208
	temp = hw->plane_trans[pipe][PLANE_CURSOR];
4209
	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
4210 4211

	intel_crtc->wm.active.skl = *active;
4212 4213 4214 4215
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
4216
	struct drm_i915_private *dev_priv = to_i915(dev);
4217
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4218 4219
	struct drm_crtc *crtc;

4220
	skl_ddb_get_hw_state(dev_priv, ddb);
4221 4222
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		skl_pipe_wm_get_hw_state(crtc);
4223

4224 4225 4226 4227 4228 4229 4230
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
4231 4232
}

4233 4234 4235
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
4236
	struct drm_i915_private *dev_priv = to_i915(dev);
4237
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4238
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4239
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4240
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4241
	enum pipe pipe = intel_crtc->pipe;
4242
	static const i915_reg_t wm0_pipe_reg[] = {
4243 4244 4245 4246 4247 4248
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4249
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4250
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4251

4252 4253
	memset(active, 0, sizeof(*active));

4254
	active->pipe_enabled = intel_crtc->active;
4255 4256

	if (active->pipe_enabled) {
4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
4281 4282

	intel_crtc->wm.active.ilk = *active;
4283 4284
}

4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

		wm->ddl[pipe].primary =
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].cursor =
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[0] =
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[1] =
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPFW8_CHV);
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);

		tmp = I915_READ(DSPFW9_CHV);
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	} else {
		tmp = I915_READ(DSPFW7);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	for_each_intel_plane(dev, plane) {
		switch (plane->base.type) {
			int sprite;
		case DRM_PLANE_TYPE_CURSOR:
			plane->wm.fifo_size = 63;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
			break;
		}
	}

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4402 4403 4404 4405 4406 4407 4408 4409 4410
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4411
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4438 4439
void ilk_wm_get_hw_state(struct drm_device *dev)
{
4440
	struct drm_i915_private *dev_priv = to_i915(dev);
4441
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4442 4443
	struct drm_crtc *crtc;

4444
	for_each_crtc(dev, crtc)
4445 4446 4447 4448 4449 4450 4451
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4452 4453 4454 4455
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4456

4457
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4458 4459 4460 4461 4462
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
	else if (IS_IVYBRIDGE(dev))
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4463 4464 4465 4466 4467

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4500
void intel_update_watermarks(struct drm_crtc *crtc)
4501
{
4502
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4503 4504

	if (dev_priv->display.update_wm)
4505
		dev_priv->display.update_wm(crtc);
4506 4507
}

4508
/*
4509 4510 4511 4512 4513 4514 4515 4516
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4517
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4518 4519 4520
{
	u16 rgvswctl;

4521 4522
	assert_spin_locked(&mchdev_lock);

4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4540
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4541
{
4542
	u32 rgvmodectl;
4543 4544
	u8 fmax, fmin, fstart, vstart;

4545 4546
	spin_lock_irq(&mchdev_lock);

4547 4548
	rgvmodectl = I915_READ(MEMMODECTL);

4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4569
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4570 4571
		PXVFREQ_PX_SHIFT;

4572 4573
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4574

4575 4576 4577
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4594
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4595
		DRM_ERROR("stuck trying to change perf mode\n");
4596
	mdelay(1);
4597

4598
	ironlake_set_drps(dev_priv, fstart);
4599

4600 4601
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4602
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4603
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4604
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4605 4606

	spin_unlock_irq(&mchdev_lock);
4607 4608
}

4609
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4610
{
4611 4612 4613 4614 4615
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4616 4617 4618 4619 4620 4621 4622 4623 4624

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4625
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4626
	mdelay(1);
4627 4628
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4629
	mdelay(1);
4630

4631
	spin_unlock_irq(&mchdev_lock);
4632 4633
}

4634 4635 4636 4637 4638
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4639
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4640
{
4641
	u32 limits;
4642

4643 4644 4645 4646 4647 4648
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4649
	if (IS_GEN9(dev_priv)) {
4650 4651 4652 4653 4654 4655 4656 4657
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4658 4659 4660 4661

	return limits;
}

4662 4663 4664
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4665 4666
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4667 4668 4669 4670

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4671 4672
		if (val > dev_priv->rps.efficient_freq + 1 &&
		    val > dev_priv->rps.cur_freq)
4673 4674 4675 4676
			new_power = BETWEEN;
		break;

	case BETWEEN:
4677 4678
		if (val <= dev_priv->rps.efficient_freq &&
		    val < dev_priv->rps.cur_freq)
4679
			new_power = LOW_POWER;
4680 4681
		else if (val >= dev_priv->rps.rp0_freq &&
			 val > dev_priv->rps.cur_freq)
4682 4683 4684 4685
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4686 4687
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
		    val < dev_priv->rps.cur_freq)
4688 4689 4690 4691
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4692
	if (val <= dev_priv->rps.min_freq_softlimit)
4693
		new_power = LOW_POWER;
4694
	if (val >= dev_priv->rps.max_freq_softlimit)
4695 4696 4697 4698 4699 4700 4701 4702
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4703 4704
		ei_up = 16000;
		threshold_up = 95;
4705 4706

		/* Downclock if less than 85% busy over 32ms */
4707 4708
		ei_down = 32000;
		threshold_down = 85;
4709 4710 4711 4712
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4713 4714
		ei_up = 13000;
		threshold_up = 90;
4715 4716

		/* Downclock if less than 75% busy over 32ms */
4717 4718
		ei_down = 32000;
		threshold_down = 75;
4719 4720 4721 4722
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4723 4724
		ei_up = 10000;
		threshold_up = 85;
4725 4726

		/* Downclock if less than 60% busy over 32ms */
4727 4728
		ei_down = 32000;
		threshold_down = 60;
4729 4730 4731
		break;
	}

4732
	I915_WRITE(GEN6_RP_UP_EI,
4733
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
4734
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4735 4736
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
4737 4738

	I915_WRITE(GEN6_RP_DOWN_EI,
4739
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
4740
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4741 4742 4743 4744 4745 4746 4747 4748 4749 4750
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
4751

4752
	dev_priv->rps.power = new_power;
4753 4754
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4755 4756 4757
	dev_priv->rps.last_adj = 0;
}

4758 4759 4760 4761 4762
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4763
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4764
	if (val < dev_priv->rps.max_freq_softlimit)
4765
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4766

4767 4768
	mask &= dev_priv->pm_rps_events;

4769
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4770 4771
}

4772 4773 4774
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4775
static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4776
{
4777
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4778
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4779 4780
		return;

4781
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4782 4783
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4784

4785 4786 4787 4788 4789
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4790

4791
		if (IS_GEN9(dev_priv))
4792 4793
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
4794
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4795 4796 4797 4798 4799 4800 4801
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4802
	}
4803 4804 4805 4806

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4807
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4808
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4809

4810 4811
	POSTING_READ(GEN6_RPNSWREQ);

4812
	dev_priv->rps.cur_freq = val;
4813
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4814 4815
}

4816
static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4817 4818
{
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4819 4820
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4821

4822
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4823 4824 4825
		      "Odd GPU freq value\n"))
		val &= ~1;

4826 4827
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

4828
	if (val != dev_priv->rps.cur_freq) {
4829
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4830 4831 4832
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
4833 4834 4835 4836 4837

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

4838
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4839 4840
 *
 * * If Gfx is Idle, then
4841 4842 4843
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
4844 4845 4846
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
4847
	u32 val = dev_priv->rps.idle_freq;
4848

4849
	if (dev_priv->rps.cur_freq <= val)
4850 4851
		return;

4852 4853 4854
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4855
	valleyview_set_rps(dev_priv, val);
4856
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4857 4858
}

4859 4860 4861 4862 4863 4864 4865 4866
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4867

4868 4869
		gen6_enable_rps_interrupts(dev_priv);

4870 4871 4872 4873 4874
		/* Ensure we start at the user's desired frequency */
		intel_set_rps(dev_priv,
			      clamp(dev_priv->rps.cur_freq,
				    dev_priv->rps.min_freq_softlimit,
				    dev_priv->rps.max_freq_softlimit));
4875 4876 4877 4878
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4879 4880
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
4881 4882 4883 4884 4885 4886 4887
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

4888
	mutex_lock(&dev_priv->rps.hw_lock);
4889
	if (dev_priv->rps.enabled) {
4890
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4891
			vlv_set_rps_idle(dev_priv);
4892
		else
4893
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
4894
		dev_priv->rps.last_adj = 0;
4895
		I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4896
	}
4897
	mutex_unlock(&dev_priv->rps.hw_lock);
4898

4899
	spin_lock(&dev_priv->rps.client_lock);
4900 4901
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
4902
	spin_unlock(&dev_priv->rps.client_lock);
4903 4904
}

4905
void gen6_rps_boost(struct drm_i915_private *dev_priv,
4906 4907
		    struct intel_rps_client *rps,
		    unsigned long submitted)
4908
{
4909 4910 4911
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
4912
	if (!(dev_priv->gt.awake &&
4913
	      dev_priv->rps.enabled &&
4914
	      dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
4915
		return;
4916

4917 4918 4919
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
4920
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4921 4922
		rps = NULL;

4923 4924 4925 4926 4927
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
4928
			schedule_work(&dev_priv->rps.work);
4929 4930
		}
		spin_unlock_irq(&dev_priv->irq_lock);
4931

4932 4933 4934
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
4935 4936
		} else
			dev_priv->rps.boosts++;
4937
	}
4938
	spin_unlock(&dev_priv->rps.client_lock);
4939 4940
}

4941
void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
4942
{
4943 4944
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		valleyview_set_rps(dev_priv, val);
4945
	else
4946
		gen6_set_rps(dev_priv, val);
4947 4948
}

4949
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
4950 4951
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
4952
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
4953 4954
}

4955
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
4956 4957 4958 4959
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

4960
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
4961 4962
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
4963
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4964
	I915_WRITE(GEN6_RP_CONTROL, 0);
4965 4966
}

4967
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
4968 4969 4970 4971
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

4972
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
4973
{
4974 4975
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
4976
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4977

4978
	I915_WRITE(GEN6_RC_CONTROL, 0);
4979

4980
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4981 4982
}

4983
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
4984
{
4985
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4986 4987 4988 4989 4990
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
4991
	if (HAS_RC6p(dev_priv))
4992 4993 4994 4995 4996
		DRM_DEBUG_DRIVER("Enabling RC6 states: "
				 "RC6 %s RC6p %s RC6pp %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
4997 4998

	else
4999 5000
		DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
5001 5002
}

5003
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5004
{
5005
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5006 5007
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
5019 5020

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5021
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5022 5023 5024 5025 5026 5027 5028 5029
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5030 5031 5032
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
5033
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5034 5035 5036 5037 5038 5039 5040
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5041
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5042 5043 5044
		enable_rc6 = false;
	}

5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5059 5060 5061 5062 5063 5064
		enable_rc6 = false;
	}

	return enable_rc6;
}

5065
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5066
{
5067
	/* No RC6 before Ironlake and code is gone for ilk. */
5068
	if (INTEL_INFO(dev_priv)->gen < 6)
5069 5070
		return 0;

5071 5072 5073
	if (!enable_rc6)
		return 0;

5074
	if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5075 5076 5077 5078
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

5079
	/* Respect the kernel parameter if it is set */
5080 5081 5082
	if (enable_rc6 >= 0) {
		int mask;

5083
		if (HAS_RC6p(dev_priv))
5084 5085 5086 5087 5088 5089
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
5090 5091 5092
			DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
					 "(requested %d, valid %d)\n",
					 enable_rc6 & mask, enable_rc6, mask);
5093 5094 5095

		return enable_rc6 & mask;
	}
5096

5097
	if (IS_IVYBRIDGE(dev_priv))
5098
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5099 5100

	return INTEL_RC6_ENABLE;
5101 5102
}

5103
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5104 5105
{
	/* All of these values are in units of 50MHz */
5106

5107
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
5108
	if (IS_BROXTON(dev_priv)) {
5109
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5110 5111 5112 5113
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
5114
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5115 5116 5117 5118
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}
5119
	/* hw_max = RP0 until we check for overclocking */
5120
	dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5121

5122
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5123 5124
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
	    IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5125 5126 5127 5128 5129
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
5130
			dev_priv->rps.efficient_freq =
5131 5132 5133 5134
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
5135 5136
	}

5137
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5138
		/* Store the frequency values in 16.66 MHZ units, which is
5139 5140
		 * the natural hardware unit for SKL
		 */
5141 5142 5143 5144 5145 5146
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}
5147 5148
}

5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160
static void reset_rps(struct drm_i915_private *dev_priv,
		      void (*set)(struct drm_i915_private *, u8))
{
	u8 freq = dev_priv->rps.cur_freq;

	/* force a reset */
	dev_priv->rps.power = -1;
	dev_priv->rps.cur_freq = -1;

	set(dev_priv, freq);
}

5161
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5162
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
5163 5164 5165
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5166
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5167
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5168 5169 5170 5171 5172 5173 5174 5175 5176
		/*
		 * BIOS could leave the Hw Turbo enabled, so need to explicitly
		 * clear out the Control register just to avoid inconsitency
		 * with debugfs interface, which will show  Turbo as enabled
		 * only and that is not expected by the User after adding the
		 * WaGsvDisableTurbo. Apart from this there is no problem even
		 * if the Turbo is left enabled in the Control register, as the
		 * Up/Down interrupts would remain masked.
		 */
5177
		gen9_disable_rps(dev_priv);
5178 5179 5180 5181
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
		return;
	}

5182 5183 5184 5185 5186 5187 5188 5189
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

5190 5191
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

5192 5193 5194
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5195
	reset_rps(dev_priv, gen6_set_rps);
5196 5197 5198 5199

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

5200
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5201
{
5202
	struct intel_engine_cs *engine;
Z
Zhe Wang 已提交
5203 5204 5205 5206 5207 5208 5209
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5210
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5211 5212 5213 5214 5215

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
5216 5217

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5218
	if (IS_SKYLAKE(dev_priv))
5219 5220 5221
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
5222 5223
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5224
	for_each_engine(engine, dev_priv)
5225
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5226

5227
	if (HAS_GUC(dev_priv))
5228 5229
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
5230 5231
	I915_WRITE(GEN6_RC_SLEEP, 0);

5232 5233 5234 5235
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
5236
	/* 3a: Enable RC6 */
5237
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
5238
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5239
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5240
	/* WaRsUseTimeoutMode */
5241 5242
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5243
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
5244 5245 5246
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN7_RC_CTL_TO_MODE |
			   rc6_mask);
5247 5248
	} else {
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
5249 5250 5251
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN6_RC_CTL_EI_MODE(1) |
			   rc6_mask);
5252
	}
Z
Zhe Wang 已提交
5253

5254 5255
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5256
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5257
	 */
5258
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5259 5260 5261 5262
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5263

5264
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5265 5266
}

5267
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5268
{
5269
	struct intel_engine_cs *engine;
5270
	uint32_t rc6_mask = 0;
5271 5272 5273 5274 5275 5276

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5277
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5278 5279 5280 5281 5282 5283 5284 5285

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5286
	for_each_engine(engine, dev_priv)
5287
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5288
	I915_WRITE(GEN6_RC_SLEEP, 0);
5289
	if (IS_BROADWELL(dev_priv))
5290 5291 5292
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5293 5294

	/* 3: Enable RC6 */
5295
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5296
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5297 5298
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
5299 5300 5301 5302 5303 5304 5305
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
5306 5307

	/* 4 Program defaults and thresholds for RPS*/
5308 5309 5310 5311
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5326 5327

	/* 5: Enable RPS */
5328 5329 5330 5331 5332 5333 5334 5335 5336 5337
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

5338
	reset_rps(dev_priv, gen6_set_rps);
5339

5340
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5341 5342
}

5343
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5344
{
5345
	struct intel_engine_cs *engine;
5346
	u32 rc6vids, rc6_mask = 0;
5347 5348
	u32 gtfifodbg;
	int rc6_mode;
5349
	int ret;
5350

5351
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5352

5353 5354 5355 5356 5357 5358 5359 5360 5361
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
5362 5363
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5364 5365 5366 5367
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5368
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5369 5370 5371 5372 5373 5374 5375 5376 5377 5378

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5379
	for_each_engine(engine, dev_priv)
5380
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5381 5382 5383

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5384
	if (IS_IVYBRIDGE(dev_priv))
5385 5386 5387
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5388
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5389 5390
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

5391
	/* Check if we are enabling RC6 */
5392
	rc6_mode = intel_enable_rc6();
5393 5394 5395
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

5396
	/* We don't use those on Haswell */
5397
	if (!IS_HASWELL(dev_priv)) {
5398 5399
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5400

5401 5402 5403
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
5404

5405
	intel_print_rc6_info(dev_priv, rc6_mask);
5406 5407 5408 5409 5410 5411

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

5412 5413
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5414 5415
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

5416
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5417
	if (ret)
5418
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5419

5420
	reset_rps(dev_priv, gen6_set_rps);
5421

5422 5423
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5424
	if (IS_GEN6(dev_priv) && ret) {
5425
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5426
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5427 5428 5429 5430 5431 5432 5433 5434 5435
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5436
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5437 5438
}

5439
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5440 5441
{
	int min_freq = 15;
5442 5443
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5444
	unsigned int max_gpu_freq, min_gpu_freq;
5445
	int scaling_factor = 180;
5446
	struct cpufreq_policy *policy;
5447

5448
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5449

5450 5451 5452 5453 5454 5455 5456 5457 5458
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5459
		max_ia_freq = tsc_khz;
5460
	}
5461 5462 5463 5464

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5465
	min_ring_freq = I915_READ(DCLK) & 0xf;
5466 5467
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5468

5469
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5470 5471 5472 5473 5474 5475 5476 5477
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5478 5479 5480 5481 5482
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5483 5484
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5485 5486
		unsigned int ia_freq = 0, ring_freq = 0;

5487
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5488 5489 5490 5491 5492
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
5493
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
5494 5495
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
5496
		} else if (IS_HASWELL(dev_priv)) {
5497
			ring_freq = mult_frac(gpu_freq, 5, 4);
5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5514

5515 5516
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5517 5518 5519
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5520 5521 5522
	}
}

5523
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5524 5525 5526
{
	u32 val, rp0;

5527
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5528

5529
	switch (INTEL_INFO(dev_priv)->eu_total) {
5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5544
	}
5545 5546 5547

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5561 5562 5563 5564
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5565 5566 5567
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5568 5569 5570
	return rp1;
}

5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5582
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5583 5584 5585
{
	u32 val, rp0;

5586
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5599
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5600
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5601
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5602 5603 5604 5605 5606
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5607
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5608
{
5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
5620 5621
}

5622 5623 5624 5625 5626 5627 5628 5629 5630
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5631 5632 5633 5634 5635 5636 5637 5638 5639

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

5640
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5641
{
5642
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5643
	unsigned long pctx_paddr, paddr;
5644 5645 5646 5647 5648
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5649
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5650
		paddr = (dev_priv->mm.stolen_base +
5651
			 (ggtt->stolen_size - pctx_size));
5652 5653 5654 5655

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5656 5657

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5658 5659
}

5660
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5661 5662 5663 5664 5665 5666
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

5667
	mutex_lock(&dev_priv->drm.struct_mutex);
5668

5669 5670 5671 5672 5673 5674
	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5675
		pctx = i915_gem_object_create_stolen_for_preallocated(&dev_priv->drm,
5676
								      pcbr_offset,
5677
								      I915_GTT_OFFSET_NONE,
5678 5679 5680 5681
								      pctx_size);
		goto out;
	}

5682 5683
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5684 5685 5686 5687 5688 5689 5690 5691
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
5692
	pctx = i915_gem_object_create_stolen(&dev_priv->drm, pctx_size);
5693 5694
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5695
		goto out;
5696 5697 5698 5699 5700 5701
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5702
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5703
	dev_priv->vlv_pctx = pctx;
5704
	mutex_unlock(&dev_priv->drm.struct_mutex);
5705 5706
}

5707
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5708 5709 5710 5711
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

5712
	drm_gem_object_unreference_unlocked(&dev_priv->vlv_pctx->base);
5713 5714 5715
	dev_priv->vlv_pctx = NULL;
}

5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

5727
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5728
{
5729
	u32 val;
5730

5731
	valleyview_setup_pctx(dev_priv);
5732

5733 5734
	vlv_init_gpll_ref_freq(dev_priv);

5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5748
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5749

5750 5751 5752
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5753
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5754 5755 5756 5757
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5758
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5759 5760
			 dev_priv->rps.efficient_freq);

5761 5762
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5763
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5764 5765
			 dev_priv->rps.rp1_freq);

5766 5767
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5768
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5769 5770 5771
			 dev_priv->rps.min_freq);
}

5772
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5773
{
5774
	u32 val;
5775

5776
	cherryview_setup_pctx(dev_priv);
5777

5778 5779
	vlv_init_gpll_ref_freq(dev_priv);

5780
	mutex_lock(&dev_priv->sb_lock);
5781
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5782
	mutex_unlock(&dev_priv->sb_lock);
5783

5784 5785 5786 5787
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5788
	default:
5789 5790 5791
		dev_priv->mem_freq = 1600;
		break;
	}
5792
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5793

5794 5795 5796
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5797
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5798 5799 5800 5801
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5802
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5803 5804
			 dev_priv->rps.efficient_freq);

5805 5806
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5807
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5808 5809
			 dev_priv->rps.rp1_freq);

5810 5811
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5812
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5813
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5814 5815
			 dev_priv->rps.min_freq);

5816 5817 5818 5819 5820
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");
5821 5822
}

5823
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5824
{
5825
	valleyview_cleanup_pctx(dev_priv);
5826 5827
}

5828
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5829
{
5830
	struct intel_engine_cs *engine;
5831
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5832 5833 5834

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5835 5836
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
5837 5838 5839 5840 5841 5842 5843 5844 5845 5846
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5847
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5848

5849 5850 5851
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5852 5853 5854 5855 5856
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

5857
	for_each_engine(engine, dev_priv)
5858
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5859 5860
	I915_WRITE(GEN6_RC_SLEEP, 0);

5861 5862
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
5874 5875
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
5876
		rc6_mode = GEN7_RC_CTL_TO_MODE;
5877 5878 5879

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

5880
	/* 4 Program defaults and thresholds for RPS*/
5881
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5882 5883 5884 5885 5886 5887 5888 5889 5890 5891
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5892
		   GEN6_RP_MEDIA_IS_GFX |
5893 5894 5895 5896
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

5897 5898 5899 5900 5901 5902
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5903 5904
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

5905 5906 5907
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5908
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5909 5910
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

5911
	reset_rps(dev_priv, valleyview_set_rps);
5912

5913
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5914 5915
}

5916
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
5917
{
5918
	struct intel_engine_cs *engine;
5919
	u32 gtfifodbg, val, rc6_mode = 0;
5920 5921 5922

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5923 5924
	valleyview_check_pctx(dev_priv);

5925 5926
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5927 5928
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
5929 5930 5931
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5932
	/* If VLV, Forcewake all wells, else re-direct to regular path */
5933
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5934

5935 5936 5937
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5938
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5958
	for_each_engine(engine, dev_priv)
5959
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5960

5961
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5962 5963

	/* allows RC6 residency counter to work */
5964
	I915_WRITE(VLV_COUNTER_CONTROL,
5965 5966
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
5967 5968
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
5969

5970
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5971
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5972

5973
	intel_print_rc6_info(dev_priv, rc6_mode);
5974

5975
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5976

5977 5978 5979 5980 5981 5982
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5983
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5984

5985 5986 5987
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5988
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5989 5990
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

5991
	reset_rps(dev_priv, valleyview_set_rps);
5992

5993
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5994 5995
}

5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

6025
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6026 6027 6028 6029 6030 6031
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

6032 6033
	assert_spin_locked(&mchdev_lock);

6034
	diff1 = now - dev_priv->ips.last_time1;
6035 6036 6037 6038 6039 6040 6041

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
6042
		return dev_priv->ips.chipset_power;
6043 6044 6045 6046 6047 6048 6049 6050

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
6051 6052
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
6053 6054
		diff += total_count;
	} else {
6055
		diff = total_count - dev_priv->ips.last_count1;
6056 6057 6058
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6059 6060
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
6061 6062 6063 6064 6065 6066 6067 6068 6069 6070
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

6071 6072
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
6073

6074
	dev_priv->ips.chipset_power = ret;
6075 6076 6077 6078

	return ret;
}

6079 6080 6081 6082
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6083
	if (INTEL_INFO(dev_priv)->gen != 5)
6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6122
{
6123 6124 6125
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

6126
	if (INTEL_INFO(dev_priv)->is_mobile)
6127 6128 6129
		return vm > 0 ? vm : 0;

	return vd;
6130 6131
}

6132
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6133
{
6134
	u64 now, diff, diffms;
6135 6136
	u32 count;

6137
	assert_spin_locked(&mchdev_lock);
6138

6139 6140 6141
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
6142 6143 6144 6145 6146 6147 6148

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

6149 6150
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
6151 6152
		diff += count;
	} else {
6153
		diff = count - dev_priv->ips.last_count2;
6154 6155
	}

6156 6157
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
6158 6159 6160 6161

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
6162
	dev_priv->ips.gfx_power = diff;
6163 6164
}

6165 6166
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
6167
	if (INTEL_INFO(dev_priv)->gen != 5)
6168 6169
		return;

6170
	spin_lock_irq(&mchdev_lock);
6171 6172 6173

	__i915_update_gfx_val(dev_priv);

6174
	spin_unlock_irq(&mchdev_lock);
6175 6176
}

6177
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6178 6179 6180 6181
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

6182 6183
	assert_spin_locked(&mchdev_lock);

6184
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
6204
	corr2 = (corr * dev_priv->ips.corr);
6205 6206 6207 6208

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

6209
	__i915_update_gfx_val(dev_priv);
6210

6211
	return dev_priv->ips.gfx_power + state2;
6212 6213
}

6214 6215 6216 6217
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6218
	if (INTEL_INFO(dev_priv)->gen != 5)
6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

6241
	spin_lock_irq(&mchdev_lock);
6242 6243 6244 6245
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6246 6247
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
6248 6249 6250 6251

	ret = chipset_val + graphics_val;

out_unlock:
6252
	spin_unlock_irq(&mchdev_lock);
6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6268
	spin_lock_irq(&mchdev_lock);
6269 6270 6271 6272 6273 6274
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6275 6276
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
6277 6278

out_unlock:
6279
	spin_unlock_irq(&mchdev_lock);
6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6296
	spin_lock_irq(&mchdev_lock);
6297 6298 6299 6300 6301 6302
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6303 6304
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
6305 6306

out_unlock:
6307
	spin_unlock_irq(&mchdev_lock);
6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
6321
	struct intel_engine_cs *engine;
6322 6323
	bool ret = false;

6324
	spin_lock_irq(&mchdev_lock);
6325 6326 6327 6328
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6329
	for_each_engine(engine, dev_priv)
6330
		ret |= !list_empty(&engine->request_list);
6331 6332

out_unlock:
6333
	spin_unlock_irq(&mchdev_lock);
6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6350
	spin_lock_irq(&mchdev_lock);
6351 6352 6353 6354 6355 6356
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6357
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6358

6359
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6360 6361 6362
		ret = false;

out_unlock:
6363
	spin_unlock_irq(&mchdev_lock);
6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6391 6392
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6393
	spin_lock_irq(&mchdev_lock);
6394
	i915_mch_dev = dev_priv;
6395
	spin_unlock_irq(&mchdev_lock);
6396 6397 6398 6399 6400 6401

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6402
	spin_lock_irq(&mchdev_lock);
6403
	i915_mch_dev = NULL;
6404
	spin_unlock_irq(&mchdev_lock);
6405
}
6406

6407
static void intel_init_emon(struct drm_i915_private *dev_priv)
6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6424
		I915_WRITE(PEW(i), 0);
6425
	for (i = 0; i < 3; i++)
6426
		I915_WRITE(DEW(i), 0);
6427 6428 6429

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6430
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6451
		I915_WRITE(PXW(i), val);
6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6467
		I915_WRITE(PXWL(i), 0);
6468 6469 6470 6471 6472 6473

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6474
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6475 6476
}

6477
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6478
{
6479 6480 6481 6482 6483 6484 6485 6486
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
6487

6488 6489 6490
	mutex_lock(&dev_priv->rps.hw_lock);

	/* Initialize RPS limits (for userspace) */
6491 6492 6493 6494
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510
	else
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
	dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;

	dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
	dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		dev_priv->rps.min_freq_softlimit =
			max_t(int,
			      dev_priv->rps.efficient_freq,
			      intel_freq_opcode(dev_priv, 450));

6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
					 (dev_priv->rps.max_freq & 0xff) * 50,
					 (params & 0xff) * 50);
			dev_priv->rps.max_freq = params & 0xff;
		}
	}

6525 6526 6527
	/* Finally allow us to boost to max by default */
	dev_priv->rps.boost_freq = dev_priv->rps.max_freq;

6528
	mutex_unlock(&dev_priv->rps.hw_lock);
6529 6530

	intel_autoenable_gt_powersave(dev_priv);
6531 6532
}

6533
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6534
{
6535
	if (IS_CHERRYVIEW(dev_priv))
6536
		return;
6537 6538
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_cleanup_gt_powersave(dev_priv);
6539 6540 6541

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6542 6543
}

6544 6545
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
6546
 * @dev_priv: i915 device
6547 6548 6549 6550 6551
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
6552
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
6553
{
6554
	if (INTEL_GEN(dev_priv) < 6)
6555 6556
		return;

6557 6558
	if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
		intel_runtime_pm_put(dev_priv);
6559

6560 6561 6562 6563 6564 6565 6566 6567 6568
	/* gen6_rps_idle() will be called later to disable interrupts */
}

void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.enabled = true; /* force disabling */
	intel_disable_gt_powersave(dev_priv);

	gen6_reset_rps_interrupts(dev_priv);
6569 6570
}

6571
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6572
{
6573 6574
	if (!READ_ONCE(dev_priv->rps.enabled))
		return;
6575

6576
	mutex_lock(&dev_priv->rps.hw_lock);
6577

6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588
	if (INTEL_GEN(dev_priv) >= 9) {
		gen9_disable_rc6(dev_priv);
		gen9_disable_rps(dev_priv);
	} else if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_disable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_disable_rps(dev_priv);
	} else if (INTEL_GEN(dev_priv) >= 6) {
		gen6_disable_rps(dev_priv);
	}  else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_disable_drps(dev_priv);
6589
	}
6590 6591 6592

	dev_priv->rps.enabled = false;
	mutex_unlock(&dev_priv->rps.hw_lock);
6593 6594
}

6595
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6596
{
6597 6598 6599 6600 6601
	/* We shouldn't be disabling as we submit, so this should be less
	 * racy than it appears!
	 */
	if (READ_ONCE(dev_priv->rps.enabled))
		return;
6602

6603 6604 6605
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;
6606

6607
	mutex_lock(&dev_priv->rps.hw_lock);
6608 6609 6610 6611 6612

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
6613
	} else if (INTEL_GEN(dev_priv) >= 9) {
6614 6615 6616
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6617
			gen6_update_ring_freq(dev_priv);
6618 6619
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
6620
		gen6_update_ring_freq(dev_priv);
6621
	} else if (INTEL_GEN(dev_priv) >= 6) {
6622
		gen6_enable_rps(dev_priv);
6623
		gen6_update_ring_freq(dev_priv);
6624 6625 6626
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
6627
	}
6628 6629 6630 6631 6632 6633 6634

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6635
	dev_priv->rps.enabled = true;
6636 6637
	mutex_unlock(&dev_priv->rps.hw_lock);
}
6638

6639 6640 6641 6642 6643 6644
static void __intel_autoenable_gt_powersave(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
	struct intel_engine_cs *rcs;
	struct drm_i915_gem_request *req;
6645

6646 6647 6648 6649 6650 6651 6652 6653 6654
	if (READ_ONCE(dev_priv->rps.enabled))
		goto out;

	rcs = &dev_priv->engine[RCS];
	if (rcs->last_context)
		goto out;

	if (!rcs->init_context)
		goto out;
6655

6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670
	mutex_lock(&dev_priv->drm.struct_mutex);

	req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
	if (IS_ERR(req))
		goto unlock;

	if (!i915.enable_execlists && i915_switch_context(req) == 0)
		rcs->init_context(req);

	/* Mark the device busy, calling intel_enable_gt_powersave() */
	i915_add_request_no_flush(req);

unlock:
	mutex_unlock(&dev_priv->drm.struct_mutex);
out:
6671
	intel_runtime_pm_put(dev_priv);
6672 6673
}

6674
void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
6675
{
6676
	if (READ_ONCE(dev_priv->rps.enabled))
6677 6678
		return;

6679
	if (IS_IRONLAKE_M(dev_priv)) {
6680
		ironlake_enable_drps(dev_priv);
6681
		mutex_lock(&dev_priv->drm.struct_mutex);
6682
		intel_init_emon(dev_priv);
6683
		mutex_unlock(&dev_priv->drm.struct_mutex);
6684
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
6685 6686 6687 6688
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
6689 6690 6691 6692 6693 6694 6695
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
6696
		 */
6697 6698 6699
		if (queue_delayed_work(dev_priv->wq,
				       &dev_priv->rps.autoenable_work,
				       round_jiffies_up_relative(HZ)))
6700
			intel_runtime_pm_get_noresume(dev_priv);
6701 6702 6703
	}
}

6704 6705
static void ibx_init_clock_gating(struct drm_device *dev)
{
6706
	struct drm_i915_private *dev_priv = to_i915(dev);
6707 6708 6709 6710 6711 6712 6713 6714 6715

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6716 6717
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
6718
	struct drm_i915_private *dev_priv = to_i915(dev);
6719
	enum pipe pipe;
6720

6721
	for_each_pipe(dev_priv, pipe) {
6722 6723 6724
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6725 6726 6727

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6728 6729 6730
	}
}

6731 6732
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
6733
	struct drm_i915_private *dev_priv = to_i915(dev);
6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6745
static void ironlake_init_clock_gating(struct drm_device *dev)
6746
{
6747
	struct drm_i915_private *dev_priv = to_i915(dev);
6748
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6749

6750 6751 6752 6753
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6754 6755 6756
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6774
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6775 6776 6777
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6778 6779

	ilk_init_lp_watermarks(dev);
6780 6781 6782 6783 6784 6785 6786 6787 6788

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
6789
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6790 6791 6792 6793 6794 6795 6796 6797
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6798 6799
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6800 6801 6802 6803 6804 6805
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6806

6807
	/* WaDisableRenderCachePipelinedFlush:ilk */
6808 6809
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6810

6811 6812 6813
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6814
	g4x_disable_trickle_feed(dev);
6815

6816 6817 6818 6819 6820
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
6821
	struct drm_i915_private *dev_priv = to_i915(dev);
6822
	int pipe;
6823
	uint32_t val;
6824 6825 6826 6827 6828 6829

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6830 6831 6832
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6833 6834
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6835 6836 6837
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
6838
	for_each_pipe(dev_priv, pipe) {
6839 6840 6841
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6842
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6843
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6844 6845 6846
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6847 6848
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
6849
	/* WADP0ClockGatingDisable */
6850
	for_each_pipe(dev_priv, pipe) {
6851 6852 6853
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6854 6855
}

6856 6857
static void gen6_check_mch_setup(struct drm_device *dev)
{
6858
	struct drm_i915_private *dev_priv = to_i915(dev);
6859 6860 6861
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
6862 6863 6864
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
6865 6866
}

6867
static void gen6_init_clock_gating(struct drm_device *dev)
6868
{
6869
	struct drm_i915_private *dev_priv = to_i915(dev);
6870
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6871

6872
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6873 6874 6875 6876 6877

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

6878
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6879 6880 6881
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

6882 6883 6884
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6885 6886 6887
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6888 6889 6890 6891
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6892 6893
	 */
	I915_WRITE(GEN6_GT_MODE,
6894
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6895

6896
	ilk_init_lp_watermarks(dev);
6897 6898

	I915_WRITE(CACHE_MODE_0,
6899
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
6915
	 *
6916 6917
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
6918 6919 6920 6921 6922
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

6923
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6924 6925
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6926

6927 6928 6929 6930 6931 6932 6933 6934
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

6935 6936 6937 6938 6939 6940 6941 6942
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
6943 6944
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
6945 6946 6947 6948 6949 6950 6951
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6952 6953 6954 6955
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6956

6957
	g4x_disable_trickle_feed(dev);
6958

6959
	cpt_init_clock_gating(dev);
6960 6961

	gen6_check_mch_setup(dev);
6962 6963 6964 6965 6966 6967
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

6968
	/*
6969
	 * WaVSThreadDispatchOverride:ivb,vlv
6970 6971 6972 6973
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
6974 6975 6976 6977 6978 6979 6980 6981
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

6982 6983
static void lpt_init_clock_gating(struct drm_device *dev)
{
6984
	struct drm_i915_private *dev_priv = to_i915(dev);
6985 6986 6987 6988 6989

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
6990
	if (HAS_PCH_LPT_LP(dev))
6991 6992 6993
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
6994 6995

	/* WADPOClockGatingDisable:hsw */
6996 6997
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6998
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6999 7000
}

7001 7002
static void lpt_suspend_hw(struct drm_device *dev)
{
7003
	struct drm_i915_private *dev_priv = to_i915(dev);
7004

7005
	if (HAS_PCH_LPT_LP(dev)) {
7006 7007 7008 7009 7010 7011 7012
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

7036 7037
static void kabylake_init_clock_gating(struct drm_device *dev)
{
7038
	struct drm_i915_private *dev_priv = to_i915(dev);
7039

7040
	gen9_init_clock_gating(dev);
7041 7042 7043 7044 7045

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7046 7047 7048 7049 7050

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7051 7052 7053 7054

	/* WaFbcNukeOnHostModify:kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7055 7056
}

7057 7058
static void skylake_init_clock_gating(struct drm_device *dev)
{
7059
	struct drm_i915_private *dev_priv = to_i915(dev);
7060

7061
	gen9_init_clock_gating(dev);
7062 7063 7064 7065

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
7066 7067 7068 7069

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7070 7071
}

7072
static void broadwell_init_clock_gating(struct drm_device *dev)
7073
{
7074
	struct drm_i915_private *dev_priv = to_i915(dev);
7075
	enum pipe pipe;
7076

7077
	ilk_init_lp_watermarks(dev);
7078

7079
	/* WaSwitchSolVfFArbitrationPriority:bdw */
7080
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7081

7082
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7083 7084 7085
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

7086
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7087
	for_each_pipe(dev_priv, pipe) {
7088
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7089
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7090
			   BDW_DPRS_MASK_VBLANK_SRD);
7091
	}
7092

7093 7094 7095 7096 7097
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7098

7099 7100
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7101 7102 7103 7104

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7105

7106 7107
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7108

7109 7110 7111 7112 7113 7114 7115
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

7116 7117 7118 7119
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7120
	lpt_init_clock_gating(dev);
7121 7122
}

7123 7124
static void haswell_init_clock_gating(struct drm_device *dev)
{
7125
	struct drm_i915_private *dev_priv = to_i915(dev);
7126

7127
	ilk_init_lp_watermarks(dev);
7128

7129 7130 7131 7132 7133
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

7134
	/* This is required by WaCatErrorRejectionIssue:hsw */
7135 7136 7137 7138
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7139 7140 7141
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7142

7143 7144 7145
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7146 7147 7148 7149
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

7150
	/* WaDisable4x2SubspanOptimization:hsw */
7151 7152
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7153

7154 7155 7156
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7157 7158 7159 7160
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7161 7162
	 */
	I915_WRITE(GEN7_GT_MODE,
7163
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7164

7165 7166 7167 7168
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

7169
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7170 7171
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7172 7173 7174
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7175

7176
	lpt_init_clock_gating(dev);
7177 7178
}

7179
static void ivybridge_init_clock_gating(struct drm_device *dev)
7180
{
7181
	struct drm_i915_private *dev_priv = to_i915(dev);
7182
	uint32_t snpcr;
7183

7184
	ilk_init_lp_watermarks(dev);
7185

7186
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7187

7188
	/* WaDisableEarlyCull:ivb */
7189 7190 7191
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7192
	/* WaDisableBackToBackFlipFix:ivb */
7193 7194 7195 7196
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7197
	/* WaDisablePSDDualDispatchEnable:ivb */
7198 7199 7200 7201
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

7202 7203 7204
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7205
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7206 7207 7208
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

7209
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7210 7211 7212
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7213 7214 7215 7216
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7217 7218 7219 7220
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7221 7222
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7223
	}
7224

7225
	/* WaForceL3Serialization:ivb */
7226 7227 7228
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7229
	/*
7230
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7231
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7232 7233
	 */
	I915_WRITE(GEN6_UCGCTL2,
7234
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7235

7236
	/* This is required by WaCatErrorRejectionIssue:ivb */
7237 7238 7239 7240
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7241
	g4x_disable_trickle_feed(dev);
7242 7243

	gen7_setup_fixed_func_scheduler(dev_priv);
7244

7245 7246 7247 7248 7249
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7250

7251
	/* WaDisable4x2SubspanOptimization:ivb */
7252 7253
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7254

7255 7256 7257
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7258 7259 7260 7261
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7262 7263
	 */
	I915_WRITE(GEN7_GT_MODE,
7264
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7265

7266 7267 7268 7269
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7270

7271 7272
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
7273 7274

	gen6_check_mch_setup(dev);
7275 7276
}

7277
static void valleyview_init_clock_gating(struct drm_device *dev)
7278
{
7279
	struct drm_i915_private *dev_priv = to_i915(dev);
7280

7281
	/* WaDisableEarlyCull:vlv */
7282 7283 7284
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7285
	/* WaDisableBackToBackFlipFix:vlv */
7286 7287 7288 7289
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7290
	/* WaPsdDispatchEnable:vlv */
7291
	/* WaDisablePSDDualDispatchEnable:vlv */
7292
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7293 7294
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7295

7296 7297 7298
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7299
	/* WaForceL3Serialization:vlv */
7300 7301 7302
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7303
	/* WaDisableDopClockGating:vlv */
7304 7305 7306
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7307
	/* This is required by WaCatErrorRejectionIssue:vlv */
7308 7309 7310 7311
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7312 7313
	gen7_setup_fixed_func_scheduler(dev_priv);

7314
	/*
7315
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7316
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7317 7318
	 */
	I915_WRITE(GEN6_UCGCTL2,
7319
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7320

7321 7322 7323 7324 7325
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7326

7327 7328 7329 7330
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7331 7332
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7333

7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7345 7346 7347 7348 7349 7350
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7351
	/*
7352
	 * WaDisableVLVClockGating_VBIIssue:vlv
7353 7354 7355
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7356
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7357 7358
}

7359 7360
static void cherryview_init_clock_gating(struct drm_device *dev)
{
7361
	struct drm_i915_private *dev_priv = to_i915(dev);
7362

7363 7364 7365 7366 7367
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7368 7369 7370 7371

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7372 7373 7374 7375

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7376 7377 7378 7379

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7380

7381 7382 7383 7384 7385 7386 7387
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

7388 7389 7390 7391 7392
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7393 7394
}

7395
static void g4x_init_clock_gating(struct drm_device *dev)
7396
{
7397
	struct drm_i915_private *dev_priv = to_i915(dev);
7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7411 7412 7413 7414

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7415

7416 7417 7418
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7419
	g4x_disable_trickle_feed(dev);
7420 7421
}

7422
static void crestline_init_clock_gating(struct drm_device *dev)
7423
{
7424
	struct drm_i915_private *dev_priv = to_i915(dev);
7425 7426 7427 7428 7429 7430

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
7431 7432
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7433 7434 7435

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7436 7437
}

7438
static void broadwater_init_clock_gating(struct drm_device *dev)
7439
{
7440
	struct drm_i915_private *dev_priv = to_i915(dev);
7441 7442 7443 7444 7445 7446 7447

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7448 7449
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7450 7451 7452

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7453 7454
}

7455
static void gen3_init_clock_gating(struct drm_device *dev)
7456
{
7457
	struct drm_i915_private *dev_priv = to_i915(dev);
7458 7459 7460 7461 7462
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7463 7464 7465

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7466 7467 7468

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7469 7470

	/* interrupts should cause a wake up from C3 */
7471
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7472 7473 7474

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7475 7476 7477

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7478 7479
}

7480
static void i85x_init_clock_gating(struct drm_device *dev)
7481
{
7482
	struct drm_i915_private *dev_priv = to_i915(dev);
7483 7484

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7485 7486 7487 7488

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7489 7490 7491

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7492 7493
}

7494
static void i830_init_clock_gating(struct drm_device *dev)
7495
{
7496
	struct drm_i915_private *dev_priv = to_i915(dev);
7497 7498

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7499 7500 7501 7502

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7503 7504 7505 7506
}

void intel_init_clock_gating(struct drm_device *dev)
{
7507
	struct drm_i915_private *dev_priv = to_i915(dev);
7508

7509
	dev_priv->display.init_clock_gating(dev);
7510 7511
}

7512 7513 7514 7515 7516 7517
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534
static void nop_init_clock_gating(struct drm_device *dev)
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
7535
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7536
	else if (IS_KABYLAKE(dev_priv))
7537
		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571
	else if (IS_BROXTON(dev_priv))
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	else if (IS_CRESTLINE(dev_priv))
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
	else if (IS_BROADWATER(dev_priv))
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7572 7573 7574
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
7575
	struct drm_i915_private *dev_priv = to_i915(dev);
7576

7577
	intel_fbc_init(dev_priv);
7578

7579 7580 7581 7582 7583 7584
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

7585
	/* For FIFO watermark updates */
7586
	if (INTEL_INFO(dev)->gen >= 9) {
7587
		skl_setup_wm_latency(dev);
7588
		dev_priv->display.update_wm = skl_update_wm;
7589
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7590
	} else if (HAS_PCH_SPLIT(dev)) {
7591
		ilk_setup_wm_latency(dev);
7592

7593 7594 7595 7596
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7597
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7598 7599 7600 7601 7602 7603
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7604 7605 7606 7607
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
7608
	} else if (IS_CHERRYVIEW(dev)) {
7609 7610
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7611
	} else if (IS_VALLEYVIEW(dev)) {
7612 7613
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7625
			intel_set_memory_cxsr(dev_priv, false);
7626 7627 7628 7629 7630 7631 7632 7633 7634 7635
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7636 7637 7638
	} else if (IS_GEN2(dev)) {
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
7639
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7640 7641
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7642
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7643 7644 7645
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7646 7647 7648
	}
}

7649
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7650
{
7651
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7652

7653 7654 7655 7656 7657 7658
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7659 7660 7661 7662
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

7663 7664 7665
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7666

7667 7668 7669
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
7670 7671 7672 7673
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7674 7675
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
7676 7677 7678 7679

	return 0;
}

7680 7681
int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
			       u32 mbox, u32 val)
7682
{
7683
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7684

7685 7686 7687 7688 7689 7690
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7691 7692 7693 7694
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

7695 7696
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7697

7698 7699 7700
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
7701 7702 7703 7704
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7705
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
7706 7707 7708

	return 0;
}
7709

7710 7711
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7712 7713 7714 7715 7716
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7717 7718
}

7719
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7720
{
7721
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7722 7723
}

7724
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7725
{
7726 7727 7728 7729 7730
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7731 7732
}

7733
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7734
{
7735
	/* CHV needs even values */
7736
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7737 7738
}

7739
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7740
{
7741
	if (IS_GEN9(dev_priv))
7742 7743
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
7744
	else if (IS_CHERRYVIEW(dev_priv))
7745
		return chv_gpu_freq(dev_priv, val);
7746
	else if (IS_VALLEYVIEW(dev_priv))
7747 7748 7749
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
7750 7751
}

7752 7753
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
7754
	if (IS_GEN9(dev_priv))
7755 7756
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
7757
	else if (IS_CHERRYVIEW(dev_priv))
7758
		return chv_freq_opcode(dev_priv, val);
7759
	else if (IS_VALLEYVIEW(dev_priv))
7760 7761
		return byt_freq_opcode(dev_priv, val);
	else
7762
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7763
}
7764

7765 7766
struct request_boost {
	struct work_struct work;
7767
	struct drm_i915_gem_request *req;
7768 7769 7770 7771 7772
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
7773
	struct drm_i915_gem_request *req = boost->req;
7774

7775
	if (!i915_gem_request_completed(req))
7776
		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
7777

7778
	i915_gem_request_put(req);
7779 7780 7781
	kfree(boost);
}

7782
void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
7783 7784 7785
{
	struct request_boost *boost;

7786
	if (req == NULL || INTEL_GEN(req->i915) < 6)
7787 7788
		return;

7789
	if (i915_gem_request_completed(req))
7790 7791
		return;

7792 7793 7794 7795
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

7796
	boost->req = i915_gem_request_get(req);
7797 7798

	INIT_WORK(&boost->work, __intel_rps_boost_work);
7799
	queue_work(req->i915->wq, &boost->work);
7800 7801
}

7802
void intel_pm_setup(struct drm_device *dev)
7803
{
7804
	struct drm_i915_private *dev_priv = to_i915(dev);
7805

7806
	mutex_init(&dev_priv->rps.hw_lock);
7807
	spin_lock_init(&dev_priv->rps.client_lock);
7808

7809 7810
	INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
			  __intel_autoenable_gt_powersave);
7811
	INIT_LIST_HEAD(&dev_priv->rps.clients);
7812

7813
	dev_priv->pm.suspended = false;
7814
	atomic_set(&dev_priv->pm.wakeref_count, 0);
7815
	atomic_set(&dev_priv->pm.atomic_seq, 0);
7816
}
反馈
建议
客服 返回
顶部