inode.c 140.1 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
18
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 20 21 22
 */

#include <linux/fs.h>
#include <linux/time.h>
23
#include <linux/jbd2.h>
24 25 26 27 28 29
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
30
#include <linux/pagevec.h>
31
#include <linux/mpage.h>
32
#include <linux/namei.h>
33 34
#include <linux/uio.h>
#include <linux/bio.h>
35
#include <linux/workqueue.h>
36
#include <linux/kernel.h>
37
#include <linux/printk.h>
38
#include <linux/slab.h>
39
#include <linux/ratelimit.h>
40

41
#include "ext4_jbd2.h"
42 43
#include "xattr.h"
#include "acl.h"
44
#include "truncate.h"
45

46 47
#include <trace/events/ext4.h>

48 49
#define MPAGE_DA_EXTENT_TAIL 0x01

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
			      struct ext4_inode_info *ei)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	__u16 csum_lo;
	__u16 csum_hi = 0;
	__u32 csum;

	csum_lo = raw->i_checksum_lo;
	raw->i_checksum_lo = 0;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
		csum_hi = raw->i_checksum_hi;
		raw->i_checksum_hi = 0;
	}

	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
			   EXT4_INODE_SIZE(inode->i_sb));

	raw->i_checksum_lo = csum_lo;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = csum_hi;

	return csum;
}

static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
				  struct ext4_inode_info *ei)
{
	__u32 provided, calculated;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return 1;

	provided = le16_to_cpu(raw->i_checksum_lo);
	calculated = ext4_inode_csum(inode, raw, ei);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
	else
		calculated &= 0xFFFF;

	return provided == calculated;
}

static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
				struct ext4_inode_info *ei)
{
	__u32 csum;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return;

	csum = ext4_inode_csum(inode, raw, ei);
	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
}

117 118 119
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
120
	trace_ext4_begin_ordered_truncate(inode, new_size);
121 122 123 124 125 126 127 128 129 130 131
	/*
	 * If jinode is zero, then we never opened the file for
	 * writing, so there's no need to call
	 * jbd2_journal_begin_ordered_truncate() since there's no
	 * outstanding writes we need to flush.
	 */
	if (!EXT4_I(inode)->jinode)
		return 0;
	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
						   EXT4_I(inode)->jinode,
						   new_size);
132 133
}

134
static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 136 137 138 139 140
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create);
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
E
Eric Sandeen 已提交
141 142 143
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags);
144

145 146 147
/*
 * Test whether an inode is a fast symlink.
 */
148
static int ext4_inode_is_fast_symlink(struct inode *inode)
149
{
150
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 152 153 154 155 156 157 158 159 160
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
161
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
162
				 int nblocks)
163
{
164 165 166
	int ret;

	/*
167
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
168 169 170 171
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
172
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
173
	jbd_debug(2, "restarting handle %p\n", handle);
174
	up_write(&EXT4_I(inode)->i_data_sem);
175
	ret = ext4_journal_restart(handle, nblocks);
176
	down_write(&EXT4_I(inode)->i_data_sem);
177
	ext4_discard_preallocations(inode);
178 179

	return ret;
180 181 182 183 184
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
185
void ext4_evict_inode(struct inode *inode)
186 187
{
	handle_t *handle;
188
	int err;
189

190
	trace_ext4_evict_inode(inode);
191 192 193

	ext4_ioend_wait(inode);

A
Al Viro 已提交
194
	if (inode->i_nlink) {
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
		/*
		 * When journalling data dirty buffers are tracked only in the
		 * journal. So although mm thinks everything is clean and
		 * ready for reaping the inode might still have some pages to
		 * write in the running transaction or waiting to be
		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
		 * (via truncate_inode_pages()) to discard these buffers can
		 * cause data loss. Also even if we did not discard these
		 * buffers, we would have no way to find them after the inode
		 * is reaped and thus user could see stale data if he tries to
		 * read them before the transaction is checkpointed. So be
		 * careful and force everything to disk here... We use
		 * ei->i_datasync_tid to store the newest transaction
		 * containing inode's data.
		 *
		 * Note that directories do not have this problem because they
		 * don't use page cache.
		 */
		if (ext4_should_journal_data(inode) &&
		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;

			jbd2_log_start_commit(journal, commit_tid);
			jbd2_log_wait_commit(journal, commit_tid);
			filemap_write_and_wait(&inode->i_data);
		}
A
Al Viro 已提交
222 223 224 225
		truncate_inode_pages(&inode->i_data, 0);
		goto no_delete;
	}

226
	if (!is_bad_inode(inode))
227
		dquot_initialize(inode);
228

229 230
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
231 232 233 234 235
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

236 237 238 239 240
	/*
	 * Protect us against freezing - iput() caller didn't have to have any
	 * protection against it
	 */
	sb_start_intwrite(inode->i_sb);
241
	handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
242
	if (IS_ERR(handle)) {
243
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
244 245 246 247 248
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
249
		ext4_orphan_del(NULL, inode);
250
		sb_end_intwrite(inode->i_sb);
251 252 253 254
		goto no_delete;
	}

	if (IS_SYNC(inode))
255
		ext4_handle_sync(handle);
256
	inode->i_size = 0;
257 258
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
259
		ext4_warning(inode->i_sb,
260 261 262
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
263
	if (inode->i_blocks)
264
		ext4_truncate(inode);
265 266 267 268 269 270 271

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
272
	if (!ext4_handle_has_enough_credits(handle, 3)) {
273 274 275 276
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
277
			ext4_warning(inode->i_sb,
278 279 280
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
281
			ext4_orphan_del(NULL, inode);
282
			sb_end_intwrite(inode->i_sb);
283 284 285 286
			goto no_delete;
		}
	}

287
	/*
288
	 * Kill off the orphan record which ext4_truncate created.
289
	 * AKPM: I think this can be inside the above `if'.
290
	 * Note that ext4_orphan_del() has to be able to cope with the
291
	 * deletion of a non-existent orphan - this is because we don't
292
	 * know if ext4_truncate() actually created an orphan record.
293 294
	 * (Well, we could do this if we need to, but heck - it works)
	 */
295 296
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
297 298 299 300 301 302 303 304

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
305
	if (ext4_mark_inode_dirty(handle, inode))
306
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
307
		ext4_clear_inode(inode);
308
	else
309 310
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
311
	sb_end_intwrite(inode->i_sb);
312 313
	return;
no_delete:
A
Al Viro 已提交
314
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
315 316
}

317 318
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
319
{
320
	return &EXT4_I(inode)->i_reserved_quota;
321
}
322
#endif
323

324 325
/*
 * Calculate the number of metadata blocks need to reserve
326
 * to allocate a block located at @lblock
327
 */
328
static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
329
{
330
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
331
		return ext4_ext_calc_metadata_amount(inode, lblock);
332

333
	return ext4_ind_calc_metadata_amount(inode, lblock);
334 335
}

336 337 338 339
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
340 341
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
342 343
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
344 345 346
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
347
	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
348 349
	if (unlikely(used > ei->i_reserved_data_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
350
			 "with only %d reserved data blocks",
351 352 353 354 355
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
356

357 358 359 360 361 362 363 364 365
	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
			 "with only %d reserved metadata blocks\n", __func__,
			 inode->i_ino, ei->i_allocated_meta_blocks,
			 ei->i_reserved_meta_blocks);
		WARN_ON(1);
		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
	}

366 367 368
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
369
	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
370
			   used + ei->i_allocated_meta_blocks);
371
	ei->i_allocated_meta_blocks = 0;
372

373 374 375 376 377 378
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
379
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
380
				   ei->i_reserved_meta_blocks);
381
		ei->i_reserved_meta_blocks = 0;
382
		ei->i_da_metadata_calc_len = 0;
383
	}
384
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
385

386 387
	/* Update quota subsystem for data blocks */
	if (quota_claim)
388
		dquot_claim_block(inode, EXT4_C2B(sbi, used));
389
	else {
390 391 392
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
393
		 * not re-claim the quota for fallocated blocks.
394
		 */
395
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
396
	}
397 398 399 400 401 402

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
403 404
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
405
		ext4_discard_preallocations(inode);
406 407
}

408
static int __check_block_validity(struct inode *inode, const char *func,
409 410
				unsigned int line,
				struct ext4_map_blocks *map)
411
{
412 413
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
414 415 416 417
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
418 419 420 421 422
		return -EIO;
	}
	return 0;
}

423
#define check_block_validity(inode, map)	\
424
	__check_block_validity((inode), __func__, __LINE__, (map))
425

426
/*
427 428
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
462 463 464 465 466 467 468 469 470
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
471 472 473 474 475
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
476 477
			if (num >= max_pages) {
				done = 1;
478
				break;
479
			}
480 481 482 483 484 485
		}
		pagevec_release(&pvec);
	}
	return num;
}

486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
/*
 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
 */
static void set_buffers_da_mapped(struct inode *inode,
				   struct ext4_map_blocks *map)
{
	struct address_space *mapping = inode->i_mapping;
	struct pagevec pvec;
	int i, nr_pages;
	pgoff_t index, end;

	index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end = (map->m_lblk + map->m_len - 1) >>
		(PAGE_CACHE_SHIFT - inode->i_blkbits);

	pagevec_init(&pvec, 0);
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index,
					  min(end - index + 1,
					      (pgoff_t)PAGEVEC_SIZE));
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page))
				break;

			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					set_buffer_da_mapped(bh);
					bh = bh->b_this_page;
				} while (bh != head);
			}
			index++;
		}
		pagevec_release(&pvec);
	}
}

529
/*
530
 * The ext4_map_blocks() function tries to look up the requested blocks,
531
 * and returns if the blocks are already mapped.
532 533 534 535 536
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
537 538
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
539 540 541 542 543 544 545 546
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
547
 * that case, buffer head is unmapped
548 549 550
 *
 * It returns the error in case of allocation failure.
 */
551 552
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
553 554
{
	int retval;
555

556 557 558 559
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
560
	/*
561 562
	 * Try to see if we can get the block without requesting a new
	 * file system block.
563
	 */
564 565
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		down_read((&EXT4_I(inode)->i_data_sem));
566
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
567 568
		retval = ext4_ext_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
569
	} else {
570 571
		retval = ext4_ind_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
572
	}
573 574
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		up_read((&EXT4_I(inode)->i_data_sem));
575

576
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
577
		int ret = check_block_validity(inode, map);
578 579 580 581
		if (ret != 0)
			return ret;
	}

582
	/* If it is only a block(s) look up */
583
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
584 585 586 587 588 589
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
590
	 * ext4_ext_get_block() returns the create = 0
591 592
	 * with buffer head unmapped.
	 */
593
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
594 595
		return retval;

596 597 598 599 600 601 602 603 604 605
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
606
	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
607

608
	/*
609 610 611 612
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
613 614
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
615 616 617 618 619 620 621

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
622
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
623
		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
624 625 626 627
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
628
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
629
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
630
	} else {
631
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
632

633
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
634 635 636 637 638
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
639
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
640
		}
641

642 643 644 645 646 647 648
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
649
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
650 651
			ext4_da_update_reserve_space(inode, retval, 1);
	}
652
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
653
		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
654

655 656 657 658 659 660 661 662
		/* If we have successfully mapped the delayed allocated blocks,
		 * set the BH_Da_Mapped bit on them. Its important to do this
		 * under the protection of i_data_sem.
		 */
		if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
			set_buffers_da_mapped(inode, map);
	}

663
	up_write((&EXT4_I(inode)->i_data_sem));
664
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
665
		int ret = check_block_validity(inode, map);
666 667 668
		if (ret != 0)
			return ret;
	}
669 670 671
	return retval;
}

672 673 674
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

675 676
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
677
{
678
	handle_t *handle = ext4_journal_current_handle();
679
	struct ext4_map_blocks map;
J
Jan Kara 已提交
680
	int ret = 0, started = 0;
681
	int dio_credits;
682

683 684 685 686
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

	if (flags && !handle) {
J
Jan Kara 已提交
687
		/* Direct IO write... */
688 689 690
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
691
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
692
		if (IS_ERR(handle)) {
693
			ret = PTR_ERR(handle);
694
			return ret;
695
		}
J
Jan Kara 已提交
696
		started = 1;
697 698
	}

699
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
700
	if (ret > 0) {
701 702 703
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
704
		ret = 0;
705
	}
J
Jan Kara 已提交
706 707
	if (started)
		ext4_journal_stop(handle);
708 709 710
	return ret;
}

711 712 713 714 715 716 717
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

718 719 720
/*
 * `handle' can be NULL if create is zero
 */
721
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
722
				ext4_lblk_t block, int create, int *errp)
723
{
724 725
	struct ext4_map_blocks map;
	struct buffer_head *bh;
726 727 728 729
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

730 731 732 733
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
734

735 736 737
	/* ensure we send some value back into *errp */
	*errp = 0;

738 739 740 741 742 743 744 745 746
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
	if (!bh) {
		*errp = -EIO;
		return NULL;
747
	}
748 749 750
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
751

752 753 754 755 756 757 758 759 760 761 762 763 764
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
765
		}
766 767 768 769 770 771 772
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
773
	}
774 775 776 777 778 779
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
780 781
}

782
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
783
			       ext4_lblk_t block, int create, int *err)
784
{
785
	struct buffer_head *bh;
786

787
	bh = ext4_getblk(handle, inode, block, create, err);
788 789 790 791
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
792
	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
793 794 795 796 797 798 799 800
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

801 802 803 804 805 806 807
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
808 809 810 811 812 813 814
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

815 816
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
817
	     block_start = block_end, bh = next) {
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
835
 * close off a transaction and start a new one between the ext4_get_block()
836
 * and the commit_write().  So doing the jbd2_journal_start at the start of
837 838
 * prepare_write() is the right place.
 *
839 840
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
841 842 843 844
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
845
 * By accident, ext4 can be reentered when a transaction is open via
846 847 848 849 850 851
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
852
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
853 854 855 856 857
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
858
				       struct buffer_head *bh)
859
{
860 861 862
	int dirty = buffer_dirty(bh);
	int ret;

863 864
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
865
	/*
C
Christoph Hellwig 已提交
866
	 * __block_write_begin() could have dirtied some buffers. Clean
867 868
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
C
Christoph Hellwig 已提交
869
	 * by __block_write_begin() isn't a real problem here as we clear
870 871 872 873 874 875 876 877 878
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
879 880
}

881 882
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
883
static int ext4_write_begin(struct file *file, struct address_space *mapping,
884 885
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
886
{
887
	struct inode *inode = mapping->host;
888
	int ret, needed_blocks;
889 890
	handle_t *handle;
	int retries = 0;
891
	struct page *page;
892
	pgoff_t index;
893
	unsigned from, to;
N
Nick Piggin 已提交
894

895
	trace_ext4_write_begin(inode, pos, len, flags);
896 897 898 899 900
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
901
	index = pos >> PAGE_CACHE_SHIFT;
902 903
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
904 905

retry:
906 907 908 909
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
910
	}
911

912 913 914 915
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

916
	page = grab_cache_page_write_begin(mapping, index, flags);
917 918 919 920 921 922 923
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

924
	if (ext4_should_dioread_nolock(inode))
925
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
926
	else
927
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
928 929

	if (!ret && ext4_should_journal_data(inode)) {
930 931 932
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
933 934

	if (ret) {
935 936
		unlock_page(page);
		page_cache_release(page);
937
		/*
938
		 * __block_write_begin may have instantiated a few blocks
939 940
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
941 942 943
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
944
		 */
945
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
946 947 948 949
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
950
			ext4_truncate_failed_write(inode);
951
			/*
952
			 * If truncate failed early the inode might
953 954 955 956 957 958 959
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
960 961
	}

962
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
963
		goto retry;
964
out:
965 966 967
	return ret;
}

N
Nick Piggin 已提交
968 969
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
970 971 972 973
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
974
	return ext4_handle_dirty_metadata(handle, NULL, bh);
975 976
}

977
static int ext4_generic_write_end(struct file *file,
978 979 980
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1023 1024 1025 1026
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1027
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1028 1029
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1030
static int ext4_ordered_write_end(struct file *file,
1031 1032 1033
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1034
{
1035
	handle_t *handle = ext4_journal_current_handle();
1036
	struct inode *inode = mapping->host;
1037 1038
	int ret = 0, ret2;

1039
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1040
	ret = ext4_jbd2_file_inode(handle, inode);
1041 1042

	if (ret == 0) {
1043
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1044
							page, fsdata);
1045
		copied = ret2;
1046
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1047 1048 1049 1050 1051
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1052 1053
		if (ret2 < 0)
			ret = ret2;
1054 1055 1056
	} else {
		unlock_page(page);
		page_cache_release(page);
1057
	}
1058

1059
	ret2 = ext4_journal_stop(handle);
1060 1061
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1062

1063
	if (pos + len > inode->i_size) {
1064
		ext4_truncate_failed_write(inode);
1065
		/*
1066
		 * If truncate failed early the inode might still be
1067 1068 1069 1070 1071 1072 1073 1074
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1075
	return ret ? ret : copied;
1076 1077
}

N
Nick Piggin 已提交
1078
static int ext4_writeback_write_end(struct file *file,
1079 1080 1081
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1082
{
1083
	handle_t *handle = ext4_journal_current_handle();
1084
	struct inode *inode = mapping->host;
1085 1086
	int ret = 0, ret2;

1087
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1088
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1089
							page, fsdata);
1090
	copied = ret2;
1091
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1092 1093 1094 1095 1096 1097
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1098 1099
	if (ret2 < 0)
		ret = ret2;
1100

1101
	ret2 = ext4_journal_stop(handle);
1102 1103
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1104

1105
	if (pos + len > inode->i_size) {
1106
		ext4_truncate_failed_write(inode);
1107
		/*
1108
		 * If truncate failed early the inode might still be
1109 1110 1111 1112 1113 1114 1115
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1116
	return ret ? ret : copied;
1117 1118
}

N
Nick Piggin 已提交
1119
static int ext4_journalled_write_end(struct file *file,
1120 1121 1122
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1123
{
1124
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1125
	struct inode *inode = mapping->host;
1126 1127
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1128
	unsigned from, to;
1129
	loff_t new_i_size;
1130

1131
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1132 1133 1134
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

1135 1136
	BUG_ON(!ext4_handle_valid(handle));

N
Nick Piggin 已提交
1137 1138 1139 1140 1141
	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1142 1143

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1144
				to, &partial, write_end_fn);
1145 1146
	if (!partial)
		SetPageUptodate(page);
1147 1148
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1149
		i_size_write(inode, pos+copied);
1150
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1151
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1152 1153
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1154
		ret2 = ext4_mark_inode_dirty(handle, inode);
1155 1156 1157
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1158

1159
	unlock_page(page);
1160
	page_cache_release(page);
1161
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1162 1163 1164 1165 1166 1167
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1168
	ret2 = ext4_journal_stop(handle);
1169 1170
	if (!ret)
		ret = ret2;
1171
	if (pos + len > inode->i_size) {
1172
		ext4_truncate_failed_write(inode);
1173
		/*
1174
		 * If truncate failed early the inode might still be
1175 1176 1177 1178 1179 1180
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1181 1182

	return ret ? ret : copied;
1183
}
1184

1185
/*
1186
 * Reserve a single cluster located at lblock
1187
 */
1188
static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1189
{
A
Aneesh Kumar K.V 已提交
1190
	int retries = 0;
1191
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1192
	struct ext4_inode_info *ei = EXT4_I(inode);
1193
	unsigned int md_needed;
1194
	int ret;
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
	ext4_lblk_t save_last_lblock;
	int save_len;

	/*
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
	 */
	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
	if (ret)
		return ret;
1206 1207 1208 1209 1210 1211

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1212
repeat:
1213
	spin_lock(&ei->i_block_reservation_lock);
1214 1215 1216 1217 1218 1219
	/*
	 * ext4_calc_metadata_amount() has side effects, which we have
	 * to be prepared undo if we fail to claim space.
	 */
	save_len = ei->i_da_metadata_calc_len;
	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1220 1221
	md_needed = EXT4_NUM_B2C(sbi,
				 ext4_calc_metadata_amount(inode, lblock));
1222
	trace_ext4_da_reserve_space(inode, md_needed);
1223

1224 1225 1226 1227
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1228
	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1229 1230 1231
		ei->i_da_metadata_calc_len = save_len;
		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
		spin_unlock(&ei->i_block_reservation_lock);
A
Aneesh Kumar K.V 已提交
1232 1233 1234 1235
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1236
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1237 1238
		return -ENOSPC;
	}
1239
	ei->i_reserved_data_blocks++;
1240 1241
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1242

1243 1244 1245
	return 0;       /* success */
}

1246
static void ext4_da_release_space(struct inode *inode, int to_free)
1247 1248
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1249
	struct ext4_inode_info *ei = EXT4_I(inode);
1250

1251 1252 1253
	if (!to_free)
		return;		/* Nothing to release, exit */

1254
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1255

L
Li Zefan 已提交
1256
	trace_ext4_da_release_space(inode, to_free);
1257
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1258
		/*
1259 1260 1261 1262
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1263
		 */
1264 1265
		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
			 "ino %lu, to_free %d with only %d reserved "
1266
			 "data blocks", inode->i_ino, to_free,
1267 1268 1269
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1270
	}
1271
	ei->i_reserved_data_blocks -= to_free;
1272

1273 1274 1275 1276 1277
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
1278 1279
		 * Note that in case of bigalloc, i_reserved_meta_blocks,
		 * i_reserved_data_blocks, etc. refer to number of clusters.
1280
		 */
1281
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1282
				   ei->i_reserved_meta_blocks);
1283
		ei->i_reserved_meta_blocks = 0;
1284
		ei->i_da_metadata_calc_len = 0;
1285
	}
1286

1287
	/* update fs dirty data blocks counter */
1288
	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1289 1290

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1291

1292
	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1293 1294 1295
}

static void ext4_da_page_release_reservation(struct page *page,
1296
					     unsigned long offset)
1297 1298 1299 1300
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;
1301 1302 1303
	struct inode *inode = page->mapping->host;
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int num_clusters;
1304 1305 1306 1307 1308 1309 1310 1311 1312

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
1313
			clear_buffer_da_mapped(bh);
1314 1315 1316
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330

	/* If we have released all the blocks belonging to a cluster, then we
	 * need to release the reserved space for that cluster. */
	num_clusters = EXT4_NUM_B2C(sbi, to_release);
	while (num_clusters > 0) {
		ext4_fsblk_t lblk;
		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
			((num_clusters - 1) << sbi->s_cluster_bits);
		if (sbi->s_cluster_ratio == 1 ||
		    !ext4_find_delalloc_cluster(inode, lblk, 1))
			ext4_da_release_space(inode, 1);

		num_clusters--;
	}
1331
}
1332

1333 1334 1335 1336 1337 1338
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1339
 * them with writepage() call back
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
1350 1351
static int mpage_da_submit_io(struct mpage_da_data *mpd,
			      struct ext4_map_blocks *map)
1352
{
1353 1354 1355 1356 1357
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1358
	loff_t size = i_size_read(inode);
1359 1360
	unsigned int len, block_start;
	struct buffer_head *bh, *page_bufs = NULL;
1361
	int journal_data = ext4_should_journal_data(inode);
1362
	sector_t pblock = 0, cur_logical = 0;
1363
	struct ext4_io_submit io_submit;
1364 1365

	BUG_ON(mpd->next_page <= mpd->first_page);
1366
	memset(&io_submit, 0, sizeof(io_submit));
1367 1368 1369
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1370
	 * If we look at mpd->b_blocknr we would only be looking
1371 1372
	 * at the currently mapped buffer_heads.
	 */
1373 1374 1375
	index = mpd->first_page;
	end = mpd->next_page - 1;

1376
	pagevec_init(&pvec, 0);
1377
	while (index <= end) {
1378
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1379 1380 1381
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
1382
			int commit_write = 0, skip_page = 0;
1383 1384
			struct page *page = pvec.pages[i];

1385 1386 1387
			index = page->index;
			if (index > end)
				break;
1388 1389 1390 1391 1392

			if (index == size >> PAGE_CACHE_SHIFT)
				len = size & ~PAGE_CACHE_MASK;
			else
				len = PAGE_CACHE_SIZE;
1393 1394 1395 1396 1397 1398
			if (map) {
				cur_logical = index << (PAGE_CACHE_SHIFT -
							inode->i_blkbits);
				pblock = map->m_pblk + (cur_logical -
							map->m_lblk);
			}
1399 1400 1401 1402 1403
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1404
			/*
1405 1406
			 * If the page does not have buffers (for
			 * whatever reason), try to create them using
1407
			 * __block_write_begin.  If this fails,
1408
			 * skip the page and move on.
1409
			 */
1410
			if (!page_has_buffers(page)) {
1411
				if (__block_write_begin(page, 0, len,
1412
						noalloc_get_block_write)) {
1413
				skip_page:
1414 1415 1416 1417 1418
					unlock_page(page);
					continue;
				}
				commit_write = 1;
			}
1419

1420 1421
			bh = page_bufs = page_buffers(page);
			block_start = 0;
1422
			do {
1423
				if (!bh)
1424
					goto skip_page;
1425 1426 1427
				if (map && (cur_logical >= map->m_lblk) &&
				    (cur_logical <= (map->m_lblk +
						     (map->m_len - 1)))) {
1428 1429 1430 1431
					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					}
1432 1433
					if (buffer_da_mapped(bh))
						clear_buffer_da_mapped(bh);
1434 1435 1436 1437 1438 1439 1440
					if (buffer_unwritten(bh) ||
					    buffer_mapped(bh))
						BUG_ON(bh->b_blocknr != pblock);
					if (map->m_flags & EXT4_MAP_UNINIT)
						set_buffer_uninit(bh);
					clear_buffer_unwritten(bh);
				}
1441

1442 1443 1444 1445 1446
				/*
				 * skip page if block allocation undone and
				 * block is dirty
				 */
				if (ext4_bh_delay_or_unwritten(NULL, bh))
1447
					skip_page = 1;
1448 1449
				bh = bh->b_this_page;
				block_start += bh->b_size;
1450 1451
				cur_logical++;
				pblock++;
1452 1453
			} while (bh != page_bufs);

1454 1455
			if (skip_page)
				goto skip_page;
1456 1457 1458 1459 1460

			if (commit_write)
				/* mark the buffer_heads as dirty & uptodate */
				block_commit_write(page, 0, len);

1461
			clear_page_dirty_for_io(page);
1462 1463 1464 1465 1466 1467
			/*
			 * Delalloc doesn't support data journalling,
			 * but eventually maybe we'll lift this
			 * restriction.
			 */
			if (unlikely(journal_data && PageChecked(page)))
1468
				err = __ext4_journalled_writepage(page, len);
1469
			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1470 1471
				err = ext4_bio_write_page(&io_submit, page,
							  len, mpd->wbc);
1472 1473 1474 1475 1476 1477
			else if (buffer_uninit(page_bufs)) {
				ext4_set_bh_endio(page_bufs, inode);
				err = block_write_full_page_endio(page,
					noalloc_get_block_write,
					mpd->wbc, ext4_end_io_buffer_write);
			} else
1478 1479
				err = block_write_full_page(page,
					noalloc_get_block_write, mpd->wbc);
1480 1481

			if (!err)
1482
				mpd->pages_written++;
1483 1484 1485 1486 1487 1488 1489 1490 1491
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
1492
	ext4_io_submit(&io_submit);
1493 1494 1495
	return ret;
}

1496
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1497 1498 1499 1500 1501 1502 1503
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

1504 1505
	index = mpd->first_page;
	end   = mpd->next_page - 1;
1506 1507 1508 1509 1510 1511
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
1512
			if (page->index > end)
1513 1514 1515 1516 1517 1518 1519
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
1520 1521
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
1522 1523 1524 1525
	}
	return;
}

1526 1527 1528
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1529 1530 1531
	struct super_block *sb = inode->i_sb;

	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1532 1533
	       EXT4_C2B(EXT4_SB(inode->i_sb),
			ext4_count_free_clusters(inode->i_sb)));
1534 1535
	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1536 1537
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1538
	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1539 1540
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1541 1542 1543 1544
	ext4_msg(sb, KERN_CRIT, "Block reservation details");
	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
		 EXT4_I(inode)->i_reserved_data_blocks);
	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1545
	       EXT4_I(inode)->i_reserved_meta_blocks);
1546 1547 1548
	return;
}

1549
/*
1550 1551
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
1552
 *
1553
 * @mpd - bh describing space
1554 1555 1556 1557
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
1558
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1559
{
1560
	int err, blks, get_blocks_flags;
1561
	struct ext4_map_blocks map, *mapp = NULL;
1562 1563 1564 1565
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
1566 1567

	/*
1568 1569
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
1570
	 */
1571 1572 1573 1574 1575
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
1576 1577 1578 1579

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

1580
	/*
1581
	 * Call ext4_map_blocks() to allocate any delayed allocation
1582 1583 1584 1585 1586 1587 1588 1589
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
1590
	 * want to change *many* call functions, so ext4_map_blocks()
1591
	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1592 1593 1594 1595 1596
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
1597
	 */
1598 1599
	map.m_lblk = next;
	map.m_len = max_blocks;
1600
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1601 1602
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1603
	if (mpd->b_state & (1 << BH_Delay))
1604 1605
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

1606
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1607
	if (blks < 0) {
1608 1609
		struct super_block *sb = mpd->inode->i_sb;

1610
		err = blks;
1611
		/*
1612
		 * If get block returns EAGAIN or ENOSPC and there
1613 1614
		 * appears to be free blocks we will just let
		 * mpage_da_submit_io() unlock all of the pages.
1615 1616
		 */
		if (err == -EAGAIN)
1617
			goto submit_io;
1618

1619
		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1620
			mpd->retval = err;
1621
			goto submit_io;
1622 1623
		}

1624
		/*
1625 1626 1627 1628 1629
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
1630
		 */
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
				"This should not happen!! Data will be lost\n");
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
1642
		}
1643
		/* invalidate all the pages */
1644
		ext4_da_block_invalidatepages(mpd);
1645 1646 1647

		/* Mark this page range as having been completed */
		mpd->io_done = 1;
1648
		return;
1649
	}
1650 1651
	BUG_ON(blks == 0);

1652
	mapp = &map;
1653 1654 1655
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
1656

1657 1658
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
1659

1660 1661
		if (ext4_should_order_data(mpd->inode)) {
			err = ext4_jbd2_file_inode(handle, mpd->inode);
1662
			if (err) {
1663
				/* Only if the journal is aborted */
1664 1665 1666
				mpd->retval = err;
				goto submit_io;
			}
1667
		}
1668 1669 1670
	}

	/*
1671
	 * Update on-disk size along with block allocation.
1672 1673 1674 1675 1676 1677
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
1678 1679 1680 1681 1682
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
1683 1684
	}

1685
submit_io:
1686
	mpage_da_submit_io(mpd, mapp);
1687
	mpd->io_done = 1;
1688 1689
}

1690 1691
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1703 1704
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
1705 1706
{
	sector_t next;
1707
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1708

1709 1710 1711 1712
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
1713
	 * ext4_map_blocks() multiple times in a loop
1714 1715 1716 1717
	 */
	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
		goto flush_it;

1718
	/* check if thereserved journal credits might overflow */
1719
	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
1740 1741 1742
	/*
	 * First block in the extent
	 */
1743 1744 1745 1746
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
1747 1748 1749
		return;
	}

1750
	next = mpd->b_blocknr + nrblocks;
1751 1752 1753
	/*
	 * Can we merge the block to our big extent?
	 */
1754 1755
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
1756 1757 1758
		return;
	}

1759
flush_it:
1760 1761 1762 1763
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
1764
	mpage_da_map_and_submit(mpd);
1765
	return;
1766 1767
}

1768
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1769
{
1770
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1771 1772
}

1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
/*
 * This function is grabs code from the very beginning of
 * ext4_map_blocks, but assumes that the caller is from delayed write
 * time. This function looks up the requested blocks and sets the
 * buffer delay bit under the protection of i_data_sem.
 */
static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
			      struct ext4_map_blocks *map,
			      struct buffer_head *bh)
{
	int retval;
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;

	map->m_flags = 0;
	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, map->m_len,
		  (unsigned long) map->m_lblk);
	/*
	 * Try to see if we can get the block without requesting a new
	 * file system block.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
	else
		retval = ext4_ind_map_blocks(NULL, inode, map, 0);

	if (retval == 0) {
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
		/* If the block was allocated from previously allocated cluster,
		 * then we dont need to reserve it again. */
		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
			retval = ext4_da_reserve_space(inode, iblock);
			if (retval)
				/* not enough space to reserve */
				goto out_unlock;
		}

		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
		 * and it should not appear on the bh->b_state.
		 */
		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;

		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
	}

out_unlock:
	up_read((&EXT4_I(inode)->i_data_sem));

	return retval;
}

1833
/*
1834 1835 1836
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
1837 1838 1839 1840 1841 1842 1843
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
1844 1845
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1846
				  struct buffer_head *bh, int create)
1847
{
1848
	struct ext4_map_blocks map;
1849 1850 1851
	int ret = 0;

	BUG_ON(create == 0);
1852 1853 1854 1855
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
1856 1857 1858 1859 1860 1861

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
1862 1863
	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
	if (ret <= 0)
1864
		return ret;
1865

1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
1877
		set_buffer_mapped(bh);
1878 1879
	}
	return 0;
1880
}
1881

1882 1883 1884
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
C
Christoph Hellwig 已提交
1885
 * callback function for block_write_begin() and block_write_full_page().
1886
 * These functions should only try to map a single block at a time.
1887 1888 1889 1890 1891
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
1892 1893 1894
 * delayed allocation before calling  block_write_full_page().  Otherwise,
 * b_blocknr could be left unitialized, and the page write functions will
 * be taken by surprise.
1895 1896
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1897 1898
				   struct buffer_head *bh_result, int create)
{
1899
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1900
	return _ext4_get_block(inode, iblock, bh_result, 0);
1901 1902
}

1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

1925
	ClearPageChecked(page);
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
	page_bufs = page_buffers(page);
	BUG_ON(!page_bufs);
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

1939 1940
	BUG_ON(!ext4_handle_valid(handle));

1941 1942 1943 1944 1945 1946 1947
	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				do_journal_get_write_access);

	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				write_end_fn);
	if (ret == 0)
		ret = err;
1948
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1949 1950 1951 1952 1953
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1954
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1955 1956 1957 1958
out:
	return ret;
}

1959
/*
1960 1961 1962 1963
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
L
Lucas De Marchi 已提交
1964
 * we are writing back data modified via mmap(), no one guarantees in which
1965 1966 1967 1968
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
1969 1970 1971 1972 1973
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
 *   - shrink_page_list via pdflush (no journal handle)
 *   - grab_page_cache when doing write_begin (have journal handle)
1974 1975 1976 1977 1978 1979 1980 1981 1982
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
1983
 * but other buffer_heads would be unmapped but dirty (dirty done via the
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1999
 */
2000
static int ext4_writepage(struct page *page,
2001
			  struct writeback_control *wbc)
2002
{
T
Theodore Ts'o 已提交
2003
	int ret = 0, commit_write = 0;
2004
	loff_t size;
2005
	unsigned int len;
2006
	struct buffer_head *page_bufs = NULL;
2007 2008
	struct inode *inode = page->mapping->host;

L
Lukas Czerner 已提交
2009
	trace_ext4_writepage(page);
2010 2011 2012 2013 2014
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2015

T
Theodore Ts'o 已提交
2016 2017
	/*
	 * If the page does not have buffers (for whatever reason),
2018
	 * try to create them using __block_write_begin.  If this
T
Theodore Ts'o 已提交
2019 2020
	 * fails, redirty the page and move on.
	 */
2021
	if (!page_has_buffers(page)) {
2022
		if (__block_write_begin(page, 0, len,
T
Theodore Ts'o 已提交
2023 2024
					noalloc_get_block_write)) {
		redirty_page:
2025 2026 2027 2028
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
T
Theodore Ts'o 已提交
2029 2030 2031 2032 2033
		commit_write = 1;
	}
	page_bufs = page_buffers(page);
	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
			      ext4_bh_delay_or_unwritten)) {
2034
		/*
2035 2036 2037
		 * We don't want to do block allocation, so redirty
		 * the page and return.  We may reach here when we do
		 * a journal commit via journal_submit_inode_data_buffers.
2038 2039 2040
		 * We can also reach here via shrink_page_list but it
		 * should never be for direct reclaim so warn if that
		 * happens
2041
		 */
2042 2043
		WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
								PF_MEMALLOC);
T
Theodore Ts'o 已提交
2044 2045 2046
		goto redirty_page;
	}
	if (commit_write)
2047
		/* now mark the buffer_heads as dirty and uptodate */
2048
		block_commit_write(page, 0, len);
2049

2050
	if (PageChecked(page) && ext4_should_journal_data(inode))
2051 2052 2053 2054
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
2055
		return __ext4_journalled_writepage(page, len);
2056

T
Theodore Ts'o 已提交
2057
	if (buffer_uninit(page_bufs)) {
2058 2059 2060 2061
		ext4_set_bh_endio(page_bufs, inode);
		ret = block_write_full_page_endio(page, noalloc_get_block_write,
					    wbc, ext4_end_io_buffer_write);
	} else
2062 2063
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
2064 2065 2066 2067

	return ret;
}

2068
/*
2069
 * This is called via ext4_da_writepages() to
L
Lucas De Marchi 已提交
2070
 * calculate the total number of credits to reserve to fit
2071 2072 2073
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2074
 */
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2086
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2087 2088 2089 2090 2091
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2092

2093 2094
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
2095
 * address space and accumulate pages that need writing, and call
2096 2097
 * mpage_da_map_and_submit to map a single contiguous memory region
 * and then write them.
2098 2099 2100
 */
static int write_cache_pages_da(struct address_space *mapping,
				struct writeback_control *wbc,
2101 2102
				struct mpage_da_data *mpd,
				pgoff_t *done_index)
2103
{
2104
	struct buffer_head	*bh, *head;
2105
	struct inode		*inode = mapping->host;
2106 2107 2108 2109 2110 2111
	struct pagevec		pvec;
	unsigned int		nr_pages;
	sector_t		logical;
	pgoff_t			index, end;
	long			nr_to_write = wbc->nr_to_write;
	int			i, tag, ret = 0;
2112

2113 2114 2115
	memset(mpd, 0, sizeof(struct mpage_da_data));
	mpd->wbc = wbc;
	mpd->inode = inode;
2116 2117 2118 2119
	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

2120
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2121 2122 2123 2124
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;

2125
	*done_index = index;
2126
	while (index <= end) {
2127
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2128 2129
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
2130
			return 0;
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
2142 2143
			if (page->index > end)
				goto out;
2144

2145 2146
			*done_index = page->index + 1;

2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
			/*
			 * If we can't merge this page, and we have
			 * accumulated an contiguous region, write it
			 */
			if ((mpd->next_page != page->index) &&
			    (mpd->next_page != mpd->first_page)) {
				mpage_da_map_and_submit(mpd);
				goto ret_extent_tail;
			}

2157 2158 2159
			lock_page(page);

			/*
2160 2161 2162 2163 2164 2165
			 * If the page is no longer dirty, or its
			 * mapping no longer corresponds to inode we
			 * are writing (which means it has been
			 * truncated or invalidated), or the page is
			 * already under writeback and we are not
			 * doing a data integrity writeback, skip the page
2166
			 */
2167 2168 2169 2170
			if (!PageDirty(page) ||
			    (PageWriteback(page) &&
			     (wbc->sync_mode == WB_SYNC_NONE)) ||
			    unlikely(page->mapping != mapping)) {
2171 2172 2173 2174
				unlock_page(page);
				continue;
			}

2175
			wait_on_page_writeback(page);
2176 2177
			BUG_ON(PageWriteback(page));

2178
			if (mpd->next_page != page->index)
2179 2180 2181 2182 2183 2184
				mpd->first_page = page->index;
			mpd->next_page = page->index + 1;
			logical = (sector_t) page->index <<
				(PAGE_CACHE_SHIFT - inode->i_blkbits);

			if (!page_has_buffers(page)) {
2185 2186
				mpage_add_bh_to_extent(mpd, logical,
						       PAGE_CACHE_SIZE,
2187
						       (1 << BH_Dirty) | (1 << BH_Uptodate));
2188 2189
				if (mpd->io_done)
					goto ret_extent_tail;
2190 2191
			} else {
				/*
2192 2193
				 * Page with regular buffer heads,
				 * just add all dirty ones
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
				 */
				head = page_buffers(page);
				bh = head;
				do {
					BUG_ON(buffer_locked(bh));
					/*
					 * We need to try to allocate
					 * unmapped blocks in the same page.
					 * Otherwise we won't make progress
					 * with the page in ext4_writepage
					 */
					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
						mpage_add_bh_to_extent(mpd, logical,
								       bh->b_size,
								       bh->b_state);
2209 2210
						if (mpd->io_done)
							goto ret_extent_tail;
2211 2212
					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
						/*
2213 2214 2215 2216 2217 2218 2219 2220 2221
						 * mapped dirty buffer. We need
						 * to update the b_state
						 * because we look at b_state
						 * in mpage_da_map_blocks.  We
						 * don't update b_size because
						 * if we find an unmapped
						 * buffer_head later we need to
						 * use the b_state flag of that
						 * buffer_head.
2222 2223 2224 2225 2226 2227
						 */
						if (mpd->b_size == 0)
							mpd->b_state = bh->b_state & BH_FLAGS;
					}
					logical++;
				} while ((bh = bh->b_this_page) != head);
2228 2229 2230 2231 2232
			}

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
2233
				    wbc->sync_mode == WB_SYNC_NONE)
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
2244
					goto out;
2245 2246 2247 2248 2249
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2250 2251 2252
	return 0;
ret_extent_tail:
	ret = MPAGE_DA_EXTENT_TAIL;
2253 2254 2255
out:
	pagevec_release(&pvec);
	cond_resched();
2256 2257 2258 2259
	return ret;
}


2260
static int ext4_da_writepages(struct address_space *mapping,
2261
			      struct writeback_control *wbc)
2262
{
2263 2264
	pgoff_t	index;
	int range_whole = 0;
2265
	handle_t *handle = NULL;
2266
	struct mpage_da_data mpd;
2267
	struct inode *inode = mapping->host;
2268
	int pages_written = 0;
2269
	unsigned int max_pages;
2270
	int range_cyclic, cycled = 1, io_done = 0;
2271 2272
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2273
	loff_t range_start = wbc->range_start;
2274
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2275
	pgoff_t done_index = 0;
2276
	pgoff_t end;
S
Shaohua Li 已提交
2277
	struct blk_plug plug;
2278

2279
	trace_ext4_da_writepages(inode, wbc);
2280

2281 2282 2283 2284 2285
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2286
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2287
		return 0;
2288 2289 2290 2291 2292

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2293
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2294 2295 2296 2297 2298
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2299
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2300 2301
		return -EROFS;

2302 2303
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2304

2305 2306
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2307
		index = mapping->writeback_index;
2308 2309 2310 2311 2312
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
2313 2314
		end = -1;
	} else {
2315
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2316 2317
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
	}
2318

2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2336 2337 2338 2339 2340 2341
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2352
retry:
2353
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2354 2355
		tag_pages_for_writeback(mapping, index, end);

S
Shaohua Li 已提交
2356
	blk_start_plug(&plug);
2357
	while (!ret && wbc->nr_to_write > 0) {
2358 2359 2360 2361 2362 2363 2364 2365

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2366
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2367

2368 2369 2370 2371
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2372
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2373
			       "%ld pages, ino %lu; err %d", __func__,
2374
				wbc->nr_to_write, inode->i_ino, ret);
2375
			blk_finish_plug(&plug);
2376 2377
			goto out_writepages;
		}
2378 2379

		/*
2380
		 * Now call write_cache_pages_da() to find the next
2381
		 * contiguous region of logical blocks that need
2382
		 * blocks to be allocated by ext4 and submit them.
2383
		 */
2384
		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2385
		/*
2386
		 * If we have a contiguous extent of pages and we
2387 2388 2389 2390
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2391
			mpage_da_map_and_submit(&mpd);
2392 2393
			ret = MPAGE_DA_EXTENT_TAIL;
		}
2394
		trace_ext4_da_write_pages(inode, &mpd);
2395
		wbc->nr_to_write -= mpd.pages_written;
2396

2397
		ext4_journal_stop(handle);
2398

2399
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2400 2401 2402 2403
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2404
			jbd2_journal_force_commit_nested(sbi->s_journal);
2405 2406
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2407
			/*
2408 2409 2410
			 * Got one extent now try with rest of the pages.
			 * If mpd.retval is set -EIO, journal is aborted.
			 * So we don't need to write any more.
2411
			 */
2412
			pages_written += mpd.pages_written;
2413
			ret = mpd.retval;
2414
			io_done = 1;
2415
		} else if (wbc->nr_to_write)
2416 2417 2418 2419 2420 2421
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2422
	}
S
Shaohua Li 已提交
2423
	blk_finish_plug(&plug);
2424 2425 2426 2427 2428 2429 2430
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2431 2432

	/* Update index */
2433
	wbc->range_cyclic = range_cyclic;
2434 2435 2436 2437 2438
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
2439
		mapping->writeback_index = done_index;
2440

2441
out_writepages:
2442
	wbc->nr_to_write -= nr_to_writebump;
2443
	wbc->range_start = range_start;
2444
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2445
	return ret;
2446 2447
}

2448 2449 2450 2451 2452 2453 2454 2455 2456
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2457
	 * counters can get slightly wrong with percpu_counter_batch getting
2458 2459 2460 2461
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
2462 2463 2464
	free_blocks  = EXT4_C2B(sbi,
		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
	/*
	 * Start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
	    !writeback_in_progress(sb->s_bdi) &&
	    down_read_trylock(&sb->s_umount)) {
		writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
		up_read(&sb->s_umount);
	}

2475
	if (2 * free_blocks < 3 * dirty_blocks ||
2476
		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2477
		/*
2478 2479
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
2480 2481 2482 2483 2484 2485
		 */
		return 1;
	}
	return 0;
}

2486
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2487 2488
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
2489
{
2490
	int ret, retries = 0;
2491 2492 2493 2494 2495 2496
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
2497 2498 2499 2500 2501 2502 2503

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2504
	trace_ext4_da_write_begin(inode, pos, len, flags);
2505
retry:
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
2517 2518 2519
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
2520

2521
	page = grab_cache_page_write_begin(mapping, index, flags);
2522 2523 2524 2525 2526
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
2527 2528
	*pagep = page;

2529
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2530 2531 2532 2533
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
2534 2535 2536 2537 2538 2539
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
2540
			ext4_truncate_failed_write(inode);
2541 2542
	}

2543 2544
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
2545 2546 2547 2548
out:
	return ret;
}

2549 2550 2551 2552 2553
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
2554
					    unsigned long offset)
2555 2556 2557 2558 2559 2560 2561 2562 2563
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2564
	for (i = 0; i < idx; i++)
2565 2566
		bh = bh->b_this_page;

2567
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2568 2569 2570 2571
		return 0;
	return 1;
}

2572
static int ext4_da_write_end(struct file *file,
2573 2574 2575
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
2576 2577 2578 2579 2580
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2581
	unsigned long start, end;
2582 2583 2584
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2585 2586
		switch (ext4_inode_journal_mode(inode)) {
		case EXT4_INODE_ORDERED_DATA_MODE:
2587 2588
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
2589
		case EXT4_INODE_WRITEBACK_DATA_MODE:
2590 2591
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
2592
		default:
2593 2594 2595
			BUG();
		}
	}
2596

2597
	trace_ext4_da_write_end(inode, pos, len, copied);
2598
	start = pos & (PAGE_CACHE_SIZE - 1);
2599
	end = start + copied - 1;
2600 2601 2602 2603 2604 2605 2606 2607

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
2608
	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
2619

2620 2621 2622
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
2623 2624 2625 2626 2627
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
2628
		}
2629
	}
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

2651
	ext4_da_page_release_reservation(page, offset);
2652 2653 2654 2655 2656 2657 2658

out:
	ext4_invalidatepage(page, offset);

	return;
}

2659 2660 2661 2662 2663
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
2664 2665
	trace_ext4_alloc_da_blocks(inode);

2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
2676
	 *
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
2689
	 * the pages by calling redirty_page_for_writepage() but that
2690 2691
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
L
Lucas De Marchi 已提交
2692
	 * simplifying them because we wouldn't actually intend to
2693 2694 2695
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
2696
	 *
2697 2698 2699 2700 2701 2702
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
2703

2704 2705 2706 2707 2708
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
2709
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2710 2711 2712 2713 2714 2715 2716 2717
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
2718
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2719 2720 2721 2722 2723
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

2734 2735
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
2747
		 * NB. EXT4_STATE_JDATA is not set on files other than
2748 2749 2750 2751 2752 2753
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

2754
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2755
		journal = EXT4_JOURNAL(inode);
2756 2757 2758
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
2759 2760 2761 2762 2763

		if (err)
			return 0;
	}

2764
	return generic_block_bmap(mapping, block, ext4_get_block);
2765 2766
}

2767
static int ext4_readpage(struct file *file, struct page *page)
2768
{
2769
	trace_ext4_readpage(page);
2770
	return mpage_readpage(page, ext4_get_block);
2771 2772 2773
}

static int
2774
ext4_readpages(struct file *file, struct address_space *mapping,
2775 2776
		struct list_head *pages, unsigned nr_pages)
{
2777
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2778 2779
}

2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
{
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	if (!page_has_buffers(page))
		return;
	head = bh = page_buffers(page);
	do {
		if (offset <= curr_off && test_clear_buffer_uninit(bh)
					&& bh->b_private) {
			ext4_free_io_end(bh->b_private);
			bh->b_private = NULL;
			bh->b_end_io = NULL;
		}
		curr_off = curr_off + bh->b_size;
		bh = bh->b_this_page;
	} while (bh != head);
}

2800
static void ext4_invalidatepage(struct page *page, unsigned long offset)
2801
{
2802
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2803

2804 2805
	trace_ext4_invalidatepage(page, offset);

2806 2807 2808 2809 2810
	/*
	 * free any io_end structure allocated for buffers to be discarded
	 */
	if (ext4_should_dioread_nolock(page->mapping->host))
		ext4_invalidatepage_free_endio(page, offset);
2811 2812 2813 2814 2815 2816
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

2817 2818 2819 2820
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
2821 2822
}

2823
static int ext4_releasepage(struct page *page, gfp_t wait)
2824
{
2825
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2826

2827 2828
	trace_ext4_releasepage(page);

2829 2830 2831
	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
2832 2833 2834 2835
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
2836 2837
}

2838 2839 2840 2841 2842
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
2843
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2844 2845
		   struct buffer_head *bh_result, int create)
{
2846
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2847
		   inode->i_ino, create);
2848 2849
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2850 2851
}

2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int flags)
{
	handle_t *handle = ext4_journal_current_handle();
	struct ext4_map_blocks map;
	int ret = 0;

	ext4_debug("ext4_get_block_write_nolock: inode %lu, flag %d\n",
		   inode->i_ino, flags);

	flags = EXT4_GET_BLOCKS_NO_LOCK;

	map.m_lblk = iblock;
	map.m_len = bh_result->b_size >> inode->i_blkbits;

	ret = ext4_map_blocks(handle, inode, &map, flags);
	if (ret > 0) {
		map_bh(bh_result, inode->i_sb, map.m_pblk);
		bh_result->b_state = (bh_result->b_state & ~EXT4_MAP_FLAGS) |
					map.m_flags;
		bh_result->b_size = inode->i_sb->s_blocksize * map.m_len;
		ret = 0;
	}
	return ret;
}

2878
static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2879 2880
			    ssize_t size, void *private, int ret,
			    bool is_async)
2881
{
2882
	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2883 2884
        ext4_io_end_t *io_end = iocb->private;

2885 2886
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
2887
		goto out;
2888

2889
	ext_debug("ext4_end_io_dio(): io_end 0x%p "
2890
		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2891 2892 2893
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

2894 2895
	iocb->private = NULL;

2896
	/* if not aio dio with unwritten extents, just free io and return */
2897
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2898
		ext4_free_io_end(io_end);
2899 2900 2901
out:
		if (is_async)
			aio_complete(iocb, ret, 0);
2902
		inode_dio_done(inode);
2903
		return;
2904 2905
	}

2906 2907
	io_end->offset = offset;
	io_end->size = size;
2908 2909 2910 2911
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
2912

2913
	ext4_add_complete_io(io_end);
2914
}
2915

2916 2917 2918 2919 2920 2921 2922 2923 2924
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
{
	ext4_io_end_t *io_end = bh->b_private;
	struct inode *inode;

	if (!test_clear_buffer_uninit(bh) || !io_end)
		goto out;

	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2925 2926 2927
		ext4_msg(io_end->inode->i_sb, KERN_INFO,
			 "sb umounted, discard end_io request for inode %lu",
			 io_end->inode->i_ino);
2928 2929 2930 2931
		ext4_free_io_end(io_end);
		goto out;
	}

2932 2933 2934 2935
	/*
	 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
	 * but being more careful is always safe for the future change.
	 */
2936
	inode = io_end->inode;
2937
	ext4_set_io_unwritten_flag(inode, io_end);
2938
	ext4_add_complete_io(io_end);
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
out:
	bh->b_private = NULL;
	bh->b_end_io = NULL;
	clear_buffer_uninit(bh);
	end_buffer_async_write(bh, uptodate);
}

static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
{
	ext4_io_end_t *io_end;
	struct page *page = bh->b_page;
	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
	size_t size = bh->b_size;

retry:
	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
	if (!io_end) {
2956
		pr_warn_ratelimited("%s: allocation fail\n", __func__);
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
		schedule();
		goto retry;
	}
	io_end->offset = offset;
	io_end->size = size;
	/*
	 * We need to hold a reference to the page to make sure it
	 * doesn't get evicted before ext4_end_io_work() has a chance
	 * to convert the extent from written to unwritten.
	 */
	io_end->page = page;
	get_page(io_end->page);

	bh->b_private = io_end;
	bh->b_end_io = ext4_end_io_buffer_write;
	return 0;
}

2975 2976 2977 2978 2979
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
2980
 * For holes, we fallocate those blocks, mark them as uninitialized
2981
 * If those blocks were preallocated, we mark sure they are splited, but
2982
 * still keep the range to write as uninitialized.
2983
 *
2984 2985
 * The unwrritten extents will be converted to written when DIO is completed.
 * For async direct IO, since the IO may still pending when return, we
L
Lucas De Marchi 已提交
2986
 * set up an end_io call back function, which will do the conversion
2987
 * when async direct IO completed.
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);

	loff_t final_size = offset + count;
	if (rw == WRITE && final_size <= inode->i_size) {
3005 3006
		int overwrite = 0;

3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
		BUG_ON(iocb->private == NULL);

		/* If we do a overwrite dio, i_mutex locking can be released */
		overwrite = *((int *)iocb->private);

		if (overwrite) {
			down_read(&EXT4_I(inode)->i_data_sem);
			mutex_unlock(&inode->i_mutex);
		}

3017
		/*
3018 3019 3020
 		 * We could direct write to holes and fallocate.
		 *
 		 * Allocated blocks to fill the hole are marked as uninitialized
L
Lucas De Marchi 已提交
3021
 		 * to prevent parallel buffered read to expose the stale data
3022
 		 * before DIO complete the data IO.
3023 3024
		 *
 		 * As to previously fallocated extents, ext4 get_block
3025 3026 3027
 		 * will just simply mark the buffer mapped but still
 		 * keep the extents uninitialized.
 		 *
3028 3029 3030 3031 3032 3033 3034 3035
		 * for non AIO case, we will convert those unwritten extents
		 * to written after return back from blockdev_direct_IO.
		 *
		 * for async DIO, the conversion needs to be defered when
		 * the IO is completed. The ext4 end_io callback function
		 * will be called to take care of the conversion work.
		 * Here for async case, we allocate an io_end structure to
		 * hook to the iocb.
3036
 		 */
3037
		iocb->private = NULL;
D
Dmitry Monakhov 已提交
3038
		ext4_inode_aio_set(inode, NULL);
3039
		if (!is_sync_kiocb(iocb)) {
3040 3041
			ext4_io_end_t *io_end =
				ext4_init_io_end(inode, GFP_NOFS);
3042 3043 3044 3045
			if (!io_end) {
				ret = -ENOMEM;
				goto retake_lock;
			}
3046 3047
			io_end->flag |= EXT4_IO_END_DIRECT;
			iocb->private = io_end;
3048 3049
			/*
			 * we save the io structure for current async
3050
			 * direct IO, so that later ext4_map_blocks()
3051 3052 3053 3054
			 * could flag the io structure whether there
			 * is a unwritten extents needs to be converted
			 * when IO is completed.
			 */
D
Dmitry Monakhov 已提交
3055
			ext4_inode_aio_set(inode, io_end);
3056 3057
		}

3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
		if (overwrite)
			ret = __blockdev_direct_IO(rw, iocb, inode,
						 inode->i_sb->s_bdev, iov,
						 offset, nr_segs,
						 ext4_get_block_write_nolock,
						 ext4_end_io_dio,
						 NULL,
						 0);
		else
			ret = __blockdev_direct_IO(rw, iocb, inode,
						 inode->i_sb->s_bdev, iov,
						 offset, nr_segs,
						 ext4_get_block_write,
						 ext4_end_io_dio,
						 NULL,
						 DIO_LOCKING);
3074
		if (iocb->private)
D
Dmitry Monakhov 已提交
3075
			ext4_inode_aio_set(inode, NULL);
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
		/*
		 * The io_end structure takes a reference to the inode,
		 * that structure needs to be destroyed and the
		 * reference to the inode need to be dropped, when IO is
		 * complete, even with 0 byte write, or failed.
		 *
		 * In the successful AIO DIO case, the io_end structure will be
		 * desctroyed and the reference to the inode will be dropped
		 * after the end_io call back function is called.
		 *
		 * In the case there is 0 byte write, or error case, since
		 * VFS direct IO won't invoke the end_io call back function,
		 * we need to free the end_io structure here.
		 */
		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
			ext4_free_io_end(iocb->private);
			iocb->private = NULL;
3093
		} else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3094
						EXT4_STATE_DIO_UNWRITTEN)) {
3095
			int err;
3096 3097
			/*
			 * for non AIO case, since the IO is already
L
Lucas De Marchi 已提交
3098
			 * completed, we could do the conversion right here
3099
			 */
3100 3101 3102 3103
			err = ext4_convert_unwritten_extents(inode,
							     offset, ret);
			if (err < 0)
				ret = err;
3104
			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3105
		}
3106 3107 3108 3109 3110 3111 3112 3113

	retake_lock:
		/* take i_mutex locking again if we do a ovewrite dio */
		if (overwrite) {
			up_read(&EXT4_I(inode)->i_data_sem);
			mutex_lock(&inode->i_mutex);
		}

3114 3115
		return ret;
	}
3116 3117

	/* for write the the end of file case, we fall back to old way */
3118 3119 3120 3121 3122 3123 3124 3125 3126
	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3127
	ssize_t ret;
3128

3129 3130 3131 3132 3133 3134
	/*
	 * If we are doing data journalling we don't support O_DIRECT
	 */
	if (ext4_should_journal_data(inode))
		return 0;

3135
	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3136
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3137 3138 3139 3140 3141 3142
		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
	else
		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
	trace_ext4_direct_IO_exit(inode, offset,
				iov_length(iov, nr_segs), rw, ret);
	return ret;
3143 3144
}

3145
/*
3146
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3158
static int ext4_journalled_set_page_dirty(struct page *page)
3159 3160 3161 3162 3163
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3164
static const struct address_space_operations ext4_ordered_aops = {
3165 3166
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3167
	.writepage		= ext4_writepage,
3168 3169 3170 3171 3172 3173 3174 3175
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3176
	.error_remove_page	= generic_error_remove_page,
3177 3178
};

3179
static const struct address_space_operations ext4_writeback_aops = {
3180 3181
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3182
	.writepage		= ext4_writepage,
3183 3184 3185 3186 3187 3188 3189 3190
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3191
	.error_remove_page	= generic_error_remove_page,
3192 3193
};

3194
static const struct address_space_operations ext4_journalled_aops = {
3195 3196
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3197
	.writepage		= ext4_writepage,
3198 3199 3200 3201 3202 3203
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
3204
	.direct_IO		= ext4_direct_IO,
3205
	.is_partially_uptodate  = block_is_partially_uptodate,
3206
	.error_remove_page	= generic_error_remove_page,
3207 3208
};

3209
static const struct address_space_operations ext4_da_aops = {
3210 3211
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3212
	.writepage		= ext4_writepage,
3213 3214 3215 3216 3217 3218 3219 3220 3221
	.writepages		= ext4_da_writepages,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3222
	.error_remove_page	= generic_error_remove_page,
3223 3224
};

3225
void ext4_set_aops(struct inode *inode)
3226
{
3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
	switch (ext4_inode_journal_mode(inode)) {
	case EXT4_INODE_ORDERED_DATA_MODE:
		if (test_opt(inode->i_sb, DELALLOC))
			inode->i_mapping->a_ops = &ext4_da_aops;
		else
			inode->i_mapping->a_ops = &ext4_ordered_aops;
		break;
	case EXT4_INODE_WRITEBACK_DATA_MODE:
		if (test_opt(inode->i_sb, DELALLOC))
			inode->i_mapping->a_ops = &ext4_da_aops;
		else
			inode->i_mapping->a_ops = &ext4_writeback_aops;
		break;
	case EXT4_INODE_JOURNAL_DATA_MODE:
3241
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3242 3243 3244 3245
		break;
	default:
		BUG();
	}
3246 3247
}

3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267

/*
 * ext4_discard_partial_page_buffers()
 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
 * This function finds and locks the page containing the offset
 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
 * Calling functions that already have the page locked should call
 * ext4_discard_partial_page_buffers_no_lock directly.
 */
int ext4_discard_partial_page_buffers(handle_t *handle,
		struct address_space *mapping, loff_t from,
		loff_t length, int flags)
{
	struct inode *inode = mapping->host;
	struct page *page;
	int err = 0;

	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
	if (!page)
3268
		return -ENOMEM;
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310

	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
		from, length, flags);

	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * ext4_discard_partial_page_buffers_no_lock()
 * Zeros a page range of length 'length' starting from offset 'from'.
 * Buffer heads that correspond to the block aligned regions of the
 * zeroed range will be unmapped.  Unblock aligned regions
 * will have the corresponding buffer head mapped if needed so that
 * that region of the page can be updated with the partial zero out.
 *
 * This function assumes that the page has already been  locked.  The
 * The range to be discarded must be contained with in the given page.
 * If the specified range exceeds the end of the page it will be shortened
 * to the end of the page that corresponds to 'from'.  This function is
 * appropriate for updating a page and it buffer heads to be unmapped and
 * zeroed for blocks that have been either released, or are going to be
 * released.
 *
 * handle: The journal handle
 * inode:  The files inode
 * page:   A locked page that contains the offset "from"
 * from:   The starting byte offset (from the begining of the file)
 *         to begin discarding
 * len:    The length of bytes to discard
 * flags:  Optional flags that may be used:
 *
 *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
 *         Only zero the regions of the page whose buffer heads
 *         have already been unmapped.  This flag is appropriate
 *         for updateing the contents of a page whose blocks may
 *         have already been released, and we only want to zero
 *         out the regions that correspond to those released blocks.
 *
 * Returns zero on sucess or negative on failure.
 */
E
Eric Sandeen 已提交
3311
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags)
{
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
	unsigned int blocksize, max, pos;
	ext4_lblk_t iblock;
	struct buffer_head *bh;
	int err = 0;

	blocksize = inode->i_sb->s_blocksize;
	max = PAGE_CACHE_SIZE - offset;

	if (index != page->index)
		return -EINVAL;

	/*
	 * correct length if it does not fall between
	 * 'from' and the end of the page
	 */
	if (length > max || length < 0)
		length = max;

	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

3337 3338
	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	pos = offset;
	while (pos < offset + length) {
3351 3352
		unsigned int end_of_block, range_to_discard;

3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
		err = 0;

		/* The length of space left to zero and unmap */
		range_to_discard = offset + length - pos;

		/* The length of space until the end of the block */
		end_of_block = blocksize - (pos & (blocksize-1));

		/*
		 * Do not unmap or zero past end of block
		 * for this buffer head
		 */
		if (range_to_discard > end_of_block)
			range_to_discard = end_of_block;


		/*
		 * Skip this buffer head if we are only zeroing unampped
		 * regions of the page
		 */
		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
			buffer_mapped(bh))
				goto next;

		/* If the range is block aligned, unmap */
		if (range_to_discard == blocksize) {
			clear_buffer_dirty(bh);
			bh->b_bdev = NULL;
			clear_buffer_mapped(bh);
			clear_buffer_req(bh);
			clear_buffer_new(bh);
			clear_buffer_delay(bh);
			clear_buffer_unwritten(bh);
			clear_buffer_uptodate(bh);
			zero_user(page, pos, range_to_discard);
			BUFFER_TRACE(bh, "Buffer discarded");
			goto next;
		}

		/*
		 * If this block is not completely contained in the range
		 * to be discarded, then it is not going to be released. Because
		 * we need to keep this block, we need to make sure this part
		 * of the page is uptodate before we modify it by writeing
		 * partial zeros on it.
		 */
		if (!buffer_mapped(bh)) {
			/*
			 * Buffer head must be mapped before we can read
			 * from the block
			 */
			BUFFER_TRACE(bh, "unmapped");
			ext4_get_block(inode, iblock, bh, 0);
			/* unmapped? It's a hole - nothing to do */
			if (!buffer_mapped(bh)) {
				BUFFER_TRACE(bh, "still unmapped");
				goto next;
			}
		}

		/* Ok, it's mapped. Make sure it's up-to-date */
		if (PageUptodate(page))
			set_buffer_uptodate(bh);

		if (!buffer_uptodate(bh)) {
			err = -EIO;
			ll_rw_block(READ, 1, &bh);
			wait_on_buffer(bh);
			/* Uhhuh. Read error. Complain and punt.*/
			if (!buffer_uptodate(bh))
				goto next;
		}

		if (ext4_should_journal_data(inode)) {
			BUFFER_TRACE(bh, "get write access");
			err = ext4_journal_get_write_access(handle, bh);
			if (err)
				goto next;
		}

		zero_user(page, pos, range_to_discard);

		err = 0;
		if (ext4_should_journal_data(inode)) {
			err = ext4_handle_dirty_metadata(handle, inode, bh);
3438
		} else
3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450
			mark_buffer_dirty(bh);

		BUFFER_TRACE(bh, "Partial buffer zeroed");
next:
		bh = bh->b_this_page;
		iblock++;
		pos += range_to_discard;
	}

	return err;
}

3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
int ext4_can_truncate(struct inode *inode)
{
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476
/*
 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
 * associated with the given offset and length
 *
 * @inode:  File inode
 * @offset: The offset where the hole will begin
 * @len:    The length of the hole
 *
 * Returns: 0 on sucess or negative on failure
 */

int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	if (!S_ISREG(inode->i_mode))
3477
		return -EOPNOTSUPP;
3478 3479 3480

	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
		/* TODO: Add support for non extent hole punching */
3481
		return -EOPNOTSUPP;
3482 3483
	}

3484 3485
	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
		/* TODO: Add support for bigalloc file systems */
3486
		return -EOPNOTSUPP;
3487 3488
	}

3489 3490 3491
	return ext4_ext_punch_hole(file, offset, length);
}

3492
/*
3493
 * ext4_truncate()
3494
 *
3495 3496
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3497 3498
 * simultaneously on behalf of the same inode.
 *
3499
 * As we work through the truncate and commit bits of it to the journal there
3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3513
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3514
 * that this inode's truncate did not complete and it will again call
3515 3516
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3517
 * that's fine - as long as they are linked from the inode, the post-crash
3518
 * ext4_truncate() run will find them and release them.
3519
 */
3520
void ext4_truncate(struct inode *inode)
3521
{
3522 3523
	trace_ext4_truncate_enter(inode);

3524
	if (!ext4_can_truncate(inode))
3525 3526
		return;

3527
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3528

3529
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3530
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3531

3532
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3533
		ext4_ext_truncate(inode);
3534 3535
	else
		ext4_ind_truncate(inode);
3536

3537
	trace_ext4_truncate_exit(inode);
3538 3539 3540
}

/*
3541
 * ext4_get_inode_loc returns with an extra refcount against the inode's
3542 3543 3544 3545
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
3546 3547
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
3548
{
3549 3550 3551 3552 3553 3554
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
3555
	iloc->bh = NULL;
3556 3557
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
3558

3559 3560 3561
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
3562 3563
		return -EIO;

3564 3565 3566
	/*
	 * Figure out the offset within the block group inode table
	 */
3567
	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3568 3569 3570 3571 3572 3573
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
3574
	if (!bh) {
3575 3576
		EXT4_ERROR_INODE_BLOCK(inode, block,
				       "unable to read itable block");
3577 3578 3579 3580
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
3581 3582 3583 3584 3585 3586 3587 3588 3589 3590

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
3604
			int i, start;
3605

3606
			start = inode_offset & ~(inodes_per_block - 1);
3607

3608 3609
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
3622
			for (i = start; i < start + inodes_per_block; i++) {
3623 3624
				if (i == inode_offset)
					continue;
3625
				if (ext4_test_bit(i, bitmap_bh->b_data))
3626 3627 3628
					break;
			}
			brelse(bitmap_bh);
3629
			if (i == start + inodes_per_block) {
3630 3631 3632 3633 3634 3635 3636 3637 3638
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
3639 3640 3641 3642 3643 3644 3645 3646 3647
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
3648
			/* s_inode_readahead_blks is always a power of 2 */
3649 3650 3651 3652 3653
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
3654
			if (ext4_has_group_desc_csum(sb))
3655
				num -= ext4_itable_unused_count(sb, gdp);
3656 3657 3658 3659 3660 3661 3662
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

3663 3664 3665 3666 3667
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
3668
		trace_ext4_load_inode(inode);
3669 3670
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
3671
		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3672 3673
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
3674 3675
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
3676 3677 3678 3679 3680 3681 3682 3683 3684
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

3685
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3686 3687
{
	/* We have all inode data except xattrs in memory here. */
3688
	return __ext4_get_inode_loc(inode, iloc,
3689
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3690 3691
}

3692
void ext4_set_inode_flags(struct inode *inode)
3693
{
3694
	unsigned int flags = EXT4_I(inode)->i_flags;
3695 3696

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3697
	if (flags & EXT4_SYNC_FL)
3698
		inode->i_flags |= S_SYNC;
3699
	if (flags & EXT4_APPEND_FL)
3700
		inode->i_flags |= S_APPEND;
3701
	if (flags & EXT4_IMMUTABLE_FL)
3702
		inode->i_flags |= S_IMMUTABLE;
3703
	if (flags & EXT4_NOATIME_FL)
3704
		inode->i_flags |= S_NOATIME;
3705
	if (flags & EXT4_DIRSYNC_FL)
3706 3707 3708
		inode->i_flags |= S_DIRSYNC;
}

3709 3710 3711
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3732
}
3733

3734
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3735
				  struct ext4_inode_info *ei)
3736 3737
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
3738 3739
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
3740 3741 3742 3743 3744 3745

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
3746
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
3747 3748 3749 3750 3751
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
3752 3753 3754 3755
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
3756

3757
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3758
{
3759 3760
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
3761 3762
	struct ext4_inode_info *ei;
	struct inode *inode;
3763
	journal_t *journal = EXT4_SB(sb)->s_journal;
3764
	long ret;
3765
	int block;
3766 3767
	uid_t i_uid;
	gid_t i_gid;
3768

3769 3770 3771 3772 3773 3774 3775
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
3776
	iloc.bh = NULL;
3777

3778 3779
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
3780
		goto bad_inode;
3781
	raw_inode = ext4_raw_inode(&iloc);
3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814

	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
		    EXT4_INODE_SIZE(inode->i_sb)) {
			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
				EXT4_INODE_SIZE(inode->i_sb));
			ret = -EIO;
			goto bad_inode;
		}
	} else
		ei->i_extra_isize = 0;

	/* Precompute checksum seed for inode metadata */
	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
		__u32 csum;
		__le32 inum = cpu_to_le32(inode->i_ino);
		__le32 gen = raw_inode->i_generation;
		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
				   sizeof(inum));
		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
					      sizeof(gen));
	}

	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
		EXT4_ERROR_INODE(inode, "checksum invalid");
		ret = -EIO;
		goto bad_inode;
	}

3815
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3816 3817
	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3818
	if (!(test_opt(inode->i_sb, NO_UID32))) {
3819 3820
		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3821
	}
3822 3823
	i_uid_write(inode, i_uid);
	i_gid_write(inode, i_gid);
M
Miklos Szeredi 已提交
3824
	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3825

3826
	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3827 3828 3829 3830 3831 3832 3833 3834 3835
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
3836
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3837
			/* this inode is deleted */
3838
			ret = -ESTALE;
3839 3840 3841 3842 3843 3844 3845 3846
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3847
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3848
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3849
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
3850 3851
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3852
	inode->i_size = ext4_isize(raw_inode);
3853
	ei->i_disksize = inode->i_size;
3854 3855 3856
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
3857 3858
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
3859
	ei->i_last_alloc_group = ~0;
3860 3861 3862 3863
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
3864
	for (block = 0; block < EXT4_N_BLOCKS; block++)
3865 3866 3867
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

3879
		read_lock(&journal->j_state_lock);
3880 3881 3882 3883 3884 3885 3886 3887
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
3888
		read_unlock(&journal->j_state_lock);
3889 3890 3891 3892
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

3893
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3894 3895
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
3896 3897
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
3898 3899
		} else {
			__le32 *magic = (void *)raw_inode +
3900
					EXT4_GOOD_OLD_INODE_SIZE +
3901
					ei->i_extra_isize;
3902
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3903
				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3904
		}
3905
	}
3906

K
Kalpak Shah 已提交
3907 3908 3909 3910 3911
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

3912 3913 3914 3915 3916 3917 3918
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

3919
	ret = 0;
3920
	if (ei->i_file_acl &&
3921
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3922 3923
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
3924 3925
		ret = -EIO;
		goto bad_inode;
3926
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3927 3928 3929 3930 3931
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
3932
	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3933 3934
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
3935
		/* Validate block references which are part of inode */
3936
		ret = ext4_ind_check_inode(inode);
3937
	}
3938
	if (ret)
3939
		goto bad_inode;
3940

3941
	if (S_ISREG(inode->i_mode)) {
3942 3943 3944
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
3945
	} else if (S_ISDIR(inode->i_mode)) {
3946 3947
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
3948
	} else if (S_ISLNK(inode->i_mode)) {
3949
		if (ext4_inode_is_fast_symlink(inode)) {
3950
			inode->i_op = &ext4_fast_symlink_inode_operations;
3951 3952 3953
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
3954 3955
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
3956
		}
3957 3958
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3959
		inode->i_op = &ext4_special_inode_operations;
3960 3961 3962 3963 3964 3965
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3966 3967
	} else {
		ret = -EIO;
3968
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3969
		goto bad_inode;
3970
	}
3971
	brelse(iloc.bh);
3972
	ext4_set_inode_flags(inode);
3973 3974
	unlock_new_inode(inode);
	return inode;
3975 3976

bad_inode:
3977
	brelse(iloc.bh);
3978 3979
	iget_failed(inode);
	return ERR_PTR(ret);
3980 3981
}

3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
3995
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3996
		raw_inode->i_blocks_high = 0;
3997
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3998 3999 4000 4001 4002 4003
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
4004 4005 4006 4007
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4008
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4009
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4010
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4011
	} else {
4012
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
4013 4014 4015 4016
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4017
	}
4018
	return 0;
4019 4020
}

4021 4022 4023 4024 4025 4026 4027
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
4028
static int ext4_do_update_inode(handle_t *handle,
4029
				struct inode *inode,
4030
				struct ext4_iloc *iloc)
4031
{
4032 4033
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
4034 4035
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;
4036
	int need_datasync = 0;
4037 4038
	uid_t i_uid;
	gid_t i_gid;
4039 4040 4041

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
4042
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4043
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4044

4045
	ext4_get_inode_flags(ei);
4046
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4047 4048
	i_uid = i_uid_read(inode);
	i_gid = i_gid_read(inode);
4049
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4050 4051
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4052 4053 4054 4055
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
4056
		if (!ei->i_dtime) {
4057
			raw_inode->i_uid_high =
4058
				cpu_to_le16(high_16_bits(i_uid));
4059
			raw_inode->i_gid_high =
4060
				cpu_to_le16(high_16_bits(i_gid));
4061 4062 4063 4064 4065
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
4066 4067
		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4068 4069 4070 4071
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
4072 4073 4074 4075 4076 4077

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

4078 4079
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
4080
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4081
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4082 4083
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
4084 4085
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
4086
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4087 4088 4089 4090
	if (ei->i_disksize != ext4_isize(raw_inode)) {
		ext4_isize_set(raw_inode, ei->i_disksize);
		need_datasync = 1;
	}
4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
4106
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4107
			ext4_handle_sync(handle);
4108
			err = ext4_handle_dirty_super(handle, sb);
4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
4123 4124 4125
	} else
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
4126

4127 4128 4129 4130 4131
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4132
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4133 4134
	}

4135 4136
	ext4_inode_csum_set(inode, raw_inode, ei);

4137
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4138
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4139 4140
	if (!err)
		err = rc;
4141
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4142

4143
	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4144
out_brelse:
4145
	brelse(bh);
4146
	ext4_std_error(inode->i_sb, err);
4147 4148 4149 4150
	return err;
}

/*
4151
 * ext4_write_inode()
4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4168
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4185
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4186
{
4187 4188
	int err;

4189 4190 4191
	if (current->flags & PF_MEMALLOC)
		return 0;

4192 4193 4194 4195 4196 4197
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
4198

4199
		if (wbc->sync_mode != WB_SYNC_ALL)
4200 4201 4202 4203 4204
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
4205

4206
		err = __ext4_get_inode_loc(inode, &iloc, 0);
4207 4208
		if (err)
			return err;
4209
		if (wbc->sync_mode == WB_SYNC_ALL)
4210 4211
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4212 4213
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
4214 4215
			err = -EIO;
		}
4216
		brelse(iloc.bh);
4217 4218
	}
	return err;
4219 4220 4221
}

/*
4222
 * ext4_setattr()
4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4236 4237 4238 4239 4240 4241 4242 4243
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4244
 */
4245
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4246 4247 4248
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
4249
	int orphan = 0;
4250 4251 4252 4253 4254 4255
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

4256
	if (is_quota_modification(inode, attr))
4257
		dquot_initialize(inode);
4258 4259
	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4260 4261 4262 4263
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
D
Dmitry Monakhov 已提交
4264
		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4265
					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4266 4267 4268 4269
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4270
		error = dquot_transfer(inode, attr);
4271
		if (error) {
4272
			ext4_journal_stop(handle);
4273 4274 4275 4276 4277 4278 4279 4280
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4281 4282
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4283 4284
	}

4285
	if (attr->ia_valid & ATTR_SIZE) {
4286

4287
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4288 4289
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

4290 4291
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
4292 4293 4294
		}
	}

4295
	if (S_ISREG(inode->i_mode) &&
4296
	    attr->ia_valid & ATTR_SIZE &&
4297
	    (attr->ia_size < inode->i_size)) {
4298 4299
		handle_t *handle;

4300
		handle = ext4_journal_start(inode, 3);
4301 4302 4303 4304
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4305 4306 4307 4308
		if (ext4_handle_valid(handle)) {
			error = ext4_orphan_add(handle, inode);
			orphan = 1;
		}
4309 4310
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4311 4312
		if (!error)
			error = rc;
4313
		ext4_journal_stop(handle);
4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
4326
				orphan = 0;
4327 4328 4329 4330
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4331 4332
	}

4333
	if (attr->ia_valid & ATTR_SIZE) {
4334
		if (attr->ia_size != i_size_read(inode)) {
4335
			truncate_setsize(inode, attr->ia_size);
4336 4337 4338 4339 4340
			/* Inode size will be reduced, wait for dio in flight.
			 * Temporarily disable dioread_nolock to prevent
			 * livelock. */
			if (orphan) {
				ext4_inode_block_unlocked_dio(inode);
4341
				inode_dio_wait(inode);
4342 4343
				ext4_inode_resume_unlocked_dio(inode);
			}
4344
		}
4345
		ext4_truncate(inode);
4346
	}
4347

C
Christoph Hellwig 已提交
4348 4349 4350 4351 4352 4353 4354 4355 4356
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
4357
	if (orphan && inode->i_nlink)
4358
		ext4_orphan_del(NULL, inode);
4359 4360

	if (!rc && (ia_valid & ATTR_MODE))
4361
		rc = ext4_acl_chmod(inode);
4362 4363

err_out:
4364
	ext4_std_error(inode->i_sb, error);
4365 4366 4367 4368 4369
	if (!error)
		error = rc;
	return error;
}

4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
4389 4390
	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
				EXT4_I(inode)->i_reserved_data_blocks);
4391 4392 4393 4394

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4395

4396 4397
static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
4398
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4399
		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4400
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4401
}
4402

4403
/*
4404 4405 4406
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
4407
 *
4408
 * If datablocks are discontiguous, they are possible to spread over
4409
 * different block groups too. If they are contiuguous, with flexbg,
4410
 * they could still across block group boundary.
4411
 *
4412 4413
 * Also account for superblock, inode, quota and xattr blocks
 */
4414
static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4415
{
4416 4417
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
4444 4445
	if (groups > ngroups)
		groups = ngroups;
4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
L
Lucas De Marchi 已提交
4459
 * Calculate the total number of credits to reserve to fit
4460 4461
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
4462
 *
4463
 * This could be called via ext4_write_begin()
4464
 *
4465
 * We need to consider the worse case, when
4466
 * one new block per extent.
4467
 */
A
Alex Tomas 已提交
4468
int ext4_writepage_trans_blocks(struct inode *inode)
4469
{
4470
	int bpp = ext4_journal_blocks_per_page(inode);
4471 4472
	int ret;

4473
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
4474

4475
	/* Account for data blocks for journalled mode */
4476
	if (ext4_should_journal_data(inode))
4477
		ret += bpp;
4478 4479
	return ret;
}
4480 4481 4482 4483 4484

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
4485
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4486 4487 4488 4489 4490 4491 4492 4493 4494
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

4495
/*
4496
 * The caller must have previously called ext4_reserve_inode_write().
4497 4498
 * Give this, we know that the caller already has write access to iloc->bh.
 */
4499
int ext4_mark_iloc_dirty(handle_t *handle,
4500
			 struct inode *inode, struct ext4_iloc *iloc)
4501 4502 4503
{
	int err = 0;

4504
	if (IS_I_VERSION(inode))
4505 4506
		inode_inc_iversion(inode);

4507 4508 4509
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

4510
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4511
	err = ext4_do_update_inode(handle, inode, iloc);
4512 4513 4514 4515 4516 4517 4518 4519 4520 4521
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
4522 4523
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
4524
{
4525 4526 4527 4528 4529 4530 4531 4532 4533
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
4534 4535
		}
	}
4536
	ext4_std_error(inode->i_sb, err);
4537 4538 4539
	return err;
}

4540 4541 4542 4543
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
4544 4545 4546 4547
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
4560 4561
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
4594
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4595
{
4596
	struct ext4_iloc iloc;
4597 4598 4599
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
4600 4601

	might_sleep();
4602
	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4603
	err = ext4_reserve_inode_write(handle, inode, &iloc);
4604 4605
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4606
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
4620 4621
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
4622 4623
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4624
					ext4_warning(inode->i_sb,
4625 4626 4627
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
4628 4629
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
4630 4631 4632 4633
				}
			}
		}
	}
4634
	if (!err)
4635
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4636 4637 4638 4639
	return err;
}

/*
4640
 * ext4_dirty_inode() is called from __mark_inode_dirty()
4641 4642 4643 4644 4645
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
4646
 * Also, dquot_alloc_block() will always dirty the inode when blocks
4647 4648 4649 4650 4651 4652
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
4653
void ext4_dirty_inode(struct inode *inode, int flags)
4654 4655 4656
{
	handle_t *handle;

4657
	handle = ext4_journal_start(inode, 2);
4658 4659
	if (IS_ERR(handle))
		goto out;
4660 4661 4662

	ext4_mark_inode_dirty(handle, inode);

4663
	ext4_journal_stop(handle);
4664 4665 4666 4667 4668 4669 4670 4671
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
4672
 * ext4_reserve_inode_write, this leaves behind no bh reference and
4673 4674 4675
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
4676
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4677
{
4678
	struct ext4_iloc iloc;
4679 4680 4681

	int err = 0;
	if (handle) {
4682
		err = ext4_get_inode_loc(inode, &iloc);
4683 4684
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
4685
			err = jbd2_journal_get_write_access(handle, iloc.bh);
4686
			if (!err)
4687
				err = ext4_handle_dirty_metadata(handle,
4688
								 NULL,
4689
								 iloc.bh);
4690 4691 4692
			brelse(iloc.bh);
		}
	}
4693
	ext4_std_error(inode->i_sb, err);
4694 4695 4696 4697
	return err;
}
#endif

4698
int ext4_change_inode_journal_flag(struct inode *inode, int val)
4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

4714
	journal = EXT4_JOURNAL(inode);
4715 4716
	if (!journal)
		return 0;
4717
	if (is_journal_aborted(journal))
4718
		return -EROFS;
4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729
	/* We have to allocate physical blocks for delalloc blocks
	 * before flushing journal. otherwise delalloc blocks can not
	 * be allocated any more. even more truncate on delalloc blocks
	 * could trigger BUG by flushing delalloc blocks in journal.
	 * There is no delalloc block in non-journal data mode.
	 */
	if (val && test_opt(inode->i_sb, DELALLOC)) {
		err = ext4_alloc_da_blocks(inode);
		if (err < 0)
			return err;
	}
4730

4731 4732 4733 4734
	/* Wait for all existing dio workers */
	ext4_inode_block_unlocked_dio(inode);
	inode_dio_wait(inode);

4735
	jbd2_journal_lock_updates(journal);
4736 4737 4738 4739 4740 4741 4742 4743 4744 4745

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
4746
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4747 4748
	else {
		jbd2_journal_flush(journal);
4749
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4750
	}
4751
	ext4_set_aops(inode);
4752

4753
	jbd2_journal_unlock_updates(journal);
4754
	ext4_inode_resume_unlocked_dio(inode);
4755 4756 4757

	/* Finally we can mark the inode as dirty. */

4758
	handle = ext4_journal_start(inode, 1);
4759 4760 4761
	if (IS_ERR(handle))
		return PTR_ERR(handle);

4762
	err = ext4_mark_inode_dirty(handle, inode);
4763
	ext4_handle_sync(handle);
4764 4765
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
4766 4767 4768

	return err;
}
4769 4770 4771 4772 4773 4774

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

4775
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4776
{
4777
	struct page *page = vmf->page;
4778 4779
	loff_t size;
	unsigned long len;
4780
	int ret;
4781 4782 4783
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;
4784 4785 4786
	handle_t *handle;
	get_block_t *get_block;
	int retries = 0;
4787

4788
	sb_start_pagefault(inode->i_sb);
4789 4790 4791 4792 4793 4794 4795 4796 4797 4798
	/* Delalloc case is easy... */
	if (test_opt(inode->i_sb, DELALLOC) &&
	    !ext4_should_journal_data(inode) &&
	    !ext4_nonda_switch(inode->i_sb)) {
		do {
			ret = __block_page_mkwrite(vma, vmf,
						   ext4_da_get_block_prep);
		} while (ret == -ENOSPC &&
		       ext4_should_retry_alloc(inode->i_sb, &retries));
		goto out_ret;
4799
	}
4800 4801

	lock_page(page);
4802 4803 4804 4805 4806 4807
	size = i_size_read(inode);
	/* Page got truncated from under us? */
	if (page->mapping != mapping || page_offset(page) > size) {
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
4808
	}
4809 4810 4811 4812 4813

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
4814
	/*
4815 4816
	 * Return if we have all the buffers mapped. This avoids the need to do
	 * journal_start/journal_stop which can block and take a long time
4817
	 */
4818 4819
	if (page_has_buffers(page)) {
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4820
					ext4_bh_unmapped)) {
4821 4822 4823 4824
			/* Wait so that we don't change page under IO */
			wait_on_page_writeback(page);
			ret = VM_FAULT_LOCKED;
			goto out;
4825
		}
4826
	}
4827
	unlock_page(page);
4828 4829 4830 4831 4832 4833 4834 4835
	/* OK, we need to fill the hole... */
	if (ext4_should_dioread_nolock(inode))
		get_block = ext4_get_block_write;
	else
		get_block = ext4_get_block;
retry_alloc:
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
4836
		ret = VM_FAULT_SIGBUS;
4837 4838 4839 4840 4841 4842 4843 4844
		goto out;
	}
	ret = __block_page_mkwrite(vma, vmf, get_block);
	if (!ret && ext4_should_journal_data(inode)) {
		if (walk_page_buffers(handle, page_buffers(page), 0,
			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
			unlock_page(page);
			ret = VM_FAULT_SIGBUS;
4845
			ext4_journal_stop(handle);
4846 4847 4848 4849 4850 4851 4852 4853 4854 4855
			goto out;
		}
		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
	}
	ext4_journal_stop(handle);
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry_alloc;
out_ret:
	ret = block_page_mkwrite_return(ret);
out:
4856
	sb_end_pagefault(inode->i_sb);
4857 4858
	return ret;
}