sched.c 187.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
L
Linus Torvalds 已提交
25 26 27 28 29 30
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
31
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
32 33 34 35
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
36
#include <linux/capability.h>
L
Linus Torvalds 已提交
37 38
#include <linux/completion.h>
#include <linux/kernel_stat.h>
39
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
43
#include <linux/freezer.h>
44
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
45 46
#include <linux/blkdev.h>
#include <linux/delay.h>
47
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
48 49 50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
57
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
58 59
#include <linux/syscalls.h>
#include <linux/times.h>
60
#include <linux/tsacct_kern.h>
61
#include <linux/kprobes.h>
62
#include <linux/delayacct.h>
63
#include <linux/reciprocal_div.h>
64
#include <linux/unistd.h>
J
Jens Axboe 已提交
65
#include <linux/pagemap.h>
L
Linus Torvalds 已提交
66

67
#include <asm/tlb.h>
68
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
69

70 71 72 73 74 75 76
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
77
	return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
78 79
}

L
Linus Torvalds 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
101 102
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
#define JIFFIES_TO_NS(TIME)	((TIME) * (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
103

I
Ingo Molnar 已提交
104 105 106
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
107 108 109
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
110
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
111 112 113
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
114

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

136 137 138 139 140 141 142 143 144 145 146 147
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
148
/*
I
Ingo Molnar 已提交
149
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
150
 */
I
Ingo Molnar 已提交
151 152 153 154 155
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

S
Srivatsa Vaddagiri 已提交
156 157
#ifdef CONFIG_FAIR_GROUP_SCHED

158 159
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
160 161 162
struct cfs_rq;

/* task group related information */
163
struct task_group {
164 165 166
#ifdef CONFIG_FAIR_CGROUP_SCHED
	struct cgroup_subsys_state css;
#endif
S
Srivatsa Vaddagiri 已提交
167 168 169 170
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205

	/*
	 * shares assigned to a task group governs how much of cpu bandwidth
	 * is allocated to the group. The more shares a group has, the more is
	 * the cpu bandwidth allocated to it.
	 *
	 * For ex, lets say that there are three task groups, A, B and C which
	 * have been assigned shares 1000, 2000 and 3000 respectively. Then,
	 * cpu bandwidth allocated by the scheduler to task groups A, B and C
	 * should be:
	 *
	 *	Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
	 *	Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
	 * 	Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
	 *
	 * The weight assigned to a task group's schedulable entities on every
	 * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
	 * group's shares. For ex: lets say that task group A has been
	 * assigned shares of 1000 and there are two CPUs in a system. Then,
	 *
	 *  tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
	 *
	 * Note: It's not necessary that each of a task's group schedulable
	 * 	 entity have the same weight on all CPUs. If the group
	 * 	 has 2 of its tasks on CPU0 and 1 task on CPU1, then a
	 * 	 better distribution of weight could be:
	 *
	 *	tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
	 *	tg_A->se[1]->load.weight = 1/2 * 2000 =  667
	 *
	 * rebalance_shares() is responsible for distributing the shares of a
	 * task groups like this among the group's schedulable entities across
	 * cpus.
	 *
	 */
S
Srivatsa Vaddagiri 已提交
206
	unsigned long shares;
207

208
	struct rcu_head rcu;
S
Srivatsa Vaddagiri 已提交
209 210 211 212 213 214 215
};

/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;

216 217
static struct sched_entity *init_sched_entity_p[NR_CPUS];
static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
S
Srivatsa Vaddagiri 已提交
218

219 220 221 222 223
/* task_group_mutex serializes add/remove of task groups and also changes to
 * a task group's cpu shares.
 */
static DEFINE_MUTEX(task_group_mutex);

224 225 226
/* doms_cur_mutex serializes access to doms_cur[] array */
static DEFINE_MUTEX(doms_cur_mutex);

227 228 229 230 231 232 233 234
#ifdef CONFIG_SMP
/* kernel thread that runs rebalance_shares() periodically */
static struct task_struct *lb_monitor_task;
static int load_balance_monitor(void *unused);
#endif

static void set_se_shares(struct sched_entity *se, unsigned long shares);

S
Srivatsa Vaddagiri 已提交
235
/* Default task group.
I
Ingo Molnar 已提交
236
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
237
 */
238
struct task_group init_task_group = {
I
Ingo Molnar 已提交
239 240 241
	.se     = init_sched_entity_p,
	.cfs_rq = init_cfs_rq_p,
};
242

243
#ifdef CONFIG_FAIR_USER_SCHED
244
# define INIT_TASK_GROUP_LOAD	2*NICE_0_LOAD
245
#else
246
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
247 248
#endif

249 250
#define MIN_GROUP_SHARES       2

251
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
S
Srivatsa Vaddagiri 已提交
252 253

/* return group to which a task belongs */
254
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
255
{
256
	struct task_group *tg;
257

258 259
#ifdef CONFIG_FAIR_USER_SCHED
	tg = p->user->tg;
260 261 262
#elif defined(CONFIG_FAIR_CGROUP_SCHED)
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
263
#else
I
Ingo Molnar 已提交
264
	tg = &init_task_group;
265
#endif
266
	return tg;
S
Srivatsa Vaddagiri 已提交
267 268 269
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
270
static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
271
{
272 273
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
S
Srivatsa Vaddagiri 已提交
274 275
}

276 277 278 279 280 281 282 283 284 285
static inline void lock_task_group_list(void)
{
	mutex_lock(&task_group_mutex);
}

static inline void unlock_task_group_list(void)
{
	mutex_unlock(&task_group_mutex);
}

286 287 288 289 290 291 292 293 294 295
static inline void lock_doms_cur(void)
{
	mutex_lock(&doms_cur_mutex);
}

static inline void unlock_doms_cur(void)
{
	mutex_unlock(&doms_cur_mutex);
}

S
Srivatsa Vaddagiri 已提交
296 297
#else

298
static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
299 300
static inline void lock_task_group_list(void) { }
static inline void unlock_task_group_list(void) { }
301 302
static inline void lock_doms_cur(void) { }
static inline void unlock_doms_cur(void) { }
S
Srivatsa Vaddagiri 已提交
303 304 305

#endif	/* CONFIG_FAIR_GROUP_SCHED */

I
Ingo Molnar 已提交
306 307 308 309 310 311
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
312
	u64 min_vruntime;
I
Ingo Molnar 已提交
313 314 315 316 317 318 319 320

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
P
Peter Zijlstra 已提交
321 322 323

	unsigned long nr_spread_over;

324
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
325 326
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
327 328
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
329 330 331 332 333 334
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
335 336
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
I
Ingo Molnar 已提交
337 338
#endif
};
L
Linus Torvalds 已提交
339

I
Ingo Molnar 已提交
340 341 342 343 344
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
345
	unsigned long rt_nr_running;
346
	unsigned long rt_nr_migratory;
347 348
	/* highest queued rt task prio */
	int highest_prio;
I
Ingo Molnar 已提交
349 350
};

L
Linus Torvalds 已提交
351 352 353 354 355 356 357
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
358
struct rq {
359 360
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
361 362 363 364 365 366

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
367 368
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
369
	unsigned char idle_at_tick;
370 371 372
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
373 374
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
375 376 377 378 379
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
380 381
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
L
Linus Torvalds 已提交
382
#endif
I
Ingo Molnar 已提交
383
	struct rt_rq rt;
L
Linus Torvalds 已提交
384 385 386 387 388 389 390 391 392

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

393
	struct task_struct *curr, *idle;
394
	unsigned long next_balance;
L
Linus Torvalds 已提交
395
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
396 397 398 399 400

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
401 402
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
403
	u64 tick_timestamp;
I
Ingo Molnar 已提交
404

L
Linus Torvalds 已提交
405 406 407 408 409 410 411 412
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
413 414
	/* cpu of this runqueue: */
	int cpu;
L
Linus Torvalds 已提交
415

416
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
417 418 419 420 421 422 423 424
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
425 426 427 428
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
429 430

	/* schedule() stats */
431 432 433
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
434 435

	/* try_to_wake_up() stats */
436 437
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
438 439

	/* BKL stats */
440
	unsigned int bkl_count;
L
Linus Torvalds 已提交
441
#endif
442
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
443 444
};

445
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
446

I
Ingo Molnar 已提交
447 448 449 450 451
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

452 453 454 455 456 457 458 459 460
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
461
/*
I
Ingo Molnar 已提交
462 463
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
464
 */
I
Ingo Molnar 已提交
465
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
466 467 468 469 470 471
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
472 473 474
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
475 476 477 478 479 480 481 482 483 484
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
485 486 487 488 489
		if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
			if (clock < rq->tick_timestamp + TICK_NSEC)
				clock = rq->tick_timestamp + TICK_NSEC;
			else
				clock++;
I
Ingo Molnar 已提交
490 491 492 493 494 495 496 497 498 499
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
500
}
I
Ingo Molnar 已提交
501

I
Ingo Molnar 已提交
502 503 504 505
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
506 507
}

N
Nick Piggin 已提交
508 509
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
510
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
511 512 513 514
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
515 516
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
517 518 519 520 521 522

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
523 524 525 526 527 528 529 530 531 532 533 534 535
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
enum {
536
	SCHED_FEAT_NEW_FAIR_SLEEPERS	= 1,
I
Ingo Molnar 已提交
537 538
	SCHED_FEAT_WAKEUP_PREEMPT	= 2,
	SCHED_FEAT_START_DEBIT		= 4,
I
Ingo Molnar 已提交
539 540
	SCHED_FEAT_TREE_AVG		= 8,
	SCHED_FEAT_APPROX_AVG		= 16,
I
Ingo Molnar 已提交
541 542 543
};

const_debug unsigned int sysctl_sched_features =
I
Ingo Molnar 已提交
544
		SCHED_FEAT_NEW_FAIR_SLEEPERS	* 1 |
I
Ingo Molnar 已提交
545
		SCHED_FEAT_WAKEUP_PREEMPT	* 1 |
I
Ingo Molnar 已提交
546 547
		SCHED_FEAT_START_DEBIT		* 1 |
		SCHED_FEAT_TREE_AVG		* 0 |
I
Ingo Molnar 已提交
548
		SCHED_FEAT_APPROX_AVG		* 0;
I
Ingo Molnar 已提交
549 550 551

#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)

552 553 554 555 556 557
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

558 559 560 561 562 563 564 565
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
566
	struct rq *rq;
567

568
	local_irq_save(flags);
I
Ingo Molnar 已提交
569
	rq = cpu_rq(cpu);
570 571 572 573 574 575
	/*
	 * Only call sched_clock() if the scheduler has already been
	 * initialized (some code might call cpu_clock() very early):
	 */
	if (rq->idle)
		update_rq_clock(rq);
I
Ingo Molnar 已提交
576
	now = rq->clock;
577
	local_irq_restore(flags);
578 579 580

	return now;
}
P
Paul E. McKenney 已提交
581
EXPORT_SYMBOL_GPL(cpu_clock);
582

L
Linus Torvalds 已提交
583
#ifndef prepare_arch_switch
584 585 586 587 588 589
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

590 591 592 593 594
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

595
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
596
static inline int task_running(struct rq *rq, struct task_struct *p)
597
{
598
	return task_current(rq, p);
599 600
}

601
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
602 603 604
{
}

605
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
606
{
607 608 609 610
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
611 612 613 614 615 616 617
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

618 619 620 621
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
622
static inline int task_running(struct rq *rq, struct task_struct *p)
623 624 625 626
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
627
	return task_current(rq, p);
628 629 630
#endif
}

631
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

648
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
649 650 651 652 653 654 655 656 657 658 659 660
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
661
#endif
662 663
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
664

665 666 667 668
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
669
static inline struct rq *__task_rq_lock(struct task_struct *p)
670 671
	__acquires(rq->lock)
{
672 673 674 675 676
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
677 678 679 680
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
681 682
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
683
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
684 685
 * explicitly disabling preemption.
 */
686
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
687 688
	__acquires(rq->lock)
{
689
	struct rq *rq;
L
Linus Torvalds 已提交
690

691 692 693 694 695 696
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
697 698 699 700
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
701
static void __task_rq_unlock(struct rq *rq)
702 703 704 705 706
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

707
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
708 709 710 711 712 713
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
714
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
715
 */
A
Alexey Dobriyan 已提交
716
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
717 718
	__acquires(rq->lock)
{
719
	struct rq *rq;
L
Linus Torvalds 已提交
720 721 722 723 724 725 726 727

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

728
/*
729
 * We are going deep-idle (irqs are disabled):
730
 */
731
void sched_clock_idle_sleep_event(void)
732
{
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
749

750
	touch_softlockup_watchdog();
751 752 753 754 755 756 757 758 759 760 761
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
762
}
763
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
764

I
Ingo Molnar 已提交
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

817 818 819 820 821 822 823 824
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
825 826 827
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
828
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
829

830
static unsigned long
831 832 833 834 835 836
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
837
		lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
838 839 840 841 842

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
843
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
844
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
845 846
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
847
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
848

849
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
850 851 852 853 854 855 856 857
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

858
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
859 860 861 862
{
	lw->weight += inc;
}

863
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
864 865 866 867
{
	lw->weight -= dec;
}

868 869 870 871
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
872
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
873 874 875 876
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
877 878 879 880 881 882 883 884 885 886 887
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
888 889 890
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
891 892
 */
static const int prio_to_weight[40] = {
893 894 895 896 897 898 899 900
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
901 902
};

903 904 905 906 907 908 909
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
910
static const u32 prio_to_wmult[40] = {
911 912 913 914 915 916 917 918
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
919
};
920

I
Ingo Molnar 已提交
921 922 923 924 925 926 927 928 929 930 931 932 933
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

934 935 936 937 938 939 940 941 942 943 944 945
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
946

947 948 949 950 951 952
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

953 954 955 956 957 958 959 960 961 962
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
963 964
#include "sched_stats.h"
#include "sched_idletask.c"
965 966
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
967 968 969 970 971 972
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

973
static void inc_nr_running(struct task_struct *p, struct rq *rq)
974 975 976 977
{
	rq->nr_running++;
}

978
static void dec_nr_running(struct task_struct *p, struct rq *rq)
979 980 981 982
{
	rq->nr_running--;
}

983 984 985
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
986 987 988 989
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
990

I
Ingo Molnar 已提交
991 992 993 994 995 996 997 998
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
999

I
Ingo Molnar 已提交
1000 1001
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1002 1003
}

1004
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1005
{
I
Ingo Molnar 已提交
1006
	sched_info_queued(p);
1007
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1008
	p->se.on_rq = 1;
1009 1010
}

1011
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1012
{
1013
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1014
	p->se.on_rq = 0;
1015 1016
}

1017
/*
I
Ingo Molnar 已提交
1018
 * __normal_prio - return the priority that is based on the static prio
1019 1020 1021
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1022
	return p->static_prio;
1023 1024
}

1025 1026 1027 1028 1029 1030 1031
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1032
static inline int normal_prio(struct task_struct *p)
1033 1034 1035
{
	int prio;

1036
	if (task_has_rt_policy(p))
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1050
static int effective_prio(struct task_struct *p)
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1063
/*
I
Ingo Molnar 已提交
1064
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1065
 */
I
Ingo Molnar 已提交
1066
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1067
{
I
Ingo Molnar 已提交
1068 1069
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1070

1071
	enqueue_task(rq, p, wakeup);
1072
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1073 1074 1075 1076 1077
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1078
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1079
{
I
Ingo Molnar 已提交
1080 1081 1082
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;

1083
	dequeue_task(rq, p, sleep);
1084
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
1085 1086 1087 1088 1089 1090
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1091
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1092 1093 1094 1095
{
	return cpu_curr(task_cpu(p)) == p;
}

1096 1097 1098
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
1099
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
1100 1101 1102 1103
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
1104
	set_task_cfs_rq(p, cpu);
I
Ingo Molnar 已提交
1105
#ifdef CONFIG_SMP
1106 1107 1108 1109 1110 1111
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1112 1113
	task_thread_info(p)->cpu = cpu;
#endif
1114 1115
}

L
Linus Torvalds 已提交
1116
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1117

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
/*
 * Is this task likely cache-hot:
 */
static inline int
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

1129 1130 1131 1132 1133
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1134 1135 1136 1137 1138 1139
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1140
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1141
{
I
Ingo Molnar 已提交
1142 1143
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1144 1145
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1146
	u64 clock_offset;
I
Ingo Molnar 已提交
1147 1148

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1149 1150 1151 1152

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1153 1154 1155 1156
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1157 1158 1159 1160 1161
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1162
#endif
1163 1164
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1165 1166

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1167 1168
}

1169
struct migration_req {
L
Linus Torvalds 已提交
1170 1171
	struct list_head list;

1172
	struct task_struct *task;
L
Linus Torvalds 已提交
1173 1174 1175
	int dest_cpu;

	struct completion done;
1176
};
L
Linus Torvalds 已提交
1177 1178 1179 1180 1181

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1182
static int
1183
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1184
{
1185
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1186 1187 1188 1189 1190

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1191
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1192 1193 1194 1195 1196 1197 1198 1199
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1200

L
Linus Torvalds 已提交
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1213
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1214 1215
{
	unsigned long flags;
I
Ingo Molnar 已提交
1216
	int running, on_rq;
1217
	struct rq *rq;
L
Linus Torvalds 已提交
1218

1219 1220 1221 1222 1223 1224 1225 1226
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1227

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1241

1242 1243 1244 1245 1246 1247 1248 1249 1250
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1251

1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1262

1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1276

1277 1278 1279 1280 1281 1282 1283
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1299
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1311 1312
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1313 1314 1315 1316
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
1317
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1318
{
1319
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1320
	unsigned long total = weighted_cpuload(cpu);
1321

1322
	if (type == 0)
I
Ingo Molnar 已提交
1323
		return total;
1324

I
Ingo Molnar 已提交
1325
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1326 1327 1328
}

/*
1329 1330
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1331
 */
A
Alexey Dobriyan 已提交
1332
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1333
{
1334
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1335
	unsigned long total = weighted_cpuload(cpu);
1336

N
Nick Piggin 已提交
1337
	if (type == 0)
I
Ingo Molnar 已提交
1338
		return total;
1339

I
Ingo Molnar 已提交
1340
	return max(rq->cpu_load[type-1], total);
1341 1342 1343 1344 1345 1346 1347
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1348
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1349
	unsigned long total = weighted_cpuload(cpu);
1350 1351
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1352
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1353 1354
}

N
Nick Piggin 已提交
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1372 1373
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1374
			continue;
1375

N
Nick Piggin 已提交
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1392 1393
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1394 1395 1396 1397 1398 1399 1400 1401

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1402
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
1403 1404 1405 1406 1407 1408 1409

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1410
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1411
 */
I
Ingo Molnar 已提交
1412 1413
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1414
{
1415
	cpumask_t tmp;
N
Nick Piggin 已提交
1416 1417 1418 1419
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1420 1421 1422 1423
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1424
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1450

1451
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1452 1453 1454
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1455 1456
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1457 1458
		if (tmp->flags & flag)
			sd = tmp;
1459
	}
N
Nick Piggin 已提交
1460 1461 1462 1463

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1464 1465 1466 1467 1468 1469
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1470 1471 1472

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1473 1474 1475 1476
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1477

1478
		new_cpu = find_idlest_cpu(group, t, cpu);
1479 1480 1481 1482 1483
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1484

1485
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1512
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1513 1514 1515 1516 1517
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1528 1529 1530 1531
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1532
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1533
			for_each_cpu_mask(i, tmp) {
1534 1535 1536 1537 1538
				if (idle_cpu(i)) {
					if (i != task_cpu(p)) {
						schedstat_inc(p,
							se.nr_wakeups_idle);
					}
L
Linus Torvalds 已提交
1539
					return i;
1540
				}
L
Linus Torvalds 已提交
1541
			}
I
Ingo Molnar 已提交
1542
		} else {
N
Nick Piggin 已提交
1543
			break;
I
Ingo Molnar 已提交
1544
		}
L
Linus Torvalds 已提交
1545 1546 1547 1548
	}
	return cpu;
}
#else
1549
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1569
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1570
{
1571
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
1572 1573
	unsigned long flags;
	long old_state;
1574
	struct rq *rq;
L
Linus Torvalds 已提交
1575
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1576
	struct sched_domain *sd, *this_sd = NULL;
1577
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1578 1579 1580 1581 1582 1583 1584 1585
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1586
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1587 1588 1589
		goto out_running;

	cpu = task_cpu(p);
1590
	orig_cpu = cpu;
L
Linus Torvalds 已提交
1591 1592 1593 1594 1595 1596
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1597 1598
	new_cpu = cpu;

1599
	schedstat_inc(rq, ttwu_count);
L
Linus Torvalds 已提交
1600 1601
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1602 1603 1604 1605 1606 1607 1608 1609
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1610 1611 1612
		}
	}

N
Nick Piggin 已提交
1613
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1614 1615 1616
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1617
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1618
	 */
N
Nick Piggin 已提交
1619 1620 1621
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1622

1623 1624
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1625 1626
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1627

N
Nick Piggin 已提交
1628 1629
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1630 1631
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1632 1633
			unsigned long tl_per_task;

I
Ingo Molnar 已提交
1634 1635 1636 1637 1638 1639
			/*
			 * Attract cache-cold tasks on sync wakeups:
			 */
			if (sync && !task_hot(p, rq->clock, this_sd))
				goto out_set_cpu;

1640
			schedstat_inc(p, se.nr_wakeups_affine_attempts);
1641
			tl_per_task = cpu_avg_load_per_task(this_cpu);
1642

L
Linus Torvalds 已提交
1643
			/*
1644 1645 1646
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1647
			 */
1648
			if (sync)
I
Ingo Molnar 已提交
1649
				tl -= current->se.load.weight;
1650 1651

			if ((tl <= load &&
1652
				tl + target_load(cpu, idx) <= tl_per_task) ||
I
Ingo Molnar 已提交
1653
			       100*(tl + p->se.load.weight) <= imbalance*load) {
1654 1655 1656 1657 1658 1659
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
1660
				schedstat_inc(p, se.nr_wakeups_affine);
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
1672
				schedstat_inc(p, se.nr_wakeups_passive);
1673 1674
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1689
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1690 1691 1692 1693 1694 1695 1696 1697
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
1698 1699 1700 1701 1702 1703 1704 1705 1706
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
1707
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1708
	activate_task(rq, p, 1);
I
Ingo Molnar 已提交
1709
	check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1710 1711 1712 1713
	success = 1;

out_running:
	p->state = TASK_RUNNING;
1714
	wakeup_balance_rt(rq, p);
L
Linus Torvalds 已提交
1715 1716 1717 1718 1719 1720
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1721
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1722 1723 1724 1725 1726 1727
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1728
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1729 1730 1731 1732 1733 1734 1735
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1736 1737 1738 1739 1740 1741 1742
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1743
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
1744 1745 1746

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
1747 1748 1749 1750 1751 1752
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
1753
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
1754
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
1755
#endif
N
Nick Piggin 已提交
1756

I
Ingo Molnar 已提交
1757 1758
	INIT_LIST_HEAD(&p->run_list);
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1759

1760 1761 1762 1763
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1764 1765 1766 1767 1768 1769 1770
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
1785
	set_task_cpu(p, cpu);
1786 1787 1788 1789 1790

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
1791 1792
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1793

1794
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1795
	if (likely(sched_info_on()))
1796
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1797
#endif
1798
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1799 1800
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1801
#ifdef CONFIG_PREEMPT
1802
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1803
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1804
#endif
N
Nick Piggin 已提交
1805
	put_cpu();
L
Linus Torvalds 已提交
1806 1807 1808 1809 1810 1811 1812 1813 1814
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1815
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1816 1817
{
	unsigned long flags;
I
Ingo Molnar 已提交
1818
	struct rq *rq;
L
Linus Torvalds 已提交
1819 1820

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1821
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1822
	update_rq_clock(rq);
L
Linus Torvalds 已提交
1823 1824 1825

	p->prio = effective_prio(p);

1826
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
1827
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1828 1829
	} else {
		/*
I
Ingo Molnar 已提交
1830 1831
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1832
		 */
1833
		p->sched_class->task_new(rq, p);
1834
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1835
	}
I
Ingo Molnar 已提交
1836 1837
	check_preempt_curr(rq, p);
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1838 1839
}

1840 1841 1842
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
1843 1844
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
1845 1846 1847 1848 1849 1850 1851 1852 1853
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1854
 * @notifier: notifier struct to unregister
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

1898 1899 1900
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1901
 * @prev: the current task that is being switched out
1902 1903 1904 1905 1906 1907 1908 1909 1910
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1911 1912 1913
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1914
{
1915
	fire_sched_out_preempt_notifiers(prev, next);
1916 1917 1918 1919
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1920 1921
/**
 * finish_task_switch - clean up after a task-switch
1922
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1923 1924
 * @prev: the thread we just switched away from.
 *
1925 1926 1927 1928
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1929 1930
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1931
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1932 1933 1934
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1935
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1936 1937 1938
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1939
	long prev_state;
L
Linus Torvalds 已提交
1940 1941 1942 1943 1944

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1945
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1946 1947
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1948
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1949 1950 1951 1952 1953
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1954
	prev_state = prev->state;
1955 1956
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
1957 1958
	schedule_tail_balance_rt(rq);

1959
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1960 1961
	if (mm)
		mmdrop(mm);
1962
	if (unlikely(prev_state == TASK_DEAD)) {
1963 1964 1965
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1966
		 */
1967
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1968
		put_task_struct(prev);
1969
	}
L
Linus Torvalds 已提交
1970 1971 1972 1973 1974 1975
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1976
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1977 1978
	__releases(rq->lock)
{
1979 1980
	struct rq *rq = this_rq();

1981 1982 1983 1984 1985
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1986
	if (current->set_child_tid)
1987
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
1988 1989 1990 1991 1992 1993
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1994
static inline void
1995
context_switch(struct rq *rq, struct task_struct *prev,
1996
	       struct task_struct *next)
L
Linus Torvalds 已提交
1997
{
I
Ingo Molnar 已提交
1998
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1999

2000
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
2001 2002
	mm = next->mm;
	oldmm = prev->active_mm;
2003 2004 2005 2006 2007 2008 2009
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2010
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2011 2012 2013 2014 2015 2016
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2017
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2018 2019 2020
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2021 2022 2023 2024 2025 2026 2027
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2028
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2029
#endif
L
Linus Torvalds 已提交
2030 2031 2032 2033

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2034 2035 2036 2037 2038 2039 2040
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2064
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2079 2080
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2081

2082
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2083 2084 2085 2086 2087 2088 2089 2090 2091
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2092
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2093 2094 2095 2096 2097
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2113
/*
I
Ingo Molnar 已提交
2114 2115
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2116
 */
I
Ingo Molnar 已提交
2117
static void update_cpu_load(struct rq *this_rq)
2118
{
2119
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2132 2133 2134 2135 2136 2137 2138
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2139 2140
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2141 2142
}

I
Ingo Molnar 已提交
2143 2144
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2145 2146 2147 2148 2149 2150
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2151
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2152 2153 2154
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2155
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2156 2157 2158 2159
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2160
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2161 2162 2163 2164 2165 2166 2167
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2168 2169
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2170 2171 2172 2173 2174 2175 2176 2177
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2178
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2192
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2193 2194 2195 2196
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2197 2198
	int ret = 0;

2199 2200 2201 2202 2203
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2204
	if (unlikely(!spin_trylock(&busiest->lock))) {
2205
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2206 2207 2208
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
S
Steven Rostedt 已提交
2209
			ret = 1;
L
Linus Torvalds 已提交
2210 2211 2212
		} else
			spin_lock(&busiest->lock);
	}
S
Steven Rostedt 已提交
2213
	return ret;
L
Linus Torvalds 已提交
2214 2215 2216 2217 2218
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2219
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2220 2221
 * the cpu_allowed mask is restored.
 */
2222
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2223
{
2224
	struct migration_req req;
L
Linus Torvalds 已提交
2225
	unsigned long flags;
2226
	struct rq *rq;
L
Linus Torvalds 已提交
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2237

L
Linus Torvalds 已提交
2238 2239 2240 2241 2242
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2243

L
Linus Torvalds 已提交
2244 2245 2246 2247 2248 2249 2250
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2251 2252
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2253 2254 2255 2256
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2257
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2258
	put_cpu();
N
Nick Piggin 已提交
2259 2260
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2261 2262 2263 2264 2265 2266
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2267 2268
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2269
{
2270
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2271
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2272
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2273 2274 2275 2276
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2277
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2278 2279 2280 2281 2282
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2283
static
2284
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2285
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2286
		     int *all_pinned)
L
Linus Torvalds 已提交
2287 2288 2289 2290 2291 2292 2293
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2294 2295
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2296
		return 0;
2297
	}
2298 2299
	*all_pinned = 0;

2300 2301
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2302
		return 0;
2303
	}
L
Linus Torvalds 已提交
2304

2305 2306 2307 2308 2309 2310
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2311 2312
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2313
#ifdef CONFIG_SCHEDSTATS
2314
		if (task_hot(p, rq->clock, sd)) {
2315
			schedstat_inc(sd, lb_hot_gained[idle]);
2316 2317
			schedstat_inc(p, se.nr_forced_migrations);
		}
2318 2319 2320 2321
#endif
		return 1;
	}

2322 2323
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2324
		return 0;
2325
	}
L
Linus Torvalds 已提交
2326 2327 2328
	return 1;
}

2329 2330 2331 2332 2333
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2334
{
2335
	int loops = 0, pulled = 0, pinned = 0, skip_for_load;
I
Ingo Molnar 已提交
2336 2337
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2338

2339
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2340 2341
		goto out;

2342 2343
	pinned = 1;

L
Linus Torvalds 已提交
2344
	/*
I
Ingo Molnar 已提交
2345
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2346
	 */
I
Ingo Molnar 已提交
2347 2348
	p = iterator->start(iterator->arg);
next:
2349
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2350
		goto out;
2351
	/*
2352
	 * To help distribute high priority tasks across CPUs we don't
2353 2354 2355
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2356 2357
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2358
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2359 2360 2361
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2362 2363
	}

I
Ingo Molnar 已提交
2364
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2365
	pulled++;
I
Ingo Molnar 已提交
2366
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2367

2368
	/*
2369
	 * We only want to steal up to the prescribed amount of weighted load.
2370
	 */
2371
	if (rem_load_move > 0) {
2372 2373
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2374 2375
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2376 2377 2378
	}
out:
	/*
2379
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2380 2381 2382 2383
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2384 2385 2386

	if (all_pinned)
		*all_pinned = pinned;
2387 2388

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2389 2390
}

I
Ingo Molnar 已提交
2391
/*
P
Peter Williams 已提交
2392 2393 2394
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2395 2396 2397 2398
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2399
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2400 2401 2402
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2403
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2404
	unsigned long total_load_moved = 0;
2405
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2406 2407

	do {
P
Peter Williams 已提交
2408 2409
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
2410
				max_load_move - total_load_moved,
2411
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2412
		class = class->next;
P
Peter Williams 已提交
2413
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2414

P
Peter Williams 已提交
2415 2416 2417
	return total_load_moved > 0;
}

2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
2454
	const struct sched_class *class;
P
Peter Williams 已提交
2455 2456

	for (class = sched_class_highest; class; class = class->next)
2457
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
2458 2459 2460
			return 1;

	return 0;
I
Ingo Molnar 已提交
2461 2462
}

L
Linus Torvalds 已提交
2463 2464
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2465 2466
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2467 2468 2469
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2470 2471
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2472 2473 2474
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2475
	unsigned long max_pull;
2476 2477
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
2478
	int load_idx, group_imb = 0;
2479 2480 2481 2482 2483 2484
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2485 2486

	max_load = this_load = total_load = total_pwr = 0;
2487 2488
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2489
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2490
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2491
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2492 2493 2494
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2495 2496

	do {
2497
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
2498 2499
		int local_group;
		int i;
2500
		int __group_imb = 0;
2501
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2502
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2503 2504 2505

		local_group = cpu_isset(this_cpu, group->cpumask);

2506 2507 2508
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2509
		/* Tally up the load of all CPUs in the group */
2510
		sum_weighted_load = sum_nr_running = avg_load = 0;
2511 2512
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
2513 2514

		for_each_cpu_mask(i, group->cpumask) {
2515 2516 2517 2518 2519 2520
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2521

2522
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2523 2524
				*sd_idle = 0;

L
Linus Torvalds 已提交
2525
			/* Bias balancing toward cpus of our domain */
2526 2527 2528 2529 2530 2531
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2532
				load = target_load(i, load_idx);
2533
			} else {
N
Nick Piggin 已提交
2534
				load = source_load(i, load_idx);
2535 2536 2537 2538 2539
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
2540 2541

			avg_load += load;
2542
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2543
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2544 2545
		}

2546 2547 2548
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2549 2550
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2551
		 */
2552 2553
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2554 2555 2556 2557
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2558
		total_load += avg_load;
2559
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2560 2561

		/* Adjust by relative CPU power of the group */
2562 2563
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2564

2565 2566 2567
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

2568
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2569

L
Linus Torvalds 已提交
2570 2571 2572
		if (local_group) {
			this_load = avg_load;
			this = group;
2573 2574 2575
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2576
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
2577 2578
			max_load = avg_load;
			busiest = group;
2579 2580
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
2581
			group_imb = __group_imb;
L
Linus Torvalds 已提交
2582
		}
2583 2584 2585 2586 2587 2588

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2589 2590 2591
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2592 2593 2594 2595 2596 2597 2598 2599 2600

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2601
		/*
2602 2603
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2604 2605
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2606
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2607
			goto group_next;
2608

I
Ingo Molnar 已提交
2609
		/*
2610
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2611 2612 2613 2614 2615
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2616 2617
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2618 2619
			group_min = group;
			min_nr_running = sum_nr_running;
2620 2621
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2622
		}
2623

I
Ingo Molnar 已提交
2624
		/*
2625
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2637
		}
2638 2639
group_next:
#endif
L
Linus Torvalds 已提交
2640 2641 2642
		group = group->next;
	} while (group != sd->groups);

2643
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2644 2645 2646 2647 2648 2649 2650 2651
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2652
	busiest_load_per_task /= busiest_nr_running;
2653 2654 2655
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
2656 2657 2658 2659 2660 2661 2662 2663
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
2664
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
2665 2666
	 * appear as very large values with unsigned longs.
	 */
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2679 2680

	/* Don't want to pull so many tasks that a group would go idle */
2681
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2682

L
Linus Torvalds 已提交
2683
	/* How much load to actually move to equalise the imbalance */
2684 2685
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2686 2687
			/ SCHED_LOAD_SCALE;

2688 2689 2690 2691 2692 2693
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
2694
	if (*imbalance < busiest_load_per_task) {
2695
		unsigned long tmp, pwr_now, pwr_move;
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2707

I
Ingo Molnar 已提交
2708 2709
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2710
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2711 2712 2713 2714 2715 2716 2717 2718 2719
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2720 2721 2722 2723
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2724 2725 2726
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2727 2728
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2729
		if (max_load > tmp)
2730
			pwr_move += busiest->__cpu_power *
2731
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2732 2733

		/* Amount of load we'd add */
2734
		if (max_load * busiest->__cpu_power <
2735
				busiest_load_per_task * SCHED_LOAD_SCALE)
2736 2737
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2738
		else
2739 2740 2741 2742
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2743 2744 2745
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
2746 2747
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2748 2749 2750 2751 2752
	}

	return busiest;

out_balanced:
2753
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2754
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2755
		goto ret;
L
Linus Torvalds 已提交
2756

2757 2758 2759 2760 2761
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2762
ret:
L
Linus Torvalds 已提交
2763 2764 2765 2766 2767 2768 2769
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2770
static struct rq *
I
Ingo Molnar 已提交
2771
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2772
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2773
{
2774
	struct rq *busiest = NULL, *rq;
2775
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2776 2777 2778
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2779
		unsigned long wl;
2780 2781 2782 2783

		if (!cpu_isset(i, *cpus))
			continue;

2784
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2785
		wl = weighted_cpuload(i);
2786

I
Ingo Molnar 已提交
2787
		if (rq->nr_running == 1 && wl > imbalance)
2788
			continue;
L
Linus Torvalds 已提交
2789

I
Ingo Molnar 已提交
2790 2791
		if (wl > max_load) {
			max_load = wl;
2792
			busiest = rq;
L
Linus Torvalds 已提交
2793 2794 2795 2796 2797 2798
		}
	}

	return busiest;
}

2799 2800 2801 2802 2803 2804
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
2805 2806 2807 2808
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2809
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2810
			struct sched_domain *sd, enum cpu_idle_type idle,
2811
			int *balance)
L
Linus Torvalds 已提交
2812
{
P
Peter Williams 已提交
2813
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2814 2815
	struct sched_group *group;
	unsigned long imbalance;
2816
	struct rq *busiest;
2817
	cpumask_t cpus = CPU_MASK_ALL;
2818
	unsigned long flags;
N
Nick Piggin 已提交
2819

2820 2821 2822
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2823
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2824
	 * portraying it as CPU_NOT_IDLE.
2825
	 */
I
Ingo Molnar 已提交
2826
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2827
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2828
		sd_idle = 1;
L
Linus Torvalds 已提交
2829

2830
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
2831

2832 2833
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2834 2835
				   &cpus, balance);

2836
	if (*balance == 0)
2837 2838
		goto out_balanced;

L
Linus Torvalds 已提交
2839 2840 2841 2842 2843
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2844
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2845 2846 2847 2848 2849
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2850
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2851 2852 2853

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
2854
	ld_moved = 0;
L
Linus Torvalds 已提交
2855 2856 2857 2858
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
2859
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
2860 2861
		 * correctly treated as an imbalance.
		 */
2862
		local_irq_save(flags);
N
Nick Piggin 已提交
2863
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
2864
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2865
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2866
		double_rq_unlock(this_rq, busiest);
2867
		local_irq_restore(flags);
2868

2869 2870 2871
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
2872
		if (ld_moved && this_cpu != smp_processor_id())
2873 2874
			resched_cpu(this_cpu);

2875
		/* All tasks on this runqueue were pinned by CPU affinity */
2876 2877 2878 2879
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2880
			goto out_balanced;
2881
		}
L
Linus Torvalds 已提交
2882
	}
2883

P
Peter Williams 已提交
2884
	if (!ld_moved) {
L
Linus Torvalds 已提交
2885 2886 2887 2888 2889
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2890
			spin_lock_irqsave(&busiest->lock, flags);
2891 2892 2893 2894 2895

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2896
				spin_unlock_irqrestore(&busiest->lock, flags);
2897 2898 2899 2900
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2901 2902 2903
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2904
				active_balance = 1;
L
Linus Torvalds 已提交
2905
			}
2906
			spin_unlock_irqrestore(&busiest->lock, flags);
2907
			if (active_balance)
L
Linus Torvalds 已提交
2908 2909 2910 2911 2912 2913
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2914
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2915
		}
2916
	} else
L
Linus Torvalds 已提交
2917 2918
		sd->nr_balance_failed = 0;

2919
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2920 2921
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2922 2923 2924 2925 2926 2927 2928 2929 2930
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2931 2932
	}

P
Peter Williams 已提交
2933
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2934
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2935
		return -1;
P
Peter Williams 已提交
2936
	return ld_moved;
L
Linus Torvalds 已提交
2937 2938 2939 2940

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2941
	sd->nr_balance_failed = 0;
2942 2943

out_one_pinned:
L
Linus Torvalds 已提交
2944
	/* tune up the balancing interval */
2945 2946
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2947 2948
		sd->balance_interval *= 2;

2949
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2950
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2951
		return -1;
L
Linus Torvalds 已提交
2952 2953 2954 2955 2956 2957 2958
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2959
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2960 2961
 * this_rq is locked.
 */
2962
static int
2963
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2964 2965
{
	struct sched_group *group;
2966
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2967
	unsigned long imbalance;
P
Peter Williams 已提交
2968
	int ld_moved = 0;
N
Nick Piggin 已提交
2969
	int sd_idle = 0;
2970
	int all_pinned = 0;
2971
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2972

2973 2974 2975 2976
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2977
	 * portraying it as CPU_NOT_IDLE.
2978 2979 2980
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2981
		sd_idle = 1;
L
Linus Torvalds 已提交
2982

2983
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2984
redo:
I
Ingo Molnar 已提交
2985
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2986
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2987
	if (!group) {
I
Ingo Molnar 已提交
2988
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2989
		goto out_balanced;
L
Linus Torvalds 已提交
2990 2991
	}

I
Ingo Molnar 已提交
2992
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2993
				&cpus);
N
Nick Piggin 已提交
2994
	if (!busiest) {
I
Ingo Molnar 已提交
2995
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2996
		goto out_balanced;
L
Linus Torvalds 已提交
2997 2998
	}

N
Nick Piggin 已提交
2999 3000
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3001
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3002

P
Peter Williams 已提交
3003
	ld_moved = 0;
3004 3005 3006
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3007 3008
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3009
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3010 3011
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3012
		spin_unlock(&busiest->lock);
3013

3014
		if (unlikely(all_pinned)) {
3015 3016 3017 3018
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
3019 3020
	}

P
Peter Williams 已提交
3021
	if (!ld_moved) {
I
Ingo Molnar 已提交
3022
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3023 3024
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3025 3026
			return -1;
	} else
3027
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3028

P
Peter Williams 已提交
3029
	return ld_moved;
3030 3031

out_balanced:
I
Ingo Molnar 已提交
3032
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3033
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3034
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3035
		return -1;
3036
	sd->nr_balance_failed = 0;
3037

3038
	return 0;
L
Linus Torvalds 已提交
3039 3040 3041 3042 3043 3044
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3045
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3046 3047
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3048 3049
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
3050 3051

	for_each_domain(this_cpu, sd) {
3052 3053 3054 3055 3056 3057
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3058
			/* If we've pulled tasks over stop searching: */
3059
			pulled_task = load_balance_newidle(this_cpu,
3060 3061 3062 3063 3064 3065 3066
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3067
	}
I
Ingo Molnar 已提交
3068
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3069 3070 3071 3072 3073
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3074
	}
L
Linus Torvalds 已提交
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3085
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3086
{
3087
	int target_cpu = busiest_rq->push_cpu;
3088 3089
	struct sched_domain *sd;
	struct rq *target_rq;
3090

3091
	/* Is there any task to move? */
3092 3093 3094 3095
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3096 3097

	/*
3098
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3099
	 * we need to fix it. Originally reported by
3100
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3101
	 */
3102
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3103

3104 3105
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3106 3107
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3108 3109

	/* Search for an sd spanning us and the target CPU. */
3110
	for_each_domain(target_cpu, sd) {
3111
		if ((sd->flags & SD_LOAD_BALANCE) &&
3112
		    cpu_isset(busiest_cpu, sd->span))
3113
				break;
3114
	}
3115

3116
	if (likely(sd)) {
3117
		schedstat_inc(sd, alb_count);
3118

P
Peter Williams 已提交
3119 3120
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3121 3122 3123 3124
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3125
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3126 3127
}

3128 3129 3130
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3131
	cpumask_t cpu_mask;
3132 3133 3134 3135 3136
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3137
/*
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3148
 *
3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3205 3206 3207 3208 3209
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3210
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3211
{
3212 3213
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3214 3215
	unsigned long interval;
	struct sched_domain *sd;
3216
	/* Earliest time when we have to do rebalance again */
3217
	unsigned long next_balance = jiffies + 60*HZ;
3218
	int update_next_balance = 0;
L
Linus Torvalds 已提交
3219

3220
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3221 3222 3223 3224
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3225
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3226 3227 3228 3229 3230 3231
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3232 3233 3234
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3235

3236 3237 3238 3239 3240
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3241
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3242
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3243 3244
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3245 3246 3247
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3248
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3249
			}
3250
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3251
		}
3252 3253 3254
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3255
		if (time_after(next_balance, sd->last_balance + interval)) {
3256
			next_balance = sd->last_balance + interval;
3257 3258
			update_next_balance = 1;
		}
3259 3260 3261 3262 3263 3264 3265 3266

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3267
	}
3268 3269 3270 3271 3272 3273 3274 3275

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3276 3277 3278 3279 3280 3281 3282 3283 3284
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3285 3286 3287 3288
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3289

I
Ingo Molnar 已提交
3290
	rebalance_domains(this_cpu, idle);
3291 3292 3293 3294 3295 3296 3297

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3298 3299
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3300 3301 3302 3303
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3304
		cpu_clear(this_cpu, cpus);
3305 3306 3307 3308 3309 3310 3311 3312 3313
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3314
			rebalance_domains(balance_cpu, CPU_IDLE);
3315 3316

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3317 3318
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3331
static inline void trigger_load_balance(struct rq *rq, int cpu)
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3383
}
I
Ingo Molnar 已提交
3384 3385 3386

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3387 3388 3389
/*
 * on UP we do not need to balance between CPUs:
 */
3390
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3391 3392
{
}
I
Ingo Molnar 已提交
3393

L
Linus Torvalds 已提交
3394 3395 3396 3397 3398 3399 3400
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3401 3402
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3403
 */
3404
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3405 3406
{
	unsigned long flags;
3407 3408
	u64 ns, delta_exec;
	struct rq *rq;
3409

3410 3411
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
3412
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
3413 3414
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3415 3416 3417 3418
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3419

L
Linus Torvalds 已提交
3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

3443 3444 3445 3446 3447
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
3448
static void account_guest_time(struct task_struct *p, cputime_t cputime)
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3482
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3483 3484
	cputime64_t tmp;

3485 3486
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
		return account_guest_time(p, cputime);
3487

L
Linus Torvalds 已提交
3488 3489 3490 3491 3492 3493 3494 3495
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3496
	else if (p != rq->idle)
L
Linus Torvalds 已提交
3497
		cpustat->system = cputime64_add(cpustat->system, tmp);
3498
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
3499 3500 3501 3502 3503 3504 3505
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
3517 3518 3519 3520 3521 3522 3523 3524 3525
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3526
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3527 3528 3529 3530 3531 3532 3533

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
3534
	} else
L
Linus Torvalds 已提交
3535 3536 3537
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3549
	struct task_struct *curr = rq->curr;
3550
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
3551 3552

	spin_lock(&rq->lock);
3553
	__update_rq_clock(rq);
3554 3555 3556 3557 3558 3559
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
	if (unlikely(rq->clock < next_tick))
		rq->clock = next_tick;
	rq->tick_timestamp = rq->clock;
3560
	update_cpu_load(rq);
I
Ingo Molnar 已提交
3561 3562 3563
	if (curr != rq->idle) /* FIXME: needed? */
		curr->sched_class->task_tick(rq, curr);
	spin_unlock(&rq->lock);
3564

3565
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3566 3567
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3568
#endif
L
Linus Torvalds 已提交
3569 3570 3571 3572 3573 3574 3575 3576 3577
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3578 3579
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3580 3581 3582 3583
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3584 3585
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3586 3587 3588 3589 3590 3591 3592 3593
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3594 3595
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3596 3597 3598
	/*
	 * Is the spinlock portion underflowing?
	 */
3599 3600 3601 3602
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3603 3604 3605 3606 3607 3608 3609
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3610
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3611
 */
I
Ingo Molnar 已提交
3612
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3613
{
3614 3615 3616 3617 3618
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
3619 3620 3621
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
3622 3623 3624 3625 3626

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3627
}
L
Linus Torvalds 已提交
3628

I
Ingo Molnar 已提交
3629 3630 3631 3632 3633
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3634
	/*
I
Ingo Molnar 已提交
3635
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3636 3637 3638
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3639 3640 3641
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3642 3643
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3644
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3645 3646
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3647 3648
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3649 3650
	}
#endif
I
Ingo Molnar 已提交
3651 3652 3653 3654 3655 3656
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3657
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3658
{
3659
	const struct sched_class *class;
I
Ingo Molnar 已提交
3660
	struct task_struct *p;
L
Linus Torvalds 已提交
3661 3662

	/*
I
Ingo Molnar 已提交
3663 3664
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3665
	 */
I
Ingo Molnar 已提交
3666
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3667
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3668 3669
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3670 3671
	}

I
Ingo Molnar 已提交
3672 3673
	class = sched_class_highest;
	for ( ; ; ) {
3674
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3675 3676 3677 3678 3679 3680 3681 3682 3683
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3684

I
Ingo Molnar 已提交
3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3707

3708 3709 3710 3711
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
I
Ingo Molnar 已提交
3712
	__update_rq_clock(rq);
3713 3714
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3715 3716 3717

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3718
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3719
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3720
		} else {
3721
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3722
		}
I
Ingo Molnar 已提交
3723
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3724 3725
	}

3726 3727
	schedule_balance_rt(rq, prev);

I
Ingo Molnar 已提交
3728
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3729 3730
		idle_balance(cpu, rq);

3731
	prev->sched_class->put_prev_task(rq, prev);
3732
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
3733 3734

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3735

L
Linus Torvalds 已提交
3736 3737 3738 3739 3740
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3741
		context_switch(rq, prev, next); /* unlocks the rq */
L
Linus Torvalds 已提交
3742 3743 3744
	} else
		spin_unlock_irq(&rq->lock);

I
Ingo Molnar 已提交
3745 3746 3747
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3748
		goto need_resched_nonpreemptible;
I
Ingo Molnar 已提交
3749
	}
L
Linus Torvalds 已提交
3750 3751 3752 3753 3754 3755 3756 3757
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3758
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3759
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3771
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3772
	 */
N
Nick Piggin 已提交
3773
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3774 3775
		return;

3776 3777 3778 3779 3780 3781 3782 3783
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3784
#ifdef CONFIG_PREEMPT_BKL
3785 3786
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3787
#endif
3788
		schedule();
L
Linus Torvalds 已提交
3789
#ifdef CONFIG_PREEMPT_BKL
3790
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3791
#endif
3792
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3793

3794 3795 3796 3797 3798 3799
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3800 3801 3802 3803
}
EXPORT_SYMBOL(preempt_schedule);

/*
3804
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3816
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3817 3818
	BUG_ON(ti->preempt_count || !irqs_disabled());

3819 3820 3821 3822 3823 3824 3825 3826
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3827
#ifdef CONFIG_PREEMPT_BKL
3828 3829
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3830
#endif
3831 3832 3833
		local_irq_enable();
		schedule();
		local_irq_disable();
L
Linus Torvalds 已提交
3834
#ifdef CONFIG_PREEMPT_BKL
3835
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3836
#endif
3837
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3838

3839 3840 3841 3842 3843 3844
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3845 3846 3847 3848
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3849 3850
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3851
{
3852
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3853 3854 3855 3856
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3857 3858
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3859 3860 3861
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3862
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3863 3864 3865 3866 3867
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
3868
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3869

3870
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3871 3872
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3873
		if (curr->func(curr, mode, sync, key) &&
3874
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3875 3876 3877 3878 3879 3880 3881 3882 3883
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3884
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3885 3886
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3887
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3906
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3918 3919
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3936
void complete(struct completion *x)
L
Linus Torvalds 已提交
3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3948
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3960 3961
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3962 3963 3964 3965 3966 3967 3968
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
3969 3970 3971 3972 3973 3974
			if (state == TASK_INTERRUPTIBLE &&
			    signal_pending(current)) {
				__remove_wait_queue(&x->wait, &wait);
				return -ERESTARTSYS;
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3975 3976 3977 3978 3979
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
3980
				return timeout;
L
Linus Torvalds 已提交
3981 3982 3983 3984 3985 3986 3987 3988
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	return timeout;
}

3989 3990
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3991 3992 3993 3994
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3995
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3996
	spin_unlock_irq(&x->wait.lock);
3997 3998
	return timeout;
}
L
Linus Torvalds 已提交
3999

4000
void __sched wait_for_completion(struct completion *x)
4001 4002
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4003
}
4004
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4005

4006
unsigned long __sched
4007
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4008
{
4009
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4010
}
4011
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4012

4013
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4014
{
4015 4016 4017 4018
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4019
}
4020
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4021

4022
unsigned long __sched
4023 4024
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4025
{
4026
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4027
}
4028
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4029

4030 4031
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4032
{
I
Ingo Molnar 已提交
4033 4034 4035 4036
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4037

4038
	__set_current_state(state);
L
Linus Torvalds 已提交
4039

4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4054 4055 4056
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4057
long __sched
I
Ingo Molnar 已提交
4058
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4059
{
4060
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4061 4062 4063
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4064
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4065
{
4066
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4067 4068 4069
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4070
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4071
{
4072
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4073 4074 4075
}
EXPORT_SYMBOL(sleep_on_timeout);

4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4088
void rt_mutex_setprio(struct task_struct *p, int prio)
4089 4090
{
	unsigned long flags;
4091
	int oldprio, on_rq, running;
4092
	struct rq *rq;
4093 4094 4095 4096

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4097
	update_rq_clock(rq);
4098

4099
	oldprio = p->prio;
I
Ingo Molnar 已提交
4100
	on_rq = p->se.on_rq;
4101
	running = task_current(rq, p);
4102
	if (on_rq) {
4103
		dequeue_task(rq, p, 0);
4104 4105 4106
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
I
Ingo Molnar 已提交
4107 4108 4109 4110 4111 4112

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4113 4114
	p->prio = prio;

I
Ingo Molnar 已提交
4115
	if (on_rq) {
4116 4117
		if (running)
			p->sched_class->set_curr_task(rq);
4118
		enqueue_task(rq, p, 0);
4119 4120
		/*
		 * Reschedule if we are currently running on this runqueue and
4121 4122
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
4123
		 */
4124
		if (running) {
4125 4126
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4127 4128 4129
		} else {
			check_preempt_curr(rq, p);
		}
4130 4131 4132 4133 4134 4135
	}
	task_rq_unlock(rq, &flags);
}

#endif

4136
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4137
{
I
Ingo Molnar 已提交
4138
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4139
	unsigned long flags;
4140
	struct rq *rq;
L
Linus Torvalds 已提交
4141 4142 4143 4144 4145 4146 4147 4148

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4149
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4150 4151 4152 4153
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4154
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4155
	 */
4156
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4157 4158 4159
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4160
	on_rq = p->se.on_rq;
4161
	if (on_rq)
4162
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4163 4164

	p->static_prio = NICE_TO_PRIO(nice);
4165
	set_load_weight(p);
4166 4167 4168
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4169

I
Ingo Molnar 已提交
4170
	if (on_rq) {
4171
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4172
		/*
4173 4174
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4175
		 */
4176
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4177 4178 4179 4180 4181 4182 4183
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4184 4185 4186 4187 4188
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4189
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4190
{
4191 4192
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4193

M
Matt Mackall 已提交
4194 4195 4196 4197
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4209
	long nice, retval;
L
Linus Torvalds 已提交
4210 4211 4212 4213 4214 4215

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4216 4217
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4218 4219 4220 4221 4222 4223 4224 4225 4226
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4227 4228 4229
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4248
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4249 4250 4251 4252 4253 4254 4255 4256
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4257
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4276
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4277 4278 4279 4280 4281 4282 4283 4284
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4285
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4286
{
4287
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4288 4289 4290
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4291 4292
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4293
{
I
Ingo Molnar 已提交
4294
	BUG_ON(p->se.on_rq);
4295

L
Linus Torvalds 已提交
4296
	p->policy = policy;
I
Ingo Molnar 已提交
4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4309
	p->rt_priority = prio;
4310 4311 4312
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4313
	set_load_weight(p);
L
Linus Torvalds 已提交
4314 4315 4316
}

/**
4317
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4318 4319 4320
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4321
 *
4322
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4323
 */
I
Ingo Molnar 已提交
4324 4325
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4326
{
4327
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4328
	unsigned long flags;
4329
	struct rq *rq;
L
Linus Torvalds 已提交
4330

4331 4332
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4333 4334 4335 4336 4337
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4338 4339
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4340
		return -EINVAL;
L
Linus Torvalds 已提交
4341 4342
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4343 4344
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4345 4346
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4347
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4348
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4349
		return -EINVAL;
4350
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4351 4352
		return -EINVAL;

4353 4354 4355 4356
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4357
		if (rt_policy(policy)) {
4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4374 4375 4376 4377 4378 4379
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4380

4381 4382 4383 4384 4385
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4386 4387 4388 4389

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4390 4391 4392 4393 4394
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4395 4396 4397 4398
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4399
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4400 4401 4402
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4403 4404
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4405 4406
		goto recheck;
	}
I
Ingo Molnar 已提交
4407
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4408
	on_rq = p->se.on_rq;
4409
	running = task_current(rq, p);
4410
	if (on_rq) {
4411
		deactivate_task(rq, p, 0);
4412 4413 4414
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
4415

L
Linus Torvalds 已提交
4416
	oldprio = p->prio;
I
Ingo Molnar 已提交
4417
	__setscheduler(rq, p, policy, param->sched_priority);
4418

I
Ingo Molnar 已提交
4419
	if (on_rq) {
4420 4421
		if (running)
			p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4422
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
4423 4424
		/*
		 * Reschedule if we are currently running on this runqueue and
4425 4426
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4427
		 */
4428
		if (running) {
4429 4430
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4431 4432 4433
		} else {
			check_preempt_curr(rq, p);
		}
L
Linus Torvalds 已提交
4434
	}
4435 4436 4437
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4438 4439
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4440 4441 4442 4443
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4444 4445
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4446 4447 4448
{
	struct sched_param lparam;
	struct task_struct *p;
4449
	int retval;
L
Linus Torvalds 已提交
4450 4451 4452 4453 4454

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4455 4456 4457

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4458
	p = find_process_by_pid(pid);
4459 4460 4461
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4462

L
Linus Torvalds 已提交
4463 4464 4465 4466 4467 4468 4469 4470 4471
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
4472 4473
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4474
{
4475 4476 4477 4478
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4498
	struct task_struct *p;
4499
	int retval;
L
Linus Torvalds 已提交
4500 4501

	if (pid < 0)
4502
		return -EINVAL;
L
Linus Torvalds 已提交
4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4524
	struct task_struct *p;
4525
	int retval;
L
Linus Torvalds 已提交
4526 4527

	if (!param || pid < 0)
4528
		return -EINVAL;
L
Linus Torvalds 已提交
4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4558 4559
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4560

4561
	get_online_cpus();
L
Linus Torvalds 已提交
4562 4563 4564 4565 4566
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4567
		put_online_cpus();
L
Linus Torvalds 已提交
4568 4569 4570 4571 4572
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
4573
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
4574 4575 4576 4577 4578 4579 4580 4581 4582 4583
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4584 4585 4586 4587
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4588 4589
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
4590
 again:
L
Linus Torvalds 已提交
4591 4592
	retval = set_cpus_allowed(p, new_mask);

P
Paul Menage 已提交
4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604
	if (!retval) {
		cpus_allowed = cpuset_cpus_allowed(p);
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
4605 4606
out_unlock:
	put_task_struct(p);
4607
	put_online_cpus();
L
Linus Torvalds 已提交
4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4648
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4649 4650 4651
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4652
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4653 4654
EXPORT_SYMBOL(cpu_online_map);

4655
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4656
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4657 4658 4659 4660
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4661
	struct task_struct *p;
L
Linus Torvalds 已提交
4662 4663
	int retval;

4664
	get_online_cpus();
L
Linus Torvalds 已提交
4665 4666 4667 4668 4669 4670 4671
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4672 4673 4674 4675
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4676
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4677 4678 4679

out_unlock:
	read_unlock(&tasklist_lock);
4680
	put_online_cpus();
L
Linus Torvalds 已提交
4681

4682
	return retval;
L
Linus Torvalds 已提交
4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4713 4714
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4715 4716 4717
 */
asmlinkage long sys_sched_yield(void)
{
4718
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4719

4720
	schedstat_inc(rq, yld_count);
4721
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4722 4723 4724 4725 4726 4727

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4728
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4729 4730 4731 4732 4733 4734 4735 4736
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4737
static void __cond_resched(void)
L
Linus Torvalds 已提交
4738
{
4739 4740 4741
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4742 4743 4744 4745 4746
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4747 4748 4749 4750 4751 4752 4753 4754 4755
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4756 4757
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4769
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4770 4771 4772
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4773
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4774
{
J
Jan Kara 已提交
4775 4776
	int ret = 0;

L
Linus Torvalds 已提交
4777 4778 4779
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4780
		ret = 1;
L
Linus Torvalds 已提交
4781 4782
		spin_lock(lock);
	}
4783
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4784
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4785 4786 4787
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4788
		ret = 1;
L
Linus Torvalds 已提交
4789 4790
		spin_lock(lock);
	}
J
Jan Kara 已提交
4791
	return ret;
L
Linus Torvalds 已提交
4792 4793 4794 4795 4796 4797 4798
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4799
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4800
		local_bh_enable();
L
Linus Torvalds 已提交
4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4812
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4813 4814 4815 4816 4817 4818 4819 4820 4821 4822
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
4823
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4824 4825 4826 4827 4828 4829 4830
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4831
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4832

4833
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4834 4835 4836
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4837
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4838 4839 4840 4841 4842
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4843
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4844 4845
	long ret;

4846
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4847 4848 4849
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4850
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4871
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4872
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4896
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4897
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4914
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4915
	unsigned int time_slice;
4916
	int retval;
L
Linus Torvalds 已提交
4917 4918 4919
	struct timespec t;

	if (pid < 0)
4920
		return -EINVAL;
L
Linus Torvalds 已提交
4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4932 4933 4934 4935 4936 4937
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
4938
		time_slice = DEF_TIMESLICE;
4939
	} else {
D
Dmitry Adamushko 已提交
4940 4941 4942 4943 4944
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
4945 4946
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
4947 4948
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
4949
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
4950
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4951 4952
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4953

L
Linus Torvalds 已提交
4954 4955 4956 4957 4958
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4959
static const char stat_nam[] = "RSDTtZX";
4960

4961
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4962 4963
{
	unsigned long free = 0;
4964
	unsigned state;
L
Linus Torvalds 已提交
4965 4966

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
4967
	printk(KERN_INFO "%-13.13s %c", p->comm,
4968
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4969
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4970
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
4971
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4972
	else
I
Ingo Molnar 已提交
4973
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4974 4975
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
4976
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4977
	else
I
Ingo Molnar 已提交
4978
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4979 4980 4981
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4982
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4983 4984
		while (!*n)
			n++;
4985
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4986 4987
	}
#endif
4988
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
4989
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
4990 4991 4992 4993 4994

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4995
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4996
{
4997
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4998

4999 5000 5001
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5002
#else
5003 5004
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5005 5006 5007 5008 5009 5010 5011 5012
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5013
		if (!state_filter || (p->state & state_filter))
5014
			sched_show_task(p);
L
Linus Torvalds 已提交
5015 5016
	} while_each_thread(g, p);

5017 5018
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5019 5020 5021
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5022
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5023 5024 5025 5026 5027
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5028 5029
}

I
Ingo Molnar 已提交
5030 5031
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5032
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5033 5034
}

5035 5036 5037 5038 5039 5040 5041 5042
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5043
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5044
{
5045
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5046 5047
	unsigned long flags;

I
Ingo Molnar 已提交
5048 5049 5050
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5051
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5052
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5053
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5054 5055 5056

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5057 5058 5059
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5060 5061 5062 5063
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
5064
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
5065
#else
A
Al Viro 已提交
5066
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
5067
#endif
I
Ingo Molnar 已提交
5068 5069 5070 5071
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
	sysctl_sched_batch_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
5109 5110 5111 5112
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5113
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5132
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5133 5134
 * call is not atomic; no spinlocks may be held.
 */
5135
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
5136
{
5137
	struct migration_req req;
L
Linus Torvalds 已提交
5138
	unsigned long flags;
5139
	struct rq *rq;
5140
	int ret = 0;
L
Linus Torvalds 已提交
5141 5142 5143 5144 5145 5146 5147

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

5148 5149 5150 5151 5152 5153 5154
	if (p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, &new_mask);
	else {
		p->cpus_allowed    = new_mask;
		p->nr_cpus_allowed = cpus_weight(new_mask);
	}

L
Linus Torvalds 已提交
5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5169

L
Linus Torvalds 已提交
5170 5171 5172 5173 5174
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
I
Ingo Molnar 已提交
5175
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5176 5177 5178 5179 5180 5181
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5182 5183
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5184
 */
5185
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5186
{
5187
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5188
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5189 5190

	if (unlikely(cpu_is_offline(dest_cpu)))
5191
		return ret;
L
Linus Torvalds 已提交
5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5204
	on_rq = p->se.on_rq;
5205
	if (on_rq)
5206
		deactivate_task(rq_src, p, 0);
5207

L
Linus Torvalds 已提交
5208
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5209 5210 5211
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5212
	}
5213
	ret = 1;
L
Linus Torvalds 已提交
5214 5215
out:
	double_rq_unlock(rq_src, rq_dest);
5216
	return ret;
L
Linus Torvalds 已提交
5217 5218 5219 5220 5221 5222 5223
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5224
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5225 5226
{
	int cpu = (long)data;
5227
	struct rq *rq;
L
Linus Torvalds 已提交
5228 5229 5230 5231 5232 5233

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5234
		struct migration_req *req;
L
Linus Torvalds 已提交
5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5257
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5258 5259
		list_del_init(head->next);

N
Nick Piggin 已提交
5260 5261 5262
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5292
/*
5293
 * Figure out where task on dead CPU should go, use force if necessary.
5294 5295
 * NOTE: interrupts should be disabled by the caller
 */
5296
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5297
{
5298
	unsigned long flags;
L
Linus Torvalds 已提交
5299
	cpumask_t mask;
5300 5301
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5302

5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
		if (dest_cpu == NR_CPUS)
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
		if (dest_cpu == NR_CPUS) {
5315 5316 5317 5318 5319
			cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
5320
			 * cpuset_cpus_allowed() will not block. It must be
5321 5322
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
5323
			rq = task_rq_lock(p, &flags);
5324
			p->cpus_allowed = cpus_allowed;
5325 5326
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5327

5328 5329 5330 5331 5332
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
5333
			if (p->mm && printk_ratelimit()) {
5334 5335
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
5336 5337
					task_pid_nr(p), p->comm, dead_cpu);
			}
5338
		}
5339
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5340 5341 5342 5343 5344 5345 5346 5347 5348
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5349
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5350
{
5351
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5365
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5366

5367
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5368

5369 5370
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5371 5372
			continue;

5373 5374 5375
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5376

5377
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5378 5379
}

I
Ingo Molnar 已提交
5380 5381
/*
 * Schedules idle task to be the next runnable task on current CPU.
5382 5383
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5384 5385 5386
 */
void sched_idle_next(void)
{
5387
	int this_cpu = smp_processor_id();
5388
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5389 5390 5391 5392
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5393
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5394

5395 5396 5397
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5398 5399 5400
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5401
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5402

5403 5404
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5405 5406 5407 5408

	spin_unlock_irqrestore(&rq->lock, flags);
}

5409 5410
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5424
/* called under rq->lock with disabled interrupts */
5425
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5426
{
5427
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5428 5429

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5430
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5431 5432

	/* Cannot have done final schedule yet: would have vanished. */
5433
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5434

5435
	get_task_struct(p);
L
Linus Torvalds 已提交
5436 5437 5438

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5439
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5440 5441
	 * fine.
	 */
5442
	spin_unlock_irq(&rq->lock);
5443
	move_task_off_dead_cpu(dead_cpu, p);
5444
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5445

5446
	put_task_struct(p);
L
Linus Torvalds 已提交
5447 5448 5449 5450 5451
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5452
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5453
	struct task_struct *next;
5454

I
Ingo Molnar 已提交
5455 5456 5457
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5458
		update_rq_clock(rq);
5459
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5460 5461 5462
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5463

L
Linus Torvalds 已提交
5464 5465 5466 5467
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5468 5469 5470
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5471 5472
	{
		.procname	= "sched_domain",
5473
		.mode		= 0555,
5474
	},
I
Ingo Molnar 已提交
5475
	{0, },
5476 5477 5478
};

static struct ctl_table sd_ctl_root[] = {
5479
	{
5480
		.ctl_name	= CTL_KERN,
5481
		.procname	= "kernel",
5482
		.mode		= 0555,
5483 5484
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
5485
	{0, },
5486 5487 5488 5489 5490
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5491
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5492 5493 5494 5495

	return entry;
}

5496 5497
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5498
	struct ctl_table *entry;
5499

5500 5501 5502
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5503
	 * will always be set. In the lowest directory the names are
5504 5505 5506
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5507 5508
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5509 5510 5511
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5512 5513 5514 5515 5516

	kfree(*tablep);
	*tablep = NULL;
}

5517
static void
5518
set_table_entry(struct ctl_table *entry,
5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5532
	struct ctl_table *table = sd_alloc_ctl_entry(12);
5533

5534 5535 5536
	if (table == NULL)
		return NULL;

5537
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5538
		sizeof(long), 0644, proc_doulongvec_minmax);
5539
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5540
		sizeof(long), 0644, proc_doulongvec_minmax);
5541
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5542
		sizeof(int), 0644, proc_dointvec_minmax);
5543
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5544
		sizeof(int), 0644, proc_dointvec_minmax);
5545
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5546
		sizeof(int), 0644, proc_dointvec_minmax);
5547
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5548
		sizeof(int), 0644, proc_dointvec_minmax);
5549
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5550
		sizeof(int), 0644, proc_dointvec_minmax);
5551
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5552
		sizeof(int), 0644, proc_dointvec_minmax);
5553
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5554
		sizeof(int), 0644, proc_dointvec_minmax);
5555
	set_table_entry(&table[9], "cache_nice_tries",
5556 5557
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5558
	set_table_entry(&table[10], "flags", &sd->flags,
5559
		sizeof(int), 0644, proc_dointvec_minmax);
5560
	/* &table[11] is terminator */
5561 5562 5563 5564

	return table;
}

5565
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5566 5567 5568 5569 5570 5571 5572 5573 5574
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5575 5576
	if (table == NULL)
		return NULL;
5577 5578 5579 5580 5581

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5582
		entry->mode = 0555;
5583 5584 5585 5586 5587 5588 5589 5590
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5591
static void register_sched_domain_sysctl(void)
5592 5593 5594 5595 5596
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5597 5598 5599
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5600 5601 5602
	if (entry == NULL)
		return;

5603
	for_each_online_cpu(i) {
5604 5605
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5606
		entry->mode = 0555;
5607
		entry->child = sd_alloc_ctl_cpu_table(i);
5608
		entry++;
5609
	}
5610 5611

	WARN_ON(sd_sysctl_header);
5612 5613
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5614

5615
/* may be called multiple times per register */
5616 5617
static void unregister_sched_domain_sysctl(void)
{
5618 5619
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5620
	sd_sysctl_header = NULL;
5621 5622
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5623
}
5624
#else
5625 5626 5627 5628
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5629 5630 5631 5632
{
}
#endif

L
Linus Torvalds 已提交
5633 5634 5635 5636
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5637 5638
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5639 5640
{
	struct task_struct *p;
5641
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5642
	unsigned long flags;
5643
	struct rq *rq;
L
Linus Torvalds 已提交
5644 5645

	switch (action) {
5646

L
Linus Torvalds 已提交
5647
	case CPU_UP_PREPARE:
5648
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5649
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5650 5651 5652 5653 5654
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5655
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5656 5657 5658
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5659

L
Linus Torvalds 已提交
5660
	case CPU_ONLINE:
5661
	case CPU_ONLINE_FROZEN:
5662
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
5663 5664
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5665

L
Linus Torvalds 已提交
5666 5667
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5668
	case CPU_UP_CANCELED_FROZEN:
5669 5670
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
5671
		/* Unbind it from offline cpu so it can run. Fall thru. */
5672 5673
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5674 5675 5676
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5677

L
Linus Torvalds 已提交
5678
	case CPU_DEAD:
5679
	case CPU_DEAD_FROZEN:
5680
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
5681 5682 5683 5684 5685
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
5686
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
5687
		update_rq_clock(rq);
5688
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5689
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5690 5691
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5692
		migrate_dead_tasks(cpu);
5693
		spin_unlock_irq(&rq->lock);
5694
		cpuset_unlock();
L
Linus Torvalds 已提交
5695 5696 5697
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
5698 5699 5700 5701 5702
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
5703 5704
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5705 5706
			struct migration_req *req;

L
Linus Torvalds 已提交
5707
			req = list_entry(rq->migration_queue.next,
5708
					 struct migration_req, list);
L
Linus Torvalds 已提交
5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5722
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5723 5724 5725 5726
	.notifier_call = migration_call,
	.priority = 10
};

5727
void __init migration_init(void)
L
Linus Torvalds 已提交
5728 5729
{
	void *cpu = (void *)(long)smp_processor_id();
5730
	int err;
5731 5732

	/* Start one for the boot CPU: */
5733 5734
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5735 5736 5737 5738 5739 5740
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
}
#endif

#ifdef CONFIG_SMP
5741 5742 5743 5744 5745

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5746
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5747 5748

static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
L
Linus Torvalds 已提交
5749
{
I
Ingo Molnar 已提交
5750 5751 5752
	struct sched_group *group = sd->groups;
	cpumask_t groupmask;
	char str[NR_CPUS];
L
Linus Torvalds 已提交
5753

I
Ingo Molnar 已提交
5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764
	cpumask_scnprintf(str, NR_CPUS, sd->span);
	cpus_clear(groupmask);

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
5765 5766
	}

I
Ingo Molnar 已提交
5767 5768 5769 5770 5771 5772 5773 5774 5775 5776
	printk(KERN_CONT "span %s\n", str);

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
5777

I
Ingo Molnar 已提交
5778
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5779
	do {
I
Ingo Molnar 已提交
5780 5781 5782
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5783 5784 5785
			break;
		}

I
Ingo Molnar 已提交
5786 5787 5788 5789 5790 5791
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
5792

I
Ingo Molnar 已提交
5793 5794 5795 5796 5797
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
5798

I
Ingo Molnar 已提交
5799 5800 5801 5802 5803
		if (cpus_intersects(groupmask, group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
5804

I
Ingo Molnar 已提交
5805
		cpus_or(groupmask, groupmask, group->cpumask);
L
Linus Torvalds 已提交
5806

I
Ingo Molnar 已提交
5807 5808
		cpumask_scnprintf(str, NR_CPUS, group->cpumask);
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
5809

I
Ingo Molnar 已提交
5810 5811 5812
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5813

I
Ingo Molnar 已提交
5814 5815
	if (!cpus_equal(sd->span, groupmask))
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5816

I
Ingo Molnar 已提交
5817 5818 5819 5820 5821
	if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
5822

I
Ingo Molnar 已提交
5823 5824 5825
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5826

I
Ingo Molnar 已提交
5827 5828 5829 5830
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5831

I
Ingo Molnar 已提交
5832 5833 5834 5835 5836
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
		if (sched_domain_debug_one(sd, cpu, level))
			break;
L
Linus Torvalds 已提交
5837 5838
		level++;
		sd = sd->parent;
5839
		if (!sd)
I
Ingo Molnar 已提交
5840 5841
			break;
	}
L
Linus Torvalds 已提交
5842 5843
}
#else
5844
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5845 5846
#endif

5847
static int sd_degenerate(struct sched_domain *sd)
5848 5849 5850 5851 5852 5853 5854 5855
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5856 5857 5858
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5872 5873
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5892 5893 5894
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5895 5896 5897 5898 5899 5900 5901
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5902 5903 5904 5905
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5906
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5907
{
5908
	struct rq *rq = cpu_rq(cpu);
5909 5910 5911 5912 5913 5914 5915
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5916
		if (sd_parent_degenerate(tmp, parent)) {
5917
			tmp->parent = parent->parent;
5918 5919 5920
			if (parent->parent)
				parent->parent->child = tmp;
		}
5921 5922
	}

5923
	if (sd && sd_degenerate(sd)) {
5924
		sd = sd->parent;
5925 5926 5927
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5928 5929 5930

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5931
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5932 5933 5934
}

/* cpus with isolated domains */
5935
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
5950
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5951 5952

/*
5953 5954 5955 5956
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5957 5958 5959 5960 5961
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5962
static void
5963 5964 5965
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5966 5967 5968 5969 5970 5971
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5972 5973
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5974 5975 5976 5977 5978 5979
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5980
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5981 5982

		for_each_cpu_mask(j, span) {
5983
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5998
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5999

6000
#ifdef CONFIG_NUMA
6001

6002 6003 6004 6005 6006
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6007
 * Find the next node to include in a given scheduling domain. Simply
6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
I
Ingo Molnar 已提交
6047
 * Given a node, construct a good cpumask for its sched_domain to span. It
6048 6049 6050 6051 6052 6053
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6054 6055
	cpumask_t span, nodemask;
	int i;
6056 6057 6058 6059 6060 6061 6062 6063 6064 6065

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
6066

6067 6068 6069 6070 6071 6072 6073 6074
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

6075
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6076

6077
/*
6078
 * SMT sched-domains:
6079
 */
L
Linus Torvalds 已提交
6080 6081
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6082
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6083

I
Ingo Molnar 已提交
6084 6085
static int
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
L
Linus Torvalds 已提交
6086
{
6087 6088
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6089 6090 6091 6092
	return cpu;
}
#endif

6093 6094 6095
/*
 * multi-core sched-domains:
 */
6096 6097
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6098
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6099 6100 6101
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6102 6103
static int
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6104
{
6105
	int group;
6106
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6107
	cpus_and(mask, mask, *cpu_map);
6108 6109 6110 6111
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6112 6113
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6114 6115
static int
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6116
{
6117 6118
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6119 6120 6121 6122
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6123
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6124
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6125

I
Ingo Molnar 已提交
6126 6127
static int
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
L
Linus Torvalds 已提交
6128
{
6129
	int group;
6130
#ifdef CONFIG_SCHED_MC
6131
	cpumask_t mask = cpu_coregroup_map(cpu);
6132
	cpus_and(mask, mask, *cpu_map);
6133
	group = first_cpu(mask);
6134
#elif defined(CONFIG_SCHED_SMT)
6135
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6136
	cpus_and(mask, mask, *cpu_map);
6137
	group = first_cpu(mask);
L
Linus Torvalds 已提交
6138
#else
6139
	group = cpu;
L
Linus Torvalds 已提交
6140
#endif
6141 6142 6143
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6144 6145 6146 6147
}

#ifdef CONFIG_NUMA
/*
6148 6149 6150
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6151
 */
6152
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6153
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
6154

6155
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6156
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6157

6158 6159
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
6160
{
6161 6162 6163 6164 6165 6166 6167 6168 6169
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6170
}
6171

6172 6173 6174 6175 6176 6177 6178
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6179 6180 6181
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
6182

6183 6184 6185 6186 6187 6188 6189 6190
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6191

6192 6193 6194 6195
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
6196
}
L
Linus Torvalds 已提交
6197 6198
#endif

6199
#ifdef CONFIG_NUMA
6200 6201 6202
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
6203
	int cpu, i;
6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6234 6235 6236 6237 6238
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
6239

6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6266 6267
	sd->groups->__cpu_power = 0;

6268 6269 6270 6271 6272 6273 6274 6275 6276 6277
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6278
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6279 6280 6281 6282 6283 6284 6285 6286
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6287
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6288 6289 6290 6291
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6292
/*
6293 6294
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6295
 */
6296
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6297 6298
{
	int i;
6299 6300
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6301
	int sd_allnodes = 0;
6302 6303 6304 6305

	/*
	 * Allocate the per-node list of sched groups
	 */
6306
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
6307
				    GFP_KERNEL);
6308 6309
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6310
		return -ENOMEM;
6311 6312 6313
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6314 6315

	/*
6316
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6317
	 */
6318
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6319 6320 6321
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6322
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6323 6324

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6325 6326
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6327 6328 6329
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6330
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6331
			p = sd;
6332
			sd_allnodes = 1;
6333 6334 6335
		} else
			p = NULL;

L
Linus Torvalds 已提交
6336 6337
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6338 6339
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6340 6341
		if (p)
			p->child = sd;
6342
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6343 6344 6345 6346 6347 6348 6349
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6350 6351
		if (p)
			p->child = sd;
6352
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6353

6354 6355 6356 6357 6358 6359 6360
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6361
		p->child = sd;
6362
		cpu_to_core_group(i, cpu_map, &sd->groups);
6363 6364
#endif

L
Linus Torvalds 已提交
6365 6366 6367 6368
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
6369
		sd->span = per_cpu(cpu_sibling_map, i);
6370
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6371
		sd->parent = p;
6372
		p->child = sd;
6373
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6374 6375 6376 6377 6378
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6379
	for_each_cpu_mask(i, *cpu_map) {
6380
		cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6381
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6382 6383 6384
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6385 6386
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6387 6388 6389
	}
#endif

6390 6391 6392 6393 6394 6395 6396
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6397 6398
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6399 6400 6401
	}
#endif

L
Linus Torvalds 已提交
6402 6403 6404 6405
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6406
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6407 6408 6409
		if (cpus_empty(nodemask))
			continue;

6410
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6411 6412 6413 6414
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6415
	if (sd_allnodes)
I
Ingo Molnar 已提交
6416 6417
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6418 6419 6420 6421 6422 6423 6424 6425 6426 6427

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6428 6429
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6430
			continue;
6431
		}
6432 6433 6434 6435

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6436
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6437 6438 6439 6440 6441
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6442 6443 6444
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6445

6446 6447 6448
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6449
		sg->__cpu_power = 0;
6450
		sg->cpumask = nodemask;
6451
		sg->next = sg;
6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6470 6471
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6472 6473 6474
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6475
				goto error;
6476
			}
6477
			sg->__cpu_power = 0;
6478
			sg->cpumask = tmp;
6479
			sg->next = prev->next;
6480 6481 6482 6483 6484
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6485 6486 6487
#endif

	/* Calculate CPU power for physical packages and nodes */
6488
#ifdef CONFIG_SCHED_SMT
6489
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6490 6491
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6492
		init_sched_groups_power(i, sd);
6493
	}
L
Linus Torvalds 已提交
6494
#endif
6495
#ifdef CONFIG_SCHED_MC
6496
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6497 6498
		struct sched_domain *sd = &per_cpu(core_domains, i);

6499
		init_sched_groups_power(i, sd);
6500 6501
	}
#endif
6502

6503
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6504 6505
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6506
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6507 6508
	}

6509
#ifdef CONFIG_NUMA
6510 6511
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6512

6513 6514
	if (sd_allnodes) {
		struct sched_group *sg;
6515

6516
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6517 6518
		init_numa_sched_groups_power(sg);
	}
6519 6520
#endif

L
Linus Torvalds 已提交
6521
	/* Attach the domains */
6522
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6523 6524 6525
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6526 6527
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6528 6529 6530 6531 6532
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6533 6534 6535

	return 0;

6536
#ifdef CONFIG_NUMA
6537 6538 6539
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6540
#endif
L
Linus Torvalds 已提交
6541
}
P
Paul Jackson 已提交
6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552

static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

6553
/*
I
Ingo Molnar 已提交
6554
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6555 6556
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6557
 */
6558
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6559
{
6560 6561
	int err;

P
Paul Jackson 已提交
6562 6563 6564 6565 6566
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6567
	err = build_sched_domains(doms_cur);
6568
	register_sched_domain_sysctl();
6569 6570

	return err;
6571 6572 6573
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6574
{
6575
	free_sched_groups(cpu_map);
6576
}
L
Linus Torvalds 已提交
6577

6578 6579 6580 6581
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6582
static void detach_destroy_domains(const cpumask_t *cpu_map)
6583 6584 6585
{
	int i;

6586 6587
	unregister_sched_domain_sysctl();

6588 6589 6590 6591 6592 6593
	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

P
Paul Jackson 已提交
6594 6595
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6596
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6597 6598 6599 6600
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6601 6602 6603
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6604 6605 6606
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
6607 6608
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
6609 6610 6611 6612 6613 6614 6615 6616 6617 6618
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
{
	int i, j;

6619 6620
	lock_doms_cur();

6621 6622 6623
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
			if (cpus_equal(doms_cur[i], doms_new[j]))
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
			if (cpus_equal(doms_new[i], doms_cur[j]))
				goto match2;
		}
		/* no match - add a new doms_new */
		build_sched_domains(doms_new + i);
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
	doms_cur = doms_new;
	ndoms_cur = ndoms_new;
6659 6660

	register_sched_domain_sysctl();
6661 6662

	unlock_doms_cur();
P
Paul Jackson 已提交
6663 6664
}

6665
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
A
Adrian Bunk 已提交
6666
static int arch_reinit_sched_domains(void)
6667 6668 6669
{
	int err;

6670
	get_online_cpus();
6671 6672
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6673
	put_online_cpus();
6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6700 6701
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6702 6703 6704
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
6705 6706
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
6707 6708 6709 6710 6711 6712 6713
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6714 6715
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6716 6717 6718
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
6739 6740
#endif

L
Linus Torvalds 已提交
6741
/*
I
Ingo Molnar 已提交
6742
 * Force a reinitialization of the sched domains hierarchy. The domains
L
Linus Torvalds 已提交
6743
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6744
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6745 6746 6747 6748 6749 6750 6751
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6752
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6753
	case CPU_DOWN_PREPARE:
6754
	case CPU_DOWN_PREPARE_FROZEN:
6755
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6756 6757 6758
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6759
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6760
	case CPU_DOWN_FAILED:
6761
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6762
	case CPU_ONLINE:
6763
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6764
	case CPU_DEAD:
6765
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6766 6767 6768 6769 6770 6771 6772 6773 6774
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6775
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6776 6777 6778 6779 6780 6781

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6782 6783
	cpumask_t non_isolated_cpus;

6784
	get_online_cpus();
6785
	arch_init_sched_domains(&cpu_online_map);
6786
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6787 6788
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6789
	put_online_cpus();
L
Linus Torvalds 已提交
6790 6791
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6792 6793 6794 6795

	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
I
Ingo Molnar 已提交
6796
	sched_init_granularity();
6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811

#ifdef CONFIG_FAIR_GROUP_SCHED
	if (nr_cpu_ids == 1)
		return;

	lb_monitor_task = kthread_create(load_balance_monitor, NULL,
					 "group_balance");
	if (!IS_ERR(lb_monitor_task)) {
		lb_monitor_task->flags |= PF_NOFREEZE;
		wake_up_process(lb_monitor_task);
	} else {
		printk(KERN_ERR "Could not create load balance monitor thread"
			"(error = %ld) \n", PTR_ERR(lb_monitor_task));
	}
#endif
L
Linus Torvalds 已提交
6812 6813 6814 6815
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6816
	sched_init_granularity();
L
Linus Torvalds 已提交
6817 6818 6819 6820 6821 6822 6823 6824 6825 6826
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
6827
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
6828 6829 6830 6831 6832
{
	cfs_rq->tasks_timeline = RB_ROOT;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
6833
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
6834 6835
}

L
Linus Torvalds 已提交
6836 6837
void __init sched_init(void)
{
6838
	int highest_cpu = 0;
I
Ingo Molnar 已提交
6839 6840
	int i, j;

6841
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6842
		struct rt_prio_array *array;
6843
		struct rq *rq;
L
Linus Torvalds 已提交
6844 6845 6846

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6847
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6848
		rq->nr_running = 0;
I
Ingo Molnar 已提交
6849 6850 6851 6852
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
I
Ingo Molnar 已提交
6853 6854 6855 6856 6857 6858 6859
		{
			struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
			struct sched_entity *se =
					 &per_cpu(init_sched_entity, i);

			init_cfs_rq_p[i] = cfs_rq;
			init_cfs_rq(cfs_rq, rq);
6860
			cfs_rq->tg = &init_task_group;
I
Ingo Molnar 已提交
6861
			list_add(&cfs_rq->leaf_cfs_rq_list,
S
Srivatsa Vaddagiri 已提交
6862 6863
							 &rq->leaf_cfs_rq_list);

I
Ingo Molnar 已提交
6864 6865 6866
			init_sched_entity_p[i] = se;
			se->cfs_rq = &rq->cfs;
			se->my_q = cfs_rq;
6867
			se->load.weight = init_task_group_load;
6868
			se->load.inv_weight =
6869
				 div64_64(1ULL<<32, init_task_group_load);
I
Ingo Molnar 已提交
6870 6871
			se->parent = NULL;
		}
6872
		init_task_group.shares = init_task_group_load;
I
Ingo Molnar 已提交
6873
#endif
L
Linus Torvalds 已提交
6874

I
Ingo Molnar 已提交
6875 6876
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6877
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6878
		rq->sd = NULL;
L
Linus Torvalds 已提交
6879
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6880
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6881
		rq->push_cpu = 0;
6882
		rq->cpu = i;
L
Linus Torvalds 已提交
6883 6884
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
6885
		rq->rt.highest_prio = MAX_RT_PRIO;
L
Linus Torvalds 已提交
6886 6887 6888
#endif
		atomic_set(&rq->nr_iowait, 0);

I
Ingo Molnar 已提交
6889 6890 6891 6892
		array = &rq->rt.active;
		for (j = 0; j < MAX_RT_PRIO; j++) {
			INIT_LIST_HEAD(array->queue + j);
			__clear_bit(j, array->bitmap);
L
Linus Torvalds 已提交
6893
		}
6894
		highest_cpu = i;
I
Ingo Molnar 已提交
6895 6896
		/* delimiter for bitsearch: */
		__set_bit(MAX_RT_PRIO, array->bitmap);
L
Linus Torvalds 已提交
6897 6898
	}

6899
	set_load_weight(&init_task);
6900

6901 6902 6903 6904
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6905
#ifdef CONFIG_SMP
6906
	nr_cpu_ids = highest_cpu + 1;
6907 6908 6909
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6910 6911 6912 6913
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
6927 6928 6929 6930
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
6931 6932 6933 6934 6935
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6936
#ifdef in_atomic
L
Linus Torvalds 已提交
6937 6938 6939 6940 6941 6942 6943
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6944
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6945 6946 6947
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6948
		debug_show_held_locks(current);
6949 6950
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6951 6952 6953 6954 6955 6956 6957 6958
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
6973 6974
void normalize_rt_tasks(void)
{
6975
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6976
	unsigned long flags;
6977
	struct rq *rq;
L
Linus Torvalds 已提交
6978 6979

	read_lock_irq(&tasklist_lock);
6980
	do_each_thread(g, p) {
6981 6982 6983 6984 6985 6986
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
6987 6988
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
6989 6990 6991
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
6992
#endif
I
Ingo Molnar 已提交
6993 6994 6995 6996 6997 6998 6999 7000 7001
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7002
			continue;
I
Ingo Molnar 已提交
7003
		}
L
Linus Torvalds 已提交
7004

7005 7006
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7007

7008
		normalize_task(rq, p);
7009

7010 7011
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
7012 7013
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
7014 7015 7016 7017
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7036
struct task_struct *curr_task(int cpu)
7037 7038 7039 7040 7041 7042 7043 7044 7045 7046
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7047 7048
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7049 7050 7051 7052 7053 7054 7055
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7056
void set_curr_task(int cpu, struct task_struct *p)
7057 7058 7059 7060 7061
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7062 7063 7064

#ifdef CONFIG_FAIR_GROUP_SCHED

7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167
#ifdef CONFIG_SMP
/*
 * distribute shares of all task groups among their schedulable entities,
 * to reflect load distrbution across cpus.
 */
static int rebalance_shares(struct sched_domain *sd, int this_cpu)
{
	struct cfs_rq *cfs_rq;
	struct rq *rq = cpu_rq(this_cpu);
	cpumask_t sdspan = sd->span;
	int balanced = 1;

	/* Walk thr' all the task groups that we have */
	for_each_leaf_cfs_rq(rq, cfs_rq) {
		int i;
		unsigned long total_load = 0, total_shares;
		struct task_group *tg = cfs_rq->tg;

		/* Gather total task load of this group across cpus */
		for_each_cpu_mask(i, sdspan)
			total_load += tg->cfs_rq[i]->load.weight;

		/* Nothing to do if this group has no load  */
		if (!total_load)
			continue;

		/*
		 * tg->shares represents the number of cpu shares the task group
		 * is eligible to hold on a single cpu. On N cpus, it is
		 * eligible to hold (N * tg->shares) number of cpu shares.
		 */
		total_shares = tg->shares * cpus_weight(sdspan);

		/*
		 * redistribute total_shares across cpus as per the task load
		 * distribution.
		 */
		for_each_cpu_mask(i, sdspan) {
			unsigned long local_load, local_shares;

			local_load = tg->cfs_rq[i]->load.weight;
			local_shares = (local_load * total_shares) / total_load;
			if (!local_shares)
				local_shares = MIN_GROUP_SHARES;
			if (local_shares == tg->se[i]->load.weight)
				continue;

			spin_lock_irq(&cpu_rq(i)->lock);
			set_se_shares(tg->se[i], local_shares);
			spin_unlock_irq(&cpu_rq(i)->lock);
			balanced = 0;
		}
	}

	return balanced;
}

/*
 * How frequently should we rebalance_shares() across cpus?
 *
 * The more frequently we rebalance shares, the more accurate is the fairness
 * of cpu bandwidth distribution between task groups. However higher frequency
 * also implies increased scheduling overhead.
 *
 * sysctl_sched_min_bal_int_shares represents the minimum interval between
 * consecutive calls to rebalance_shares() in the same sched domain.
 *
 * sysctl_sched_max_bal_int_shares represents the maximum interval between
 * consecutive calls to rebalance_shares() in the same sched domain.
 *
 * These settings allows for the appropriate tradeoff between accuracy of
 * fairness and the associated overhead.
 *
 */

/* default: 8ms, units: milliseconds */
const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;

/* default: 128ms, units: milliseconds */
const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;

/* kernel thread that runs rebalance_shares() periodically */
static int load_balance_monitor(void *unused)
{
	unsigned int timeout = sysctl_sched_min_bal_int_shares;
	struct sched_param schedparm;
	int ret;

	/*
	 * We don't want this thread's execution to be limited by the shares
	 * assigned to default group (init_task_group). Hence make it run
	 * as a SCHED_RR RT task at the lowest priority.
	 */
	schedparm.sched_priority = 1;
	ret = sched_setscheduler(current, SCHED_RR, &schedparm);
	if (ret)
		printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
				" monitor thread (error = %d) \n", ret);

	while (!kthread_should_stop()) {
		int i, cpu, balanced = 1;

		/* Prevent cpus going down or coming up */
7168
		get_online_cpus();
7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201
		/* lockout changes to doms_cur[] array */
		lock_doms_cur();
		/*
		 * Enter a rcu read-side critical section to safely walk rq->sd
		 * chain on various cpus and to walk task group list
		 * (rq->leaf_cfs_rq_list) in rebalance_shares().
		 */
		rcu_read_lock();

		for (i = 0; i < ndoms_cur; i++) {
			cpumask_t cpumap = doms_cur[i];
			struct sched_domain *sd = NULL, *sd_prev = NULL;

			cpu = first_cpu(cpumap);

			/* Find the highest domain at which to balance shares */
			for_each_domain(cpu, sd) {
				if (!(sd->flags & SD_LOAD_BALANCE))
					continue;
				sd_prev = sd;
			}

			sd = sd_prev;
			/* sd == NULL? No load balance reqd in this domain */
			if (!sd)
				continue;

			balanced &= rebalance_shares(sd, cpu);
		}

		rcu_read_unlock();

		unlock_doms_cur();
7202
		put_online_cpus();
7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215

		if (!balanced)
			timeout = sysctl_sched_min_bal_int_shares;
		else if (timeout < sysctl_sched_max_bal_int_shares)
			timeout *= 2;

		msleep_interruptible(timeout);
	}

	return 0;
}
#endif	/* CONFIG_SMP */

S
Srivatsa Vaddagiri 已提交
7216
/* allocate runqueue etc for a new task group */
7217
struct task_group *sched_create_group(void)
S
Srivatsa Vaddagiri 已提交
7218
{
7219
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
7220 7221
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
7222
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
7223 7224 7225 7226 7227 7228
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7229
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7230 7231
	if (!tg->cfs_rq)
		goto err;
7232
	tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7233 7234 7235 7236
	if (!tg->se)
		goto err;

	for_each_possible_cpu(i) {
7237
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263

		cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
							 cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
							cpu_to_node(i));
		if (!se)
			goto err;

		memset(cfs_rq, 0, sizeof(struct cfs_rq));
		memset(se, 0, sizeof(struct sched_entity));

		tg->cfs_rq[i] = cfs_rq;
		init_cfs_rq(cfs_rq, rq);
		cfs_rq->tg = tg;

		tg->se[i] = se;
		se->cfs_rq = &rq->cfs;
		se->my_q = cfs_rq;
		se->load.weight = NICE_0_LOAD;
		se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
		se->parent = NULL;
	}

7264 7265 7266
	tg->shares = NICE_0_LOAD;

	lock_task_group_list();
7267 7268 7269 7270 7271
	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		cfs_rq = tg->cfs_rq[i];
		list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
	}
7272
	unlock_task_group_list();
S
Srivatsa Vaddagiri 已提交
7273

7274
	return tg;
S
Srivatsa Vaddagiri 已提交
7275 7276 7277

err:
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
7278
		if (tg->cfs_rq)
S
Srivatsa Vaddagiri 已提交
7279
			kfree(tg->cfs_rq[i]);
I
Ingo Molnar 已提交
7280
		if (tg->se)
S
Srivatsa Vaddagiri 已提交
7281 7282
			kfree(tg->se[i]);
	}
I
Ingo Molnar 已提交
7283 7284 7285
	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
S
Srivatsa Vaddagiri 已提交
7286 7287 7288 7289

	return ERR_PTR(-ENOMEM);
}

7290 7291
/* rcu callback to free various structures associated with a task group */
static void free_sched_group(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7292
{
7293 7294
	struct task_group *tg = container_of(rhp, struct task_group, rcu);
	struct cfs_rq *cfs_rq;
S
Srivatsa Vaddagiri 已提交
7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311
	struct sched_entity *se;
	int i;

	/* now it should be safe to free those cfs_rqs */
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		kfree(cfs_rq);

		se = tg->se[i];
		kfree(se);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
}

7312
/* Destroy runqueue etc associated with a task group */
7313
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7314
{
7315
	struct cfs_rq *cfs_rq = NULL;
7316
	int i;
S
Srivatsa Vaddagiri 已提交
7317

7318
	lock_task_group_list();
7319 7320 7321 7322
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
	}
7323
	unlock_task_group_list();
7324

7325
	BUG_ON(!cfs_rq);
7326 7327

	/* wait for possible concurrent references to cfs_rqs complete */
7328
	call_rcu(&tg->rcu, free_sched_group);
S
Srivatsa Vaddagiri 已提交
7329 7330
}

7331
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7332 7333 7334
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7335 7336
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7337 7338 7339 7340 7341 7342 7343
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7344
	if (tsk->sched_class != &fair_sched_class) {
7345
		set_task_cfs_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
7346
		goto done;
7347
	}
S
Srivatsa Vaddagiri 已提交
7348 7349 7350

	update_rq_clock(rq);

7351
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7352 7353
	on_rq = tsk->se.on_rq;

7354
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
7355
		dequeue_task(rq, tsk, 0);
7356 7357 7358
		if (unlikely(running))
			tsk->sched_class->put_prev_task(rq, tsk);
	}
S
Srivatsa Vaddagiri 已提交
7359

7360
	set_task_cfs_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
7361

7362 7363 7364
	if (on_rq) {
		if (unlikely(running))
			tsk->sched_class->set_curr_task(rq);
7365
		enqueue_task(rq, tsk, 0);
7366
	}
S
Srivatsa Vaddagiri 已提交
7367 7368 7369 7370 7371

done:
	task_rq_unlock(rq, &flags);
}

7372
/* rq->lock to be locked by caller */
S
Srivatsa Vaddagiri 已提交
7373 7374 7375 7376 7377 7378
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	int on_rq;

7379 7380
	if (!shares)
		shares = MIN_GROUP_SHARES;
S
Srivatsa Vaddagiri 已提交
7381 7382

	on_rq = se->on_rq;
7383
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
7384
		dequeue_entity(cfs_rq, se, 0);
7385 7386
		dec_cpu_load(rq, se->load.weight);
	}
S
Srivatsa Vaddagiri 已提交
7387 7388 7389 7390

	se->load.weight = shares;
	se->load.inv_weight = div64_64((1ULL<<32), shares);

7391
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
7392
		enqueue_entity(cfs_rq, se, 0);
7393 7394
		inc_cpu_load(rq, se->load.weight);
	}
S
Srivatsa Vaddagiri 已提交
7395 7396
}

7397
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
7398 7399
{
	int i;
7400 7401
	struct cfs_rq *cfs_rq;
	struct rq *rq;
7402

7403
	lock_task_group_list();
7404
	if (tg->shares == shares)
7405
		goto done;
S
Srivatsa Vaddagiri 已提交
7406

7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426
	if (shares < MIN_GROUP_SHARES)
		shares = MIN_GROUP_SHARES;

	/*
	 * Prevent any load balance activity (rebalance_shares,
	 * load_balance_fair) from referring to this group first,
	 * by taking it off the rq->leaf_cfs_rq_list on each cpu.
	 */
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
	}

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
7427
	tg->shares = shares;
7428 7429
	for_each_possible_cpu(i) {
		spin_lock_irq(&cpu_rq(i)->lock);
7430
		set_se_shares(tg->se[i], shares);
7431 7432
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
S
Srivatsa Vaddagiri 已提交
7433

7434 7435 7436 7437 7438 7439 7440 7441 7442
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		cfs_rq = tg->cfs_rq[i];
		list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
	}
7443
done:
7444
	unlock_task_group_list();
7445
	return 0;
S
Srivatsa Vaddagiri 已提交
7446 7447
}

7448 7449 7450 7451 7452
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}

I
Ingo Molnar 已提交
7453
#endif	/* CONFIG_FAIR_GROUP_SCHED */
7454 7455 7456 7457

#ifdef CONFIG_FAIR_CGROUP_SCHED

/* return corresponding task_group object of a cgroup */
7458
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7459
{
7460 7461
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7462 7463 7464
}

static struct cgroup_subsys_state *
7465
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7466 7467 7468
{
	struct task_group *tg;

7469
	if (!cgrp->parent) {
7470
		/* This is early initialization for the top cgroup */
7471
		init_task_group.css.cgroup = cgrp;
7472 7473 7474 7475
		return &init_task_group.css;
	}

	/* we support only 1-level deep hierarchical scheduler atm */
7476
	if (cgrp->parent->parent)
7477 7478 7479 7480 7481 7482 7483
		return ERR_PTR(-EINVAL);

	tg = sched_create_group();
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
7484
	tg->css.cgroup = cgrp;
7485 7486 7487 7488

	return &tg->css;
}

I
Ingo Molnar 已提交
7489 7490
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7491
{
7492
	struct task_group *tg = cgroup_tg(cgrp);
7493 7494 7495 7496

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
7497 7498 7499
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
7500 7501 7502 7503 7504 7505 7506 7507 7508
{
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;

	return 0;
}

static void
7509
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7510 7511 7512 7513 7514
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

7515 7516
static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
				u64 shareval)
7517
{
7518
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7519 7520
}

7521
static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7522
{
7523
	struct task_group *tg = cgroup_tg(cgrp);
7524 7525 7526 7527

	return (u64) tg->shares;
}

7528 7529 7530 7531 7532 7533
static struct cftype cpu_files[] = {
	{
		.name = "shares",
		.read_uint = cpu_shares_read_uint,
		.write_uint = cpu_shares_write_uint,
	},
7534 7535 7536 7537
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
7538
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7539 7540 7541
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
7542 7543 7544 7545 7546 7547 7548
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
7549 7550 7551 7552
	.early_init	= 1,
};

#endif	/* CONFIG_FAIR_CGROUP_SCHED */
7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
	struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
7605 7606
static void
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675
{
	struct cpuacct *ca = cgroup_ca(cont);

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
{
	struct cpuacct *ca = cgroup_ca(cont);
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

static struct cftype files[] = {
	{
		.name = "usage",
		.read_uint = cpuusage_read,
	},
};

static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
	return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */