intel_pm.c 220.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34

B
Ben Widawsky 已提交
35
/**
36 37
 * DOC: RC6
 *
B
Ben Widawsky 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

58
static void gen9_init_clock_gating(struct drm_device *dev)
59
{
60
	struct drm_i915_private *dev_priv = to_i915(dev);
61

62
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
63 64 65
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

66 67
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
68 69 70 71

	/* WaEnableChickenDCPR:skl,bxt,kbl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
72 73

	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
74 75 76 77
	/* WaFbcWakeMemOn:skl,bxt,kbl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
78 79 80 81

	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
82 83 84 85
}

static void bxt_init_clock_gating(struct drm_device *dev)
{
86
	struct drm_i915_private *dev_priv = to_i915(dev);
87 88 89

	gen9_init_clock_gating(dev);

90 91 92 93
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

94 95
	/*
	 * FIXME:
96
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
97 98
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
99
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
100 101 102 103 104 105 106 107

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
			   PWM1_GATING_DIS | PWM2_GATING_DIS);
108 109
}

110 111
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
112
	struct drm_i915_private *dev_priv = to_i915(dev);
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
151
	struct drm_i915_private *dev_priv = to_i915(dev);
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

177
	dev_priv->ips.r_t = dev_priv->mem_freq;
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
209
		dev_priv->ips.c_m = 0;
210
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
211
		dev_priv->ips.c_m = 1;
212
	} else {
213
		dev_priv->ips.c_m = 2;
214 215 216
	}
}

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

255
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

317 318 319
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

320
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
321
{
322
	struct drm_device *dev = &dev_priv->drm;
323
	u32 val;
324

325
	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
326
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
327
		POSTING_READ(FW_BLC_SELF_VLV);
328
		dev_priv->wm.vlv.cxsr = enable;
329 330
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
331
		POSTING_READ(FW_BLC_SELF);
332 333 334 335
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
336
		POSTING_READ(DSPFW3);
337 338 339 340
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
341
		POSTING_READ(FW_BLC_SELF);
342
	} else if (IS_I915GM(dev)) {
343 344 345 346 347
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
348 349 350
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
351
		POSTING_READ(INSTPM);
352 353 354
	} else {
		return;
	}
355

356 357
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
358 359
}

360

361 362 363 364 365 366 367 368 369 370 371 372 373 374
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
375
static const int pessimal_latency_ns = 5000;
376

377 378 379 380 381 382
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

static int vlv_get_fifo_size(struct drm_device *dev,
			      enum pipe pipe, int plane)
{
383
	struct drm_i915_private *dev_priv = to_i915(dev);
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

432
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
433
{
434
	struct drm_i915_private *dev_priv = to_i915(dev);
435 436 437 438 439 440 441 442 443 444 445 446 447
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

448
static int i830_get_fifo_size(struct drm_device *dev, int plane)
449
{
450
	struct drm_i915_private *dev_priv = to_i915(dev);
451 452 453 454 455 456 457 458 459 460 461 462 463 464
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

465
static int i845_get_fifo_size(struct drm_device *dev, int plane)
466
{
467
	struct drm_i915_private *dev_priv = to_i915(dev);
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
483 484 485 486 487
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
488 489
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
490 491 492 493 494
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
495 496
};
static const struct intel_watermark_params pineview_cursor_wm = {
497 498 499 500 501
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
502 503
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
504 505 506 507 508
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
509 510
};
static const struct intel_watermark_params g4x_wm_info = {
511 512 513 514 515
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
516 517
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
518 519 520 521 522
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
523 524
};
static const struct intel_watermark_params i965_cursor_wm_info = {
525 526 527 528 529
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
530 531
};
static const struct intel_watermark_params i945_wm_info = {
532 533 534 535 536
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
537 538
};
static const struct intel_watermark_params i915_wm_info = {
539 540 541 542 543
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
544
};
545
static const struct intel_watermark_params i830_a_wm_info = {
546 547 548 549 550
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
551
};
552 553 554 555 556 557 558
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
559
static const struct intel_watermark_params i845_wm_info = {
560 561 562 563 564
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
565 566 567 568 569 570
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
571
 * @cpp: bytes per pixel
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
587
					int fifo_size, int cpp,
588 589 590 591 592 593 594 595 596 597
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
598
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
599 600 601 602 603 604 605 606 607 608 609 610 611 612
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
613 614 615 616 617 618 619 620 621 622 623

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

624 625 626 627 628 629 630
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

631
	for_each_crtc(dev, crtc) {
632
		if (intel_crtc_active(crtc)) {
633 634 635 636 637 638 639 640 641
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

642
static void pineview_update_wm(struct drm_crtc *unused_crtc)
643
{
644
	struct drm_device *dev = unused_crtc->dev;
645
	struct drm_i915_private *dev_priv = to_i915(dev);
646 647 648 649 650 651 652 653 654
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
655
		intel_set_memory_cxsr(dev_priv, false);
656 657 658 659 660
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
661
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
662
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
663
		int clock = adjusted_mode->crtc_clock;
664 665 666 667

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
668
					cpp, latency->display_sr);
669 670
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
671
		reg |= FW_WM(wm, SR);
672 673 674 675 676 677
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
678
					cpp, latency->cursor_sr);
679 680
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
681
		reg |= FW_WM(wm, CURSOR_SR);
682 683 684 685 686
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
687
					cpp, latency->display_hpll_disable);
688 689
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
690
		reg |= FW_WM(wm, HPLL_SR);
691 692 693 694 695
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
696
					cpp, latency->cursor_hpll_disable);
697 698
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
699
		reg |= FW_WM(wm, HPLL_CURSOR);
700 701 702
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

703
		intel_set_memory_cxsr(dev_priv, true);
704
	} else {
705
		intel_set_memory_cxsr(dev_priv, false);
706 707 708 709 710 711 712 713 714 715 716 717 718
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
719
	const struct drm_display_mode *adjusted_mode;
720
	int htotal, hdisplay, clock, cpp;
721 722 723 724
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
725
	if (!intel_crtc_active(crtc)) {
726 727 728 729 730
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

731
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
732
	clock = adjusted_mode->crtc_clock;
733
	htotal = adjusted_mode->crtc_htotal;
734
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
735
	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
736 737

	/* Use the small buffer method to calculate plane watermark */
738
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
739 740 741 742 743 744 745 746 747
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
748
	line_time_us = max(htotal * 1000 / clock, 1);
749
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
750
	entries = line_count * crtc->cursor->state->crtc_w * cpp;
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
805
	const struct drm_display_mode *adjusted_mode;
806
	int hdisplay, htotal, cpp, clock;
807 808 809 810 811 812 813 814 815 816 817
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
818
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
819
	clock = adjusted_mode->crtc_clock;
820
	htotal = adjusted_mode->crtc_htotal;
821
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
822
	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
823

824
	line_time_us = max(htotal * 1000 / clock, 1);
825
	line_count = (latency_ns / line_time_us + 1000) / 1000;
826
	line_size = hdisplay * cpp;
827 828

	/* Use the minimum of the small and large buffer method for primary */
829
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
830 831 832 833 834 835
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
836
	entries = line_count * cpp * crtc->cursor->state->crtc_w;
837 838 839 840 841 842 843 844
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

845 846 847
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

848 849 850 851 852 853 854 855 856 857 858 859
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

860
	I915_WRITE(DSPFW1,
861 862 863 864
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
865
	I915_WRITE(DSPFW2,
866 867 868
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
869
	I915_WRITE(DSPFW3,
870
		   FW_WM(wm->sr.cursor, CURSOR_SR));
871 872 873

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
874 875
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
876
		I915_WRITE(DSPFW8_CHV,
877 878
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
879
		I915_WRITE(DSPFW9_CHV,
880 881
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
882
		I915_WRITE(DSPHOWM,
883 884 885 886 887 888 889 890 891 892
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
893 894
	} else {
		I915_WRITE(DSPFW7,
895 896
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
897
		I915_WRITE(DSPHOWM,
898 899 900 901 902 903 904
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
905 906
	}

907 908 909 910 911 912
	/* zero (unused) WM1 watermarks */
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);
	I915_WRITE(DSPHOWM1, 0);

913
	POSTING_READ(DSPFW1);
914 915
}

916 917
#undef FW_WM_VLV

918 919 920 921 922 923
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

924 925 926 927
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
928
				   unsigned int cpp,
929 930 931 932 933
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
934
	ret = (ret + 1) * horiz_pixels * cpp;
935 936 937 938 939 940 941
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

static void vlv_setup_wm_latency(struct drm_device *dev)
{
942
	struct drm_i915_private *dev_priv = to_i915(dev);
943 944 945 946

	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

947 948
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

949 950 951
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
952 953

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
954 955 956 957 958 959 960 961 962
	}
}

static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
				     struct intel_crtc *crtc,
				     const struct intel_plane_state *state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
963
	int clock, htotal, cpp, width, wm;
964 965 966 967 968 969 970

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

	if (!state->visible)
		return 0;

971
	cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
	clock = crtc->config->base.adjusted_mode.crtc_clock;
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
	width = crtc->config->pipe_src_w;
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
987
		wm = vlv_wm_method2(clock, htotal, width, cpp,
988 989 990 991 992 993
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		if (state->visible) {
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

		if (!state->visible) {
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
		struct drm_device *dev = crtc->base.dev;
		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
		struct intel_plane *plane;

		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;

		for_each_intel_plane_on_crtc(dev, crtc, plane) {
			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = plane->wm.fifo_size -
					wm_state->wm[level].cursor;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = plane->wm.fifo_size -
					wm_state->wm[level].primary;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
					wm_state->wm[level].sprite[sprite];
				break;
			}
		}
	}
}

1095
static void vlv_compute_wm(struct intel_crtc *crtc)
1096 1097 1098 1099 1100 1101 1102 1103 1104
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1105
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1106
	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1107 1108 1109

	wm_state->num_active_planes = 0;

1110
	vlv_compute_fifo(crtc);
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

	if (wm_state->cxsr) {
		for (level = 0; level < wm_state->num_levels; level++) {
			wm_state->sr[level].plane = sr_fifo_size;
			wm_state->sr[level].cursor = 63;
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (!state->visible)
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

			if (wm > plane->wm.fifo_size)
				break;

			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = wm;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = wm;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = wm;
				break;
			}
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
		switch (plane->base.type) {
			int sprite, level;
		case DRM_PLANE_TYPE_CURSOR:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
1167
					wm_state->wm[level].cursor;
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].primary);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].sprite[sprite]);
			break;
		}
	}

	/* clear any (partially) filled invalid levels */
1186
	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1187 1188 1189 1190 1191 1192 1193
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			WARN_ON(plane->wm.fifo_size != 63);
			continue;
		}

		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			sprite0_start = plane->wm.fifo_size;
		else if (plane->plane == 0)
			sprite1_start = sprite0_start + plane->wm.fifo_size;
		else
			fifo_size = sprite1_start + plane->wm.fifo_size;
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
}

#undef VLV_FIFO

1284 1285 1286 1287 1288 1289
static void vlv_merge_wm(struct drm_device *dev,
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1290
	wm->level = to_i915(dev)->wm.max_level;
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
	wm->cxsr = true;

	for_each_intel_crtc(dev, crtc) {
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1309 1310 1311
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
	for_each_intel_crtc(dev, crtc) {
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
	}
}

static void vlv_update_wm(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
1333
	struct drm_i915_private *dev_priv = to_i915(dev);
1334 1335 1336 1337
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct vlv_wm_values wm = {};

1338
	vlv_compute_wm(intel_crtc);
1339 1340
	vlv_merge_wm(dev, &wm);

1341 1342 1343
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
		/* FIXME should be part of crtc atomic commit */
		vlv_pipe_set_fifo_size(intel_crtc);
1344
		return;
1345
	}
1346 1347 1348 1349 1350 1351 1352 1353 1354

	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, false);

	if (wm.level < VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, false);

1355
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1356 1357
		intel_set_memory_cxsr(dev_priv, false);

1358 1359 1360
	/* FIXME should be part of crtc atomic commit */
	vlv_pipe_set_fifo_size(intel_crtc);

1361 1362 1363 1364 1365 1366 1367 1368
	vlv_write_wm_values(intel_crtc, &wm);

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);

1369
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
		intel_set_memory_cxsr(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, true);

	dev_priv->wm.vlv = wm;
1381 1382
}

1383 1384
#define single_plane_enabled(mask) is_power_of_2(mask)

1385
static void g4x_update_wm(struct drm_crtc *crtc)
1386
{
1387
	struct drm_device *dev = crtc->dev;
1388
	static const int sr_latency_ns = 12000;
1389
	struct drm_i915_private *dev_priv = to_i915(dev);
1390 1391 1392
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1393
	bool cxsr_enabled;
1394

1395
	if (g4x_compute_wm0(dev, PIPE_A,
1396 1397
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1398
			    &planea_wm, &cursora_wm))
1399
		enabled |= 1 << PIPE_A;
1400

1401
	if (g4x_compute_wm0(dev, PIPE_B,
1402 1403
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1404
			    &planeb_wm, &cursorb_wm))
1405
		enabled |= 1 << PIPE_B;
1406 1407 1408 1409 1410 1411

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1412
			     &plane_sr, &cursor_sr)) {
1413
		cxsr_enabled = true;
1414
	} else {
1415
		cxsr_enabled = false;
1416
		intel_set_memory_cxsr(dev_priv, false);
1417 1418
		plane_sr = cursor_sr = 0;
	}
1419

1420 1421
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1422 1423 1424 1425 1426
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1427 1428 1429 1430
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1431
	I915_WRITE(DSPFW2,
1432
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1433
		   FW_WM(cursora_wm, CURSORA));
1434 1435
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1436
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1437
		   FW_WM(cursor_sr, CURSOR_SR));
1438 1439 1440

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1441 1442
}

1443
static void i965_update_wm(struct drm_crtc *unused_crtc)
1444
{
1445
	struct drm_device *dev = unused_crtc->dev;
1446
	struct drm_i915_private *dev_priv = to_i915(dev);
1447 1448 1449
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1450
	bool cxsr_enabled;
1451 1452 1453 1454 1455 1456

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1457
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1458
		int clock = adjusted_mode->crtc_clock;
1459
		int htotal = adjusted_mode->crtc_htotal;
1460
		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1461
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1462 1463 1464
		unsigned long line_time_us;
		int entries;

1465
		line_time_us = max(htotal * 1000 / clock, 1);
1466 1467 1468

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1469
			cpp * hdisplay;
1470 1471 1472 1473 1474 1475 1476 1477 1478
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1479
			cpp * crtc->cursor->state->crtc_w;
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1491
		cxsr_enabled = true;
1492
	} else {
1493
		cxsr_enabled = false;
1494
		/* Turn off self refresh if both pipes are enabled */
1495
		intel_set_memory_cxsr(dev_priv, false);
1496 1497 1498 1499 1500 1501
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1502 1503 1504 1505 1506 1507
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1508
	/* update cursor SR watermark */
1509
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1510 1511 1512

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1513 1514
}

1515 1516
#undef FW_WM

1517
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1518
{
1519
	struct drm_device *dev = unused_crtc->dev;
1520
	struct drm_i915_private *dev_priv = to_i915(dev);
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
1534
		wm_info = &i830_a_wm_info;
1535 1536 1537

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1538
	if (intel_crtc_active(crtc)) {
1539
		const struct drm_display_mode *adjusted_mode;
1540
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1541 1542 1543
		if (IS_GEN2(dev))
			cpp = 4;

1544
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1545
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1546
					       wm_info, fifo_size, cpp,
1547
					       pessimal_latency_ns);
1548
		enabled = crtc;
1549
	} else {
1550
		planea_wm = fifo_size - wm_info->guard_size;
1551 1552 1553 1554 1555 1556
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

	if (IS_GEN2(dev))
		wm_info = &i830_bc_wm_info;
1557 1558 1559

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1560
	if (intel_crtc_active(crtc)) {
1561
		const struct drm_display_mode *adjusted_mode;
1562
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1563 1564 1565
		if (IS_GEN2(dev))
			cpp = 4;

1566
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1567
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1568
					       wm_info, fifo_size, cpp,
1569
					       pessimal_latency_ns);
1570 1571 1572 1573
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1574
	} else {
1575
		planeb_wm = fifo_size - wm_info->guard_size;
1576 1577 1578
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1579 1580 1581

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1582
	if (IS_I915GM(dev) && enabled) {
1583
		struct drm_i915_gem_object *obj;
1584

1585
		obj = intel_fb_obj(enabled->primary->state->fb);
1586 1587

		/* self-refresh seems busted with untiled */
1588
		if (obj->tiling_mode == I915_TILING_NONE)
1589 1590 1591
			enabled = NULL;
	}

1592 1593 1594 1595 1596 1597
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1598
	intel_set_memory_cxsr(dev_priv, false);
1599 1600 1601 1602 1603

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1604
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1605
		int clock = adjusted_mode->crtc_clock;
1606
		int htotal = adjusted_mode->crtc_htotal;
1607
		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1608
		int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1609 1610 1611
		unsigned long line_time_us;
		int entries;

1612 1613 1614
		if (IS_I915GM(dev) || IS_I945GM(dev))
			cpp = 4;

1615
		line_time_us = max(htotal * 1000 / clock, 1);
1616 1617 1618

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1619
			cpp * hdisplay;
1620 1621 1622 1623 1624 1625 1626 1627 1628
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1629
		else
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1646 1647
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1648 1649
}

1650
static void i845_update_wm(struct drm_crtc *unused_crtc)
1651
{
1652
	struct drm_device *dev = unused_crtc->dev;
1653
	struct drm_i915_private *dev_priv = to_i915(dev);
1654
	struct drm_crtc *crtc;
1655
	const struct drm_display_mode *adjusted_mode;
1656 1657 1658 1659 1660 1661 1662
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1663
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1664
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1665
				       &i845_wm_info,
1666
				       dev_priv->display.get_fifo_size(dev, 0),
1667
				       4, pessimal_latency_ns);
1668 1669 1670 1671 1672 1673 1674 1675
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1676
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1677
{
1678
	uint32_t pixel_rate;
1679

1680
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1681 1682 1683 1684

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1685
	if (pipe_config->pch_pfit.enabled) {
1686
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1687 1688 1689 1690
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1691 1692 1693 1694 1695 1696 1697 1698

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

1699 1700 1701
		if (WARN_ON(!pfit_w || !pfit_h))
			return pixel_rate;

1702 1703 1704 1705 1706 1707 1708
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1709
/* latency must be in 0.1us units. */
1710
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1711 1712 1713
{
	uint64_t ret;

1714 1715 1716
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1717
	ret = (uint64_t) pixel_rate * cpp * latency;
1718 1719 1720 1721 1722
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1723
/* latency must be in 0.1us units. */
1724
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1725
			       uint32_t horiz_pixels, uint8_t cpp,
1726 1727 1728 1729
			       uint32_t latency)
{
	uint32_t ret;

1730 1731
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1732 1733
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1734

1735
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1736
	ret = (ret + 1) * horiz_pixels * cpp;
1737 1738 1739 1740
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1741
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1742
			   uint8_t cpp)
1743
{
1744 1745 1746 1747 1748 1749
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
1750
	if (WARN_ON(!cpp))
1751 1752 1753 1754
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1755
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1756 1757
}

1758
struct ilk_wm_maximums {
1759 1760 1761 1762 1763 1764
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1765 1766 1767 1768
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1769
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1770
				   const struct intel_plane_state *pstate,
1771 1772
				   uint32_t mem_value,
				   bool is_lp)
1773
{
1774 1775
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1776 1777
	uint32_t method1, method2;

1778
	if (!cstate->base.active || !pstate->visible)
1779 1780
		return 0;

1781
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1782 1783 1784 1785

	if (!is_lp)
		return method1;

1786 1787
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1788
				 drm_rect_width(&pstate->dst),
1789
				 cpp, mem_value);
1790 1791

	return min(method1, method2);
1792 1793
}

1794 1795 1796 1797
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1798
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1799
				   const struct intel_plane_state *pstate,
1800 1801
				   uint32_t mem_value)
{
1802 1803
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1804 1805
	uint32_t method1, method2;

1806
	if (!cstate->base.active || !pstate->visible)
1807 1808
		return 0;

1809
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1810 1811
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1812
				 drm_rect_width(&pstate->dst),
1813
				 cpp, mem_value);
1814 1815 1816
	return min(method1, method2);
}

1817 1818 1819 1820
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1821
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1822
				   const struct intel_plane_state *pstate,
1823 1824
				   uint32_t mem_value)
{
1825 1826 1827 1828 1829 1830 1831
	/*
	 * We treat the cursor plane as always-on for the purposes of watermark
	 * calculation.  Until we have two-stage watermark programming merged,
	 * this is necessary to avoid flickering.
	 */
	int cpp = 4;
	int width = pstate->visible ? pstate->base.crtc_w : 64;
1832

1833
	if (!cstate->base.active)
1834 1835
		return 0;

1836 1837
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
			      cstate->base.adjusted_mode.crtc_htotal,
1838
			      width, cpp, mem_value);
1839 1840
}

1841
/* Only for WM_LP. */
1842
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1843
				   const struct intel_plane_state *pstate,
1844
				   uint32_t pri_val)
1845
{
1846 1847
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1848

1849
	if (!cstate->base.active || !pstate->visible)
1850 1851
		return 0;

1852
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), cpp);
1853 1854
}

1855 1856
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1857 1858 1859
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1860 1861 1862 1863 1864
		return 768;
	else
		return 512;
}

1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1899 1900 1901
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1902
				     const struct intel_wm_config *config,
1903 1904 1905 1906 1907 1908
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1909
	if (is_sprite && !config->sprites_enabled)
1910 1911 1912
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1913
	if (level == 0 || config->num_pipes_active > 1) {
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1925
	if (config->sprites_enabled) {
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1937
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1938 1939 1940 1941
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1942 1943
				      int level,
				      const struct intel_wm_config *config)
1944 1945
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1946
	if (level > 0 && config->num_pipes_active > 1)
1947 1948 1949
		return 64;

	/* otherwise just report max that registers can hold */
1950
	return ilk_cursor_wm_reg_max(dev, level);
1951 1952
}

1953
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1954 1955 1956
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1957
				    struct ilk_wm_maximums *max)
1958
{
1959 1960 1961
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1962
	max->fbc = ilk_fbc_wm_reg_max(dev);
1963 1964
}

1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

1975
static bool ilk_validate_wm_level(int level,
1976
				  const struct ilk_wm_maximums *max,
1977
				  struct intel_wm_level *result)
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2016
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2017
				 const struct intel_crtc *intel_crtc,
2018
				 int level,
2019
				 struct intel_crtc_state *cstate,
2020 2021 2022
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2023
				 struct intel_wm_level *result)
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2048 2049 2050
	result->enable = true;
}

2051
static uint32_t
2052
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2053
{
2054 2055
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2056 2057
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2058
	u32 linetime, ips_linetime;
2059

2060 2061 2062 2063
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2064
	if (WARN_ON(intel_state->cdclk == 0))
2065
		return 0;
2066

2067 2068 2069
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2070 2071 2072
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2073
					 intel_state->cdclk);
2074

2075 2076
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2077 2078
}

2079
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2080
{
2081
	struct drm_i915_private *dev_priv = to_i915(dev);
2082

2083 2084
	if (IS_GEN9(dev)) {
		uint32_t val;
2085
		int ret, i;
2086
		int level, max_level = ilk_wm_max_level(dev);
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2129
		/*
2130 2131
		 * WaWmMemoryReadLatency:skl
		 *
2132 2133 2134 2135 2136 2137 2138 2139
		 * punit doesn't take into account the read latency so we need
		 * to add 2us to the various latency levels we retrieve from
		 * the punit.
		 *   - W0 is a bit special in that it's the only level that
		 *   can't be disabled if we want to have display working, so
		 *   we always add 2us there.
		 *   - For levels >=1, punit returns 0us latency when they are
		 *   disabled, so we respect that and don't add 2us then
2140 2141 2142 2143 2144
		 *
		 * Additionally, if a level n (n > 1) has a 0us latency, all
		 * levels m (m >= n) need to be disabled. We make sure to
		 * sanitize the values out of the punit to satisfy this
		 * requirement.
2145 2146 2147 2148 2149
		 */
		wm[0] += 2;
		for (level = 1; level <= max_level; level++)
			if (wm[level] != 0)
				wm[level] += 2;
2150 2151 2152
			else {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
2153

2154 2155
				break;
			}
2156
	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2157 2158 2159 2160 2161
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2162 2163 2164 2165
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2166 2167 2168 2169 2170 2171 2172
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2173 2174 2175 2176 2177 2178 2179
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2180 2181 2182
	}
}

2183 2184 2185
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
2186
	if (IS_GEN5(dev))
2187 2188 2189 2190 2191 2192
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
2193
	if (IS_GEN5(dev))
2194 2195 2196 2197 2198 2199 2200
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

2201
int ilk_wm_max_level(const struct drm_device *dev)
2202 2203
{
	/* how many WM levels are we expecting */
2204
	if (INTEL_INFO(dev)->gen >= 9)
2205 2206
		return 7;
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2207
		return 4;
2208
	else if (INTEL_INFO(dev)->gen >= 6)
2209
		return 3;
2210
	else
2211 2212
		return 2;
}
2213

2214 2215
static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
2216
				   const uint16_t wm[8])
2217 2218
{
	int level, max_level = ilk_wm_max_level(dev);
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2229 2230 2231 2232 2233 2234 2235
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
		if (IS_GEN9(dev))
			latency *= 10;
		else if (level > 0)
2236 2237 2238 2239 2240 2241 2242 2243
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2244 2245 2246
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2247
	int level, max_level = ilk_wm_max_level(&dev_priv->drm);
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
2261
	struct drm_i915_private *dev_priv = to_i915(dev);
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}

2281
static void ilk_setup_wm_latency(struct drm_device *dev)
2282
{
2283
	struct drm_i915_private *dev_priv = to_i915(dev);
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2294 2295 2296 2297

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2298 2299 2300

	if (IS_GEN6(dev))
		snb_wm_latency_quirk(dev);
2301 2302
}

2303 2304
static void skl_setup_wm_latency(struct drm_device *dev)
{
2305
	struct drm_i915_private *dev_priv = to_i915(dev);
2306 2307 2308 2309 2310

	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
}

2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

2334
/* Compute new watermarks for the pipe */
2335
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2336
{
2337 2338
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2339
	struct intel_pipe_wm *pipe_wm;
2340
	struct drm_device *dev = state->dev;
2341
	const struct drm_i915_private *dev_priv = to_i915(dev);
2342
	struct intel_plane *intel_plane;
2343
	struct intel_plane_state *pristate = NULL;
2344
	struct intel_plane_state *sprstate = NULL;
2345
	struct intel_plane_state *curstate = NULL;
2346
	int level, max_level = ilk_wm_max_level(dev), usable_level;
2347
	struct ilk_wm_maximums max;
2348

2349
	pipe_wm = &cstate->wm.ilk.optimal;
2350

2351
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2352 2353 2354 2355 2356 2357
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
2358 2359

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2360
			pristate = ps;
2361
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2362
			sprstate = ps;
2363
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2364
			curstate = ps;
2365 2366
	}

2367
	pipe_wm->pipe_enabled = cstate->base.active;
2368 2369 2370 2371 2372 2373 2374
	if (sprstate) {
		pipe_wm->sprites_enabled = sprstate->visible;
		pipe_wm->sprites_scaled = sprstate->visible &&
			(drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
			 drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
	}

2375 2376
	usable_level = max_level;

2377
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2378
	if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2379
		usable_level = 1;
2380 2381

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2382
	if (pipe_wm->sprites_scaled)
2383
		usable_level = 0;
2384

2385
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2386 2387 2388 2389
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2390

2391
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2392
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2393

2394
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2395
		return -EINVAL;
2396 2397 2398 2399

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
2400
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2401

2402
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2403
				     pristate, sprstate, curstate, wm);
2404 2405 2406 2407 2408 2409

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
2410 2411 2412 2413 2414 2415
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
2416
			usable_level = level;
2417 2418
	}

2419
	return 0;
2420 2421
}

2422 2423 2424 2425 2426 2427 2428 2429 2430
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
2431
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2432 2433 2434 2435 2436 2437 2438 2439
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
	int level, max_level = ilk_wm_max_level(dev);

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
2440
	*a = newstate->wm.ilk.optimal;
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2469
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2470 2471 2472 2473 2474
		newstate->wm.need_postvbl_update = false;

	return 0;
}

2475 2476 2477 2478 2479 2480 2481 2482 2483
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2484 2485
	ret_wm->enable = true;

2486
	for_each_intel_crtc(dev, intel_crtc) {
2487
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2488 2489 2490 2491
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2492

2493 2494 2495 2496 2497
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2498
		if (!wm->enable)
2499
			ret_wm->enable = false;
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2512
			 const struct intel_wm_config *config,
2513
			 const struct ilk_wm_maximums *max,
2514 2515
			 struct intel_pipe_wm *merged)
{
2516
	struct drm_i915_private *dev_priv = to_i915(dev);
2517
	int level, max_level = ilk_wm_max_level(dev);
2518
	int last_enabled_level = max_level;
2519

2520 2521 2522
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
	    config->num_pipes_active > 1)
2523
		last_enabled_level = 0;
2524

2525 2526
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2527 2528 2529 2530 2531 2532 2533

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2534 2535 2536 2537 2538
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2539 2540 2541 2542 2543 2544

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2545 2546
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2547 2548 2549
			wm->fbc_val = 0;
		}
	}
2550 2551 2552 2553 2554 2555 2556

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2557
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2558
	    intel_fbc_is_active(dev_priv)) {
2559 2560 2561 2562 2563 2564
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2565 2566
}

2567 2568 2569 2570 2571 2572
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2573 2574 2575
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
2576
	struct drm_i915_private *dev_priv = to_i915(dev);
2577

2578
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2579 2580 2581 2582 2583
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2584
static void ilk_compute_wm_results(struct drm_device *dev,
2585
				   const struct intel_pipe_wm *merged,
2586
				   enum intel_ddb_partitioning partitioning,
2587
				   struct ilk_wm_values *results)
2588
{
2589 2590
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2591

2592
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2593
	results->partitioning = partitioning;
2594

2595
	/* LP1+ register values */
2596
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2597
		const struct intel_wm_level *r;
2598

2599
		level = ilk_wm_lp_to_level(wm_lp, merged);
2600

2601
		r = &merged->wm[level];
2602

2603 2604 2605 2606 2607
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2608
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2609 2610 2611
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2612 2613 2614
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2615 2616 2617 2618 2619 2620 2621
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2622 2623 2624 2625
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2626 2627 2628 2629 2630
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2631
	}
2632

2633
	/* LP0 register values */
2634
	for_each_intel_crtc(dev, intel_crtc) {
2635
		enum pipe pipe = intel_crtc->pipe;
2636 2637
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
2638 2639 2640 2641

		if (WARN_ON(!r->enable))
			continue;

2642
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2643

2644 2645 2646 2647
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2648 2649 2650
	}
}

2651 2652
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2653
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2654 2655
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2656
{
2657 2658
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2659

2660 2661 2662 2663 2664
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2665 2666
	}

2667 2668
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2669 2670 2671
			return r2;
		else
			return r1;
2672
	} else if (level1 > level2) {
2673 2674 2675 2676 2677 2678
		return r1;
	} else {
		return r2;
	}
}

2679 2680 2681 2682 2683 2684 2685 2686
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2687
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2688 2689
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2690 2691 2692 2693 2694
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2695
	for_each_pipe(dev_priv, pipe) {
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2739 2740
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2741
{
2742
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2743
	bool changed = false;
2744

2745 2746 2747
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2748
		changed = true;
2749 2750 2751 2752
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2753
		changed = true;
2754 2755 2756 2757
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2758
		changed = true;
2759
	}
2760

2761 2762 2763 2764
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2765

2766 2767 2768 2769 2770 2771 2772
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2773 2774
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2775
{
2776
	struct drm_device *dev = &dev_priv->drm;
2777
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2778 2779 2780
	unsigned int dirty;
	uint32_t val;

2781
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2782 2783 2784 2785 2786
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2787
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2788
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2789
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2790
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2791
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2792 2793
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2794
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2795
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2796
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2797
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2798
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2799 2800
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2801
	if (dirty & WM_DIRTY_DDB) {
2802
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2817 2818
	}

2819
	if (dirty & WM_DIRTY_FBC) {
2820 2821 2822 2823 2824 2825 2826 2827
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2828 2829 2830 2831 2832
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2833 2834 2835 2836 2837
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2838

2839
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2840
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2841
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2842
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2843
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2844
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2845 2846

	dev_priv->wm.hw = *results;
2847 2848
}

2849
bool ilk_disable_lp_wm(struct drm_device *dev)
2850
{
2851
	struct drm_i915_private *dev_priv = to_i915(dev);
2852 2853 2854 2855

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2856 2857 2858 2859 2860 2861
/*
 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
 * different active planes.
 */

#define SKL_DDB_SIZE		896	/* in blocks */
2862
#define BXT_DDB_SIZE		512
2863

2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
/*
 * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
 * other universal planes are in indices 1..n.  Note that this may leave unused
 * indices between the top "sprite" plane and the cursor.
 */
static int
skl_wm_plane_id(const struct intel_plane *plane)
{
	switch (plane->base.type) {
	case DRM_PLANE_TYPE_PRIMARY:
		return 0;
	case DRM_PLANE_TYPE_CURSOR:
		return PLANE_CURSOR;
	case DRM_PLANE_TYPE_OVERLAY:
		return plane->plane + 1;
	default:
		MISSING_CASE(plane->base.type);
		return plane->plane;
	}
}

2886 2887
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2888
				   const struct intel_crtc_state *cstate,
2889 2890
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
2891
{
2892 2893 2894
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
2895
	struct drm_crtc *for_crtc = cstate->base.crtc;
2896 2897
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
2898 2899
	int pipe = to_intel_crtc(for_crtc)->pipe;

2900
	if (WARN_ON(!state) || !cstate->base.active) {
2901 2902
		alloc->start = 0;
		alloc->end = 0;
2903
		*num_active = hweight32(dev_priv->active_crtcs);
2904 2905 2906
		return;
	}

2907 2908 2909 2910 2911
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

2912 2913 2914 2915
	if (IS_BROXTON(dev))
		ddb_size = BXT_DDB_SIZE;
	else
		ddb_size = SKL_DDB_SIZE;
2916 2917 2918

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

2919
	/*
2920 2921 2922 2923 2924 2925
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
2926
	 */
2927 2928 2929
	if (!intel_state->active_pipe_changes) {
		*alloc = dev_priv->wm.skl_hw.ddb.pipe[pipe];
		return;
2930
	}
2931 2932 2933 2934 2935 2936

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
2937 2938
}

2939
static unsigned int skl_cursor_allocation(int num_active)
2940
{
2941
	if (num_active == 1)
2942 2943 2944 2945 2946
		return 32;

	return 8;
}

2947 2948 2949 2950
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
2951 2952
	if (entry->end)
		entry->end += 1;
2953 2954
}

2955 2956
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
2957 2958 2959 2960 2961
{
	enum pipe pipe;
	int plane;
	u32 val;

2962 2963
	memset(ddb, 0, sizeof(*ddb));

2964
	for_each_pipe(dev_priv, pipe) {
2965 2966 2967 2968
		enum intel_display_power_domain power_domain;

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2969 2970
			continue;

2971
		for_each_plane(dev_priv, pipe, plane) {
2972 2973 2974 2975 2976 2977
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
2978 2979
		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
					   val);
2980 2981

		intel_display_power_put(dev_priv, power_domain);
2982 2983 2984
	}
}

2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
static uint32_t
skl_plane_downscale_amount(const struct intel_plane_state *pstate)
{
	uint32_t downscale_h, downscale_w;
	uint32_t src_w, src_h, dst_w, dst_h;

	if (WARN_ON(!pstate->visible))
		return DRM_PLANE_HELPER_NO_SCALING;

	/* n.b., src is 16.16 fixed point, dst is whole integer */
	src_w = drm_rect_width(&pstate->src);
	src_h = drm_rect_height(&pstate->src);
	dst_w = drm_rect_width(&pstate->dst);
	dst_h = drm_rect_height(&pstate->dst);
	if (intel_rotation_90_or_270(pstate->base.rotation))
		swap(dst_w, dst_h);

	downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
	downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);

	/* Provide result in 16.16 fixed point */
	return (uint64_t)downscale_w * downscale_h >> 16;
}

3025
static unsigned int
3026 3027 3028
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
3029
{
3030
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3031
	struct drm_framebuffer *fb = pstate->fb;
3032
	uint32_t down_scale_amount, data_rate;
3033
	uint32_t width = 0, height = 0;
3034 3035 3036 3037 3038 3039 3040 3041
	unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;

	if (!intel_pstate->visible)
		return 0;
	if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
3042 3043 3044 3045 3046 3047

	width = drm_rect_width(&intel_pstate->src) >> 16;
	height = drm_rect_height(&intel_pstate->src) >> 16;

	if (intel_rotation_90_or_270(pstate->rotation))
		swap(width, height);
3048 3049

	/* for planar format */
3050
	if (format == DRM_FORMAT_NV12) {
3051
		if (y)  /* y-plane data rate */
3052
			data_rate = width * height *
3053
				drm_format_plane_cpp(format, 0);
3054
		else    /* uv-plane data rate */
3055
			data_rate = (width / 2) * (height / 2) *
3056
				drm_format_plane_cpp(format, 1);
3057 3058 3059
	} else {
		/* for packed formats */
		data_rate = width * height * drm_format_plane_cpp(format, 0);
3060 3061
	}

3062 3063 3064
	down_scale_amount = skl_plane_downscale_amount(intel_pstate);

	return (uint64_t)data_rate * down_scale_amount >> 16;
3065 3066 3067 3068 3069 3070 3071 3072
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
3073
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate)
3074
{
3075 3076 3077 3078 3079
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
	struct drm_crtc *crtc = cstate->crtc;
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3080
	const struct drm_plane *plane;
3081
	const struct intel_plane *intel_plane;
3082
	struct drm_plane_state *pstate;
3083
	unsigned int rate, total_data_rate = 0;
3084
	int id;
3085 3086 3087 3088
	int i;

	if (WARN_ON(!state))
		return 0;
3089

3090
	/* Calculate and cache data rate for each plane */
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
	for_each_plane_in_state(state, plane, pstate, i) {
		id = skl_wm_plane_id(to_intel_plane(plane));
		intel_plane = to_intel_plane(plane);

		if (intel_plane->pipe != intel_crtc->pipe)
			continue;

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
		intel_cstate->wm.skl.plane_data_rate[id] = rate;

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
		intel_cstate->wm.skl.plane_y_data_rate[id] = rate;
3107
	}
3108

3109 3110 3111
	/* Calculate CRTC's total data rate from cached values */
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		int id = skl_wm_plane_id(intel_plane);
3112

3113
		/* packed/uv */
3114 3115
		total_data_rate += intel_cstate->wm.skl.plane_data_rate[id];
		total_data_rate += intel_cstate->wm.skl.plane_y_data_rate[id];
3116 3117
	}

3118 3119
	WARN_ON(cstate->plane_mask && total_data_rate == 0);

3120 3121 3122
	return total_data_rate;
}

3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
	if (y && fb->pixel_format != DRM_FORMAT_NV12)
		return 0;

	/* For Non Y-tile return 8-blocks */
	if (fb->modifier[0] != I915_FORMAT_MOD_Y_TILED &&
	    fb->modifier[0] != I915_FORMAT_MOD_Yf_TILED)
		return 8;

	src_w = drm_rect_width(&intel_pstate->src) >> 16;
	src_h = drm_rect_height(&intel_pstate->src) >> 16;

	if (intel_rotation_90_or_270(pstate->rotation))
		swap(src_w, src_h);

	/* Halve UV plane width and height for NV12 */
	if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
		src_w /= 2;
		src_h /= 2;
	}

	if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
	else
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);

	if (intel_rotation_90_or_270(pstate->rotation)) {
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

3186
static int
3187
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3188 3189
		      struct skl_ddb_allocation *ddb /* out */)
{
3190
	struct drm_atomic_state *state = cstate->base.state;
3191
	struct drm_crtc *crtc = cstate->base.crtc;
3192 3193
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3194
	struct intel_plane *intel_plane;
3195 3196
	struct drm_plane *plane;
	struct drm_plane_state *pstate;
3197
	enum pipe pipe = intel_crtc->pipe;
3198
	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
3199
	uint16_t alloc_size, start, cursor_blocks;
3200 3201
	uint16_t *minimum = cstate->wm.skl.minimum_blocks;
	uint16_t *y_minimum = cstate->wm.skl.minimum_y_blocks;
3202
	unsigned int total_data_rate;
3203 3204
	int num_active;
	int id, i;
3205

3206 3207 3208
	if (WARN_ON(!state))
		return 0;

3209 3210 3211 3212 3213 3214 3215
	if (!cstate->base.active) {
		ddb->pipe[pipe].start = ddb->pipe[pipe].end = 0;
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
		memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
		return 0;
	}

3216
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3217
	alloc_size = skl_ddb_entry_size(alloc);
3218 3219
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3220
		return 0;
3221 3222
	}

3223
	cursor_blocks = skl_cursor_allocation(num_active);
3224 3225
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3226 3227 3228

	alloc_size -= cursor_blocks;

3229
	/* 1. Allocate the mininum required blocks for each active plane */
3230 3231 3232
	for_each_plane_in_state(state, plane, pstate, i) {
		intel_plane = to_intel_plane(plane);
		id = skl_wm_plane_id(intel_plane);
3233

3234 3235
		if (intel_plane->pipe != pipe)
			continue;
3236

3237 3238 3239 3240 3241 3242 3243 3244 3245
		if (!to_intel_plane_state(pstate)->visible) {
			minimum[id] = 0;
			y_minimum[id] = 0;
			continue;
		}
		if (plane->type == DRM_PLANE_TYPE_CURSOR) {
			minimum[id] = 0;
			y_minimum[id] = 0;
			continue;
3246
		}
3247

3248 3249
		minimum[id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[id] = skl_ddb_min_alloc(pstate, 1);
3250
	}
3251

3252 3253 3254
	for (i = 0; i < PLANE_CURSOR; i++) {
		alloc_size -= minimum[i];
		alloc_size -= y_minimum[i];
3255 3256
	}

3257
	/*
3258 3259
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3260 3261 3262
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3263
	total_data_rate = skl_get_total_relative_data_rate(cstate);
3264
	if (total_data_rate == 0)
3265
		return 0;
3266

3267
	start = alloc->start;
3268
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3269 3270
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3271
		int id = skl_wm_plane_id(intel_plane);
3272

3273
		data_rate = cstate->wm.skl.plane_data_rate[id];
3274 3275

		/*
3276
		 * allocation for (packed formats) or (uv-plane part of planar format):
3277 3278 3279
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3280
		plane_blocks = minimum[id];
3281 3282
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3283

3284 3285 3286 3287 3288
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
			ddb->plane[pipe][id].start = start;
			ddb->plane[pipe][id].end = start + plane_blocks;
		}
3289 3290

		start += plane_blocks;
3291 3292 3293 3294

		/*
		 * allocation for y_plane part of planar format:
		 */
3295 3296 3297 3298 3299
		y_data_rate = cstate->wm.skl.plane_y_data_rate[id];

		y_plane_blocks = y_minimum[id];
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);
3300

3301 3302 3303 3304
		if (y_data_rate) {
			ddb->y_plane[pipe][id].start = start;
			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
		}
3305 3306

		start += y_plane_blocks;
3307 3308
	}

3309
	return 0;
3310 3311
}

3312
static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3313 3314
{
	/* TODO: Take into account the scalers once we support them */
3315
	return config->base.adjusted_mode.crtc_clock;
3316 3317 3318 3319
}

/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3320
 * for the read latency) and cpp should always be <= 8, so that
3321 3322 3323
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
3324
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3325 3326 3327 3328 3329 3330
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

3331
	wm_intermediate_val = latency * pixel_rate * cpp / 512;
3332 3333 3334 3335 3336 3337
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3338
			       uint32_t horiz_pixels, uint8_t cpp,
3339
			       uint64_t tiling, uint32_t latency)
3340
{
3341 3342 3343
	uint32_t ret;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t wm_intermediate_val;
3344 3345 3346 3347

	if (latency == 0)
		return UINT_MAX;

3348
	plane_bytes_per_line = horiz_pixels * cpp;
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358

	if (tiling == I915_FORMAT_MOD_Y_TILED ||
	    tiling == I915_FORMAT_MOD_Yf_TILED) {
		plane_bytes_per_line *= 4;
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
		plane_blocks_per_line /= 4;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

3359 3360
	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3361
				plane_blocks_per_line;
3362 3363 3364 3365

	return ret;
}

3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
					      struct intel_plane_state *pstate)
{
	uint64_t adjusted_pixel_rate;
	uint64_t downscale_amount;
	uint64_t pixel_rate;

	/* Shouldn't reach here on disabled planes... */
	if (WARN_ON(!pstate->visible))
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
	adjusted_pixel_rate = skl_pipe_pixel_rate(cstate);
	downscale_amount = skl_plane_downscale_amount(pstate);

	pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
	WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));

	return pixel_rate;
}

3390 3391 3392 3393 3394 3395 3396 3397
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
3398
{
3399 3400
	struct drm_plane_state *pstate = &intel_pstate->base;
	struct drm_framebuffer *fb = pstate->fb;
3401 3402 3403 3404 3405
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3406
	uint8_t cpp;
3407
	uint32_t width = 0, height = 0;
3408
	uint32_t plane_pixel_rate;
3409

3410 3411 3412 3413
	if (latency == 0 || !cstate->base.active || !intel_pstate->visible) {
		*enabled = false;
		return 0;
	}
3414

3415 3416 3417
	width = drm_rect_width(&intel_pstate->src) >> 16;
	height = drm_rect_height(&intel_pstate->src) >> 16;

3418
	if (intel_rotation_90_or_270(pstate->rotation))
3419 3420
		swap(width, height);

3421
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3422 3423 3424 3425
	plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);

	method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
	method2 = skl_wm_method2(plane_pixel_rate,
3426
				 cstate->base.adjusted_mode.crtc_htotal,
3427 3428 3429
				 width,
				 cpp,
				 fb->modifier[0],
3430
				 latency);
3431

3432
	plane_bytes_per_line = width * cpp;
3433
	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3434

3435 3436
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3437 3438
		uint32_t min_scanlines = 4;
		uint32_t y_tile_minimum;
3439
		if (intel_rotation_90_or_270(pstate->rotation)) {
3440
			int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3441 3442 3443
				drm_format_plane_cpp(fb->pixel_format, 1) :
				drm_format_plane_cpp(fb->pixel_format, 0);

3444
			switch (cpp) {
3445 3446 3447 3448 3449 3450 3451 3452
			case 1:
				min_scanlines = 16;
				break;
			case 2:
				min_scanlines = 8;
				break;
			case 8:
				WARN(1, "Unsupported pixel depth for rotation");
3453
			}
3454 3455
		}
		y_tile_minimum = plane_blocks_per_line * min_scanlines;
3456 3457 3458 3459 3460 3461 3462
		selected_result = max(method2, y_tile_minimum);
	} else {
		if ((ddb_allocation / plane_blocks_per_line) >= 1)
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3463

3464 3465
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3466

3467
	if (level >= 1 && level <= 7) {
3468 3469
		if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
		    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3470 3471 3472 3473
			res_lines += 4;
		else
			res_blocks++;
	}
3474

3475 3476
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492

		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
			DRM_DEBUG_KMS("Plane %d.%d: blocks required = %u/%u, lines required = %u/31\n",
				      to_intel_crtc(cstate->base.crtc)->pipe,
				      skl_wm_plane_id(to_intel_plane(pstate->plane)),
				      res_blocks, ddb_allocation, res_lines);

			return -EINVAL;
		}
3493
	}
3494 3495 3496

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3497
	*enabled = true;
3498

3499
	return 0;
3500 3501
}

3502 3503 3504 3505 3506 3507
static int
skl_compute_wm_level(const struct drm_i915_private *dev_priv,
		     struct skl_ddb_allocation *ddb,
		     struct intel_crtc_state *cstate,
		     int level,
		     struct skl_wm_level *result)
3508
{
3509
	struct drm_atomic_state *state = cstate->base.state;
3510
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3511
	struct drm_plane *plane;
3512
	struct intel_plane *intel_plane;
3513
	struct intel_plane_state *intel_pstate;
3514
	uint16_t ddb_blocks;
3515
	enum pipe pipe = intel_crtc->pipe;
3516
	int ret;
3517

3518 3519 3520 3521 3522 3523
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(result, 0, sizeof(*result));

3524 3525 3526
	for_each_intel_plane_mask(&dev_priv->drm,
				  intel_plane,
				  cstate->base.plane_mask) {
3527
		int i = skl_wm_plane_id(intel_plane);
3528

3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553
		plane = &intel_plane->base;
		intel_pstate = NULL;
		if (state)
			intel_pstate =
				intel_atomic_get_existing_plane_state(state,
								      intel_plane);

		/*
		 * Note: If we start supporting multiple pending atomic commits
		 * against the same planes/CRTC's in the future, plane->state
		 * will no longer be the correct pre-state to use for the
		 * calculations here and we'll need to change where we get the
		 * 'unchanged' plane data from.
		 *
		 * For now this is fine because we only allow one queued commit
		 * against a CRTC.  Even if the plane isn't modified by this
		 * transaction and we don't have a plane lock, we still have
		 * the CRTC's lock, so we know that no other transactions are
		 * racing with us to update it.
		 */
		if (!intel_pstate)
			intel_pstate = to_intel_plane_state(plane->state);

		WARN_ON(!intel_pstate->base.fb);

3554 3555
		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);

3556 3557 3558 3559 3560 3561 3562 3563 3564 3565
		ret = skl_compute_plane_wm(dev_priv,
					   cstate,
					   intel_pstate,
					   ddb_blocks,
					   level,
					   &result->plane_res_b[i],
					   &result->plane_res_l[i],
					   &result->plane_en[i]);
		if (ret)
			return ret;
3566
	}
3567 3568

	return 0;
3569 3570
}

3571
static uint32_t
3572
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3573
{
3574
	if (!cstate->base.active)
3575 3576
		return 0;

3577
	if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3578
		return 0;
3579

3580 3581
	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
			    skl_pipe_pixel_rate(cstate));
3582 3583
}

3584
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3585
				      struct skl_wm_level *trans_wm /* out */)
3586
{
3587
	struct drm_crtc *crtc = cstate->base.crtc;
3588
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3589
	struct intel_plane *intel_plane;
3590

3591
	if (!cstate->base.active)
3592
		return;
3593 3594

	/* Until we know more, just disable transition WMs */
3595 3596 3597
	for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
		int i = skl_wm_plane_id(intel_plane);

3598
		trans_wm->plane_en[i] = false;
3599
	}
3600 3601
}

3602 3603 3604
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
3605
{
3606
	struct drm_device *dev = cstate->base.crtc->dev;
3607
	const struct drm_i915_private *dev_priv = to_i915(dev);
3608
	int level, max_level = ilk_wm_max_level(dev);
3609
	int ret;
3610 3611

	for (level = 0; level <= max_level; level++) {
3612 3613 3614 3615
		ret = skl_compute_wm_level(dev_priv, ddb, cstate,
					   level, &pipe_wm->wm[level]);
		if (ret)
			return ret;
3616
	}
3617
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3618

3619
	skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3620 3621

	return 0;
3622 3623 3624 3625 3626 3627 3628 3629 3630
}

static void skl_compute_wm_results(struct drm_device *dev,
				   struct skl_pipe_wm *p_wm,
				   struct skl_wm_values *r,
				   struct intel_crtc *intel_crtc)
{
	int level, max_level = ilk_wm_max_level(dev);
	enum pipe pipe = intel_crtc->pipe;
3631 3632
	uint32_t temp;
	int i;
3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = 0;

			temp |= p_wm->wm[level].plane_res_l[i] <<
					PLANE_WM_LINES_SHIFT;
			temp |= p_wm->wm[level].plane_res_b[i];
			if (p_wm->wm[level].plane_en[i])
				temp |= PLANE_WM_EN;

			r->plane[pipe][i][level] = temp;
		}

		temp = 0;

3649 3650
		temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3651

3652
		if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3653 3654
			temp |= PLANE_WM_EN;

3655
		r->plane[pipe][PLANE_CURSOR][level] = temp;
3656 3657 3658

	}

3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670
	/* transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = 0;
		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->trans_wm.plane_res_b[i];
		if (p_wm->trans_wm.plane_en[i])
			temp |= PLANE_WM_EN;

		r->plane_trans[pipe][i] = temp;
	}

	temp = 0;
3671 3672 3673
	temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
	temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
	if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3674 3675
		temp |= PLANE_WM_EN;

3676
	r->plane_trans[pipe][PLANE_CURSOR] = temp;
3677

3678 3679 3680
	r->wm_linetime[pipe] = p_wm->linetime;
}

3681 3682
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
3683 3684 3685 3686 3687 3688 3689 3690
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3691 3692 3693
static void skl_write_wm_values(struct drm_i915_private *dev_priv,
				const struct skl_wm_values *new)
{
3694
	struct drm_device *dev = &dev_priv->drm;
3695 3696
	struct intel_crtc *crtc;

3697
	for_each_intel_crtc(dev, crtc) {
3698 3699 3700
		int i, level, max_level = ilk_wm_max_level(dev);
		enum pipe pipe = crtc->pipe;

3701
		if ((new->dirty_pipes & drm_crtc_mask(&crtc->base)) == 0)
3702
			continue;
3703 3704
		if (!crtc->active)
			continue;
3705

3706
		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3707

3708 3709 3710 3711 3712
		for (level = 0; level <= max_level; level++) {
			for (i = 0; i < intel_num_planes(crtc); i++)
				I915_WRITE(PLANE_WM(pipe, i, level),
					   new->plane[pipe][i][level]);
			I915_WRITE(CUR_WM(pipe, level),
3713
				   new->plane[pipe][PLANE_CURSOR][level]);
3714
		}
3715 3716 3717
		for (i = 0; i < intel_num_planes(crtc); i++)
			I915_WRITE(PLANE_WM_TRANS(pipe, i),
				   new->plane_trans[pipe][i]);
3718 3719
		I915_WRITE(CUR_WM_TRANS(pipe),
			   new->plane_trans[pipe][PLANE_CURSOR]);
3720

3721
		for (i = 0; i < intel_num_planes(crtc); i++) {
3722 3723 3724
			skl_ddb_entry_write(dev_priv,
					    PLANE_BUF_CFG(pipe, i),
					    &new->ddb.plane[pipe][i]);
3725 3726 3727 3728
			skl_ddb_entry_write(dev_priv,
					    PLANE_NV12_BUF_CFG(pipe, i),
					    &new->ddb.y_plane[pipe][i]);
		}
3729 3730

		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3731
				    &new->ddb.plane[pipe][PLANE_CURSOR]);
3732 3733 3734
	}
}

3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
/*
 * When setting up a new DDB allocation arrangement, we need to correctly
 * sequence the times at which the new allocations for the pipes are taken into
 * account or we'll have pipes fetching from space previously allocated to
 * another pipe.
 *
 * Roughly the sequence looks like:
 *  1. re-allocate the pipe(s) with the allocation being reduced and not
 *     overlapping with a previous light-up pipe (another way to put it is:
 *     pipes with their new allocation strickly included into their old ones).
 *  2. re-allocate the other pipes that get their allocation reduced
 *  3. allocate the pipes having their allocation increased
 *
 * Steps 1. and 2. are here to take care of the following case:
 * - Initially DDB looks like this:
 *     |   B    |   C    |
 * - enable pipe A.
 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
 *   allocation
 *     |  A  |  B  |  C  |
 *
 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
 */

3759 3760
static void
skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3761 3762 3763
{
	int plane;

3764 3765
	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);

3766
	for_each_plane(dev_priv, pipe, plane) {
3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
		I915_WRITE(PLANE_SURF(pipe, plane),
			   I915_READ(PLANE_SURF(pipe, plane)));
	}
	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
}

static bool
skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
			    const struct skl_ddb_allocation *new,
			    enum pipe pipe)
{
	uint16_t old_size, new_size;

	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
	new_size = skl_ddb_entry_size(&new->pipe[pipe]);

	return old_size != new_size &&
	       new->pipe[pipe].start >= old->pipe[pipe].start &&
	       new->pipe[pipe].end <= old->pipe[pipe].end;
}

static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
				struct skl_wm_values *new_values)
{
3791
	struct drm_device *dev = &dev_priv->drm;
3792
	struct skl_ddb_allocation *cur_ddb, *new_ddb;
3793
	bool reallocated[I915_MAX_PIPES] = {};
3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815
	struct intel_crtc *crtc;
	enum pipe pipe;

	new_ddb = &new_values->ddb;
	cur_ddb = &dev_priv->wm.skl_hw.ddb;

	/*
	 * First pass: flush the pipes with the new allocation contained into
	 * the old space.
	 *
	 * We'll wait for the vblank on those pipes to ensure we can safely
	 * re-allocate the freed space without this pipe fetching from it.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
			continue;

3816
		skl_wm_flush_pipe(dev_priv, pipe, 1);
3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840
		intel_wait_for_vblank(dev, pipe);

		reallocated[pipe] = true;
	}


	/*
	 * Second pass: flush the pipes that are having their allocation
	 * reduced, but overlapping with a previous allocation.
	 *
	 * Here as well we need to wait for the vblank to make sure the freed
	 * space is not used anymore.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (reallocated[pipe])
			continue;

		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3841
			skl_wm_flush_pipe(dev_priv, pipe, 2);
3842
			intel_wait_for_vblank(dev, pipe);
3843
			reallocated[pipe] = true;
3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865
		}
	}

	/*
	 * Third pass: flush the pipes that got more space allocated.
	 *
	 * We don't need to actively wait for the update here, next vblank
	 * will just get more DDB space with the correct WM values.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		/*
		 * At this point, only the pipes more space than before are
		 * left to re-allocate.
		 */
		if (reallocated[pipe])
			continue;

3866
		skl_wm_flush_pipe(dev_priv, pipe, 3);
3867 3868 3869
	}
}

3870 3871 3872 3873
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
			      struct skl_ddb_allocation *ddb, /* out */
			      struct skl_pipe_wm *pipe_wm, /* out */
			      bool *changed /* out */)
3874
{
3875 3876
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->crtc);
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3877
	int ret;
3878

3879 3880 3881
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
3882

3883
	if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3884 3885 3886
		*changed = false;
	else
		*changed = true;
3887

3888
	return 0;
3889 3890
}

3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

	for_each_crtc_in_state(state, crtc, cstate, i)
		ret |= drm_crtc_mask(crtc);

	return ret;
}

3904 3905 3906 3907 3908 3909 3910
static int
skl_compute_ddb(struct drm_atomic_state *state)
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
3911
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
3912
	uint32_t realloc_pipes = pipes_modified(state);
3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
	if (dev_priv->wm.distrust_bios_wm)
		intel_state->active_pipe_changes = ~0;

	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
3937
	if (intel_state->active_pipe_changes) {
3938
		realloc_pipes = ~0;
3939 3940
		intel_state->wm_results.dirty_pipes = ~0;
	}
3941 3942 3943 3944 3945 3946 3947 3948

	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);

3949
		ret = skl_allocate_pipe_ddb(cstate, ddb);
3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
		if (ret)
			return ret;
	}

	return 0;
}

static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
3962 3963 3964
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
	struct skl_pipe_wm *pipe_wm;
3965
	bool changed = false;
3966
	int ret, i;
3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980

	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i)
		changed = true;
	if (!changed)
		return 0;

3981 3982 3983
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

3984 3985 3986 3987
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i) {
		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);

		pipe_wm = &intel_cstate->wm.skl.optimal;
		ret = skl_update_pipe_wm(cstate, &results->ddb, pipe_wm,
					 &changed);
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
		skl_compute_wm_results(crtc->dev, pipe_wm, results, intel_crtc);
	}

4020 4021 4022
	return 0;
}

4023 4024 4025 4026
static void skl_update_wm(struct drm_crtc *crtc)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
4027
	struct drm_i915_private *dev_priv = to_i915(dev);
4028
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
4029
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4030
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4031

4032
	if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4033 4034
		return;

4035 4036 4037
	intel_crtc->wm.active.skl = *pipe_wm;

	mutex_lock(&dev_priv->wm.wm_mutex);
4038 4039

	skl_write_wm_values(dev_priv, results);
4040
	skl_flush_wm_values(dev_priv, results);
4041 4042 4043

	/* store the new configuration */
	dev_priv->wm.skl_hw = *results;
4044 4045

	mutex_unlock(&dev_priv->wm.wm_mutex);
4046 4047
}

4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

4066
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4067
{
4068
	struct drm_device *dev = &dev_priv->drm;
4069
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4070
	struct ilk_wm_maximums max;
4071
	struct intel_wm_config config = {};
4072
	struct ilk_wm_values results = {};
4073
	enum intel_ddb_partitioning partitioning;
4074

4075 4076 4077 4078
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4079 4080

	/* 5/6 split only in single pipe config on IVB+ */
4081
	if (INTEL_INFO(dev)->gen >= 7 &&
4082 4083 4084
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4085

4086
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4087
	} else {
4088
		best_lp_wm = &lp_wm_1_2;
4089 4090
	}

4091
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4092
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4093

4094
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4095

4096
	ilk_write_wm_values(dev_priv, &results);
4097 4098
}

4099
static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
4100
{
4101 4102
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4103

4104
	mutex_lock(&dev_priv->wm.wm_mutex);
4105
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4106 4107 4108
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
4109

4110 4111 4112 4113
static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4114

4115 4116
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
4117
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4118 4119 4120
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
4121 4122
}

4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140
static void skl_pipe_wm_active_state(uint32_t val,
				     struct skl_pipe_wm *active,
				     bool is_transwm,
				     bool is_cursor,
				     int i,
				     int level)
{
	bool is_enabled = (val & PLANE_WM_EN) != 0;

	if (!is_transwm) {
		if (!is_cursor) {
			active->wm[level].plane_en[i] = is_enabled;
			active->wm[level].plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
4141 4142
			active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
			active->wm[level].plane_res_b[PLANE_CURSOR] =
4143
					val & PLANE_WM_BLOCKS_MASK;
4144
			active->wm[level].plane_res_l[PLANE_CURSOR] =
4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	} else {
		if (!is_cursor) {
			active->trans_wm.plane_en[i] = is_enabled;
			active->trans_wm.plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
4157 4158
			active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
			active->trans_wm.plane_res_b[PLANE_CURSOR] =
4159
					val & PLANE_WM_BLOCKS_MASK;
4160
			active->trans_wm.plane_res_l[PLANE_CURSOR] =
4161 4162 4163 4164 4165 4166 4167 4168 4169
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	}
}

static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
4170
	struct drm_i915_private *dev_priv = to_i915(dev);
4171 4172
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4173
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4174
	struct skl_pipe_wm *active = &cstate->wm.skl.optimal;
4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186
	enum pipe pipe = intel_crtc->pipe;
	int level, i, max_level;
	uint32_t temp;

	max_level = ilk_wm_max_level(dev);

	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++)
			hw->plane[pipe][i][level] =
					I915_READ(PLANE_WM(pipe, i, level));
4187
		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
4188 4189 4190 4191
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
4192
	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
4193

4194
	if (!intel_crtc->active)
4195 4196
		return;

4197
	hw->dirty_pipes |= drm_crtc_mask(crtc);
4198 4199 4200 4201 4202 4203 4204 4205 4206

	active->linetime = hw->wm_linetime[pipe];

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = hw->plane[pipe][i][level];
			skl_pipe_wm_active_state(temp, active, false,
						false, i, level);
		}
4207
		temp = hw->plane[pipe][PLANE_CURSOR][level];
4208 4209 4210 4211 4212 4213 4214 4215
		skl_pipe_wm_active_state(temp, active, false, true, i, level);
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = hw->plane_trans[pipe][i];
		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
	}

4216
	temp = hw->plane_trans[pipe][PLANE_CURSOR];
4217
	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
4218 4219

	intel_crtc->wm.active.skl = *active;
4220 4221 4222 4223
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
4224
	struct drm_i915_private *dev_priv = to_i915(dev);
4225
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4226 4227
	struct drm_crtc *crtc;

4228
	skl_ddb_get_hw_state(dev_priv, ddb);
4229 4230
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		skl_pipe_wm_get_hw_state(crtc);
4231

4232 4233 4234 4235 4236 4237 4238
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
4239 4240
}

4241 4242 4243
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
4244
	struct drm_i915_private *dev_priv = to_i915(dev);
4245
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4246
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4247
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4248
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4249
	enum pipe pipe = intel_crtc->pipe;
4250
	static const i915_reg_t wm0_pipe_reg[] = {
4251 4252 4253 4254 4255 4256
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4257
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4258
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4259

4260 4261
	memset(active, 0, sizeof(*active));

4262
	active->pipe_enabled = intel_crtc->active;
4263 4264

	if (active->pipe_enabled) {
4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
4289 4290

	intel_crtc->wm.active.ilk = *active;
4291 4292
}

4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

		wm->ddl[pipe].primary =
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].cursor =
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[0] =
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[1] =
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPFW8_CHV);
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);

		tmp = I915_READ(DSPFW9_CHV);
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	} else {
		tmp = I915_READ(DSPFW7);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	for_each_intel_plane(dev, plane) {
		switch (plane->base.type) {
			int sprite;
		case DRM_PLANE_TYPE_CURSOR:
			plane->wm.fifo_size = 63;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
			break;
		}
	}

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4410 4411 4412 4413 4414 4415 4416 4417 4418
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4419
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4446 4447
void ilk_wm_get_hw_state(struct drm_device *dev)
{
4448
	struct drm_i915_private *dev_priv = to_i915(dev);
4449
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4450 4451
	struct drm_crtc *crtc;

4452
	for_each_crtc(dev, crtc)
4453 4454 4455 4456 4457 4458 4459
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4460 4461 4462 4463
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4464

4465
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4466 4467 4468 4469 4470
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
	else if (IS_IVYBRIDGE(dev))
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4471 4472 4473 4474 4475

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4508
void intel_update_watermarks(struct drm_crtc *crtc)
4509
{
4510
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4511 4512

	if (dev_priv->display.update_wm)
4513
		dev_priv->display.update_wm(crtc);
4514 4515
}

4516
/*
4517 4518 4519 4520 4521 4522 4523 4524
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4525
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4526 4527 4528
{
	u16 rgvswctl;

4529 4530
	assert_spin_locked(&mchdev_lock);

4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4548
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4549
{
4550
	u32 rgvmodectl;
4551 4552
	u8 fmax, fmin, fstart, vstart;

4553 4554
	spin_lock_irq(&mchdev_lock);

4555 4556
	rgvmodectl = I915_READ(MEMMODECTL);

4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4577
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4578 4579
		PXVFREQ_PX_SHIFT;

4580 4581
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4582

4583 4584 4585
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4602
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4603
		DRM_ERROR("stuck trying to change perf mode\n");
4604
	mdelay(1);
4605

4606
	ironlake_set_drps(dev_priv, fstart);
4607

4608 4609
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4610
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4611
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4612
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4613 4614

	spin_unlock_irq(&mchdev_lock);
4615 4616
}

4617
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4618
{
4619 4620 4621 4622 4623
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4624 4625 4626 4627 4628 4629 4630 4631 4632

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4633
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4634
	mdelay(1);
4635 4636
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4637
	mdelay(1);
4638

4639
	spin_unlock_irq(&mchdev_lock);
4640 4641
}

4642 4643 4644 4645 4646
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4647
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4648
{
4649
	u32 limits;
4650

4651 4652 4653 4654 4655 4656
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4657
	if (IS_GEN9(dev_priv)) {
4658 4659 4660 4661 4662 4663 4664 4665
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4666 4667 4668 4669

	return limits;
}

4670 4671 4672
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4673 4674
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4675 4676 4677 4678

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4679 4680
		if (val > dev_priv->rps.efficient_freq + 1 &&
		    val > dev_priv->rps.cur_freq)
4681 4682 4683 4684
			new_power = BETWEEN;
		break;

	case BETWEEN:
4685 4686
		if (val <= dev_priv->rps.efficient_freq &&
		    val < dev_priv->rps.cur_freq)
4687
			new_power = LOW_POWER;
4688 4689
		else if (val >= dev_priv->rps.rp0_freq &&
			 val > dev_priv->rps.cur_freq)
4690 4691 4692 4693
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4694 4695
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
		    val < dev_priv->rps.cur_freq)
4696 4697 4698 4699
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4700
	if (val <= dev_priv->rps.min_freq_softlimit)
4701
		new_power = LOW_POWER;
4702
	if (val >= dev_priv->rps.max_freq_softlimit)
4703 4704 4705 4706 4707 4708 4709 4710
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4711 4712
		ei_up = 16000;
		threshold_up = 95;
4713 4714

		/* Downclock if less than 85% busy over 32ms */
4715 4716
		ei_down = 32000;
		threshold_down = 85;
4717 4718 4719 4720
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4721 4722
		ei_up = 13000;
		threshold_up = 90;
4723 4724

		/* Downclock if less than 75% busy over 32ms */
4725 4726
		ei_down = 32000;
		threshold_down = 75;
4727 4728 4729 4730
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4731 4732
		ei_up = 10000;
		threshold_up = 85;
4733 4734

		/* Downclock if less than 60% busy over 32ms */
4735 4736
		ei_down = 32000;
		threshold_down = 60;
4737 4738 4739
		break;
	}

4740
	I915_WRITE(GEN6_RP_UP_EI,
4741
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
4742
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4743 4744
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
4745 4746

	I915_WRITE(GEN6_RP_DOWN_EI,
4747
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
4748
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4749 4750 4751 4752 4753 4754 4755 4756 4757 4758
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
4759

4760
	dev_priv->rps.power = new_power;
4761 4762
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4763 4764 4765
	dev_priv->rps.last_adj = 0;
}

4766 4767 4768 4769 4770
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4771
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4772
	if (val < dev_priv->rps.max_freq_softlimit)
4773
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4774

4775 4776
	mask &= dev_priv->pm_rps_events;

4777
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4778 4779
}

4780 4781 4782
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4783
static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4784
{
4785
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4786
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4787 4788
		return;

4789
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4790 4791
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4792

C
Chris Wilson 已提交
4793 4794 4795 4796 4797
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4798

4799
		if (IS_GEN9(dev_priv))
4800 4801
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
4802
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
4803 4804 4805 4806 4807 4808 4809
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4810
	}
4811 4812 4813 4814

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4815
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4816
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4817

4818 4819
	POSTING_READ(GEN6_RPNSWREQ);

4820
	dev_priv->rps.cur_freq = val;
4821
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4822 4823
}

4824
static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4825 4826
{
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4827 4828
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4829

4830
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4831 4832 4833
		      "Odd GPU freq value\n"))
		val &= ~1;

4834 4835
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

4836
	if (val != dev_priv->rps.cur_freq) {
4837
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4838 4839 4840
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
4841 4842 4843 4844 4845

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

4846
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4847 4848
 *
 * * If Gfx is Idle, then
4849 4850 4851
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
4852 4853 4854
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
4855
	u32 val = dev_priv->rps.idle_freq;
4856

4857
	if (dev_priv->rps.cur_freq <= val)
4858 4859
		return;

4860 4861 4862
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4863
	valleyview_set_rps(dev_priv, val);
4864
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4865 4866
}

4867 4868 4869 4870 4871 4872 4873 4874
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4875

4876 4877
		gen6_enable_rps_interrupts(dev_priv);

4878 4879 4880 4881 4882
		/* Ensure we start at the user's desired frequency */
		intel_set_rps(dev_priv,
			      clamp(dev_priv->rps.cur_freq,
				    dev_priv->rps.min_freq_softlimit,
				    dev_priv->rps.max_freq_softlimit));
4883 4884 4885 4886
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4887 4888
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
4889 4890 4891 4892 4893 4894 4895
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

4896
	mutex_lock(&dev_priv->rps.hw_lock);
4897
	if (dev_priv->rps.enabled) {
4898
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4899
			vlv_set_rps_idle(dev_priv);
4900
		else
4901
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
4902
		dev_priv->rps.last_adj = 0;
4903 4904
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
4905
	}
4906
	mutex_unlock(&dev_priv->rps.hw_lock);
4907

4908
	spin_lock(&dev_priv->rps.client_lock);
4909 4910
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
4911
	spin_unlock(&dev_priv->rps.client_lock);
4912 4913
}

4914
void gen6_rps_boost(struct drm_i915_private *dev_priv,
4915 4916
		    struct intel_rps_client *rps,
		    unsigned long submitted)
4917
{
4918 4919 4920
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
4921
	if (!(dev_priv->gt.awake &&
4922
	      dev_priv->rps.enabled &&
4923
	      dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
4924
		return;
4925

4926 4927 4928
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
4929
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4930 4931
		rps = NULL;

4932 4933 4934 4935 4936
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
4937
			schedule_work(&dev_priv->rps.work);
4938 4939
		}
		spin_unlock_irq(&dev_priv->irq_lock);
4940

4941 4942 4943
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
4944 4945
		} else
			dev_priv->rps.boosts++;
4946
	}
4947
	spin_unlock(&dev_priv->rps.client_lock);
4948 4949
}

4950
void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
4951
{
4952 4953
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		valleyview_set_rps(dev_priv, val);
4954
	else
4955
		gen6_set_rps(dev_priv, val);
4956 4957
}

4958
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
4959 4960
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
4961
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
4962 4963
}

4964
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
4965 4966 4967 4968
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

4969
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
4970 4971
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
4972
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4973
	I915_WRITE(GEN6_RP_CONTROL, 0);
4974 4975
}

4976
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
4977 4978 4979 4980
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

4981
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
4982
{
4983 4984
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
4985
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4986

4987
	I915_WRITE(GEN6_RC_CONTROL, 0);
4988

4989
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4990 4991
}

4992
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
4993
{
4994
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4995 4996 4997 4998 4999
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
5000
	if (HAS_RC6p(dev_priv))
5001 5002 5003 5004 5005
		DRM_DEBUG_DRIVER("Enabling RC6 states: "
				 "RC6 %s RC6p %s RC6pp %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5006 5007

	else
5008 5009
		DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
5010 5011
}

5012
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5013
{
5014
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5015 5016
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
5028 5029

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5030
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5031 5032 5033 5034 5035 5036 5037 5038
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5039 5040 5041
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
5042
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5043 5044 5045 5046 5047 5048 5049
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5050
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5051 5052 5053
		enable_rc6 = false;
	}

5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5068 5069 5070 5071 5072 5073
		enable_rc6 = false;
	}

	return enable_rc6;
}

5074
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5075
{
5076
	/* No RC6 before Ironlake and code is gone for ilk. */
5077
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
5078 5079
		return 0;

5080 5081 5082
	if (!enable_rc6)
		return 0;

5083
	if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5084 5085 5086 5087
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

5088
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
5089 5090 5091
	if (enable_rc6 >= 0) {
		int mask;

5092
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
5093 5094 5095 5096 5097 5098
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
5099 5100 5101
			DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
					 "(requested %d, valid %d)\n",
					 enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
5102 5103 5104

		return enable_rc6 & mask;
	}
5105

5106
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
5107
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5108 5109

	return INTEL_RC6_ENABLE;
5110 5111
}

5112
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5113 5114
{
	/* All of these values are in units of 50MHz */
5115

5116
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
5117
	if (IS_BROXTON(dev_priv)) {
5118
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5119 5120 5121 5122
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
5123
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5124 5125 5126 5127
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}
5128
	/* hw_max = RP0 until we check for overclocking */
5129
	dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5130

5131
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5132 5133
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
	    IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5134 5135 5136 5137 5138
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
5139
			dev_priv->rps.efficient_freq =
5140 5141 5142 5143
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
5144 5145
	}

5146
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5147
		/* Store the frequency values in 16.66 MHZ units, which is
5148 5149
		 * the natural hardware unit for SKL
		 */
5150 5151 5152 5153 5154 5155
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}
5156 5157
}

5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169
static void reset_rps(struct drm_i915_private *dev_priv,
		      void (*set)(struct drm_i915_private *, u8))
{
	u8 freq = dev_priv->rps.cur_freq;

	/* force a reset */
	dev_priv->rps.power = -1;
	dev_priv->rps.cur_freq = -1;

	set(dev_priv, freq);
}

J
Jesse Barnes 已提交
5170
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5171
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
5172 5173 5174
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5175
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5176
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5177 5178 5179 5180 5181 5182 5183 5184 5185
		/*
		 * BIOS could leave the Hw Turbo enabled, so need to explicitly
		 * clear out the Control register just to avoid inconsitency
		 * with debugfs interface, which will show  Turbo as enabled
		 * only and that is not expected by the User after adding the
		 * WaGsvDisableTurbo. Apart from this there is no problem even
		 * if the Turbo is left enabled in the Control register, as the
		 * Up/Down interrupts would remain masked.
		 */
5186
		gen9_disable_rps(dev_priv);
5187 5188 5189 5190
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
		return;
	}

5191 5192 5193 5194 5195 5196 5197 5198
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
5199 5200
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

5201 5202 5203
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5204
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
5205 5206 5207 5208

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

5209
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5210
{
5211
	struct intel_engine_cs *engine;
Z
Zhe Wang 已提交
5212 5213 5214 5215 5216 5217 5218
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5219
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5220 5221 5222 5223 5224

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
5225 5226

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5227
	if (IS_SKYLAKE(dev_priv))
5228 5229 5230
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
5231 5232
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5233
	for_each_engine(engine, dev_priv)
5234
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5235

5236
	if (HAS_GUC(dev_priv))
5237 5238
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
5239 5240
	I915_WRITE(GEN6_RC_SLEEP, 0);

5241 5242 5243 5244
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
5245
	/* 3a: Enable RC6 */
5246
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
5247
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5248
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5249
	/* WaRsUseTimeoutMode */
5250 5251
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5252
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
S
Sagar Arun Kamble 已提交
5253 5254 5255
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN7_RC_CTL_TO_MODE |
			   rc6_mask);
5256 5257
	} else {
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
S
Sagar Arun Kamble 已提交
5258 5259 5260
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN6_RC_CTL_EI_MODE(1) |
			   rc6_mask);
5261
	}
Z
Zhe Wang 已提交
5262

5263 5264
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5265
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5266
	 */
5267
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5268 5269 5270 5271
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5272

5273
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5274 5275
}

5276
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5277
{
5278
	struct intel_engine_cs *engine;
5279
	uint32_t rc6_mask = 0;
5280 5281 5282 5283 5284 5285

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5286
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5287 5288 5289 5290 5291 5292 5293 5294

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5295
	for_each_engine(engine, dev_priv)
5296
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5297
	I915_WRITE(GEN6_RC_SLEEP, 0);
5298
	if (IS_BROADWELL(dev_priv))
5299 5300 5301
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5302 5303

	/* 3: Enable RC6 */
5304
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5305
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5306 5307
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
5308 5309 5310 5311 5312 5313 5314
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
5315 5316

	/* 4 Program defaults and thresholds for RPS*/
5317 5318 5319 5320
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5335 5336

	/* 5: Enable RPS */
5337 5338 5339 5340 5341 5342 5343 5344 5345 5346
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

5347
	reset_rps(dev_priv, gen6_set_rps);
5348

5349
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5350 5351
}

5352
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5353
{
5354
	struct intel_engine_cs *engine;
5355
	u32 rc6vids, rc6_mask = 0;
5356 5357
	u32 gtfifodbg;
	int rc6_mode;
5358
	int ret;
5359

5360
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5361

5362 5363 5364 5365 5366 5367 5368 5369 5370
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
5371 5372
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5373 5374 5375 5376
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5377
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5378 5379 5380 5381 5382 5383 5384 5385 5386 5387

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5388
	for_each_engine(engine, dev_priv)
5389
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5390 5391 5392

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5393
	if (IS_IVYBRIDGE(dev_priv))
5394 5395 5396
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5397
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5398 5399
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

5400
	/* Check if we are enabling RC6 */
5401
	rc6_mode = intel_enable_rc6();
5402 5403 5404
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

5405
	/* We don't use those on Haswell */
5406
	if (!IS_HASWELL(dev_priv)) {
5407 5408
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5409

5410 5411 5412
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
5413

5414
	intel_print_rc6_info(dev_priv, rc6_mask);
5415 5416 5417 5418 5419 5420

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

5421 5422
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5423 5424
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
5425
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5426
	if (ret)
B
Ben Widawsky 已提交
5427
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5428

5429
	reset_rps(dev_priv, gen6_set_rps);
5430

5431 5432
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5433
	if (IS_GEN6(dev_priv) && ret) {
5434
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5435
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5436 5437 5438 5439 5440 5441 5442 5443 5444
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5445
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5446 5447
}

5448
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5449 5450
{
	int min_freq = 15;
5451 5452
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5453
	unsigned int max_gpu_freq, min_gpu_freq;
5454
	int scaling_factor = 180;
5455
	struct cpufreq_policy *policy;
5456

5457
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5458

5459 5460 5461 5462 5463 5464 5465 5466 5467
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5468
		max_ia_freq = tsc_khz;
5469
	}
5470 5471 5472 5473

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5474
	min_ring_freq = I915_READ(DCLK) & 0xf;
5475 5476
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5477

5478
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5479 5480 5481 5482 5483 5484 5485 5486
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5487 5488 5489 5490 5491
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5492 5493
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5494 5495
		unsigned int ia_freq = 0, ring_freq = 0;

5496
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5497 5498 5499 5500 5501
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
5502
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
5503 5504
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
5505
		} else if (IS_HASWELL(dev_priv)) {
5506
			ring_freq = mult_frac(gpu_freq, 5, 4);
5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5523

B
Ben Widawsky 已提交
5524 5525
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5526 5527 5528
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5529 5530 5531
	}
}

5532
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5533 5534 5535
{
	u32 val, rp0;

5536
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5537

5538
	switch (INTEL_INFO(dev_priv)->eu_total) {
5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5553
	}
5554 5555 5556

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5570 5571 5572 5573
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5574 5575 5576
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5577 5578 5579
	return rp1;
}

5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5591
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5592 5593 5594
{
	u32 val, rp0;

5595
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5608
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5609
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5610
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5611 5612 5613 5614 5615
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5616
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5617
{
5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
5629 5630
}

5631 5632 5633 5634 5635 5636 5637 5638 5639
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5640 5641 5642 5643 5644 5645 5646 5647 5648

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

5649
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5650
{
5651
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5652
	unsigned long pctx_paddr, paddr;
5653 5654 5655 5656 5657
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5658
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5659
		paddr = (dev_priv->mm.stolen_base +
5660
			 (ggtt->stolen_size - pctx_size));
5661 5662 5663 5664

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5665 5666

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5667 5668
}

5669
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5670 5671 5672 5673 5674 5675
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

5676
	mutex_lock(&dev_priv->drm.struct_mutex);
5677

5678 5679 5680 5681 5682 5683
	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5684
		pctx = i915_gem_object_create_stolen_for_preallocated(&dev_priv->drm,
5685
								      pcbr_offset,
5686
								      I915_GTT_OFFSET_NONE,
5687 5688 5689 5690
								      pctx_size);
		goto out;
	}

5691 5692
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5693 5694 5695 5696 5697 5698 5699 5700
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
5701
	pctx = i915_gem_object_create_stolen(&dev_priv->drm, pctx_size);
5702 5703
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5704
		goto out;
5705 5706 5707 5708 5709 5710
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5711
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5712
	dev_priv->vlv_pctx = pctx;
5713
	mutex_unlock(&dev_priv->drm.struct_mutex);
5714 5715
}

5716
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5717 5718 5719 5720
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

5721
	i915_gem_object_put_unlocked(dev_priv->vlv_pctx);
5722 5723 5724
	dev_priv->vlv_pctx = NULL;
}

5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

5736
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5737
{
5738
	u32 val;
5739

5740
	valleyview_setup_pctx(dev_priv);
5741

5742 5743
	vlv_init_gpll_ref_freq(dev_priv);

5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5757
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5758

5759 5760 5761
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5762
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5763 5764 5765 5766
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5767
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5768 5769
			 dev_priv->rps.efficient_freq);

5770 5771
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5772
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5773 5774
			 dev_priv->rps.rp1_freq);

5775 5776
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5777
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5778 5779 5780
			 dev_priv->rps.min_freq);
}

5781
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5782
{
5783
	u32 val;
5784

5785
	cherryview_setup_pctx(dev_priv);
5786

5787 5788
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
5789
	mutex_lock(&dev_priv->sb_lock);
5790
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5791
	mutex_unlock(&dev_priv->sb_lock);
5792

5793 5794 5795 5796
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5797
	default:
5798 5799 5800
		dev_priv->mem_freq = 1600;
		break;
	}
5801
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5802

5803 5804 5805
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5806
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5807 5808 5809 5810
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5811
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5812 5813
			 dev_priv->rps.efficient_freq);

5814 5815
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5816
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5817 5818
			 dev_priv->rps.rp1_freq);

5819 5820
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5821
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5822
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5823 5824
			 dev_priv->rps.min_freq);

5825 5826 5827 5828 5829
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");
5830 5831
}

5832
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5833
{
5834
	valleyview_cleanup_pctx(dev_priv);
5835 5836
}

5837
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5838
{
5839
	struct intel_engine_cs *engine;
5840
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5841 5842 5843

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5844 5845
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
5846 5847 5848 5849 5850 5851 5852 5853 5854 5855
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5856
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5857

5858 5859 5860
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5861 5862 5863 5864 5865
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

5866
	for_each_engine(engine, dev_priv)
5867
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5868 5869
	I915_WRITE(GEN6_RC_SLEEP, 0);

5870 5871
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
5883 5884
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
5885
		rc6_mode = GEN7_RC_CTL_TO_MODE;
5886 5887 5888

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

5889
	/* 4 Program defaults and thresholds for RPS*/
5890
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5891 5892 5893 5894 5895 5896 5897 5898 5899 5900
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5901
		   GEN6_RP_MEDIA_IS_GFX |
5902 5903 5904 5905
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
5906 5907 5908 5909 5910 5911
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5912 5913
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

5914 5915 5916
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5917
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5918 5919
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

5920
	reset_rps(dev_priv, valleyview_set_rps);
5921

5922
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5923 5924
}

5925
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
5926
{
5927
	struct intel_engine_cs *engine;
5928
	u32 gtfifodbg, val, rc6_mode = 0;
5929 5930 5931

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5932 5933
	valleyview_check_pctx(dev_priv);

5934 5935
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5936 5937
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
5938 5939 5940
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5941
	/* If VLV, Forcewake all wells, else re-direct to regular path */
5942
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5943

5944 5945 5946
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5947
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5967
	for_each_engine(engine, dev_priv)
5968
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5969

5970
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5971 5972

	/* allows RC6 residency counter to work */
5973
	I915_WRITE(VLV_COUNTER_CONTROL,
5974 5975
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
5976 5977
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
5978

5979
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5980
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
5981

5982
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
5983

5984
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5985

D
Deepak S 已提交
5986 5987 5988 5989 5990 5991
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5992
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5993

5994 5995 5996
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5997
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5998 5999
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6000
	reset_rps(dev_priv, valleyview_set_rps);
6001

6002
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6003 6004
}

6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

6034
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6035 6036 6037 6038 6039 6040
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

6041 6042
	assert_spin_locked(&mchdev_lock);

6043
	diff1 = now - dev_priv->ips.last_time1;
6044 6045 6046 6047 6048 6049 6050

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
6051
		return dev_priv->ips.chipset_power;
6052 6053 6054 6055 6056 6057 6058 6059

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
6060 6061
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
6062 6063
		diff += total_count;
	} else {
6064
		diff = total_count - dev_priv->ips.last_count1;
6065 6066 6067
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6068 6069
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
6070 6071 6072 6073 6074 6075 6076 6077 6078 6079
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

6080 6081
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
6082

6083
	dev_priv->ips.chipset_power = ret;
6084 6085 6086 6087

	return ret;
}

6088 6089 6090 6091
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6092
	if (INTEL_INFO(dev_priv)->gen != 5)
6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6131
{
6132 6133 6134
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

6135
	if (INTEL_INFO(dev_priv)->is_mobile)
6136 6137 6138
		return vm > 0 ? vm : 0;

	return vd;
6139 6140
}

6141
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6142
{
6143
	u64 now, diff, diffms;
6144 6145
	u32 count;

6146
	assert_spin_locked(&mchdev_lock);
6147

6148 6149 6150
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
6151 6152 6153 6154 6155 6156 6157

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

6158 6159
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
6160 6161
		diff += count;
	} else {
6162
		diff = count - dev_priv->ips.last_count2;
6163 6164
	}

6165 6166
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
6167 6168 6169 6170

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
6171
	dev_priv->ips.gfx_power = diff;
6172 6173
}

6174 6175
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
6176
	if (INTEL_INFO(dev_priv)->gen != 5)
6177 6178
		return;

6179
	spin_lock_irq(&mchdev_lock);
6180 6181 6182

	__i915_update_gfx_val(dev_priv);

6183
	spin_unlock_irq(&mchdev_lock);
6184 6185
}

6186
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6187 6188 6189 6190
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

6191 6192
	assert_spin_locked(&mchdev_lock);

6193
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
6213
	corr2 = (corr * dev_priv->ips.corr);
6214 6215 6216 6217

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

6218
	__i915_update_gfx_val(dev_priv);
6219

6220
	return dev_priv->ips.gfx_power + state2;
6221 6222
}

6223 6224 6225 6226
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6227
	if (INTEL_INFO(dev_priv)->gen != 5)
6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

6250
	spin_lock_irq(&mchdev_lock);
6251 6252 6253 6254
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6255 6256
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
6257 6258 6259 6260

	ret = chipset_val + graphics_val;

out_unlock:
6261
	spin_unlock_irq(&mchdev_lock);
6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6277
	spin_lock_irq(&mchdev_lock);
6278 6279 6280 6281 6282 6283
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6284 6285
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
6286 6287

out_unlock:
6288
	spin_unlock_irq(&mchdev_lock);
6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6305
	spin_lock_irq(&mchdev_lock);
6306 6307 6308 6309 6310 6311
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6312 6313
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
6314 6315

out_unlock:
6316
	spin_unlock_irq(&mchdev_lock);
6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
6330
	struct intel_engine_cs *engine;
6331 6332
	bool ret = false;

6333
	spin_lock_irq(&mchdev_lock);
6334 6335 6336 6337
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6338
	for_each_engine(engine, dev_priv)
6339
		ret |= !list_empty(&engine->request_list);
6340 6341

out_unlock:
6342
	spin_unlock_irq(&mchdev_lock);
6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6359
	spin_lock_irq(&mchdev_lock);
6360 6361 6362 6363 6364 6365
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6366
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6367

6368
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6369 6370 6371
		ret = false;

out_unlock:
6372
	spin_unlock_irq(&mchdev_lock);
6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6400 6401
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6402
	spin_lock_irq(&mchdev_lock);
6403
	i915_mch_dev = dev_priv;
6404
	spin_unlock_irq(&mchdev_lock);
6405 6406 6407 6408 6409 6410

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6411
	spin_lock_irq(&mchdev_lock);
6412
	i915_mch_dev = NULL;
6413
	spin_unlock_irq(&mchdev_lock);
6414
}
6415

6416
static void intel_init_emon(struct drm_i915_private *dev_priv)
6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6433
		I915_WRITE(PEW(i), 0);
6434
	for (i = 0; i < 3; i++)
6435
		I915_WRITE(DEW(i), 0);
6436 6437 6438

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6439
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6460
		I915_WRITE(PXW(i), val);
6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6476
		I915_WRITE(PXWL(i), 0);
6477 6478 6479 6480 6481 6482

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6483
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6484 6485
}

6486
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6487
{
6488 6489 6490 6491 6492 6493 6494 6495
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
6496

6497 6498 6499
	mutex_lock(&dev_priv->rps.hw_lock);

	/* Initialize RPS limits (for userspace) */
6500 6501 6502 6503
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
6504
	else if (INTEL_GEN(dev_priv) >= 6)
6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
	dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;

	dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
	dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		dev_priv->rps.min_freq_softlimit =
			max_t(int,
			      dev_priv->rps.efficient_freq,
			      intel_freq_opcode(dev_priv, 450));

6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
					 (dev_priv->rps.max_freq & 0xff) * 50,
					 (params & 0xff) * 50);
			dev_priv->rps.max_freq = params & 0xff;
		}
	}

6534 6535 6536
	/* Finally allow us to boost to max by default */
	dev_priv->rps.boost_freq = dev_priv->rps.max_freq;

6537
	mutex_unlock(&dev_priv->rps.hw_lock);
6538 6539

	intel_autoenable_gt_powersave(dev_priv);
6540 6541
}

6542
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6543
{
6544
	if (IS_VALLEYVIEW(dev_priv))
6545
		valleyview_cleanup_gt_powersave(dev_priv);
6546 6547 6548

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6549 6550
}

6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
		intel_runtime_pm_put(dev_priv);

	/* gen6_rps_idle() will be called later to disable interrupts */
}

6570 6571 6572 6573
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.enabled = true; /* force disabling */
	intel_disable_gt_powersave(dev_priv);
6574 6575

	gen6_reset_rps_interrupts(dev_priv);
6576 6577
}

6578
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6579
{
6580 6581
	if (!READ_ONCE(dev_priv->rps.enabled))
		return;
6582

6583
	mutex_lock(&dev_priv->rps.hw_lock);
6584

6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595
	if (INTEL_GEN(dev_priv) >= 9) {
		gen9_disable_rc6(dev_priv);
		gen9_disable_rps(dev_priv);
	} else if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_disable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_disable_rps(dev_priv);
	} else if (INTEL_GEN(dev_priv) >= 6) {
		gen6_disable_rps(dev_priv);
	}  else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_disable_drps(dev_priv);
6596
	}
6597 6598 6599

	dev_priv->rps.enabled = false;
	mutex_unlock(&dev_priv->rps.hw_lock);
6600 6601
}

6602
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6603
{
6604 6605 6606
	/* We shouldn't be disabling as we submit, so this should be less
	 * racy than it appears!
	 */
6607 6608
	if (READ_ONCE(dev_priv->rps.enabled))
		return;
6609

6610 6611 6612
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;
6613

6614
	mutex_lock(&dev_priv->rps.hw_lock);
6615 6616 6617 6618 6619

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
6620
	} else if (INTEL_GEN(dev_priv) >= 9) {
6621 6622 6623
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6624
			gen6_update_ring_freq(dev_priv);
6625 6626
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
6627
		gen6_update_ring_freq(dev_priv);
6628
	} else if (INTEL_GEN(dev_priv) >= 6) {
6629
		gen6_enable_rps(dev_priv);
6630
		gen6_update_ring_freq(dev_priv);
6631 6632 6633
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
6634
	}
6635 6636 6637 6638 6639 6640 6641

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6642
	dev_priv->rps.enabled = true;
6643 6644
	mutex_unlock(&dev_priv->rps.hw_lock);
}
I
Imre Deak 已提交
6645

6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710
static void __intel_autoenable_gt_powersave(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
	struct intel_engine_cs *rcs;
	struct drm_i915_gem_request *req;

	if (READ_ONCE(dev_priv->rps.enabled))
		goto out;

	rcs = &dev_priv->engine[RCS];
	if (rcs->last_context)
		goto out;

	if (!rcs->init_context)
		goto out;

	mutex_lock(&dev_priv->drm.struct_mutex);

	req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
	if (IS_ERR(req))
		goto unlock;

	if (!i915.enable_execlists && i915_switch_context(req) == 0)
		rcs->init_context(req);

	/* Mark the device busy, calling intel_enable_gt_powersave() */
	i915_add_request_no_flush(req);

unlock:
	mutex_unlock(&dev_priv->drm.struct_mutex);
out:
	intel_runtime_pm_put(dev_priv);
}

void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (READ_ONCE(dev_priv->rps.enabled))
		return;

	if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		mutex_lock(&dev_priv->drm.struct_mutex);
		intel_init_emon(dev_priv);
		mutex_unlock(&dev_priv->drm.struct_mutex);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
		 */
		if (queue_delayed_work(dev_priv->wq,
				       &dev_priv->rps.autoenable_work,
				       round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
	}
}

6711 6712
static void ibx_init_clock_gating(struct drm_device *dev)
{
6713
	struct drm_i915_private *dev_priv = to_i915(dev);
6714 6715 6716 6717 6718 6719 6720 6721 6722

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6723 6724
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
6725
	struct drm_i915_private *dev_priv = to_i915(dev);
6726
	enum pipe pipe;
6727

6728
	for_each_pipe(dev_priv, pipe) {
6729 6730 6731
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6732 6733 6734

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6735 6736 6737
	}
}

6738 6739
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
6740
	struct drm_i915_private *dev_priv = to_i915(dev);
6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6752
static void ironlake_init_clock_gating(struct drm_device *dev)
6753
{
6754
	struct drm_i915_private *dev_priv = to_i915(dev);
6755
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6756

6757 6758 6759 6760
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6761 6762 6763
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6781
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6782 6783 6784
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6785 6786

	ilk_init_lp_watermarks(dev);
6787 6788 6789 6790 6791 6792 6793 6794 6795

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
6796
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6797 6798 6799 6800 6801 6802 6803 6804
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6805 6806
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6807 6808 6809 6810 6811 6812
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6813

6814
	/* WaDisableRenderCachePipelinedFlush:ilk */
6815 6816
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6817

6818 6819 6820
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6821
	g4x_disable_trickle_feed(dev);
6822

6823 6824 6825 6826 6827
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
6828
	struct drm_i915_private *dev_priv = to_i915(dev);
6829
	int pipe;
6830
	uint32_t val;
6831 6832 6833 6834 6835 6836

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6837 6838 6839
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6840 6841
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6842 6843 6844
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
6845
	for_each_pipe(dev_priv, pipe) {
6846 6847 6848
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6849
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6850
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6851 6852 6853
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6854 6855
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
6856
	/* WADP0ClockGatingDisable */
6857
	for_each_pipe(dev_priv, pipe) {
6858 6859 6860
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6861 6862
}

6863 6864
static void gen6_check_mch_setup(struct drm_device *dev)
{
6865
	struct drm_i915_private *dev_priv = to_i915(dev);
6866 6867 6868
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
6869 6870 6871
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
6872 6873
}

6874
static void gen6_init_clock_gating(struct drm_device *dev)
6875
{
6876
	struct drm_i915_private *dev_priv = to_i915(dev);
6877
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6878

6879
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6880 6881 6882 6883 6884

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

6885
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6886 6887 6888
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

6889 6890 6891
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6892 6893 6894
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6895 6896 6897 6898
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6899 6900
	 */
	I915_WRITE(GEN6_GT_MODE,
6901
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6902

6903
	ilk_init_lp_watermarks(dev);
6904 6905

	I915_WRITE(CACHE_MODE_0,
6906
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
6922
	 *
6923 6924
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
6925 6926 6927 6928 6929
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

6930
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6931 6932
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6933

6934 6935 6936 6937 6938 6939 6940 6941
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

6942 6943 6944 6945 6946 6947 6948 6949
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
6950 6951
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
6952 6953 6954 6955 6956 6957 6958
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6959 6960 6961 6962
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6963

6964
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
6965

6966
	cpt_init_clock_gating(dev);
6967 6968

	gen6_check_mch_setup(dev);
6969 6970 6971 6972 6973 6974
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

6975
	/*
6976
	 * WaVSThreadDispatchOverride:ivb,vlv
6977 6978 6979 6980
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
6981 6982 6983 6984 6985 6986 6987 6988
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

6989 6990
static void lpt_init_clock_gating(struct drm_device *dev)
{
6991
	struct drm_i915_private *dev_priv = to_i915(dev);
6992 6993 6994 6995 6996

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
6997
	if (HAS_PCH_LPT_LP(dev))
6998 6999 7000
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
7001 7002

	/* WADPOClockGatingDisable:hsw */
7003 7004
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7005
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7006 7007
}

7008 7009
static void lpt_suspend_hw(struct drm_device *dev)
{
7010
	struct drm_i915_private *dev_priv = to_i915(dev);
7011

7012
	if (HAS_PCH_LPT_LP(dev)) {
7013 7014 7015 7016 7017 7018 7019
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

7043 7044
static void kabylake_init_clock_gating(struct drm_device *dev)
{
7045
	struct drm_i915_private *dev_priv = to_i915(dev);
7046

7047
	gen9_init_clock_gating(dev);
7048 7049 7050 7051 7052

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7053 7054 7055 7056 7057

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7058 7059 7060 7061

	/* WaFbcNukeOnHostModify:kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7062 7063
}

7064 7065
static void skylake_init_clock_gating(struct drm_device *dev)
{
7066
	struct drm_i915_private *dev_priv = to_i915(dev);
7067

7068
	gen9_init_clock_gating(dev);
7069 7070 7071 7072

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
7073 7074 7075 7076

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7077 7078
}

7079
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
7080
{
7081
	struct drm_i915_private *dev_priv = to_i915(dev);
7082
	enum pipe pipe;
B
Ben Widawsky 已提交
7083

7084
	ilk_init_lp_watermarks(dev);
7085

7086
	/* WaSwitchSolVfFArbitrationPriority:bdw */
7087
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7088

7089
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7090 7091 7092
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

7093
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7094
	for_each_pipe(dev_priv, pipe) {
7095
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7096
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7097
			   BDW_DPRS_MASK_VBLANK_SRD);
7098
	}
7099

7100 7101 7102 7103 7104
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7105

7106 7107
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7108 7109 7110 7111

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7112

7113 7114
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7115

7116 7117 7118 7119 7120 7121 7122
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

7123 7124 7125 7126
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7127
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
7128 7129
}

7130 7131
static void haswell_init_clock_gating(struct drm_device *dev)
{
7132
	struct drm_i915_private *dev_priv = to_i915(dev);
7133

7134
	ilk_init_lp_watermarks(dev);
7135

7136 7137 7138 7139 7140
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

7141
	/* This is required by WaCatErrorRejectionIssue:hsw */
7142 7143 7144 7145
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7146 7147 7148
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7149

7150 7151 7152
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7153 7154 7155 7156
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

7157
	/* WaDisable4x2SubspanOptimization:hsw */
7158 7159
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7160

7161 7162 7163
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7164 7165 7166 7167
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7168 7169
	 */
	I915_WRITE(GEN7_GT_MODE,
7170
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7171

7172 7173 7174 7175
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

7176
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7177 7178
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7179 7180 7181
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7182

7183
	lpt_init_clock_gating(dev);
7184 7185
}

7186
static void ivybridge_init_clock_gating(struct drm_device *dev)
7187
{
7188
	struct drm_i915_private *dev_priv = to_i915(dev);
7189
	uint32_t snpcr;
7190

7191
	ilk_init_lp_watermarks(dev);
7192

7193
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7194

7195
	/* WaDisableEarlyCull:ivb */
7196 7197 7198
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7199
	/* WaDisableBackToBackFlipFix:ivb */
7200 7201 7202 7203
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7204
	/* WaDisablePSDDualDispatchEnable:ivb */
7205 7206 7207 7208
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

7209 7210 7211
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7212
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7213 7214 7215
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

7216
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7217 7218 7219
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7220 7221 7222 7223
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7224 7225 7226 7227
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7228 7229
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7230
	}
7231

7232
	/* WaForceL3Serialization:ivb */
7233 7234 7235
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7236
	/*
7237
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7238
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7239 7240
	 */
	I915_WRITE(GEN6_UCGCTL2,
7241
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7242

7243
	/* This is required by WaCatErrorRejectionIssue:ivb */
7244 7245 7246 7247
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7248
	g4x_disable_trickle_feed(dev);
7249 7250

	gen7_setup_fixed_func_scheduler(dev_priv);
7251

7252 7253 7254 7255 7256
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7257

7258
	/* WaDisable4x2SubspanOptimization:ivb */
7259 7260
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7261

7262 7263 7264
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7265 7266 7267 7268
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7269 7270
	 */
	I915_WRITE(GEN7_GT_MODE,
7271
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7272

7273 7274 7275 7276
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7277

7278 7279
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
7280 7281

	gen6_check_mch_setup(dev);
7282 7283
}

7284
static void valleyview_init_clock_gating(struct drm_device *dev)
7285
{
7286
	struct drm_i915_private *dev_priv = to_i915(dev);
7287

7288
	/* WaDisableEarlyCull:vlv */
7289 7290 7291
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7292
	/* WaDisableBackToBackFlipFix:vlv */
7293 7294 7295 7296
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7297
	/* WaPsdDispatchEnable:vlv */
7298
	/* WaDisablePSDDualDispatchEnable:vlv */
7299
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7300 7301
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7302

7303 7304 7305
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7306
	/* WaForceL3Serialization:vlv */
7307 7308 7309
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7310
	/* WaDisableDopClockGating:vlv */
7311 7312 7313
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7314
	/* This is required by WaCatErrorRejectionIssue:vlv */
7315 7316 7317 7318
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7319 7320
	gen7_setup_fixed_func_scheduler(dev_priv);

7321
	/*
7322
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7323
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7324 7325
	 */
	I915_WRITE(GEN6_UCGCTL2,
7326
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7327

7328 7329 7330 7331 7332
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7333

7334 7335 7336 7337
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7338 7339
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7340

7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7352 7353 7354 7355 7356 7357
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7358
	/*
7359
	 * WaDisableVLVClockGating_VBIIssue:vlv
7360 7361 7362
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7363
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7364 7365
}

7366 7367
static void cherryview_init_clock_gating(struct drm_device *dev)
{
7368
	struct drm_i915_private *dev_priv = to_i915(dev);
7369

7370 7371 7372 7373 7374
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7375 7376 7377 7378

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7379 7380 7381 7382

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7383 7384 7385 7386

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7387

7388 7389 7390 7391 7392 7393 7394
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

7395 7396 7397 7398 7399
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7400 7401
}

7402
static void g4x_init_clock_gating(struct drm_device *dev)
7403
{
7404
	struct drm_i915_private *dev_priv = to_i915(dev);
7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7418 7419 7420 7421

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7422

7423 7424 7425
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7426
	g4x_disable_trickle_feed(dev);
7427 7428
}

7429
static void crestline_init_clock_gating(struct drm_device *dev)
7430
{
7431
	struct drm_i915_private *dev_priv = to_i915(dev);
7432 7433 7434 7435 7436 7437

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
7438 7439
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7440 7441 7442

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7443 7444
}

7445
static void broadwater_init_clock_gating(struct drm_device *dev)
7446
{
7447
	struct drm_i915_private *dev_priv = to_i915(dev);
7448 7449 7450 7451 7452 7453 7454

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7455 7456
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7457 7458 7459

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7460 7461
}

7462
static void gen3_init_clock_gating(struct drm_device *dev)
7463
{
7464
	struct drm_i915_private *dev_priv = to_i915(dev);
7465 7466 7467 7468 7469
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7470 7471 7472

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7473 7474 7475

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7476 7477

	/* interrupts should cause a wake up from C3 */
7478
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7479 7480 7481

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7482 7483 7484

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7485 7486
}

7487
static void i85x_init_clock_gating(struct drm_device *dev)
7488
{
7489
	struct drm_i915_private *dev_priv = to_i915(dev);
7490 7491

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7492 7493 7494 7495

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7496 7497 7498

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7499 7500
}

7501
static void i830_init_clock_gating(struct drm_device *dev)
7502
{
7503
	struct drm_i915_private *dev_priv = to_i915(dev);
7504 7505

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7506 7507 7508 7509

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7510 7511 7512 7513
}

void intel_init_clock_gating(struct drm_device *dev)
{
7514
	struct drm_i915_private *dev_priv = to_i915(dev);
7515

7516
	dev_priv->display.init_clock_gating(dev);
7517 7518
}

7519 7520 7521 7522 7523 7524
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541
static void nop_init_clock_gating(struct drm_device *dev)
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
7542
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7543
	else if (IS_KABYLAKE(dev_priv))
7544
		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578
	else if (IS_BROXTON(dev_priv))
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	else if (IS_CRESTLINE(dev_priv))
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
	else if (IS_BROADWATER(dev_priv))
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7579 7580 7581
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
7582
	struct drm_i915_private *dev_priv = to_i915(dev);
7583

7584
	intel_fbc_init(dev_priv);
7585

7586 7587 7588 7589 7590 7591
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

7592
	/* For FIFO watermark updates */
7593
	if (INTEL_INFO(dev)->gen >= 9) {
7594
		skl_setup_wm_latency(dev);
7595
		dev_priv->display.update_wm = skl_update_wm;
7596
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7597
	} else if (HAS_PCH_SPLIT(dev)) {
7598
		ilk_setup_wm_latency(dev);
7599

7600 7601 7602 7603
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7604
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7605 7606 7607 7608 7609 7610
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7611 7612 7613 7614
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
7615
	} else if (IS_CHERRYVIEW(dev)) {
7616 7617
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7618
	} else if (IS_VALLEYVIEW(dev)) {
7619 7620
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7632
			intel_set_memory_cxsr(dev_priv, false);
7633 7634 7635 7636 7637 7638 7639 7640 7641 7642
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7643 7644 7645
	} else if (IS_GEN2(dev)) {
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
7646
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7647 7648
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7649
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7650 7651 7652
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7653 7654 7655
	}
}

7656
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7657
{
7658
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7659

7660 7661 7662 7663 7664 7665
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7666 7667 7668 7669
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

7670 7671 7672
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7673

7674 7675 7676
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7677 7678 7679 7680
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7681 7682
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7683 7684 7685 7686

	return 0;
}

7687 7688
int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
			       u32 mbox, u32 val)
B
Ben Widawsky 已提交
7689
{
7690
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7691

7692 7693 7694 7695 7696 7697
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7698 7699 7700 7701
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

7702 7703
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7704

7705 7706 7707
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7708 7709 7710 7711
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7712
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7713 7714 7715

	return 0;
}
7716

7717 7718
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7719 7720 7721 7722 7723
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7724 7725
}

7726
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7727
{
7728
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7729 7730
}

7731
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7732
{
7733 7734 7735 7736 7737
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7738 7739
}

7740
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7741
{
7742
	/* CHV needs even values */
7743
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7744 7745
}

7746
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7747
{
7748
	if (IS_GEN9(dev_priv))
7749 7750
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
7751
	else if (IS_CHERRYVIEW(dev_priv))
7752
		return chv_gpu_freq(dev_priv, val);
7753
	else if (IS_VALLEYVIEW(dev_priv))
7754 7755 7756
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
7757 7758
}

7759 7760
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
7761
	if (IS_GEN9(dev_priv))
7762 7763
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
7764
	else if (IS_CHERRYVIEW(dev_priv))
7765
		return chv_freq_opcode(dev_priv, val);
7766
	else if (IS_VALLEYVIEW(dev_priv))
7767 7768
		return byt_freq_opcode(dev_priv, val);
	else
7769
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7770
}
7771

7772 7773
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
7774
	struct drm_i915_gem_request *req;
7775 7776 7777 7778 7779
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
7780
	struct drm_i915_gem_request *req = boost->req;
7781

7782
	if (!i915_gem_request_completed(req))
7783
		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
7784

7785
	i915_gem_request_put(req);
7786 7787 7788
	kfree(boost);
}

7789
void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
7790 7791 7792
{
	struct request_boost *boost;

7793
	if (req == NULL || INTEL_GEN(req->i915) < 6)
7794 7795
		return;

7796
	if (i915_gem_request_completed(req))
7797 7798
		return;

7799 7800 7801 7802
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

7803
	boost->req = i915_gem_request_get(req);
7804 7805

	INIT_WORK(&boost->work, __intel_rps_boost_work);
7806
	queue_work(req->i915->wq, &boost->work);
7807 7808
}

D
Daniel Vetter 已提交
7809
void intel_pm_setup(struct drm_device *dev)
7810
{
7811
	struct drm_i915_private *dev_priv = to_i915(dev);
7812

D
Daniel Vetter 已提交
7813
	mutex_init(&dev_priv->rps.hw_lock);
7814
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
7815

7816 7817
	INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
			  __intel_autoenable_gt_powersave);
7818
	INIT_LIST_HEAD(&dev_priv->rps.clients);
7819

7820
	dev_priv->pm.suspended = false;
7821
	atomic_set(&dev_priv->pm.wakeref_count, 0);
7822
	atomic_set(&dev_priv->pm.atomic_seq, 0);
7823
}