inode.c 139.6 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
18
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 20 21 22
 */

#include <linux/fs.h>
#include <linux/time.h>
23
#include <linux/jbd2.h>
24 25 26 27 28 29
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
30
#include <linux/pagevec.h>
31
#include <linux/mpage.h>
32
#include <linux/namei.h>
33 34
#include <linux/uio.h>
#include <linux/bio.h>
35
#include <linux/workqueue.h>
36
#include <linux/kernel.h>
37
#include <linux/printk.h>
38
#include <linux/slab.h>
39
#include <linux/ratelimit.h>
40

41
#include "ext4_jbd2.h"
42 43
#include "xattr.h"
#include "acl.h"
44
#include "truncate.h"
45

46 47
#include <trace/events/ext4.h>

48 49
#define MPAGE_DA_EXTENT_TAIL 0x01

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
			      struct ext4_inode_info *ei)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	__u16 csum_lo;
	__u16 csum_hi = 0;
	__u32 csum;

	csum_lo = raw->i_checksum_lo;
	raw->i_checksum_lo = 0;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
		csum_hi = raw->i_checksum_hi;
		raw->i_checksum_hi = 0;
	}

	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
			   EXT4_INODE_SIZE(inode->i_sb));

	raw->i_checksum_lo = csum_lo;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = csum_hi;

	return csum;
}

static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
				  struct ext4_inode_info *ei)
{
	__u32 provided, calculated;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return 1;

	provided = le16_to_cpu(raw->i_checksum_lo);
	calculated = ext4_inode_csum(inode, raw, ei);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
	else
		calculated &= 0xFFFF;

	return provided == calculated;
}

static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
				struct ext4_inode_info *ei)
{
	__u32 csum;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return;

	csum = ext4_inode_csum(inode, raw, ei);
	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
}

117 118 119
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
120
	trace_ext4_begin_ordered_truncate(inode, new_size);
121 122 123 124 125 126 127 128 129 130 131
	/*
	 * If jinode is zero, then we never opened the file for
	 * writing, so there's no need to call
	 * jbd2_journal_begin_ordered_truncate() since there's no
	 * outstanding writes we need to flush.
	 */
	if (!EXT4_I(inode)->jinode)
		return 0;
	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
						   EXT4_I(inode)->jinode,
						   new_size);
132 133
}

134
static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 136 137 138 139 140
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create);
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
E
Eric Sandeen 已提交
141 142 143
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags);
144

145 146 147
/*
 * Test whether an inode is a fast symlink.
 */
148
static int ext4_inode_is_fast_symlink(struct inode *inode)
149
{
150
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 152 153 154 155 156 157 158 159 160
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
161
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
162
				 int nblocks)
163
{
164 165 166
	int ret;

	/*
167
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
168 169 170 171
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
172
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
173
	jbd_debug(2, "restarting handle %p\n", handle);
174
	up_write(&EXT4_I(inode)->i_data_sem);
175
	ret = ext4_journal_restart(handle, nblocks);
176
	down_write(&EXT4_I(inode)->i_data_sem);
177
	ext4_discard_preallocations(inode);
178 179

	return ret;
180 181 182 183 184
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
185
void ext4_evict_inode(struct inode *inode)
186 187
{
	handle_t *handle;
188
	int err;
189

190
	trace_ext4_evict_inode(inode);
191 192 193

	ext4_ioend_wait(inode);

A
Al Viro 已提交
194
	if (inode->i_nlink) {
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
		/*
		 * When journalling data dirty buffers are tracked only in the
		 * journal. So although mm thinks everything is clean and
		 * ready for reaping the inode might still have some pages to
		 * write in the running transaction or waiting to be
		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
		 * (via truncate_inode_pages()) to discard these buffers can
		 * cause data loss. Also even if we did not discard these
		 * buffers, we would have no way to find them after the inode
		 * is reaped and thus user could see stale data if he tries to
		 * read them before the transaction is checkpointed. So be
		 * careful and force everything to disk here... We use
		 * ei->i_datasync_tid to store the newest transaction
		 * containing inode's data.
		 *
		 * Note that directories do not have this problem because they
		 * don't use page cache.
		 */
		if (ext4_should_journal_data(inode) &&
		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;

			jbd2_log_start_commit(journal, commit_tid);
			jbd2_log_wait_commit(journal, commit_tid);
			filemap_write_and_wait(&inode->i_data);
		}
A
Al Viro 已提交
222 223 224 225
		truncate_inode_pages(&inode->i_data, 0);
		goto no_delete;
	}

226
	if (!is_bad_inode(inode))
227
		dquot_initialize(inode);
228

229 230
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
231 232 233 234 235
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

236 237 238 239 240
	/*
	 * Protect us against freezing - iput() caller didn't have to have any
	 * protection against it
	 */
	sb_start_intwrite(inode->i_sb);
241
	handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
242
	if (IS_ERR(handle)) {
243
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
244 245 246 247 248
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
249
		ext4_orphan_del(NULL, inode);
250
		sb_end_intwrite(inode->i_sb);
251 252 253 254
		goto no_delete;
	}

	if (IS_SYNC(inode))
255
		ext4_handle_sync(handle);
256
	inode->i_size = 0;
257 258
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
259
		ext4_warning(inode->i_sb,
260 261 262
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
263
	if (inode->i_blocks)
264
		ext4_truncate(inode);
265 266 267 268 269 270 271

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
272
	if (!ext4_handle_has_enough_credits(handle, 3)) {
273 274 275 276
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
277
			ext4_warning(inode->i_sb,
278 279 280
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
281
			ext4_orphan_del(NULL, inode);
282
			sb_end_intwrite(inode->i_sb);
283 284 285 286
			goto no_delete;
		}
	}

287
	/*
288
	 * Kill off the orphan record which ext4_truncate created.
289
	 * AKPM: I think this can be inside the above `if'.
290
	 * Note that ext4_orphan_del() has to be able to cope with the
291
	 * deletion of a non-existent orphan - this is because we don't
292
	 * know if ext4_truncate() actually created an orphan record.
293 294
	 * (Well, we could do this if we need to, but heck - it works)
	 */
295 296
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
297 298 299 300 301 302 303 304

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
305
	if (ext4_mark_inode_dirty(handle, inode))
306
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
307
		ext4_clear_inode(inode);
308
	else
309 310
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
311
	sb_end_intwrite(inode->i_sb);
312 313
	return;
no_delete:
A
Al Viro 已提交
314
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
315 316
}

317 318
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
319
{
320
	return &EXT4_I(inode)->i_reserved_quota;
321
}
322
#endif
323

324 325
/*
 * Calculate the number of metadata blocks need to reserve
326
 * to allocate a block located at @lblock
327
 */
328
static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
329
{
330
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
331
		return ext4_ext_calc_metadata_amount(inode, lblock);
332

333
	return ext4_ind_calc_metadata_amount(inode, lblock);
334 335
}

336 337 338 339
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
340 341
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
342 343
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
344 345 346
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
347
	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
348 349
	if (unlikely(used > ei->i_reserved_data_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
350
			 "with only %d reserved data blocks",
351 352 353 354 355
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
356

357 358 359 360 361 362 363 364 365
	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
			 "with only %d reserved metadata blocks\n", __func__,
			 inode->i_ino, ei->i_allocated_meta_blocks,
			 ei->i_reserved_meta_blocks);
		WARN_ON(1);
		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
	}

366 367 368
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
369
	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
370
			   used + ei->i_allocated_meta_blocks);
371
	ei->i_allocated_meta_blocks = 0;
372

373 374 375 376 377 378
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
379
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
380
				   ei->i_reserved_meta_blocks);
381
		ei->i_reserved_meta_blocks = 0;
382
		ei->i_da_metadata_calc_len = 0;
383
	}
384
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
385

386 387
	/* Update quota subsystem for data blocks */
	if (quota_claim)
388
		dquot_claim_block(inode, EXT4_C2B(sbi, used));
389
	else {
390 391 392
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
393
		 * not re-claim the quota for fallocated blocks.
394
		 */
395
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
396
	}
397 398 399 400 401 402

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
403 404
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
405
		ext4_discard_preallocations(inode);
406 407
}

408
static int __check_block_validity(struct inode *inode, const char *func,
409 410
				unsigned int line,
				struct ext4_map_blocks *map)
411
{
412 413
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
414 415 416 417
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
418 419 420 421 422
		return -EIO;
	}
	return 0;
}

423
#define check_block_validity(inode, map)	\
424
	__check_block_validity((inode), __func__, __LINE__, (map))
425

426
/*
427 428
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
462 463 464 465 466 467 468 469 470
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
471 472 473 474 475
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
476 477
			if (num >= max_pages) {
				done = 1;
478
				break;
479
			}
480 481 482 483 484 485
		}
		pagevec_release(&pvec);
	}
	return num;
}

486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
/*
 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
 */
static void set_buffers_da_mapped(struct inode *inode,
				   struct ext4_map_blocks *map)
{
	struct address_space *mapping = inode->i_mapping;
	struct pagevec pvec;
	int i, nr_pages;
	pgoff_t index, end;

	index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end = (map->m_lblk + map->m_len - 1) >>
		(PAGE_CACHE_SHIFT - inode->i_blkbits);

	pagevec_init(&pvec, 0);
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index,
					  min(end - index + 1,
					      (pgoff_t)PAGEVEC_SIZE));
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page))
				break;

			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					set_buffer_da_mapped(bh);
					bh = bh->b_this_page;
				} while (bh != head);
			}
			index++;
		}
		pagevec_release(&pvec);
	}
}

529
/*
530
 * The ext4_map_blocks() function tries to look up the requested blocks,
531
 * and returns if the blocks are already mapped.
532 533 534 535 536
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
537 538
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
539 540 541 542 543 544 545 546
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
547
 * that case, buffer head is unmapped
548 549 550
 *
 * It returns the error in case of allocation failure.
 */
551 552
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
553 554
{
	int retval;
555

556 557 558 559
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
560
	/*
561 562
	 * Try to see if we can get the block without requesting a new
	 * file system block.
563
	 */
564 565
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		down_read((&EXT4_I(inode)->i_data_sem));
566
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
567 568
		retval = ext4_ext_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
569
	} else {
570 571
		retval = ext4_ind_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
572
	}
573 574
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		up_read((&EXT4_I(inode)->i_data_sem));
575

576
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
577
		int ret = check_block_validity(inode, map);
578 579 580 581
		if (ret != 0)
			return ret;
	}

582
	/* If it is only a block(s) look up */
583
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
584 585 586 587 588 589
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
590
	 * ext4_ext_get_block() returns the create = 0
591 592
	 * with buffer head unmapped.
	 */
593
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
594 595
		return retval;

596 597 598 599 600 601 602 603 604 605
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
606
	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
607

608
	/*
609 610 611 612
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
613 614
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
615 616 617 618 619 620 621

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
622
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
623
		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
624 625 626 627
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
628
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
629
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
630
	} else {
631
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
632

633
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
634 635 636 637 638
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
639
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
640
		}
641

642 643 644 645 646 647 648
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
649
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
650 651
			ext4_da_update_reserve_space(inode, retval, 1);
	}
652
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
653
		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
654

655 656 657 658 659 660 661 662
		/* If we have successfully mapped the delayed allocated blocks,
		 * set the BH_Da_Mapped bit on them. Its important to do this
		 * under the protection of i_data_sem.
		 */
		if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
			set_buffers_da_mapped(inode, map);
	}

663
	up_write((&EXT4_I(inode)->i_data_sem));
664
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
665
		int ret = check_block_validity(inode, map);
666 667 668
		if (ret != 0)
			return ret;
	}
669 670 671
	return retval;
}

672 673 674
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

675 676
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
677
{
678
	handle_t *handle = ext4_journal_current_handle();
679
	struct ext4_map_blocks map;
J
Jan Kara 已提交
680
	int ret = 0, started = 0;
681
	int dio_credits;
682

683 684 685
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

686
	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
J
Jan Kara 已提交
687
		/* Direct IO write... */
688 689 690
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
691
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
692
		if (IS_ERR(handle)) {
693
			ret = PTR_ERR(handle);
694
			return ret;
695
		}
J
Jan Kara 已提交
696
		started = 1;
697 698
	}

699
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
700
	if (ret > 0) {
701 702 703
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
704
		ret = 0;
705
	}
J
Jan Kara 已提交
706 707
	if (started)
		ext4_journal_stop(handle);
708 709 710
	return ret;
}

711 712 713 714 715 716 717
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

718 719 720
/*
 * `handle' can be NULL if create is zero
 */
721
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
722
				ext4_lblk_t block, int create, int *errp)
723
{
724 725
	struct ext4_map_blocks map;
	struct buffer_head *bh;
726 727 728 729
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

730 731 732 733
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
734

735 736 737
	/* ensure we send some value back into *errp */
	*errp = 0;

738 739 740 741 742 743 744 745 746
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
	if (!bh) {
		*errp = -EIO;
		return NULL;
747
	}
748 749 750
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
751

752 753 754 755 756 757 758 759 760 761 762 763 764
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
765
		}
766 767 768 769 770 771 772
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
773
	}
774 775 776 777 778 779
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
780 781
}

782
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
783
			       ext4_lblk_t block, int create, int *err)
784
{
785
	struct buffer_head *bh;
786

787
	bh = ext4_getblk(handle, inode, block, create, err);
788 789 790 791
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
792
	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
793 794 795 796 797 798 799 800
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

801 802 803 804 805 806 807
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
808 809 810 811 812 813 814
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

815 816
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
817
	     block_start = block_end, bh = next) {
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
835
 * close off a transaction and start a new one between the ext4_get_block()
836
 * and the commit_write().  So doing the jbd2_journal_start at the start of
837 838
 * prepare_write() is the right place.
 *
839 840
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
841 842 843 844
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
845
 * By accident, ext4 can be reentered when a transaction is open via
846 847 848 849 850 851
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
852
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
853 854 855 856 857
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
858
				       struct buffer_head *bh)
859
{
860 861 862
	int dirty = buffer_dirty(bh);
	int ret;

863 864
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
865
	/*
C
Christoph Hellwig 已提交
866
	 * __block_write_begin() could have dirtied some buffers. Clean
867 868
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
C
Christoph Hellwig 已提交
869
	 * by __block_write_begin() isn't a real problem here as we clear
870 871 872 873 874 875 876 877 878
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
879 880
}

881 882
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
883 884
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
885
static int ext4_write_begin(struct file *file, struct address_space *mapping,
886 887
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
888
{
889
	struct inode *inode = mapping->host;
890
	int ret, needed_blocks;
891 892
	handle_t *handle;
	int retries = 0;
893
	struct page *page;
894
	pgoff_t index;
895
	unsigned from, to;
N
Nick Piggin 已提交
896

897
	trace_ext4_write_begin(inode, pos, len, flags);
898 899 900 901 902
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
903
	index = pos >> PAGE_CACHE_SHIFT;
904 905
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
906 907

retry:
908 909 910 911
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
912
	}
913

914 915 916 917
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

918
	page = grab_cache_page_write_begin(mapping, index, flags);
919 920 921 922 923 924 925
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

926
	if (ext4_should_dioread_nolock(inode))
927
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
928
	else
929
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
930 931

	if (!ret && ext4_should_journal_data(inode)) {
932 933 934
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
935 936

	if (ret) {
937 938
		unlock_page(page);
		page_cache_release(page);
939
		/*
940
		 * __block_write_begin may have instantiated a few blocks
941 942
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
943 944 945
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
946
		 */
947
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
948 949 950 951
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
952
			ext4_truncate_failed_write(inode);
953
			/*
954
			 * If truncate failed early the inode might
955 956 957 958 959 960 961
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
962 963
	}

964
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
965
		goto retry;
966
out:
967 968 969
	return ret;
}

N
Nick Piggin 已提交
970 971
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
972 973 974 975
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
976
	return ext4_handle_dirty_metadata(handle, NULL, bh);
977 978
}

979
static int ext4_generic_write_end(struct file *file,
980 981 982
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1025 1026 1027 1028
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1029
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1030 1031
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1032
static int ext4_ordered_write_end(struct file *file,
1033 1034 1035
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1036
{
1037
	handle_t *handle = ext4_journal_current_handle();
1038
	struct inode *inode = mapping->host;
1039 1040
	int ret = 0, ret2;

1041
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1042
	ret = ext4_jbd2_file_inode(handle, inode);
1043 1044

	if (ret == 0) {
1045
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1046
							page, fsdata);
1047
		copied = ret2;
1048
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1049 1050 1051 1052 1053
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1054 1055
		if (ret2 < 0)
			ret = ret2;
1056 1057 1058
	} else {
		unlock_page(page);
		page_cache_release(page);
1059
	}
1060

1061
	ret2 = ext4_journal_stop(handle);
1062 1063
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1064

1065
	if (pos + len > inode->i_size) {
1066
		ext4_truncate_failed_write(inode);
1067
		/*
1068
		 * If truncate failed early the inode might still be
1069 1070 1071 1072 1073 1074 1075 1076
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1077
	return ret ? ret : copied;
1078 1079
}

N
Nick Piggin 已提交
1080
static int ext4_writeback_write_end(struct file *file,
1081 1082 1083
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1084
{
1085
	handle_t *handle = ext4_journal_current_handle();
1086
	struct inode *inode = mapping->host;
1087 1088
	int ret = 0, ret2;

1089
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1090
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1091
							page, fsdata);
1092
	copied = ret2;
1093
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1094 1095 1096 1097 1098 1099
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1100 1101
	if (ret2 < 0)
		ret = ret2;
1102

1103
	ret2 = ext4_journal_stop(handle);
1104 1105
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1106

1107
	if (pos + len > inode->i_size) {
1108
		ext4_truncate_failed_write(inode);
1109
		/*
1110
		 * If truncate failed early the inode might still be
1111 1112 1113 1114 1115 1116 1117
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1118
	return ret ? ret : copied;
1119 1120
}

N
Nick Piggin 已提交
1121
static int ext4_journalled_write_end(struct file *file,
1122 1123 1124
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1125
{
1126
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1127
	struct inode *inode = mapping->host;
1128 1129
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1130
	unsigned from, to;
1131
	loff_t new_i_size;
1132

1133
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1134 1135 1136
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

1137 1138
	BUG_ON(!ext4_handle_valid(handle));

N
Nick Piggin 已提交
1139 1140 1141 1142 1143
	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1144 1145

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1146
				to, &partial, write_end_fn);
1147 1148
	if (!partial)
		SetPageUptodate(page);
1149 1150
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1151
		i_size_write(inode, pos+copied);
1152
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1153
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1154 1155
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1156
		ret2 = ext4_mark_inode_dirty(handle, inode);
1157 1158 1159
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1160

1161
	unlock_page(page);
1162
	page_cache_release(page);
1163
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1164 1165 1166 1167 1168 1169
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1170
	ret2 = ext4_journal_stop(handle);
1171 1172
	if (!ret)
		ret = ret2;
1173
	if (pos + len > inode->i_size) {
1174
		ext4_truncate_failed_write(inode);
1175
		/*
1176
		 * If truncate failed early the inode might still be
1177 1178 1179 1180 1181 1182
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1183 1184

	return ret ? ret : copied;
1185
}
1186

1187
/*
1188
 * Reserve a single cluster located at lblock
1189
 */
1190
static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1191
{
A
Aneesh Kumar K.V 已提交
1192
	int retries = 0;
1193
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1194
	struct ext4_inode_info *ei = EXT4_I(inode);
1195
	unsigned int md_needed;
1196
	int ret;
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
	ext4_lblk_t save_last_lblock;
	int save_len;

	/*
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
	 */
	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
	if (ret)
		return ret;
1208 1209 1210 1211 1212 1213

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1214
repeat:
1215
	spin_lock(&ei->i_block_reservation_lock);
1216 1217 1218 1219 1220 1221
	/*
	 * ext4_calc_metadata_amount() has side effects, which we have
	 * to be prepared undo if we fail to claim space.
	 */
	save_len = ei->i_da_metadata_calc_len;
	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1222 1223
	md_needed = EXT4_NUM_B2C(sbi,
				 ext4_calc_metadata_amount(inode, lblock));
1224
	trace_ext4_da_reserve_space(inode, md_needed);
1225

1226 1227 1228 1229
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1230
	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1231 1232 1233
		ei->i_da_metadata_calc_len = save_len;
		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
		spin_unlock(&ei->i_block_reservation_lock);
A
Aneesh Kumar K.V 已提交
1234 1235 1236 1237
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1238
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1239 1240
		return -ENOSPC;
	}
1241
	ei->i_reserved_data_blocks++;
1242 1243
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1244

1245 1246 1247
	return 0;       /* success */
}

1248
static void ext4_da_release_space(struct inode *inode, int to_free)
1249 1250
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1251
	struct ext4_inode_info *ei = EXT4_I(inode);
1252

1253 1254 1255
	if (!to_free)
		return;		/* Nothing to release, exit */

1256
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1257

L
Li Zefan 已提交
1258
	trace_ext4_da_release_space(inode, to_free);
1259
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1260
		/*
1261 1262 1263 1264
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1265
		 */
1266 1267
		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
			 "ino %lu, to_free %d with only %d reserved "
1268
			 "data blocks", inode->i_ino, to_free,
1269 1270 1271
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1272
	}
1273
	ei->i_reserved_data_blocks -= to_free;
1274

1275 1276 1277 1278 1279
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
1280 1281
		 * Note that in case of bigalloc, i_reserved_meta_blocks,
		 * i_reserved_data_blocks, etc. refer to number of clusters.
1282
		 */
1283
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1284
				   ei->i_reserved_meta_blocks);
1285
		ei->i_reserved_meta_blocks = 0;
1286
		ei->i_da_metadata_calc_len = 0;
1287
	}
1288

1289
	/* update fs dirty data blocks counter */
1290
	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1291 1292

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1293

1294
	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1295 1296 1297
}

static void ext4_da_page_release_reservation(struct page *page,
1298
					     unsigned long offset)
1299 1300 1301 1302
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;
1303 1304 1305
	struct inode *inode = page->mapping->host;
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int num_clusters;
1306 1307 1308 1309 1310 1311 1312 1313 1314

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
1315
			clear_buffer_da_mapped(bh);
1316 1317 1318
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332

	/* If we have released all the blocks belonging to a cluster, then we
	 * need to release the reserved space for that cluster. */
	num_clusters = EXT4_NUM_B2C(sbi, to_release);
	while (num_clusters > 0) {
		ext4_fsblk_t lblk;
		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
			((num_clusters - 1) << sbi->s_cluster_bits);
		if (sbi->s_cluster_ratio == 1 ||
		    !ext4_find_delalloc_cluster(inode, lblk, 1))
			ext4_da_release_space(inode, 1);

		num_clusters--;
	}
1333
}
1334

1335 1336 1337 1338 1339 1340
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1341
 * them with writepage() call back
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
1352 1353
static int mpage_da_submit_io(struct mpage_da_data *mpd,
			      struct ext4_map_blocks *map)
1354
{
1355 1356 1357 1358 1359
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1360
	loff_t size = i_size_read(inode);
1361 1362
	unsigned int len, block_start;
	struct buffer_head *bh, *page_bufs = NULL;
1363
	int journal_data = ext4_should_journal_data(inode);
1364
	sector_t pblock = 0, cur_logical = 0;
1365
	struct ext4_io_submit io_submit;
1366 1367

	BUG_ON(mpd->next_page <= mpd->first_page);
1368
	memset(&io_submit, 0, sizeof(io_submit));
1369 1370 1371
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1372
	 * If we look at mpd->b_blocknr we would only be looking
1373 1374
	 * at the currently mapped buffer_heads.
	 */
1375 1376 1377
	index = mpd->first_page;
	end = mpd->next_page - 1;

1378
	pagevec_init(&pvec, 0);
1379
	while (index <= end) {
1380
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1381 1382 1383
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
1384
			int commit_write = 0, skip_page = 0;
1385 1386
			struct page *page = pvec.pages[i];

1387 1388 1389
			index = page->index;
			if (index > end)
				break;
1390 1391 1392 1393 1394

			if (index == size >> PAGE_CACHE_SHIFT)
				len = size & ~PAGE_CACHE_MASK;
			else
				len = PAGE_CACHE_SIZE;
1395 1396 1397 1398 1399 1400
			if (map) {
				cur_logical = index << (PAGE_CACHE_SHIFT -
							inode->i_blkbits);
				pblock = map->m_pblk + (cur_logical -
							map->m_lblk);
			}
1401 1402 1403 1404 1405
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1406
			/*
1407 1408
			 * If the page does not have buffers (for
			 * whatever reason), try to create them using
1409
			 * __block_write_begin.  If this fails,
1410
			 * skip the page and move on.
1411
			 */
1412
			if (!page_has_buffers(page)) {
1413
				if (__block_write_begin(page, 0, len,
1414
						noalloc_get_block_write)) {
1415
				skip_page:
1416 1417 1418 1419 1420
					unlock_page(page);
					continue;
				}
				commit_write = 1;
			}
1421

1422 1423
			bh = page_bufs = page_buffers(page);
			block_start = 0;
1424
			do {
1425
				if (!bh)
1426
					goto skip_page;
1427 1428 1429
				if (map && (cur_logical >= map->m_lblk) &&
				    (cur_logical <= (map->m_lblk +
						     (map->m_len - 1)))) {
1430 1431 1432 1433
					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					}
1434 1435
					if (buffer_da_mapped(bh))
						clear_buffer_da_mapped(bh);
1436 1437 1438 1439 1440 1441 1442
					if (buffer_unwritten(bh) ||
					    buffer_mapped(bh))
						BUG_ON(bh->b_blocknr != pblock);
					if (map->m_flags & EXT4_MAP_UNINIT)
						set_buffer_uninit(bh);
					clear_buffer_unwritten(bh);
				}
1443

1444 1445 1446 1447 1448
				/*
				 * skip page if block allocation undone and
				 * block is dirty
				 */
				if (ext4_bh_delay_or_unwritten(NULL, bh))
1449
					skip_page = 1;
1450 1451
				bh = bh->b_this_page;
				block_start += bh->b_size;
1452 1453
				cur_logical++;
				pblock++;
1454 1455
			} while (bh != page_bufs);

1456 1457
			if (skip_page)
				goto skip_page;
1458 1459 1460 1461 1462

			if (commit_write)
				/* mark the buffer_heads as dirty & uptodate */
				block_commit_write(page, 0, len);

1463
			clear_page_dirty_for_io(page);
1464 1465 1466 1467 1468 1469
			/*
			 * Delalloc doesn't support data journalling,
			 * but eventually maybe we'll lift this
			 * restriction.
			 */
			if (unlikely(journal_data && PageChecked(page)))
1470
				err = __ext4_journalled_writepage(page, len);
1471
			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1472 1473
				err = ext4_bio_write_page(&io_submit, page,
							  len, mpd->wbc);
1474 1475 1476 1477 1478 1479
			else if (buffer_uninit(page_bufs)) {
				ext4_set_bh_endio(page_bufs, inode);
				err = block_write_full_page_endio(page,
					noalloc_get_block_write,
					mpd->wbc, ext4_end_io_buffer_write);
			} else
1480 1481
				err = block_write_full_page(page,
					noalloc_get_block_write, mpd->wbc);
1482 1483

			if (!err)
1484
				mpd->pages_written++;
1485 1486 1487 1488 1489 1490 1491 1492 1493
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
1494
	ext4_io_submit(&io_submit);
1495 1496 1497
	return ret;
}

1498
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1499 1500 1501 1502 1503 1504 1505
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

1506 1507
	index = mpd->first_page;
	end   = mpd->next_page - 1;
1508 1509 1510 1511 1512 1513
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
1514
			if (page->index > end)
1515 1516 1517 1518 1519 1520 1521
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
1522 1523
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
1524 1525 1526 1527
	}
	return;
}

1528 1529 1530
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1531 1532 1533
	struct super_block *sb = inode->i_sb;

	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1534 1535
	       EXT4_C2B(EXT4_SB(inode->i_sb),
			ext4_count_free_clusters(inode->i_sb)));
1536 1537
	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1538 1539
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1540
	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1541 1542
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1543 1544 1545 1546
	ext4_msg(sb, KERN_CRIT, "Block reservation details");
	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
		 EXT4_I(inode)->i_reserved_data_blocks);
	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1547
	       EXT4_I(inode)->i_reserved_meta_blocks);
1548 1549 1550
	return;
}

1551
/*
1552 1553
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
1554
 *
1555
 * @mpd - bh describing space
1556 1557 1558 1559
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
1560
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1561
{
1562
	int err, blks, get_blocks_flags;
1563
	struct ext4_map_blocks map, *mapp = NULL;
1564 1565 1566 1567
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
1568 1569

	/*
1570 1571
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
1572
	 */
1573 1574 1575 1576 1577
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
1578 1579 1580 1581

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

1582
	/*
1583
	 * Call ext4_map_blocks() to allocate any delayed allocation
1584 1585 1586 1587 1588 1589 1590 1591
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
1592
	 * want to change *many* call functions, so ext4_map_blocks()
1593
	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1594 1595 1596 1597 1598
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
1599
	 */
1600 1601
	map.m_lblk = next;
	map.m_len = max_blocks;
1602
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1603 1604
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1605
	if (mpd->b_state & (1 << BH_Delay))
1606 1607
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

1608
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1609
	if (blks < 0) {
1610 1611
		struct super_block *sb = mpd->inode->i_sb;

1612
		err = blks;
1613
		/*
1614
		 * If get block returns EAGAIN or ENOSPC and there
1615 1616
		 * appears to be free blocks we will just let
		 * mpage_da_submit_io() unlock all of the pages.
1617 1618
		 */
		if (err == -EAGAIN)
1619
			goto submit_io;
1620

1621
		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1622
			mpd->retval = err;
1623
			goto submit_io;
1624 1625
		}

1626
		/*
1627 1628 1629 1630 1631
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
1632
		 */
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
				"This should not happen!! Data will be lost\n");
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
1644
		}
1645
		/* invalidate all the pages */
1646
		ext4_da_block_invalidatepages(mpd);
1647 1648 1649

		/* Mark this page range as having been completed */
		mpd->io_done = 1;
1650
		return;
1651
	}
1652 1653
	BUG_ON(blks == 0);

1654
	mapp = &map;
1655 1656 1657
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
1658

1659 1660
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
1661

1662 1663
		if (ext4_should_order_data(mpd->inode)) {
			err = ext4_jbd2_file_inode(handle, mpd->inode);
1664
			if (err) {
1665
				/* Only if the journal is aborted */
1666 1667 1668
				mpd->retval = err;
				goto submit_io;
			}
1669
		}
1670 1671 1672
	}

	/*
1673
	 * Update on-disk size along with block allocation.
1674 1675 1676 1677 1678 1679
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
1680 1681 1682 1683 1684
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
1685 1686
	}

1687
submit_io:
1688
	mpage_da_submit_io(mpd, mapp);
1689
	mpd->io_done = 1;
1690 1691
}

1692 1693
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1705 1706
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
1707 1708
{
	sector_t next;
1709
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1710

1711 1712 1713 1714
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
1715
	 * ext4_map_blocks() multiple times in a loop
1716 1717 1718 1719
	 */
	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
		goto flush_it;

1720
	/* check if thereserved journal credits might overflow */
1721
	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
1742 1743 1744
	/*
	 * First block in the extent
	 */
1745 1746 1747 1748
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
1749 1750 1751
		return;
	}

1752
	next = mpd->b_blocknr + nrblocks;
1753 1754 1755
	/*
	 * Can we merge the block to our big extent?
	 */
1756 1757
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
1758 1759 1760
		return;
	}

1761
flush_it:
1762 1763 1764 1765
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
1766
	mpage_da_map_and_submit(mpd);
1767
	return;
1768 1769
}

1770
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1771
{
1772
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1773 1774
}

1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
/*
 * This function is grabs code from the very beginning of
 * ext4_map_blocks, but assumes that the caller is from delayed write
 * time. This function looks up the requested blocks and sets the
 * buffer delay bit under the protection of i_data_sem.
 */
static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
			      struct ext4_map_blocks *map,
			      struct buffer_head *bh)
{
	int retval;
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;

	map->m_flags = 0;
	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, map->m_len,
		  (unsigned long) map->m_lblk);
	/*
	 * Try to see if we can get the block without requesting a new
	 * file system block.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
	else
		retval = ext4_ind_map_blocks(NULL, inode, map, 0);

	if (retval == 0) {
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
		/* If the block was allocated from previously allocated cluster,
		 * then we dont need to reserve it again. */
		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
			retval = ext4_da_reserve_space(inode, iblock);
			if (retval)
				/* not enough space to reserve */
				goto out_unlock;
		}

		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
		 * and it should not appear on the bh->b_state.
		 */
		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;

		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
	}

out_unlock:
	up_read((&EXT4_I(inode)->i_data_sem));

	return retval;
}

1835
/*
1836 1837 1838
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
1839 1840 1841 1842 1843 1844 1845
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
1846 1847
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1848
				  struct buffer_head *bh, int create)
1849
{
1850
	struct ext4_map_blocks map;
1851 1852 1853
	int ret = 0;

	BUG_ON(create == 0);
1854 1855 1856 1857
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
1858 1859 1860 1861 1862 1863

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
1864 1865
	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
	if (ret <= 0)
1866
		return ret;
1867

1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
1879
		set_buffer_mapped(bh);
1880 1881
	}
	return 0;
1882
}
1883

1884 1885 1886
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
C
Christoph Hellwig 已提交
1887
 * callback function for block_write_begin() and block_write_full_page().
1888
 * These functions should only try to map a single block at a time.
1889 1890 1891 1892 1893
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
1894 1895 1896
 * delayed allocation before calling  block_write_full_page().  Otherwise,
 * b_blocknr could be left unitialized, and the page write functions will
 * be taken by surprise.
1897 1898
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1899 1900
				   struct buffer_head *bh_result, int create)
{
1901
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1902
	return _ext4_get_block(inode, iblock, bh_result, 0);
1903 1904
}

1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

1927
	ClearPageChecked(page);
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
	page_bufs = page_buffers(page);
	BUG_ON(!page_bufs);
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

1941 1942
	BUG_ON(!ext4_handle_valid(handle));

1943 1944 1945 1946 1947 1948 1949
	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				do_journal_get_write_access);

	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				write_end_fn);
	if (ret == 0)
		ret = err;
1950
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1951 1952 1953 1954 1955
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1956
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1957 1958 1959 1960
out:
	return ret;
}

1961
/*
1962 1963 1964 1965
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
L
Lucas De Marchi 已提交
1966
 * we are writing back data modified via mmap(), no one guarantees in which
1967 1968 1969 1970
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
1971 1972 1973
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
1974
 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1975
 *   - grab_page_cache when doing write_begin (have journal handle)
1976 1977 1978 1979 1980 1981 1982 1983 1984
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
1985
 * but other buffer_heads would be unmapped but dirty (dirty done via the
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2001
 */
2002
static int ext4_writepage(struct page *page,
2003
			  struct writeback_control *wbc)
2004
{
T
Theodore Ts'o 已提交
2005
	int ret = 0, commit_write = 0;
2006
	loff_t size;
2007
	unsigned int len;
2008
	struct buffer_head *page_bufs = NULL;
2009 2010
	struct inode *inode = page->mapping->host;

L
Lukas Czerner 已提交
2011
	trace_ext4_writepage(page);
2012 2013 2014 2015 2016
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2017

T
Theodore Ts'o 已提交
2018 2019
	/*
	 * If the page does not have buffers (for whatever reason),
2020
	 * try to create them using __block_write_begin.  If this
T
Theodore Ts'o 已提交
2021 2022
	 * fails, redirty the page and move on.
	 */
2023
	if (!page_has_buffers(page)) {
2024
		if (__block_write_begin(page, 0, len,
T
Theodore Ts'o 已提交
2025 2026
					noalloc_get_block_write)) {
		redirty_page:
2027 2028 2029 2030
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
T
Theodore Ts'o 已提交
2031 2032 2033 2034 2035
		commit_write = 1;
	}
	page_bufs = page_buffers(page);
	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
			      ext4_bh_delay_or_unwritten)) {
2036
		/*
2037 2038 2039
		 * We don't want to do block allocation, so redirty
		 * the page and return.  We may reach here when we do
		 * a journal commit via journal_submit_inode_data_buffers.
2040 2041 2042
		 * We can also reach here via shrink_page_list but it
		 * should never be for direct reclaim so warn if that
		 * happens
2043
		 */
2044 2045
		WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
								PF_MEMALLOC);
T
Theodore Ts'o 已提交
2046 2047 2048
		goto redirty_page;
	}
	if (commit_write)
2049
		/* now mark the buffer_heads as dirty and uptodate */
2050
		block_commit_write(page, 0, len);
2051

2052
	if (PageChecked(page) && ext4_should_journal_data(inode))
2053 2054 2055 2056
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
2057
		return __ext4_journalled_writepage(page, len);
2058

T
Theodore Ts'o 已提交
2059
	if (buffer_uninit(page_bufs)) {
2060 2061 2062 2063
		ext4_set_bh_endio(page_bufs, inode);
		ret = block_write_full_page_endio(page, noalloc_get_block_write,
					    wbc, ext4_end_io_buffer_write);
	} else
2064 2065
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
2066 2067 2068 2069

	return ret;
}

2070
/*
2071
 * This is called via ext4_da_writepages() to
L
Lucas De Marchi 已提交
2072
 * calculate the total number of credits to reserve to fit
2073 2074 2075
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2076
 */
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2088
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2089 2090 2091 2092 2093
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2094

2095 2096
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
2097
 * address space and accumulate pages that need writing, and call
2098 2099
 * mpage_da_map_and_submit to map a single contiguous memory region
 * and then write them.
2100 2101 2102
 */
static int write_cache_pages_da(struct address_space *mapping,
				struct writeback_control *wbc,
2103 2104
				struct mpage_da_data *mpd,
				pgoff_t *done_index)
2105
{
2106
	struct buffer_head	*bh, *head;
2107
	struct inode		*inode = mapping->host;
2108 2109 2110 2111 2112 2113
	struct pagevec		pvec;
	unsigned int		nr_pages;
	sector_t		logical;
	pgoff_t			index, end;
	long			nr_to_write = wbc->nr_to_write;
	int			i, tag, ret = 0;
2114

2115 2116 2117
	memset(mpd, 0, sizeof(struct mpage_da_data));
	mpd->wbc = wbc;
	mpd->inode = inode;
2118 2119 2120 2121
	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

2122
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2123 2124 2125 2126
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;

2127
	*done_index = index;
2128
	while (index <= end) {
2129
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2130 2131
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
2132
			return 0;
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
2144 2145
			if (page->index > end)
				goto out;
2146

2147 2148
			*done_index = page->index + 1;

2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
			/*
			 * If we can't merge this page, and we have
			 * accumulated an contiguous region, write it
			 */
			if ((mpd->next_page != page->index) &&
			    (mpd->next_page != mpd->first_page)) {
				mpage_da_map_and_submit(mpd);
				goto ret_extent_tail;
			}

2159 2160 2161
			lock_page(page);

			/*
2162 2163 2164 2165 2166 2167
			 * If the page is no longer dirty, or its
			 * mapping no longer corresponds to inode we
			 * are writing (which means it has been
			 * truncated or invalidated), or the page is
			 * already under writeback and we are not
			 * doing a data integrity writeback, skip the page
2168
			 */
2169 2170 2171 2172
			if (!PageDirty(page) ||
			    (PageWriteback(page) &&
			     (wbc->sync_mode == WB_SYNC_NONE)) ||
			    unlikely(page->mapping != mapping)) {
2173 2174 2175 2176
				unlock_page(page);
				continue;
			}

2177
			wait_on_page_writeback(page);
2178 2179
			BUG_ON(PageWriteback(page));

2180
			if (mpd->next_page != page->index)
2181 2182 2183 2184 2185 2186
				mpd->first_page = page->index;
			mpd->next_page = page->index + 1;
			logical = (sector_t) page->index <<
				(PAGE_CACHE_SHIFT - inode->i_blkbits);

			if (!page_has_buffers(page)) {
2187 2188
				mpage_add_bh_to_extent(mpd, logical,
						       PAGE_CACHE_SIZE,
2189
						       (1 << BH_Dirty) | (1 << BH_Uptodate));
2190 2191
				if (mpd->io_done)
					goto ret_extent_tail;
2192 2193
			} else {
				/*
2194 2195
				 * Page with regular buffer heads,
				 * just add all dirty ones
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
				 */
				head = page_buffers(page);
				bh = head;
				do {
					BUG_ON(buffer_locked(bh));
					/*
					 * We need to try to allocate
					 * unmapped blocks in the same page.
					 * Otherwise we won't make progress
					 * with the page in ext4_writepage
					 */
					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
						mpage_add_bh_to_extent(mpd, logical,
								       bh->b_size,
								       bh->b_state);
2211 2212
						if (mpd->io_done)
							goto ret_extent_tail;
2213 2214
					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
						/*
2215 2216 2217 2218 2219 2220 2221 2222 2223
						 * mapped dirty buffer. We need
						 * to update the b_state
						 * because we look at b_state
						 * in mpage_da_map_blocks.  We
						 * don't update b_size because
						 * if we find an unmapped
						 * buffer_head later we need to
						 * use the b_state flag of that
						 * buffer_head.
2224 2225 2226 2227 2228 2229
						 */
						if (mpd->b_size == 0)
							mpd->b_state = bh->b_state & BH_FLAGS;
					}
					logical++;
				} while ((bh = bh->b_this_page) != head);
2230 2231 2232 2233 2234
			}

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
2235
				    wbc->sync_mode == WB_SYNC_NONE)
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
2246
					goto out;
2247 2248 2249 2250 2251
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2252 2253 2254
	return 0;
ret_extent_tail:
	ret = MPAGE_DA_EXTENT_TAIL;
2255 2256 2257
out:
	pagevec_release(&pvec);
	cond_resched();
2258 2259 2260 2261
	return ret;
}


2262
static int ext4_da_writepages(struct address_space *mapping,
2263
			      struct writeback_control *wbc)
2264
{
2265 2266
	pgoff_t	index;
	int range_whole = 0;
2267
	handle_t *handle = NULL;
2268
	struct mpage_da_data mpd;
2269
	struct inode *inode = mapping->host;
2270
	int pages_written = 0;
2271
	unsigned int max_pages;
2272
	int range_cyclic, cycled = 1, io_done = 0;
2273 2274
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2275
	loff_t range_start = wbc->range_start;
2276
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2277
	pgoff_t done_index = 0;
2278
	pgoff_t end;
S
Shaohua Li 已提交
2279
	struct blk_plug plug;
2280

2281
	trace_ext4_da_writepages(inode, wbc);
2282

2283 2284 2285 2286 2287
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2288
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2289
		return 0;
2290 2291 2292 2293 2294

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2295
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2296 2297 2298 2299 2300
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2301
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2302 2303
		return -EROFS;

2304 2305
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2306

2307 2308
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2309
		index = mapping->writeback_index;
2310 2311 2312 2313 2314
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
2315 2316
		end = -1;
	} else {
2317
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2318 2319
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
	}
2320

2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2338 2339 2340 2341 2342 2343
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2354
retry:
2355
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2356 2357
		tag_pages_for_writeback(mapping, index, end);

S
Shaohua Li 已提交
2358
	blk_start_plug(&plug);
2359
	while (!ret && wbc->nr_to_write > 0) {
2360 2361 2362 2363 2364 2365 2366 2367

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2368
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2369

2370 2371 2372 2373
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2374
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2375
			       "%ld pages, ino %lu; err %d", __func__,
2376
				wbc->nr_to_write, inode->i_ino, ret);
2377
			blk_finish_plug(&plug);
2378 2379
			goto out_writepages;
		}
2380 2381

		/*
2382
		 * Now call write_cache_pages_da() to find the next
2383
		 * contiguous region of logical blocks that need
2384
		 * blocks to be allocated by ext4 and submit them.
2385
		 */
2386
		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2387
		/*
2388
		 * If we have a contiguous extent of pages and we
2389 2390 2391 2392
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2393
			mpage_da_map_and_submit(&mpd);
2394 2395
			ret = MPAGE_DA_EXTENT_TAIL;
		}
2396
		trace_ext4_da_write_pages(inode, &mpd);
2397
		wbc->nr_to_write -= mpd.pages_written;
2398

2399
		ext4_journal_stop(handle);
2400

2401
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2402 2403 2404 2405
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2406
			jbd2_journal_force_commit_nested(sbi->s_journal);
2407 2408
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2409
			/*
2410 2411 2412
			 * Got one extent now try with rest of the pages.
			 * If mpd.retval is set -EIO, journal is aborted.
			 * So we don't need to write any more.
2413
			 */
2414
			pages_written += mpd.pages_written;
2415
			ret = mpd.retval;
2416
			io_done = 1;
2417
		} else if (wbc->nr_to_write)
2418 2419 2420 2421 2422 2423
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2424
	}
S
Shaohua Li 已提交
2425
	blk_finish_plug(&plug);
2426 2427 2428 2429 2430 2431 2432
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2433 2434

	/* Update index */
2435
	wbc->range_cyclic = range_cyclic;
2436 2437 2438 2439 2440
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
2441
		mapping->writeback_index = done_index;
2442

2443
out_writepages:
2444
	wbc->nr_to_write -= nr_to_writebump;
2445
	wbc->range_start = range_start;
2446
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2447
	return ret;
2448 2449
}

2450 2451 2452 2453 2454 2455 2456 2457 2458
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2459
	 * counters can get slightly wrong with percpu_counter_batch getting
2460 2461 2462 2463
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
2464 2465 2466
	free_blocks  = EXT4_C2B(sbi,
		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
	/*
	 * Start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
	    !writeback_in_progress(sb->s_bdi) &&
	    down_read_trylock(&sb->s_umount)) {
		writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
		up_read(&sb->s_umount);
	}

2477
	if (2 * free_blocks < 3 * dirty_blocks ||
2478
		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2479
		/*
2480 2481
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
2482 2483 2484 2485 2486 2487
		 */
		return 1;
	}
	return 0;
}

2488
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2489 2490
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
2491
{
2492
	int ret, retries = 0;
2493 2494 2495 2496 2497 2498
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
2499 2500 2501 2502 2503 2504 2505

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2506
	trace_ext4_da_write_begin(inode, pos, len, flags);
2507
retry:
2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
2519 2520 2521
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
2522

2523
	page = grab_cache_page_write_begin(mapping, index, flags);
2524 2525 2526 2527 2528
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
2529 2530
	*pagep = page;

2531
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2532 2533 2534 2535
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
2536 2537 2538 2539 2540 2541
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
2542
			ext4_truncate_failed_write(inode);
2543 2544
	}

2545 2546
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
2547 2548 2549 2550
out:
	return ret;
}

2551 2552 2553 2554 2555
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
2556
					    unsigned long offset)
2557 2558 2559 2560 2561 2562 2563 2564 2565
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2566
	for (i = 0; i < idx; i++)
2567 2568
		bh = bh->b_this_page;

2569
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2570 2571 2572 2573
		return 0;
	return 1;
}

2574
static int ext4_da_write_end(struct file *file,
2575 2576 2577
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
2578 2579 2580 2581 2582
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2583
	unsigned long start, end;
2584 2585 2586
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2587 2588
		switch (ext4_inode_journal_mode(inode)) {
		case EXT4_INODE_ORDERED_DATA_MODE:
2589 2590
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
2591
		case EXT4_INODE_WRITEBACK_DATA_MODE:
2592 2593
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
2594
		default:
2595 2596 2597
			BUG();
		}
	}
2598

2599
	trace_ext4_da_write_end(inode, pos, len, copied);
2600
	start = pos & (PAGE_CACHE_SIZE - 1);
2601
	end = start + copied - 1;
2602 2603 2604 2605 2606 2607 2608 2609

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
2610
	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
2621

2622 2623 2624
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
2625 2626 2627 2628 2629
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
2630
		}
2631
	}
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

2653
	ext4_da_page_release_reservation(page, offset);
2654 2655 2656 2657 2658 2659 2660

out:
	ext4_invalidatepage(page, offset);

	return;
}

2661 2662 2663 2664 2665
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
2666 2667
	trace_ext4_alloc_da_blocks(inode);

2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
2678
	 *
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
2691
	 * the pages by calling redirty_page_for_writepage() but that
2692 2693
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
L
Lucas De Marchi 已提交
2694
	 * simplifying them because we wouldn't actually intend to
2695 2696 2697
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
2698
	 *
2699 2700 2701 2702 2703 2704
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
2705

2706 2707 2708 2709 2710
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
2711
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2712 2713 2714 2715 2716 2717 2718 2719
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
2720
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2721 2722 2723 2724 2725
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

2736 2737
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
2749
		 * NB. EXT4_STATE_JDATA is not set on files other than
2750 2751 2752 2753 2754 2755
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

2756
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2757
		journal = EXT4_JOURNAL(inode);
2758 2759 2760
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
2761 2762 2763 2764 2765

		if (err)
			return 0;
	}

2766
	return generic_block_bmap(mapping, block, ext4_get_block);
2767 2768
}

2769
static int ext4_readpage(struct file *file, struct page *page)
2770
{
2771
	trace_ext4_readpage(page);
2772
	return mpage_readpage(page, ext4_get_block);
2773 2774 2775
}

static int
2776
ext4_readpages(struct file *file, struct address_space *mapping,
2777 2778
		struct list_head *pages, unsigned nr_pages)
{
2779
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2780 2781
}

2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
{
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	if (!page_has_buffers(page))
		return;
	head = bh = page_buffers(page);
	do {
		if (offset <= curr_off && test_clear_buffer_uninit(bh)
					&& bh->b_private) {
			ext4_free_io_end(bh->b_private);
			bh->b_private = NULL;
			bh->b_end_io = NULL;
		}
		curr_off = curr_off + bh->b_size;
		bh = bh->b_this_page;
	} while (bh != head);
}

2802
static void ext4_invalidatepage(struct page *page, unsigned long offset)
2803
{
2804
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2805

2806 2807
	trace_ext4_invalidatepage(page, offset);

2808 2809 2810 2811 2812
	/*
	 * free any io_end structure allocated for buffers to be discarded
	 */
	if (ext4_should_dioread_nolock(page->mapping->host))
		ext4_invalidatepage_free_endio(page, offset);
2813 2814 2815 2816 2817 2818
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

2819 2820 2821 2822
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
2823 2824
}

2825
static int ext4_releasepage(struct page *page, gfp_t wait)
2826
{
2827
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2828

2829 2830
	trace_ext4_releasepage(page);

2831 2832 2833
	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
2834 2835 2836 2837
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
2838 2839
}

2840 2841 2842 2843 2844
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
2845
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2846 2847
		   struct buffer_head *bh_result, int create)
{
2848
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2849
		   inode->i_ino, create);
2850 2851
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2852 2853
}

2854
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2855
		   struct buffer_head *bh_result, int create)
2856
{
2857 2858 2859 2860
	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
		   inode->i_ino, create);
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_NO_LOCK);
2861 2862
}

2863
static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2864 2865
			    ssize_t size, void *private, int ret,
			    bool is_async)
2866
{
2867
	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2868 2869
        ext4_io_end_t *io_end = iocb->private;

2870 2871
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
2872
		goto out;
2873

2874
	ext_debug("ext4_end_io_dio(): io_end 0x%p "
2875
		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2876 2877 2878
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

2879 2880
	iocb->private = NULL;

2881
	/* if not aio dio with unwritten extents, just free io and return */
2882
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2883
		ext4_free_io_end(io_end);
2884 2885 2886
out:
		if (is_async)
			aio_complete(iocb, ret, 0);
2887
		inode_dio_done(inode);
2888
		return;
2889 2890
	}

2891 2892
	io_end->offset = offset;
	io_end->size = size;
2893 2894 2895 2896
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
2897

2898
	ext4_add_complete_io(io_end);
2899
}
2900

2901 2902 2903 2904 2905 2906 2907 2908 2909
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
{
	ext4_io_end_t *io_end = bh->b_private;
	struct inode *inode;

	if (!test_clear_buffer_uninit(bh) || !io_end)
		goto out;

	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2910 2911 2912
		ext4_msg(io_end->inode->i_sb, KERN_INFO,
			 "sb umounted, discard end_io request for inode %lu",
			 io_end->inode->i_ino);
2913 2914 2915 2916
		ext4_free_io_end(io_end);
		goto out;
	}

2917 2918 2919 2920
	/*
	 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
	 * but being more careful is always safe for the future change.
	 */
2921
	inode = io_end->inode;
2922
	ext4_set_io_unwritten_flag(inode, io_end);
2923
	ext4_add_complete_io(io_end);
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
out:
	bh->b_private = NULL;
	bh->b_end_io = NULL;
	clear_buffer_uninit(bh);
	end_buffer_async_write(bh, uptodate);
}

static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
{
	ext4_io_end_t *io_end;
	struct page *page = bh->b_page;
	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
	size_t size = bh->b_size;

retry:
	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
	if (!io_end) {
2941
		pr_warn_ratelimited("%s: allocation fail\n", __func__);
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
		schedule();
		goto retry;
	}
	io_end->offset = offset;
	io_end->size = size;
	/*
	 * We need to hold a reference to the page to make sure it
	 * doesn't get evicted before ext4_end_io_work() has a chance
	 * to convert the extent from written to unwritten.
	 */
	io_end->page = page;
	get_page(io_end->page);

	bh->b_private = io_end;
	bh->b_end_io = ext4_end_io_buffer_write;
	return 0;
}

2960 2961 2962 2963 2964
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
2965
 * For holes, we fallocate those blocks, mark them as uninitialized
2966
 * If those blocks were preallocated, we mark sure they are splited, but
2967
 * still keep the range to write as uninitialized.
2968
 *
2969 2970
 * The unwrritten extents will be converted to written when DIO is completed.
 * For async direct IO, since the IO may still pending when return, we
L
Lucas De Marchi 已提交
2971
 * set up an end_io call back function, which will do the conversion
2972
 * when async direct IO completed.
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);

	loff_t final_size = offset + count;
	if (rw == WRITE && final_size <= inode->i_size) {
2990
		int overwrite = 0;
2991 2992
		get_block_t *get_block_func = NULL;
		int dio_flags = 0;
2993

2994 2995 2996 2997 2998 2999
		BUG_ON(iocb->private == NULL);

		/* If we do a overwrite dio, i_mutex locking can be released */
		overwrite = *((int *)iocb->private);

		if (overwrite) {
3000
			atomic_inc(&inode->i_dio_count);
3001 3002 3003 3004
			down_read(&EXT4_I(inode)->i_data_sem);
			mutex_unlock(&inode->i_mutex);
		}

3005
		/*
3006 3007 3008
 		 * We could direct write to holes and fallocate.
		 *
 		 * Allocated blocks to fill the hole are marked as uninitialized
L
Lucas De Marchi 已提交
3009
 		 * to prevent parallel buffered read to expose the stale data
3010
 		 * before DIO complete the data IO.
3011 3012
		 *
 		 * As to previously fallocated extents, ext4 get_block
3013 3014 3015
 		 * will just simply mark the buffer mapped but still
 		 * keep the extents uninitialized.
 		 *
3016 3017 3018 3019 3020 3021 3022 3023
		 * for non AIO case, we will convert those unwritten extents
		 * to written after return back from blockdev_direct_IO.
		 *
		 * for async DIO, the conversion needs to be defered when
		 * the IO is completed. The ext4 end_io callback function
		 * will be called to take care of the conversion work.
		 * Here for async case, we allocate an io_end structure to
		 * hook to the iocb.
3024
 		 */
3025
		iocb->private = NULL;
D
Dmitry Monakhov 已提交
3026
		ext4_inode_aio_set(inode, NULL);
3027
		if (!is_sync_kiocb(iocb)) {
3028 3029
			ext4_io_end_t *io_end =
				ext4_init_io_end(inode, GFP_NOFS);
3030 3031 3032 3033
			if (!io_end) {
				ret = -ENOMEM;
				goto retake_lock;
			}
3034 3035
			io_end->flag |= EXT4_IO_END_DIRECT;
			iocb->private = io_end;
3036 3037
			/*
			 * we save the io structure for current async
3038
			 * direct IO, so that later ext4_map_blocks()
3039 3040 3041 3042
			 * could flag the io structure whether there
			 * is a unwritten extents needs to be converted
			 * when IO is completed.
			 */
D
Dmitry Monakhov 已提交
3043
			ext4_inode_aio_set(inode, io_end);
3044 3045
		}

3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
		if (overwrite) {
			get_block_func = ext4_get_block_write_nolock;
		} else {
			get_block_func = ext4_get_block_write;
			dio_flags = DIO_LOCKING;
		}
		ret = __blockdev_direct_IO(rw, iocb, inode,
					 inode->i_sb->s_bdev, iov,
					 offset, nr_segs,
					 get_block_func,
					 ext4_end_io_dio,
					 NULL,
					 dio_flags);

3060
		if (iocb->private)
D
Dmitry Monakhov 已提交
3061
			ext4_inode_aio_set(inode, NULL);
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
		/*
		 * The io_end structure takes a reference to the inode,
		 * that structure needs to be destroyed and the
		 * reference to the inode need to be dropped, when IO is
		 * complete, even with 0 byte write, or failed.
		 *
		 * In the successful AIO DIO case, the io_end structure will be
		 * desctroyed and the reference to the inode will be dropped
		 * after the end_io call back function is called.
		 *
		 * In the case there is 0 byte write, or error case, since
		 * VFS direct IO won't invoke the end_io call back function,
		 * we need to free the end_io structure here.
		 */
		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
			ext4_free_io_end(iocb->private);
			iocb->private = NULL;
3079
		} else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3080
						EXT4_STATE_DIO_UNWRITTEN)) {
3081
			int err;
3082 3083
			/*
			 * for non AIO case, since the IO is already
L
Lucas De Marchi 已提交
3084
			 * completed, we could do the conversion right here
3085
			 */
3086 3087 3088 3089
			err = ext4_convert_unwritten_extents(inode,
							     offset, ret);
			if (err < 0)
				ret = err;
3090
			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3091
		}
3092 3093 3094 3095

	retake_lock:
		/* take i_mutex locking again if we do a ovewrite dio */
		if (overwrite) {
3096
			inode_dio_done(inode);
3097 3098 3099 3100
			up_read(&EXT4_I(inode)->i_data_sem);
			mutex_lock(&inode->i_mutex);
		}

3101 3102
		return ret;
	}
3103 3104

	/* for write the the end of file case, we fall back to old way */
3105 3106 3107 3108 3109 3110 3111 3112 3113
	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3114
	ssize_t ret;
3115

3116 3117 3118 3119 3120 3121
	/*
	 * If we are doing data journalling we don't support O_DIRECT
	 */
	if (ext4_should_journal_data(inode))
		return 0;

3122
	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3123
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3124 3125 3126 3127 3128 3129
		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
	else
		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
	trace_ext4_direct_IO_exit(inode, offset,
				iov_length(iov, nr_segs), rw, ret);
	return ret;
3130 3131
}

3132
/*
3133
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3145
static int ext4_journalled_set_page_dirty(struct page *page)
3146 3147 3148 3149 3150
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3151
static const struct address_space_operations ext4_ordered_aops = {
3152 3153
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3154
	.writepage		= ext4_writepage,
3155 3156 3157 3158 3159 3160 3161 3162
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3163
	.error_remove_page	= generic_error_remove_page,
3164 3165
};

3166
static const struct address_space_operations ext4_writeback_aops = {
3167 3168
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3169
	.writepage		= ext4_writepage,
3170 3171 3172 3173 3174 3175 3176 3177
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3178
	.error_remove_page	= generic_error_remove_page,
3179 3180
};

3181
static const struct address_space_operations ext4_journalled_aops = {
3182 3183
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3184
	.writepage		= ext4_writepage,
3185 3186 3187 3188 3189 3190
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
3191
	.direct_IO		= ext4_direct_IO,
3192
	.is_partially_uptodate  = block_is_partially_uptodate,
3193
	.error_remove_page	= generic_error_remove_page,
3194 3195
};

3196
static const struct address_space_operations ext4_da_aops = {
3197 3198
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3199
	.writepage		= ext4_writepage,
3200 3201 3202 3203 3204 3205 3206 3207 3208
	.writepages		= ext4_da_writepages,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3209
	.error_remove_page	= generic_error_remove_page,
3210 3211
};

3212
void ext4_set_aops(struct inode *inode)
3213
{
3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
	switch (ext4_inode_journal_mode(inode)) {
	case EXT4_INODE_ORDERED_DATA_MODE:
		if (test_opt(inode->i_sb, DELALLOC))
			inode->i_mapping->a_ops = &ext4_da_aops;
		else
			inode->i_mapping->a_ops = &ext4_ordered_aops;
		break;
	case EXT4_INODE_WRITEBACK_DATA_MODE:
		if (test_opt(inode->i_sb, DELALLOC))
			inode->i_mapping->a_ops = &ext4_da_aops;
		else
			inode->i_mapping->a_ops = &ext4_writeback_aops;
		break;
	case EXT4_INODE_JOURNAL_DATA_MODE:
3228
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3229 3230 3231 3232
		break;
	default:
		BUG();
	}
3233 3234
}

3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254

/*
 * ext4_discard_partial_page_buffers()
 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
 * This function finds and locks the page containing the offset
 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
 * Calling functions that already have the page locked should call
 * ext4_discard_partial_page_buffers_no_lock directly.
 */
int ext4_discard_partial_page_buffers(handle_t *handle,
		struct address_space *mapping, loff_t from,
		loff_t length, int flags)
{
	struct inode *inode = mapping->host;
	struct page *page;
	int err = 0;

	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
	if (!page)
3255
		return -ENOMEM;
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283

	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
		from, length, flags);

	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * ext4_discard_partial_page_buffers_no_lock()
 * Zeros a page range of length 'length' starting from offset 'from'.
 * Buffer heads that correspond to the block aligned regions of the
 * zeroed range will be unmapped.  Unblock aligned regions
 * will have the corresponding buffer head mapped if needed so that
 * that region of the page can be updated with the partial zero out.
 *
 * This function assumes that the page has already been  locked.  The
 * The range to be discarded must be contained with in the given page.
 * If the specified range exceeds the end of the page it will be shortened
 * to the end of the page that corresponds to 'from'.  This function is
 * appropriate for updating a page and it buffer heads to be unmapped and
 * zeroed for blocks that have been either released, or are going to be
 * released.
 *
 * handle: The journal handle
 * inode:  The files inode
 * page:   A locked page that contains the offset "from"
3284
 * from:   The starting byte offset (from the beginning of the file)
3285 3286 3287 3288 3289 3290 3291
 *         to begin discarding
 * len:    The length of bytes to discard
 * flags:  Optional flags that may be used:
 *
 *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
 *         Only zero the regions of the page whose buffer heads
 *         have already been unmapped.  This flag is appropriate
3292
 *         for updating the contents of a page whose blocks may
3293 3294 3295
 *         have already been released, and we only want to zero
 *         out the regions that correspond to those released blocks.
 *
3296
 * Returns zero on success or negative on failure.
3297
 */
E
Eric Sandeen 已提交
3298
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags)
{
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
	unsigned int blocksize, max, pos;
	ext4_lblk_t iblock;
	struct buffer_head *bh;
	int err = 0;

	blocksize = inode->i_sb->s_blocksize;
	max = PAGE_CACHE_SIZE - offset;

	if (index != page->index)
		return -EINVAL;

	/*
	 * correct length if it does not fall between
	 * 'from' and the end of the page
	 */
	if (length > max || length < 0)
		length = max;

	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

3324 3325
	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);
3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	pos = offset;
	while (pos < offset + length) {
3338 3339
		unsigned int end_of_block, range_to_discard;

3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424
		err = 0;

		/* The length of space left to zero and unmap */
		range_to_discard = offset + length - pos;

		/* The length of space until the end of the block */
		end_of_block = blocksize - (pos & (blocksize-1));

		/*
		 * Do not unmap or zero past end of block
		 * for this buffer head
		 */
		if (range_to_discard > end_of_block)
			range_to_discard = end_of_block;


		/*
		 * Skip this buffer head if we are only zeroing unampped
		 * regions of the page
		 */
		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
			buffer_mapped(bh))
				goto next;

		/* If the range is block aligned, unmap */
		if (range_to_discard == blocksize) {
			clear_buffer_dirty(bh);
			bh->b_bdev = NULL;
			clear_buffer_mapped(bh);
			clear_buffer_req(bh);
			clear_buffer_new(bh);
			clear_buffer_delay(bh);
			clear_buffer_unwritten(bh);
			clear_buffer_uptodate(bh);
			zero_user(page, pos, range_to_discard);
			BUFFER_TRACE(bh, "Buffer discarded");
			goto next;
		}

		/*
		 * If this block is not completely contained in the range
		 * to be discarded, then it is not going to be released. Because
		 * we need to keep this block, we need to make sure this part
		 * of the page is uptodate before we modify it by writeing
		 * partial zeros on it.
		 */
		if (!buffer_mapped(bh)) {
			/*
			 * Buffer head must be mapped before we can read
			 * from the block
			 */
			BUFFER_TRACE(bh, "unmapped");
			ext4_get_block(inode, iblock, bh, 0);
			/* unmapped? It's a hole - nothing to do */
			if (!buffer_mapped(bh)) {
				BUFFER_TRACE(bh, "still unmapped");
				goto next;
			}
		}

		/* Ok, it's mapped. Make sure it's up-to-date */
		if (PageUptodate(page))
			set_buffer_uptodate(bh);

		if (!buffer_uptodate(bh)) {
			err = -EIO;
			ll_rw_block(READ, 1, &bh);
			wait_on_buffer(bh);
			/* Uhhuh. Read error. Complain and punt.*/
			if (!buffer_uptodate(bh))
				goto next;
		}

		if (ext4_should_journal_data(inode)) {
			BUFFER_TRACE(bh, "get write access");
			err = ext4_journal_get_write_access(handle, bh);
			if (err)
				goto next;
		}

		zero_user(page, pos, range_to_discard);

		err = 0;
		if (ext4_should_journal_data(inode)) {
			err = ext4_handle_dirty_metadata(handle, inode, bh);
3425
		} else
3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
			mark_buffer_dirty(bh);

		BUFFER_TRACE(bh, "Partial buffer zeroed");
next:
		bh = bh->b_this_page;
		iblock++;
		pos += range_to_discard;
	}

	return err;
}

3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
int ext4_can_truncate(struct inode *inode)
{
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3449 3450 3451 3452 3453 3454 3455 3456
/*
 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
 * associated with the given offset and length
 *
 * @inode:  File inode
 * @offset: The offset where the hole will begin
 * @len:    The length of the hole
 *
3457
 * Returns: 0 on success or negative on failure
3458 3459 3460 3461 3462 3463
 */

int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	if (!S_ISREG(inode->i_mode))
3464
		return -EOPNOTSUPP;
3465 3466 3467

	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
		/* TODO: Add support for non extent hole punching */
3468
		return -EOPNOTSUPP;
3469 3470
	}

3471 3472
	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
		/* TODO: Add support for bigalloc file systems */
3473
		return -EOPNOTSUPP;
3474 3475
	}

3476 3477 3478
	return ext4_ext_punch_hole(file, offset, length);
}

3479
/*
3480
 * ext4_truncate()
3481
 *
3482 3483
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3484 3485
 * simultaneously on behalf of the same inode.
 *
3486
 * As we work through the truncate and commit bits of it to the journal there
3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3500
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3501
 * that this inode's truncate did not complete and it will again call
3502 3503
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3504
 * that's fine - as long as they are linked from the inode, the post-crash
3505
 * ext4_truncate() run will find them and release them.
3506
 */
3507
void ext4_truncate(struct inode *inode)
3508
{
3509 3510
	trace_ext4_truncate_enter(inode);

3511
	if (!ext4_can_truncate(inode))
3512 3513
		return;

3514
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3515

3516
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3517
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3518

3519
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3520
		ext4_ext_truncate(inode);
3521 3522
	else
		ext4_ind_truncate(inode);
3523

3524
	trace_ext4_truncate_exit(inode);
3525 3526 3527
}

/*
3528
 * ext4_get_inode_loc returns with an extra refcount against the inode's
3529 3530 3531 3532
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
3533 3534
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
3535
{
3536 3537 3538 3539 3540 3541
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
3542
	iloc->bh = NULL;
3543 3544
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
3545

3546 3547 3548
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
3549 3550
		return -EIO;

3551 3552 3553
	/*
	 * Figure out the offset within the block group inode table
	 */
3554
	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3555 3556 3557 3558 3559 3560
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
3561
	if (!bh) {
3562 3563
		EXT4_ERROR_INODE_BLOCK(inode, block,
				       "unable to read itable block");
3564 3565 3566 3567
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
3568 3569 3570 3571 3572 3573 3574 3575 3576 3577

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
3591
			int i, start;
3592

3593
			start = inode_offset & ~(inodes_per_block - 1);
3594

3595 3596
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
3609
			for (i = start; i < start + inodes_per_block; i++) {
3610 3611
				if (i == inode_offset)
					continue;
3612
				if (ext4_test_bit(i, bitmap_bh->b_data))
3613 3614 3615
					break;
			}
			brelse(bitmap_bh);
3616
			if (i == start + inodes_per_block) {
3617 3618 3619 3620 3621 3622 3623 3624 3625
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
3626 3627 3628 3629 3630 3631 3632 3633 3634
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
3635
			/* s_inode_readahead_blks is always a power of 2 */
3636 3637 3638 3639 3640
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
3641
			if (ext4_has_group_desc_csum(sb))
3642
				num -= ext4_itable_unused_count(sb, gdp);
3643 3644 3645 3646 3647 3648 3649
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

3650 3651 3652 3653 3654
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
3655
		trace_ext4_load_inode(inode);
3656 3657
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
3658
		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3659 3660
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
3661 3662
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
3663 3664 3665 3666 3667 3668 3669 3670 3671
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

3672
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3673 3674
{
	/* We have all inode data except xattrs in memory here. */
3675
	return __ext4_get_inode_loc(inode, iloc,
3676
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3677 3678
}

3679
void ext4_set_inode_flags(struct inode *inode)
3680
{
3681
	unsigned int flags = EXT4_I(inode)->i_flags;
3682 3683

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3684
	if (flags & EXT4_SYNC_FL)
3685
		inode->i_flags |= S_SYNC;
3686
	if (flags & EXT4_APPEND_FL)
3687
		inode->i_flags |= S_APPEND;
3688
	if (flags & EXT4_IMMUTABLE_FL)
3689
		inode->i_flags |= S_IMMUTABLE;
3690
	if (flags & EXT4_NOATIME_FL)
3691
		inode->i_flags |= S_NOATIME;
3692
	if (flags & EXT4_DIRSYNC_FL)
3693 3694 3695
		inode->i_flags |= S_DIRSYNC;
}

3696 3697 3698
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3719
}
3720

3721
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3722
				  struct ext4_inode_info *ei)
3723 3724
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
3725 3726
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
3727 3728 3729 3730 3731 3732

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
3733
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
3734 3735 3736 3737 3738
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
3739 3740 3741 3742
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
3743

3744
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3745
{
3746 3747
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
3748 3749
	struct ext4_inode_info *ei;
	struct inode *inode;
3750
	journal_t *journal = EXT4_SB(sb)->s_journal;
3751
	long ret;
3752
	int block;
3753 3754
	uid_t i_uid;
	gid_t i_gid;
3755

3756 3757 3758 3759 3760 3761 3762
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
3763
	iloc.bh = NULL;
3764

3765 3766
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
3767
		goto bad_inode;
3768
	raw_inode = ext4_raw_inode(&iloc);
3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801

	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
		    EXT4_INODE_SIZE(inode->i_sb)) {
			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
				EXT4_INODE_SIZE(inode->i_sb));
			ret = -EIO;
			goto bad_inode;
		}
	} else
		ei->i_extra_isize = 0;

	/* Precompute checksum seed for inode metadata */
	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
		__u32 csum;
		__le32 inum = cpu_to_le32(inode->i_ino);
		__le32 gen = raw_inode->i_generation;
		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
				   sizeof(inum));
		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
					      sizeof(gen));
	}

	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
		EXT4_ERROR_INODE(inode, "checksum invalid");
		ret = -EIO;
		goto bad_inode;
	}

3802
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3803 3804
	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3805
	if (!(test_opt(inode->i_sb, NO_UID32))) {
3806 3807
		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3808
	}
3809 3810
	i_uid_write(inode, i_uid);
	i_gid_write(inode, i_gid);
M
Miklos Szeredi 已提交
3811
	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3812

3813
	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3814 3815 3816 3817 3818 3819 3820 3821 3822
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
3823
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3824
			/* this inode is deleted */
3825
			ret = -ESTALE;
3826 3827 3828 3829 3830 3831 3832 3833
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3834
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3835
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3836
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
3837 3838
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3839
	inode->i_size = ext4_isize(raw_inode);
3840
	ei->i_disksize = inode->i_size;
3841 3842 3843
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
3844 3845
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
3846
	ei->i_last_alloc_group = ~0;
3847 3848 3849 3850
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
3851
	for (block = 0; block < EXT4_N_BLOCKS; block++)
3852 3853 3854
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

3866
		read_lock(&journal->j_state_lock);
3867 3868 3869 3870 3871 3872 3873 3874
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
3875
		read_unlock(&journal->j_state_lock);
3876 3877 3878 3879
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

3880
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3881 3882
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
3883 3884
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
3885 3886
		} else {
			__le32 *magic = (void *)raw_inode +
3887
					EXT4_GOOD_OLD_INODE_SIZE +
3888
					ei->i_extra_isize;
3889
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3890
				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3891
		}
3892
	}
3893

K
Kalpak Shah 已提交
3894 3895 3896 3897 3898
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

3899 3900 3901 3902 3903 3904 3905
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

3906
	ret = 0;
3907
	if (ei->i_file_acl &&
3908
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3909 3910
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
3911 3912
		ret = -EIO;
		goto bad_inode;
3913
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3914 3915 3916 3917 3918
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
3919
	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3920 3921
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
3922
		/* Validate block references which are part of inode */
3923
		ret = ext4_ind_check_inode(inode);
3924
	}
3925
	if (ret)
3926
		goto bad_inode;
3927

3928
	if (S_ISREG(inode->i_mode)) {
3929 3930 3931
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
3932
	} else if (S_ISDIR(inode->i_mode)) {
3933 3934
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
3935
	} else if (S_ISLNK(inode->i_mode)) {
3936
		if (ext4_inode_is_fast_symlink(inode)) {
3937
			inode->i_op = &ext4_fast_symlink_inode_operations;
3938 3939 3940
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
3941 3942
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
3943
		}
3944 3945
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3946
		inode->i_op = &ext4_special_inode_operations;
3947 3948 3949 3950 3951 3952
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3953 3954
	} else {
		ret = -EIO;
3955
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3956
		goto bad_inode;
3957
	}
3958
	brelse(iloc.bh);
3959
	ext4_set_inode_flags(inode);
3960 3961
	unlock_new_inode(inode);
	return inode;
3962 3963

bad_inode:
3964
	brelse(iloc.bh);
3965 3966
	iget_failed(inode);
	return ERR_PTR(ret);
3967 3968
}

3969 3970 3971 3972 3973 3974 3975 3976 3977 3978
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
3979
		 * i_blocks can be represented in a 32 bit variable
3980 3981
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
3982
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3983
		raw_inode->i_blocks_high = 0;
3984
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3985 3986 3987 3988 3989 3990
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
3991 3992 3993 3994
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
3995
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3996
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3997
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3998
	} else {
3999
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
4000 4001 4002 4003
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4004
	}
4005
	return 0;
4006 4007
}

4008 4009 4010 4011 4012 4013 4014
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
4015
static int ext4_do_update_inode(handle_t *handle,
4016
				struct inode *inode,
4017
				struct ext4_iloc *iloc)
4018
{
4019 4020
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
4021 4022
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;
4023
	int need_datasync = 0;
4024 4025
	uid_t i_uid;
	gid_t i_gid;
4026 4027 4028

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
4029
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4030
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4031

4032
	ext4_get_inode_flags(ei);
4033
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4034 4035
	i_uid = i_uid_read(inode);
	i_gid = i_gid_read(inode);
4036
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4037 4038
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4039 4040 4041 4042
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
4043
		if (!ei->i_dtime) {
4044
			raw_inode->i_uid_high =
4045
				cpu_to_le16(high_16_bits(i_uid));
4046
			raw_inode->i_gid_high =
4047
				cpu_to_le16(high_16_bits(i_gid));
4048 4049 4050 4051 4052
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
4053 4054
		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4055 4056 4057 4058
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
4059 4060 4061 4062 4063 4064

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

4065 4066
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
4067
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4068
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4069 4070
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
4071 4072
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
4073
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4074 4075 4076 4077
	if (ei->i_disksize != ext4_isize(raw_inode)) {
		ext4_isize_set(raw_inode, ei->i_disksize);
		need_datasync = 1;
	}
4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
4093
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4094
			ext4_handle_sync(handle);
4095
			err = ext4_handle_dirty_super(handle, sb);
4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
4110 4111 4112
	} else
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
4113

4114 4115 4116 4117 4118
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4119
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4120 4121
	}

4122 4123
	ext4_inode_csum_set(inode, raw_inode, ei);

4124
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4125
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4126 4127
	if (!err)
		err = rc;
4128
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4129

4130
	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4131
out_brelse:
4132
	brelse(bh);
4133
	ext4_std_error(inode->i_sb, err);
4134 4135 4136 4137
	return err;
}

/*
4138
 * ext4_write_inode()
4139 4140 4141 4142 4143
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
4144
 *   transaction to commit.
4145 4146 4147 4148 4149 4150 4151 4152 4153 4154
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4155
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4172
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4173
{
4174 4175
	int err;

4176 4177 4178
	if (current->flags & PF_MEMALLOC)
		return 0;

4179 4180 4181 4182 4183 4184
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
4185

4186
		if (wbc->sync_mode != WB_SYNC_ALL)
4187 4188 4189 4190 4191
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
4192

4193
		err = __ext4_get_inode_loc(inode, &iloc, 0);
4194 4195
		if (err)
			return err;
4196
		if (wbc->sync_mode == WB_SYNC_ALL)
4197 4198
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4199 4200
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
4201 4202
			err = -EIO;
		}
4203
		brelse(iloc.bh);
4204 4205
	}
	return err;
4206 4207 4208
}

/*
4209
 * ext4_setattr()
4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4223 4224 4225 4226 4227 4228 4229 4230
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4231
 */
4232
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4233 4234 4235
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
4236
	int orphan = 0;
4237 4238 4239 4240 4241 4242
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

4243
	if (is_quota_modification(inode, attr))
4244
		dquot_initialize(inode);
4245 4246
	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4247 4248 4249 4250
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
D
Dmitry Monakhov 已提交
4251
		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4252
					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4253 4254 4255 4256
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4257
		error = dquot_transfer(inode, attr);
4258
		if (error) {
4259
			ext4_journal_stop(handle);
4260 4261 4262 4263 4264 4265 4266 4267
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4268 4269
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4270 4271
	}

4272
	if (attr->ia_valid & ATTR_SIZE) {
4273

4274
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4275 4276
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

4277 4278
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
4279 4280 4281
		}
	}

4282
	if (S_ISREG(inode->i_mode) &&
4283
	    attr->ia_valid & ATTR_SIZE &&
4284
	    (attr->ia_size < inode->i_size)) {
4285 4286
		handle_t *handle;

4287
		handle = ext4_journal_start(inode, 3);
4288 4289 4290 4291
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4292 4293 4294 4295
		if (ext4_handle_valid(handle)) {
			error = ext4_orphan_add(handle, inode);
			orphan = 1;
		}
4296 4297
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4298 4299
		if (!error)
			error = rc;
4300
		ext4_journal_stop(handle);
4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
4313
				orphan = 0;
4314 4315 4316 4317
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4318 4319
	}

4320
	if (attr->ia_valid & ATTR_SIZE) {
4321
		if (attr->ia_size != i_size_read(inode)) {
4322
			truncate_setsize(inode, attr->ia_size);
4323 4324 4325 4326 4327
			/* Inode size will be reduced, wait for dio in flight.
			 * Temporarily disable dioread_nolock to prevent
			 * livelock. */
			if (orphan) {
				ext4_inode_block_unlocked_dio(inode);
4328
				inode_dio_wait(inode);
4329 4330
				ext4_inode_resume_unlocked_dio(inode);
			}
4331
		}
4332
		ext4_truncate(inode);
4333
	}
4334

C
Christoph Hellwig 已提交
4335 4336 4337 4338 4339 4340 4341 4342 4343
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
4344
	if (orphan && inode->i_nlink)
4345
		ext4_orphan_del(NULL, inode);
4346 4347

	if (!rc && (ia_valid & ATTR_MODE))
4348
		rc = ext4_acl_chmod(inode);
4349 4350

err_out:
4351
	ext4_std_error(inode->i_sb, error);
4352 4353 4354 4355 4356
	if (!error)
		error = rc;
	return error;
}

4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
4376 4377
	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
				EXT4_I(inode)->i_reserved_data_blocks);
4378 4379 4380 4381

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4382

4383 4384
static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
4385
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4386
		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4387
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4388
}
4389

4390
/*
4391 4392 4393
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
4394
 *
4395
 * If datablocks are discontiguous, they are possible to spread over
4396
 * different block groups too. If they are contiguous, with flexbg,
4397
 * they could still across block group boundary.
4398
 *
4399 4400
 * Also account for superblock, inode, quota and xattr blocks
 */
4401
static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4402
{
4403 4404
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
4431 4432
	if (groups > ngroups)
		groups = ngroups;
4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
L
Lucas De Marchi 已提交
4446
 * Calculate the total number of credits to reserve to fit
4447 4448
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
4449
 *
4450
 * This could be called via ext4_write_begin()
4451
 *
4452
 * We need to consider the worse case, when
4453
 * one new block per extent.
4454
 */
A
Alex Tomas 已提交
4455
int ext4_writepage_trans_blocks(struct inode *inode)
4456
{
4457
	int bpp = ext4_journal_blocks_per_page(inode);
4458 4459
	int ret;

4460
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
4461

4462
	/* Account for data blocks for journalled mode */
4463
	if (ext4_should_journal_data(inode))
4464
		ret += bpp;
4465 4466
	return ret;
}
4467 4468 4469 4470 4471

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
4472
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4473 4474 4475 4476 4477 4478 4479 4480 4481
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

4482
/*
4483
 * The caller must have previously called ext4_reserve_inode_write().
4484 4485
 * Give this, we know that the caller already has write access to iloc->bh.
 */
4486
int ext4_mark_iloc_dirty(handle_t *handle,
4487
			 struct inode *inode, struct ext4_iloc *iloc)
4488 4489 4490
{
	int err = 0;

4491
	if (IS_I_VERSION(inode))
4492 4493
		inode_inc_iversion(inode);

4494 4495 4496
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

4497
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4498
	err = ext4_do_update_inode(handle, inode, iloc);
4499 4500 4501 4502 4503 4504 4505 4506 4507 4508
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
4509 4510
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
4511
{
4512 4513 4514 4515 4516 4517 4518 4519 4520
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
4521 4522
		}
	}
4523
	ext4_std_error(inode->i_sb, err);
4524 4525 4526
	return err;
}

4527 4528 4529 4530
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
4531 4532 4533 4534
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
4547 4548
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 */
4573
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4574
{
4575
	struct ext4_iloc iloc;
4576 4577 4578
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
4579 4580

	might_sleep();
4581
	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4582
	err = ext4_reserve_inode_write(handle, inode, &iloc);
4583 4584
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4585
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
4599 4600
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
4601 4602
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4603
					ext4_warning(inode->i_sb,
4604 4605 4606
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
4607 4608
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
4609 4610 4611 4612
				}
			}
		}
	}
4613
	if (!err)
4614
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4615 4616 4617 4618
	return err;
}

/*
4619
 * ext4_dirty_inode() is called from __mark_inode_dirty()
4620 4621 4622 4623 4624
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
4625
 * Also, dquot_alloc_block() will always dirty the inode when blocks
4626 4627 4628 4629 4630 4631
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
4632
void ext4_dirty_inode(struct inode *inode, int flags)
4633 4634 4635
{
	handle_t *handle;

4636
	handle = ext4_journal_start(inode, 2);
4637 4638
	if (IS_ERR(handle))
		goto out;
4639 4640 4641

	ext4_mark_inode_dirty(handle, inode);

4642
	ext4_journal_stop(handle);
4643 4644 4645 4646 4647 4648 4649 4650
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
4651
 * ext4_reserve_inode_write, this leaves behind no bh reference and
4652 4653 4654
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
4655
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4656
{
4657
	struct ext4_iloc iloc;
4658 4659 4660

	int err = 0;
	if (handle) {
4661
		err = ext4_get_inode_loc(inode, &iloc);
4662 4663
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
4664
			err = jbd2_journal_get_write_access(handle, iloc.bh);
4665
			if (!err)
4666
				err = ext4_handle_dirty_metadata(handle,
4667
								 NULL,
4668
								 iloc.bh);
4669 4670 4671
			brelse(iloc.bh);
		}
	}
4672
	ext4_std_error(inode->i_sb, err);
4673 4674 4675 4676
	return err;
}
#endif

4677
int ext4_change_inode_journal_flag(struct inode *inode, int val)
4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

4693
	journal = EXT4_JOURNAL(inode);
4694 4695
	if (!journal)
		return 0;
4696
	if (is_journal_aborted(journal))
4697
		return -EROFS;
4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708
	/* We have to allocate physical blocks for delalloc blocks
	 * before flushing journal. otherwise delalloc blocks can not
	 * be allocated any more. even more truncate on delalloc blocks
	 * could trigger BUG by flushing delalloc blocks in journal.
	 * There is no delalloc block in non-journal data mode.
	 */
	if (val && test_opt(inode->i_sb, DELALLOC)) {
		err = ext4_alloc_da_blocks(inode);
		if (err < 0)
			return err;
	}
4709

4710 4711 4712 4713
	/* Wait for all existing dio workers */
	ext4_inode_block_unlocked_dio(inode);
	inode_dio_wait(inode);

4714
	jbd2_journal_lock_updates(journal);
4715 4716 4717 4718 4719 4720 4721 4722 4723 4724

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
4725
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4726 4727
	else {
		jbd2_journal_flush(journal);
4728
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4729
	}
4730
	ext4_set_aops(inode);
4731

4732
	jbd2_journal_unlock_updates(journal);
4733
	ext4_inode_resume_unlocked_dio(inode);
4734 4735 4736

	/* Finally we can mark the inode as dirty. */

4737
	handle = ext4_journal_start(inode, 1);
4738 4739 4740
	if (IS_ERR(handle))
		return PTR_ERR(handle);

4741
	err = ext4_mark_inode_dirty(handle, inode);
4742
	ext4_handle_sync(handle);
4743 4744
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
4745 4746 4747

	return err;
}
4748 4749 4750 4751 4752 4753

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

4754
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4755
{
4756
	struct page *page = vmf->page;
4757 4758
	loff_t size;
	unsigned long len;
4759
	int ret;
4760 4761 4762
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;
4763 4764 4765
	handle_t *handle;
	get_block_t *get_block;
	int retries = 0;
4766

4767
	sb_start_pagefault(inode->i_sb);
4768
	file_update_time(vma->vm_file);
4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
	/* Delalloc case is easy... */
	if (test_opt(inode->i_sb, DELALLOC) &&
	    !ext4_should_journal_data(inode) &&
	    !ext4_nonda_switch(inode->i_sb)) {
		do {
			ret = __block_page_mkwrite(vma, vmf,
						   ext4_da_get_block_prep);
		} while (ret == -ENOSPC &&
		       ext4_should_retry_alloc(inode->i_sb, &retries));
		goto out_ret;
4779
	}
4780 4781

	lock_page(page);
4782 4783 4784 4785 4786 4787
	size = i_size_read(inode);
	/* Page got truncated from under us? */
	if (page->mapping != mapping || page_offset(page) > size) {
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
4788
	}
4789 4790 4791 4792 4793

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
4794
	/*
4795 4796
	 * Return if we have all the buffers mapped. This avoids the need to do
	 * journal_start/journal_stop which can block and take a long time
4797
	 */
4798 4799
	if (page_has_buffers(page)) {
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4800
					ext4_bh_unmapped)) {
4801 4802 4803 4804
			/* Wait so that we don't change page under IO */
			wait_on_page_writeback(page);
			ret = VM_FAULT_LOCKED;
			goto out;
4805
		}
4806
	}
4807
	unlock_page(page);
4808 4809 4810 4811 4812 4813 4814 4815
	/* OK, we need to fill the hole... */
	if (ext4_should_dioread_nolock(inode))
		get_block = ext4_get_block_write;
	else
		get_block = ext4_get_block;
retry_alloc:
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
4816
		ret = VM_FAULT_SIGBUS;
4817 4818 4819 4820 4821 4822 4823 4824
		goto out;
	}
	ret = __block_page_mkwrite(vma, vmf, get_block);
	if (!ret && ext4_should_journal_data(inode)) {
		if (walk_page_buffers(handle, page_buffers(page), 0,
			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
			unlock_page(page);
			ret = VM_FAULT_SIGBUS;
4825
			ext4_journal_stop(handle);
4826 4827 4828 4829 4830 4831 4832 4833 4834 4835
			goto out;
		}
		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
	}
	ext4_journal_stop(handle);
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry_alloc;
out_ret:
	ret = block_page_mkwrite_return(ret);
out:
4836
	sb_end_pagefault(inode->i_sb);
4837 4838
	return ret;
}