hrtimer.c 48.1 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/export.h>
36 37 38 39
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46
#include <linux/sched.h>
47
#include <linux/sched/sysctl.h>
48
#include <linux/sched/rt.h>
49
#include <linux/sched/deadline.h>
50
#include <linux/timer.h>
51
#include <linux/freezer.h>
52 53 54

#include <asm/uaccess.h>

55 56
#include <trace/events/timer.h>

57 58
/*
 * The timer bases:
59
 *
60 61 62 63
 * There are more clockids then hrtimer bases. Thus, we index
 * into the timer bases by the hrtimer_base_type enum. When trying
 * to reach a base using a clockid, hrtimer_clockid_to_base()
 * is used to convert from clockid to the proper hrtimer_base_type.
64
 */
65
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
66
{
67

68
	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
69
	.clock_base =
70
	{
71
		{
72 73
			.index = HRTIMER_BASE_MONOTONIC,
			.clockid = CLOCK_MONOTONIC,
74
			.get_time = &ktime_get,
75
			.resolution = KTIME_LOW_RES,
76
		},
T
Thomas Gleixner 已提交
77 78 79 80 81 82
		{
			.index = HRTIMER_BASE_REALTIME,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
			.resolution = KTIME_LOW_RES,
		},
83
		{
84 85
			.index = HRTIMER_BASE_BOOTTIME,
			.clockid = CLOCK_BOOTTIME,
86 87 88
			.get_time = &ktime_get_boottime,
			.resolution = KTIME_LOW_RES,
		},
89 90 91 92 93 94
		{
			.index = HRTIMER_BASE_TAI,
			.clockid = CLOCK_TAI,
			.get_time = &ktime_get_clocktai,
			.resolution = KTIME_LOW_RES,
		},
95
	}
96 97
};

98
static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
99 100 101
	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
102
	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
103
};
104 105 106 107 108 109 110

static inline int hrtimer_clockid_to_base(clockid_t clock_id)
{
	return hrtimer_clock_to_base_table[clock_id];
}


111 112 113 114
/*
 * Get the coarse grained time at the softirq based on xtime and
 * wall_to_monotonic.
 */
115
static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
116
{
117
	ktime_t xtim, mono, boot;
118
	struct timespec xts, tom, slp;
119
	s32 tai_offset;
120

121
	get_xtime_and_monotonic_and_sleep_offset(&xts, &tom, &slp);
122
	tai_offset = timekeeping_get_tai_offset();
123

J
john stultz 已提交
124
	xtim = timespec_to_ktime(xts);
125 126
	mono = ktime_add(xtim, timespec_to_ktime(tom));
	boot = ktime_add(mono, timespec_to_ktime(slp));
127
	base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
128 129
	base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
	base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
130 131
	base->clock_base[HRTIMER_BASE_TAI].softirq_time =
				ktime_add(xtim,	ktime_set(tai_offset, 0));
132 133
}

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
152 153 154
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
155
{
156
	struct hrtimer_clock_base *base;
157 158 159 160

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
161
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
162 163 164
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
165
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
166 167 168 169 170
		}
		cpu_relax();
	}
}

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
/*
 * With HIGHRES=y we do not migrate the timer when it is expiring
 * before the next event on the target cpu because we cannot reprogram
 * the target cpu hardware and we would cause it to fire late.
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	ktime_t expires;

	if (!new_base->cpu_base->hres_active)
		return 0;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
#else
	return 0;
#endif
}

194 195 196
/*
 * Switch the timer base to the current CPU when possible.
 */
197
static inline struct hrtimer_clock_base *
198 199
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
200
{
201 202
	struct hrtimer_clock_base *new_base;
	struct hrtimer_cpu_base *new_cpu_base;
203
	int this_cpu = smp_processor_id();
204
	int cpu = get_nohz_timer_target(pinned);
205
	int basenum = base->index;
206

207 208
again:
	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
209
	new_base = &new_cpu_base->clock_base[basenum];
210 211 212

	if (base != new_base) {
		/*
213
		 * We are trying to move timer to new_base.
214 215 216 217 218 219 220
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
221
		if (unlikely(hrtimer_callback_running(timer)))
222 223 224 225
			return base;

		/* See the comment in lock_timer_base() */
		timer->base = NULL;
226 227
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
228

229 230
		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
			cpu = this_cpu;
231 232
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
233 234
			timer->base = base;
			goto again;
235
		}
236 237 238 239 240 241 242
		timer->base = new_base;
	}
	return new_base;
}

#else /* CONFIG_SMP */

243
static inline struct hrtimer_clock_base *
244 245
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
246
	struct hrtimer_clock_base *base = timer->base;
247

248
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
249 250 251 252

	return base;
}

253
# define switch_hrtimer_base(t, b, p)	(b)
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
# ifndef CONFIG_KTIME_SCALAR
/**
 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 * @kt:		addend
 * @nsec:	the scalar nsec value to add
 *
 * Returns the sum of kt and nsec in ktime_t format
 */
ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

279 280 281 282
		/* Make sure nsec fits into long */
		if (unlikely(nsec > KTIME_SEC_MAX))
			return (ktime_t){ .tv64 = KTIME_MAX };

283 284 285 286 287
		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_add(kt, tmp);
}
288 289

EXPORT_SYMBOL_GPL(ktime_add_ns);
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313

/**
 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
 * @kt:		minuend
 * @nsec:	the scalar nsec value to subtract
 *
 * Returns the subtraction of @nsec from @kt in ktime_t format
 */
ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_sub(kt, tmp);
}

EXPORT_SYMBOL_GPL(ktime_sub_ns);
314 315 316 317 318
# endif /* !CONFIG_KTIME_SCALAR */

/*
 * Divide a ktime value by a nanosecond value
 */
D
Davide Libenzi 已提交
319
u64 ktime_divns(const ktime_t kt, s64 div)
320
{
321
	u64 dclc;
322 323
	int sft = 0;

324
	dclc = ktime_to_ns(kt);
325 326 327 328 329 330 331 332
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	dclc >>= sft;
	do_div(dclc, (unsigned long) div);

D
Davide Libenzi 已提交
333
	return dclc;
334 335 336
}
#endif /* BITS_PER_LONG >= 64 */

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
	ktime_t res = ktime_add(lhs, rhs);

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

354 355
EXPORT_SYMBOL_GPL(ktime_add_safe);

356 357 358 359
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

360 361 362 363 364
static void *hrtimer_debug_hint(void *addr)
{
	return ((struct hrtimer *) addr)->function;
}

365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
{
	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
424
	.debug_hint	= hrtimer_debug_hint,
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
459
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
460 461 462 463 464 465 466 467 468 469 470 471

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

static inline void debug_activate(struct hrtimer *timer)
{
	debug_hrtimer_activate(timer);
	trace_hrtimer_start(timer);
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
static inline int hrtimer_hres_active(void)
{
529
	return __this_cpu_read(hrtimer_bases.hres_active);
530 531 532 533 534 535 536
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
537 538
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
539 540 541
{
	int i;
	struct hrtimer_clock_base *base = cpu_base->clock_base;
542
	ktime_t expires, expires_next;
543

544
	expires_next.tv64 = KTIME_MAX;
545 546 547

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
		struct hrtimer *timer;
548
		struct timerqueue_node *next;
549

550 551
		next = timerqueue_getnext(&base->active);
		if (!next)
552
			continue;
553 554
		timer = container_of(next, struct hrtimer, node);

555
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
556 557 558 559 560 561 562
		/*
		 * clock_was_set() has changed base->offset so the
		 * result might be negative. Fix it up to prevent a
		 * false positive in clockevents_program_event()
		 */
		if (expires.tv64 < 0)
			expires.tv64 = 0;
563 564
		if (expires.tv64 < expires_next.tv64)
			expires_next = expires;
565 566
	}

567 568 569 570 571
	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
		return;

	cpu_base->expires_next.tv64 = expires_next.tv64;

572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * leave the hang delay active in the hardware. We want the
	 * system to make progress. That also prevents the following
	 * scenario:
	 * T1 expires 50ms from now
	 * T2 expires 5s from now
	 *
	 * T1 is removed, so this code is called and would reprogram
	 * the hardware to 5s from now. Any hrtimer_start after that
	 * will not reprogram the hardware due to hang_detected being
	 * set. So we'd effectivly block all timers until the T2 event
	 * fires.
	 */
	if (cpu_base->hang_detected)
		return;

589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
	if (cpu_base->expires_next.tv64 != KTIME_MAX)
		tick_program_event(cpu_base->expires_next, 1);
}

/*
 * Shared reprogramming for clock_realtime and clock_monotonic
 *
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
static int hrtimer_reprogram(struct hrtimer *timer,
			     struct hrtimer_clock_base *base)
{
605
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
606
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
607 608
	int res;

609
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
610

611 612 613
	/*
	 * When the callback is running, we do not reprogram the clock event
	 * device. The timer callback is either running on a different CPU or
614
	 * the callback is executed in the hrtimer_interrupt context. The
615 616 617 618 619 620
	 * reprogramming is handled either by the softirq, which called the
	 * callback or at the end of the hrtimer_interrupt.
	 */
	if (hrtimer_callback_running(timer))
		return 0;

621 622 623 624 625 626 627 628 629
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
	 * expiry time which is less than base->offset. Nothing wrong
	 * about that, just avoid to call into the tick code, which
	 * has now objections against negative expiry values.
	 */
	if (expires.tv64 < 0)
		return -ETIME;

630 631 632 633 634 635 636 637 638 639
	if (expires.tv64 >= cpu_base->expires_next.tv64)
		return 0;

	/*
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
	if (cpu_base->hang_detected)
640 641 642 643 644 645 646
		return 0;

	/*
	 * Clockevents returns -ETIME, when the event was in the past.
	 */
	res = tick_program_event(expires, 0);
	if (!IS_ERR_VALUE(res))
647
		cpu_base->expires_next = expires;
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
	return res;
}

/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

/*
 * When High resolution timers are active, try to reprogram. Note, that in case
 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
 * check happens. The timer gets enqueued into the rbtree. The reprogramming
 * and expiry check is done in the hrtimer_interrupt or in the softirq.
 */
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
667
					    struct hrtimer_clock_base *base)
668
{
669
	return base->cpu_base->hres_active && hrtimer_reprogram(timer, base);
670 671
}

672 673 674 675
static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
{
	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
676
	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
677

678
	return ktime_get_update_offsets(offs_real, offs_boot, offs_tai);
679 680
}

681 682 683 684 685 686 687 688 689 690 691 692 693
/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
	struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);

	if (!hrtimer_hres_active())
		return;

	raw_spin_lock(&base->lock);
694
	hrtimer_update_base(base);
695 696 697
	hrtimer_force_reprogram(base, 0);
	raw_spin_unlock(&base->lock);
}
698

699 700 701
/*
 * Switch to high resolution mode
 */
702
static int hrtimer_switch_to_hres(void)
703
{
704
	int i, cpu = smp_processor_id();
I
Ingo Molnar 已提交
705
	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
706 707 708
	unsigned long flags;

	if (base->hres_active)
709
		return 1;
710 711 712 713 714

	local_irq_save(flags);

	if (tick_init_highres()) {
		local_irq_restore(flags);
I
Ingo Molnar 已提交
715 716
		printk(KERN_WARNING "Could not switch to high resolution "
				    "mode on CPU %d\n", cpu);
717
		return 0;
718 719
	}
	base->hres_active = 1;
720 721
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
		base->clock_base[i].resolution = KTIME_HIGH_RES;
722 723 724 725 726

	tick_setup_sched_timer();
	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
	local_irq_restore(flags);
727
	return 1;
728 729
}

730 731 732 733 734 735 736
static void clock_was_set_work(struct work_struct *work)
{
	clock_was_set();
}

static DECLARE_WORK(hrtimer_work, clock_was_set_work);

737
/*
738 739
 * Called from timekeeping and resume code to reprogramm the hrtimer
 * interrupt device on all cpus.
740 741 742
 */
void clock_was_set_delayed(void)
{
743
	schedule_work(&hrtimer_work);
744 745
}

746 747 748 749
#else

static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
750
static inline int hrtimer_switch_to_hres(void) { return 0; }
751 752
static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
753
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
754
					    struct hrtimer_clock_base *base)
755 756 757 758
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
759
static inline void retrigger_next_event(void *arg) { }
760 761 762

#endif /* CONFIG_HIGH_RES_TIMERS */

763 764 765 766 767 768 769 770 771 772 773 774 775
/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
776
#ifdef CONFIG_HIGH_RES_TIMERS
777 778
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 1);
779 780
#endif
	timerfd_clock_was_set();
781 782 783 784
}

/*
 * During resume we might have to reprogram the high resolution timer
785 786
 * interrupt on all online CPUs.  However, all other CPUs will be
 * stopped with IRQs interrupts disabled so the clock_was_set() call
787
 * must be deferred.
788 789 790 791 792 793
 */
void hrtimers_resume(void)
{
	WARN_ONCE(!irqs_disabled(),
		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");

794
	/* Retrigger on the local CPU */
795
	retrigger_next_event(NULL);
796 797
	/* And schedule a retrigger for all others */
	clock_was_set_delayed();
798 799
}

800
static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
801
{
802
#ifdef CONFIG_TIMER_STATS
803 804
	if (timer->start_site)
		return;
805
	timer->start_site = __builtin_return_address(0);
806 807
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
808 809 810 811 812 813 814 815
#endif
}

static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
#endif
816
}
817 818 819 820 821 822 823 824

static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	if (likely(!timer_stats_active))
		return;
	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
				 timer->function, timer->start_comm, 0);
825
#endif
826
}
827

828
/*
829
 * Counterpart to lock_hrtimer_base above:
830 831 832 833
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
834
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
835 836 837 838 839
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
840
 * @now:	forward past this time
841 842 843
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
844
 * Returns the number of overruns.
845
 */
D
Davide Libenzi 已提交
846
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
847
{
D
Davide Libenzi 已提交
848
	u64 orun = 1;
849
	ktime_t delta;
850

851
	delta = ktime_sub(now, hrtimer_get_expires(timer));
852 853 854 855

	if (delta.tv64 < 0)
		return 0;

856 857 858
	if (interval.tv64 < timer->base->resolution.tv64)
		interval.tv64 = timer->base->resolution.tv64;

859
	if (unlikely(delta.tv64 >= interval.tv64)) {
860
		s64 incr = ktime_to_ns(interval);
861 862

		orun = ktime_divns(delta, incr);
863 864
		hrtimer_add_expires_ns(timer, incr * orun);
		if (hrtimer_get_expires_tv64(timer) > now.tv64)
865 866 867 868 869 870 871
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
872
	hrtimer_add_expires(timer, interval);
873 874 875

	return orun;
}
S
Stas Sergeev 已提交
876
EXPORT_SYMBOL_GPL(hrtimer_forward);
877 878 879 880 881 882

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
883 884
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
885
 */
886 887
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
888
{
889
	debug_activate(timer);
890

891
	timerqueue_add(&base->active, &timer->node);
892
	base->cpu_base->active_bases |= 1 << base->index;
893

894 895 896 897 898
	/*
	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
	 * state of a possibly running callback.
	 */
	timer->state |= HRTIMER_STATE_ENQUEUED;
899

900
	return (&timer->node == base->active.next);
901
}
902 903 904 905 906

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
907 908 909 910 911
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
912
 */
913
static void __remove_hrtimer(struct hrtimer *timer,
914
			     struct hrtimer_clock_base *base,
915
			     unsigned long newstate, int reprogram)
916
{
917
	struct timerqueue_node *next_timer;
918 919 920
	if (!(timer->state & HRTIMER_STATE_ENQUEUED))
		goto out;

921 922 923
	next_timer = timerqueue_getnext(&base->active);
	timerqueue_del(&base->active, &timer->node);
	if (&timer->node == next_timer) {
924 925 926 927 928 929 930 931 932
#ifdef CONFIG_HIGH_RES_TIMERS
		/* Reprogram the clock event device. if enabled */
		if (reprogram && hrtimer_hres_active()) {
			ktime_t expires;

			expires = ktime_sub(hrtimer_get_expires(timer),
					    base->offset);
			if (base->cpu_base->expires_next.tv64 == expires.tv64)
				hrtimer_force_reprogram(base->cpu_base, 1);
933
		}
934
#endif
935
	}
936 937
	if (!timerqueue_getnext(&base->active))
		base->cpu_base->active_bases &= ~(1 << base->index);
938
out:
939
	timer->state = newstate;
940 941 942 943 944 945
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
946
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
947
{
948
	if (hrtimer_is_queued(timer)) {
949
		unsigned long state;
950 951 952 953 954 955 956 957 958 959
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
960
		debug_deactivate(timer);
961
		timer_stats_hrtimer_clear_start_info(timer);
962
		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
963 964 965 966 967 968 969
		/*
		 * We must preserve the CALLBACK state flag here,
		 * otherwise we could move the timer base in
		 * switch_hrtimer_base.
		 */
		state = timer->state & HRTIMER_STATE_CALLBACK;
		__remove_hrtimer(timer, base, state, reprogram);
970 971 972 973 974
		return 1;
	}
	return 0;
}

975 976 977
int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode,
		int wakeup)
978
{
979
	struct hrtimer_clock_base *base, *new_base;
980
	unsigned long flags;
981
	int ret, leftmost;
982 983 984 985 986 987 988

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
	ret = remove_hrtimer(timer, base);

	/* Switch the timer base, if necessary: */
989
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
990

991
	if (mode & HRTIMER_MODE_REL) {
992
		tim = ktime_add_safe(tim, new_base->get_time());
993 994 995 996 997 998 999 1000
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
1001
		tim = ktime_add_safe(tim, base->resolution);
1002 1003
#endif
	}
1004

1005
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1006

1007 1008
	timer_stats_hrtimer_set_start_info(timer);

1009 1010
	leftmost = enqueue_hrtimer(timer, new_base);

1011 1012 1013
	/*
	 * Only allow reprogramming if the new base is on this CPU.
	 * (it might still be on another CPU if the timer was pending)
1014 1015
	 *
	 * XXX send_remote_softirq() ?
1016
	 */
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
	if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases)
		&& hrtimer_enqueue_reprogram(timer, new_base)) {
		if (wakeup) {
			/*
			 * We need to drop cpu_base->lock to avoid a
			 * lock ordering issue vs. rq->lock.
			 */
			raw_spin_unlock(&new_base->cpu_base->lock);
			raise_softirq_irqoff(HRTIMER_SOFTIRQ);
			local_irq_restore(flags);
			return ret;
		} else {
			__raise_softirq_irqoff(HRTIMER_SOFTIRQ);
		}
	}
1032 1033 1034 1035 1036

	unlock_hrtimer_base(timer, &flags);

	return ret;
}
1037 1038 1039 1040 1041 1042

/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
1043 1044
 * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL)
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode)
{
	return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
}
1055 1056 1057
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

/**
T
Thomas Gleixner 已提交
1058
 * hrtimer_start - (re)start an hrtimer on the current CPU
1059 1060
 * @timer:	the timer to be added
 * @tim:	expiry time
1061 1062
 * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL)
1063 1064 1065 1066 1067 1068 1069 1070
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
{
1071
	return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1072
}
1073
EXPORT_SYMBOL_GPL(hrtimer_start);
1074

1075

1076 1077 1078 1079 1080 1081 1082 1083
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
1084
 *    cannot be stopped
1085 1086 1087
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
1088
	struct hrtimer_clock_base *base;
1089 1090 1091 1092 1093
	unsigned long flags;
	int ret = -1;

	base = lock_hrtimer_base(timer, &flags);

1094
	if (!hrtimer_callback_running(timer))
1095 1096 1097 1098 1099 1100 1101
		ret = remove_hrtimer(timer, base);

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1102
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1119
		cpu_relax();
1120 1121
	}
}
1122
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
	unsigned long flags;
	ktime_t rem;

1133
	lock_hrtimer_base(timer, &flags);
1134
	rem = hrtimer_expires_remaining(timer);
1135 1136 1137 1138
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1139
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1140

1141
#ifdef CONFIG_NO_HZ_COMMON
1142 1143 1144 1145 1146 1147 1148 1149
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
 * Returns the delta to the next expiry event or KTIME_MAX if no timer
 * is pending.
 */
ktime_t hrtimer_get_next_event(void)
{
1150 1151
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base = cpu_base->clock_base;
1152 1153 1154 1155
	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
	unsigned long flags;
	int i;

1156
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1157

1158 1159 1160
	if (!hrtimer_hres_active()) {
		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
			struct hrtimer *timer;
1161
			struct timerqueue_node *next;
1162

1163 1164
			next = timerqueue_getnext(&base->active);
			if (!next)
1165
				continue;
1166

1167
			timer = container_of(next, struct hrtimer, node);
1168
			delta.tv64 = hrtimer_get_expires_tv64(timer);
1169 1170 1171 1172
			delta = ktime_sub(delta, base->get_time());
			if (delta.tv64 < mindelta.tv64)
				mindelta.tv64 = delta.tv64;
		}
1173
	}
1174

1175
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1176

1177 1178 1179 1180 1181 1182
	if (mindelta.tv64 < 0)
		mindelta.tv64 = 0;
	return mindelta;
}
#endif

1183 1184
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1185
{
1186
	struct hrtimer_cpu_base *cpu_base;
1187
	int base;
1188

1189 1190
	memset(timer, 0, sizeof(struct hrtimer));

1191
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1192

1193
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1194 1195
		clock_id = CLOCK_MONOTONIC;

1196 1197
	base = hrtimer_clockid_to_base(clock_id);
	timer->base = &cpu_base->clock_base[base];
1198
	timerqueue_init(&timer->node);
1199 1200 1201 1202 1203 1204

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1205
}
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1216
	debug_init(timer, clock_id, mode);
1217 1218
	__hrtimer_init(timer, clock_id, mode);
}
1219
EXPORT_SYMBOL_GPL(hrtimer_init);
1220 1221 1222 1223 1224 1225

/**
 * hrtimer_get_res - get the timer resolution for a clock
 * @which_clock: which clock to query
 * @tp:		 pointer to timespec variable to store the resolution
 *
1226 1227
 * Store the resolution of the clock selected by @which_clock in the
 * variable pointed to by @tp.
1228 1229 1230
 */
int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
{
1231
	struct hrtimer_cpu_base *cpu_base;
1232
	int base = hrtimer_clockid_to_base(which_clock);
1233

1234
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1235
	*tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1236 1237 1238

	return 0;
}
1239
EXPORT_SYMBOL_GPL(hrtimer_get_res);
1240

1241
static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1242 1243 1244 1245 1246 1247
{
	struct hrtimer_clock_base *base = timer->base;
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1248 1249
	WARN_ON(!irqs_disabled());

1250
	debug_deactivate(timer);
1251 1252 1253
	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
	timer_stats_account_hrtimer(timer);
	fn = timer->function;
1254 1255 1256 1257 1258 1259

	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
1260
	raw_spin_unlock(&cpu_base->lock);
1261
	trace_hrtimer_expire_entry(timer, now);
1262
	restart = fn(timer);
1263
	trace_hrtimer_expire_exit(timer);
1264
	raw_spin_lock(&cpu_base->lock);
1265 1266

	/*
T
Thomas Gleixner 已提交
1267 1268 1269
	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
	 * we do not reprogramm the event hardware. Happens either in
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1270 1271 1272
	 */
	if (restart != HRTIMER_NORESTART) {
		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1273
		enqueue_hrtimer(timer, base);
1274
	}
1275 1276 1277

	WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));

1278 1279 1280
	timer->state &= ~HRTIMER_STATE_CALLBACK;
}

1281 1282 1283 1284 1285 1286 1287 1288 1289
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1290 1291
	ktime_t expires_next, now, entry_time, delta;
	int i, retries = 0;
1292 1293 1294 1295 1296

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

1297
	raw_spin_lock(&cpu_base->lock);
1298
	entry_time = now = hrtimer_update_base(cpu_base);
1299
retry:
1300
	expires_next.tv64 = KTIME_MAX;
1301 1302 1303 1304 1305 1306 1307 1308 1309
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
	cpu_base->expires_next.tv64 = KTIME_MAX;

1310
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1311
		struct hrtimer_clock_base *base;
1312
		struct timerqueue_node *node;
1313 1314 1315 1316
		ktime_t basenow;

		if (!(cpu_base->active_bases & (1 << i)))
			continue;
1317

1318
		base = cpu_base->clock_base + i;
1319 1320
		basenow = ktime_add(now, base->offset);

1321
		while ((node = timerqueue_getnext(&base->active))) {
1322 1323
			struct hrtimer *timer;

1324
			timer = container_of(node, struct hrtimer, node);
1325

1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */

			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1340 1341
				ktime_t expires;

1342
				expires = ktime_sub(hrtimer_get_expires(timer),
1343
						    base->offset);
1344 1345
				if (expires.tv64 < 0)
					expires.tv64 = KTIME_MAX;
1346 1347 1348 1349 1350
				if (expires.tv64 < expires_next.tv64)
					expires_next = expires;
				break;
			}

1351
			__run_hrtimer(timer, &basenow);
1352 1353 1354
		}
	}

1355 1356 1357 1358
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1359
	cpu_base->expires_next = expires_next;
1360
	raw_spin_unlock(&cpu_base->lock);
1361 1362

	/* Reprogramming necessary ? */
1363 1364 1365 1366
	if (expires_next.tv64 == KTIME_MAX ||
	    !tick_program_event(expires_next, 0)) {
		cpu_base->hang_detected = 0;
		return;
1367
	}
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
1378 1379 1380
	 *
	 * Acquire base lock for updating the offsets and retrieving
	 * the current time.
1381
	 */
1382
	raw_spin_lock(&cpu_base->lock);
1383
	now = hrtimer_update_base(cpu_base);
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
1395
	raw_spin_unlock(&cpu_base->lock);
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
	delta = ktime_sub(now, entry_time);
	if (delta.tv64 > cpu_base->max_hang_time.tv64)
		cpu_base->max_hang_time = delta;
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
	if (delta.tv64 > 100 * NSEC_PER_MSEC)
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1410 1411
}

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
/*
 * local version of hrtimer_peek_ahead_timers() called with interrupts
 * disabled.
 */
static void __hrtimer_peek_ahead_timers(void)
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

	td = &__get_cpu_var(tick_cpu_device);
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
/**
 * hrtimer_peek_ahead_timers -- run soft-expired timers now
 *
 * hrtimer_peek_ahead_timers will peek at the timer queue of
 * the current cpu and check if there are any timers for which
 * the soft expires time has passed. If any such timers exist,
 * they are run immediately and then removed from the timer queue.
 *
 */
void hrtimer_peek_ahead_timers(void)
{
1439
	unsigned long flags;
1440

1441
	local_irq_save(flags);
1442
	__hrtimer_peek_ahead_timers();
1443 1444 1445
	local_irq_restore(flags);
}

1446 1447 1448 1449 1450
static void run_hrtimer_softirq(struct softirq_action *h)
{
	hrtimer_peek_ahead_timers();
}

1451 1452 1453 1454 1455
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1456

1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
/*
 * Called from timer softirq every jiffy, expire hrtimers:
 *
 * For HRT its the fall back code to run the softirq in the timer
 * softirq context in case the hrtimer initialization failed or has
 * not been done yet.
 */
void hrtimer_run_pending(void)
{
	if (hrtimer_hres_active())
		return;
1468

1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
	/*
	 * This _is_ ugly: We have to check in the softirq context,
	 * whether we can switch to highres and / or nohz mode. The
	 * clocksource switch happens in the timer interrupt with
	 * xtime_lock held. Notification from there only sets the
	 * check bit in the tick_oneshot code, otherwise we might
	 * deadlock vs. xtime_lock.
	 */
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
		hrtimer_switch_to_hres();
1479 1480
}

1481
/*
1482
 * Called from hardirq context every jiffy
1483
 */
1484
void hrtimer_run_queues(void)
1485
{
1486
	struct timerqueue_node *node;
1487 1488 1489
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	int index, gettime = 1;
1490

1491
	if (hrtimer_hres_active())
1492 1493
		return;

1494 1495
	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
		base = &cpu_base->clock_base[index];
1496
		if (!timerqueue_getnext(&base->active))
1497
			continue;
1498

1499
		if (gettime) {
1500 1501
			hrtimer_get_softirq_time(cpu_base);
			gettime = 0;
1502
		}
1503

1504
		raw_spin_lock(&cpu_base->lock);
1505

1506
		while ((node = timerqueue_getnext(&base->active))) {
1507
			struct hrtimer *timer;
1508

1509
			timer = container_of(node, struct hrtimer, node);
1510 1511
			if (base->softirq_time.tv64 <=
					hrtimer_get_expires_tv64(timer))
1512 1513
				break;

1514
			__run_hrtimer(timer, &base->softirq_time);
1515
		}
1516
		raw_spin_unlock(&cpu_base->lock);
1517
	}
1518 1519
}

1520 1521 1522
/*
 * Sleep related functions:
 */
1523
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1536
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1537 1538 1539 1540
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1541
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1542

1543
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1544
{
1545
	hrtimer_init_sleeper(t, current);
1546

1547 1548
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1549
		hrtimer_start_expires(&t->timer, mode);
P
Peter Zijlstra 已提交
1550 1551
		if (!hrtimer_active(&t->timer))
			t->task = NULL;
1552

1553
		if (likely(t->task))
1554
			freezable_schedule();
1555

1556
		hrtimer_cancel(&t->timer);
1557
		mode = HRTIMER_MODE_ABS;
1558 1559

	} while (t->task && !signal_pending(current));
1560

1561 1562
	__set_current_state(TASK_RUNNING);

1563
	return t->task == NULL;
1564 1565
}

1566 1567 1568 1569 1570
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1571
	rem = hrtimer_expires_remaining(timer);
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1582
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1583
{
1584
	struct hrtimer_sleeper t;
1585
	struct timespec __user  *rmtp;
1586
	int ret = 0;
1587

1588
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1589
				HRTIMER_MODE_ABS);
1590
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1591

1592
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1593
		goto out;
1594

1595
	rmtp = restart->nanosleep.rmtp;
1596
	if (rmtp) {
1597
		ret = update_rmtp(&t.timer, rmtp);
1598
		if (ret <= 0)
1599
			goto out;
1600
	}
1601 1602

	/* The other values in restart are already filled in */
1603 1604 1605 1606
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1607 1608
}

1609
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1610 1611 1612
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1613
	struct hrtimer_sleeper t;
1614
	int ret = 0;
1615 1616 1617
	unsigned long slack;

	slack = current->timer_slack_ns;
1618
	if (dl_task(current) || rt_task(current))
1619
		slack = 0;
1620

1621
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1622
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1623
	if (do_nanosleep(&t, mode))
1624
		goto out;
1625

1626
	/* Absolute timers do not update the rmtp value and restart: */
1627 1628 1629 1630
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1631

1632
	if (rmtp) {
1633
		ret = update_rmtp(&t.timer, rmtp);
1634
		if (ret <= 0)
1635
			goto out;
1636
	}
1637 1638

	restart = &current_thread_info()->restart_block;
1639
	restart->fn = hrtimer_nanosleep_restart;
1640
	restart->nanosleep.clockid = t.timer.base->clockid;
1641
	restart->nanosleep.rmtp = rmtp;
1642
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1643

1644 1645 1646 1647
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1648 1649
}

1650 1651
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1652
{
1653
	struct timespec tu;
1654 1655 1656 1657 1658 1659 1660

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1661
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1662 1663
}

1664 1665 1666
/*
 * Functions related to boot-time initialization:
 */
1667
static void init_hrtimers_cpu(int cpu)
1668
{
1669
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1670 1671
	int i;

1672
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1673
		cpu_base->clock_base[i].cpu_base = cpu_base;
1674 1675
		timerqueue_init_head(&cpu_base->clock_base[i].active);
	}
1676

1677
	hrtimer_init_hres(cpu_base);
1678 1679 1680 1681
}

#ifdef CONFIG_HOTPLUG_CPU

1682
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1683
				struct hrtimer_clock_base *new_base)
1684 1685
{
	struct hrtimer *timer;
1686
	struct timerqueue_node *node;
1687

1688 1689
	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
1690
		BUG_ON(hrtimer_callback_running(timer));
1691
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1692 1693 1694 1695 1696 1697 1698

		/*
		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1699
		timer->base = new_base;
1700
		/*
T
Thomas Gleixner 已提交
1701 1702 1703 1704 1705 1706
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1707
		 */
1708
		enqueue_hrtimer(timer, new_base);
1709

T
Thomas Gleixner 已提交
1710 1711
		/* Clear the migration state bit */
		timer->state &= ~HRTIMER_STATE_MIGRATE;
1712 1713 1714
	}
}

1715
static void migrate_hrtimers(int scpu)
1716
{
1717
	struct hrtimer_cpu_base *old_base, *new_base;
1718
	int i;
1719

1720 1721
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1722 1723 1724 1725

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
	new_base = &__get_cpu_var(hrtimer_bases);
1726 1727 1728 1729
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1730 1731
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1732

1733
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1734
		migrate_hrtimer_list(&old_base->clock_base[i],
1735
				     &new_base->clock_base[i]);
1736 1737
	}

1738 1739
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1740

1741 1742 1743
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1744
}
1745

1746 1747
#endif /* CONFIG_HOTPLUG_CPU */

1748
static int hrtimer_cpu_notify(struct notifier_block *self,
1749 1750
					unsigned long action, void *hcpu)
{
1751
	int scpu = (long)hcpu;
1752 1753 1754 1755

	switch (action) {

	case CPU_UP_PREPARE:
1756
	case CPU_UP_PREPARE_FROZEN:
1757
		init_hrtimers_cpu(scpu);
1758 1759 1760
		break;

#ifdef CONFIG_HOTPLUG_CPU
1761 1762 1763 1764
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
		break;
1765
	case CPU_DEAD:
1766
	case CPU_DEAD_FROZEN:
1767
	{
1768
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1769
		migrate_hrtimers(scpu);
1770
		break;
1771
	}
1772 1773 1774 1775 1776 1777 1778 1779 1780
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1781
static struct notifier_block hrtimers_nb = {
1782 1783 1784 1785 1786 1787 1788 1789
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
1790 1791 1792
#ifdef CONFIG_HIGH_RES_TIMERS
	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
#endif
1793 1794
}

1795
/**
1796
 * schedule_hrtimeout_range_clock - sleep until timeout
1797
 * @expires:	timeout value (ktime_t)
1798
 * @delta:	slack in expires timeout (ktime_t)
1799
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1800
 * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1801
 */
1802 1803 1804
int __sched
schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
			       const enum hrtimer_mode mode, int clock)
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
	if (expires && !expires->tv64) {
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
N
Namhyung Kim 已提交
1818
	 * A NULL parameter means "infinite"
1819 1820 1821 1822 1823 1824 1825
	 */
	if (!expires) {
		schedule();
		__set_current_state(TASK_RUNNING);
		return -EINTR;
	}

1826
	hrtimer_init_on_stack(&t.timer, clock, mode);
1827
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1828 1829 1830

	hrtimer_init_sleeper(&t, current);

1831
	hrtimer_start_expires(&t.timer, mode);
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
	if (!hrtimer_active(&t.timer))
		t.task = NULL;

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1909
EXPORT_SYMBOL_GPL(schedule_hrtimeout);