intel_pstate.c 69.4 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
22
#include <linux/sched/cpufreq.h>
23 24 25 26 27 28 29
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
30
#include <linux/acpi.h>
31
#include <linux/vmalloc.h>
32 33 34 35 36
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
37
#include <asm/cpufeature.h>
38
#include <asm/intel-family.h>
39

40 41
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000

42 43
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
44
#include <acpi/cppc_acpi.h>
45 46
#endif

47
#define FRAC_BITS 8
48 49
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
50

51 52
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
53 54
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
55

56 57 58 59 60
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

61
static inline int32_t div_fp(s64 x, s64 y)
62
{
63
	return div64_s64((int64_t)x << FRAC_BITS, y);
64 65
}

66 67 68 69 70 71 72 73 74 75 76
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

77 78 79 80 81 82 83 84 85 86
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

87 88
/**
 * struct sample -	Store performance sample
89
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
90 91
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
92
 *			P state. This can be different than core_avg_perf
93 94 95 96 97 98 99 100 101 102 103 104
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
105
struct sample {
106
	int32_t core_avg_perf;
107
	int32_t busy_scaled;
108 109
	u64 aperf;
	u64 mperf;
110
	u64 tsc;
111
	u64 time;
112 113
};

114 115 116 117 118 119 120 121 122 123 124
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
125 126
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
127 128 129
 *
 * Stores the per cpu model P state limits and current P state.
 */
130 131 132 133
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
134
	int	max_pstate_physical;
135
	int	scaling;
136
	int	turbo_pstate;
137 138
	unsigned int max_freq;
	unsigned int turbo_freq;
139 140
};

141 142 143 144 145 146 147 148 149 150 151 152 153
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
154
struct vid_data {
155 156 157
	int min;
	int max;
	int turbo;
158 159 160
	int32_t ratio;
};

161 162 163 164 165 166 167 168 169 170 171 172
/**
 * struct _pid -	Stores PID data
 * @setpoint:		Target set point for busyness or performance
 * @integral:		Storage for accumulated error values
 * @p_gain:		PID proportional gain
 * @i_gain:		PID integral gain
 * @d_gain:		PID derivative gain
 * @deadband:		PID deadband
 * @last_err:		Last error storage for integral part of PID calculation
 *
 * Stores PID coefficients and last error for PID controller.
 */
173 174 175 176 177 178 179
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
180
	int32_t last_err;
181 182
};

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
/**
 * struct perf_limits - Store user and policy limits
 * @no_turbo:		User requested turbo state from intel_pstate sysfs
 * @turbo_disabled:	Platform turbo status either from msr
 *			MSR_IA32_MISC_ENABLE or when maximum available pstate
 *			matches the maximum turbo pstate
 * @max_perf_pct:	Effective maximum performance limit in percentage, this
 *			is minimum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @min_perf_pct:	Effective minimum performance limit in percentage, this
 *			is maximum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
 *			This value is used to limit max pstate
 * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
 *			This value is used to limit min pstate
 * @max_policy_pct:	The maximum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @max_sysfs_pct:	The maximum performance in percentage enforced by
 *			intel pstate sysfs interface, unused when per cpu
 *			controls are enforced
 * @min_policy_pct:	The minimum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @min_sysfs_pct:	The minimum performance in percentage enforced by
 *			intel pstate sysfs interface, unused when per cpu
 *			controls are enforced
 *
 * Storage for user and policy defined limits.
 */
struct perf_limits {
	int no_turbo;
	int turbo_disabled;
	int max_perf_pct;
	int min_perf_pct;
	int32_t max_perf;
	int32_t min_perf;
	int max_policy_pct;
	int max_sysfs_pct;
	int min_policy_pct;
	int min_sysfs_pct;
};

225 226 227
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
228
 * @policy:		CPUFreq policy value
229
 * @update_util:	CPUFreq utility callback information
230
 * @update_util_set:	CPUFreq utility callback is set
231 232
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
233 234 235 236 237 238 239 240 241 242
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @pid:		Stores PID parameters for this CPU
 * @last_sample_time:	Last Sample time
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
243 244 245
 * @perf_limits:	Pointer to perf_limit unique to this CPU
 *			Not all field in the structure are applicable
 *			when per cpu controls are enforced
246 247
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
248 249 250
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
251
 * @epp_policy:		Last saved policy used to set EPP/EPB
252 253 254 255
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
256 257 258
 *
 * This structure stores per CPU instance data for all CPUs.
 */
259 260 261
struct cpudata {
	int cpu;

262
	unsigned int policy;
263
	struct update_util_data update_util;
264
	bool   update_util_set;
265 266

	struct pstate_data pstate;
267
	struct vid_data vid;
268 269
	struct _pid pid;

270
	u64	last_update;
271
	u64	last_sample_time;
272 273
	u64	prev_aperf;
	u64	prev_mperf;
274
	u64	prev_tsc;
275
	u64	prev_cummulative_iowait;
276
	struct sample sample;
277
	struct perf_limits *perf_limits;
278 279 280 281
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
282
	unsigned int iowait_boost;
283
	s16 epp_powersave;
284
	s16 epp_policy;
285 286
	s16 epp_default;
	s16 epp_saved;
287 288 289
};

static struct cpudata **all_cpu_data;
290 291

/**
292
 * struct pstate_adjust_policy - Stores static PID configuration data
293 294 295 296 297 298 299 300 301 302
 * @sample_rate_ms:	PID calculation sample rate in ms
 * @sample_rate_ns:	Sample rate calculation in ns
 * @deadband:		PID deadband
 * @setpoint:		PID Setpoint
 * @p_gain_pct:		PID proportional gain
 * @i_gain_pct:		PID integral gain
 * @d_gain_pct:		PID derivative gain
 *
 * Stores per CPU model static PID configuration data.
 */
303 304
struct pstate_adjust_policy {
	int sample_rate_ms;
305
	s64 sample_rate_ns;
306 307 308 309 310 311 312
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

313 314 315 316 317 318 319 320 321 322 323 324 325 326
/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 * @get_target_pstate:	Callback to a function to calculate next P state to use
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
327 328
struct pstate_funcs {
	int (*get_max)(void);
329
	int (*get_max_physical)(void);
330 331
	int (*get_min)(void);
	int (*get_turbo)(void);
332
	int (*get_scaling)(void);
333
	u64 (*get_val)(struct cpudata*, int pstate);
334
	void (*get_vid)(struct cpudata *);
335
	int32_t (*get_target_pstate)(struct cpudata *);
336 337
};

338 339 340 341 342
/**
 * struct cpu_defaults- Per CPU model default config data
 * @pid_policy:	PID config data
 * @funcs:		Callback function data
 */
343 344 345
struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
346 347
};

348
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
349
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
350

351 352 353
static struct pstate_adjust_policy pid_params __read_mostly;
static struct pstate_funcs pstate_funcs __read_mostly;
static int hwp_active __read_mostly;
354
static bool per_cpu_limits __read_mostly;
355

356 357
static bool driver_registered __read_mostly;

358 359 360
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
361

362 363 364
static struct perf_limits performance_limits;
static struct perf_limits powersave_limits;
static struct perf_limits *limits;
365

366 367 368 369 370 371 372 373
static void intel_pstate_init_limits(struct perf_limits *limits)
{
	memset(limits, 0, sizeof(*limits));
	limits->max_perf_pct = 100;
	limits->max_perf = int_ext_tofp(1);
	limits->max_policy_pct = 100;
	limits->max_sysfs_pct = 100;
}
374

375 376 377 378 379
static void intel_pstate_set_performance_limits(struct perf_limits *limits)
{
	intel_pstate_init_limits(limits);
	limits->min_perf_pct = 100;
	limits->min_perf = int_ext_tofp(1);
380
	limits->min_sysfs_pct = 100;
381
}
382

383
static DEFINE_MUTEX(intel_pstate_driver_lock);
384 385
static DEFINE_MUTEX(intel_pstate_limits_lock);

386
#ifdef CONFIG_ACPI
387 388 389 390 391 392 393 394 395 396

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

	return acpi_ppc;
}

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
#else
static void intel_pstate_set_itmt_prio(int cpu)
{
}
#endif

448 449 450 451 452 453
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

454 455
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
456
		return;
457
	}
458

459
	if (!intel_pstate_get_ppc_enable_status())
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
502
	 * correct max turbo frequency based on the turbo state.
503 504
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
505
	if (!limits->turbo_disabled)
506 507 508
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
509
	pr_debug("_PPC limits will be enforced\n");
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}
#else
529
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
530 531 532
{
}

533
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
534 535 536 537
{
}
#endif

538
static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
539
			     int deadband, int integral) {
540 541
	pid->setpoint = int_tofp(setpoint);
	pid->deadband  = int_tofp(deadband);
542
	pid->integral  = int_tofp(integral);
543
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
544 545 546 547
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
548
	pid->p_gain = div_fp(percent, 100);
549 550 551 552
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
553
	pid->i_gain = div_fp(percent, 100);
554 555 556 557
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{
558
	pid->d_gain = div_fp(percent, 100);
559 560
}

561
static signed int pid_calc(struct _pid *pid, int32_t busy)
562
{
563
	signed int result;
564 565 566
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

567
	fp_error = pid->setpoint - busy;
568

569
	if (abs(fp_error) <= pid->deadband)
570 571 572 573 574 575
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

576 577 578 579 580 581 582 583
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
584 585 586 587 588 589
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

590 591
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
592 593

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
594
	result = result + (1 << (FRAC_BITS-1));
595 596 597 598 599
	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
600 601 602
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
603

604
	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
605 606 607 608 609
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
610

611 612 613 614 615 616
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

617 618 619 620 621 622 623
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
624
	limits->turbo_disabled =
625 626 627 628
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

	if (!static_cpu_has(X86_FEATURE_EPB))
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

648 649 650 651 652 653 654 655 656 657 658
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
659
		epp = (hwp_req_data >> 24) & 0xff;
660
	} else {
661 662
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
663
	}
664 665 666 667

	return epp;
}

668
static int intel_pstate_set_epb(int cpu, s16 pref)
669 670
{
	u64 epb;
671
	int ret;
672 673

	if (!static_cpu_has(X86_FEATURE_EPB))
674
		return -ENXIO;
675

676 677 678
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
679 680 681

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
682 683

	return 0;
684 685
}

686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};

static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
{
	s16 epp;
	int index = -EINVAL;

	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * Range:
		 *	0x00-0x3F	:	Performance
		 *	0x40-0x7F	:	Balance performance
		 *	0x80-0xBF	:	Balance power
		 *	0xC0-0xFF	:	Power
		 * The EPP is a 8 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 6) + 1;
	} else if (static_cpu_has(X86_FEATURE_EPB)) {
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
					      int pref_index)
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

	mutex_lock(&intel_pstate_limits_lock);

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		u64 value;

		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
		if (ret)
			goto return_pref;

		value &= ~GENMASK_ULL(31, 24);

		/*
		 * If epp is not default, convert from index into
		 * energy_perf_strings to epp value, by shifting 6
		 * bits left to use only top two bits in epp.
		 * The resultant epp need to shifted by 24 bits to
		 * epp position in MSR_HWP_REQUEST.
		 */
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 6;

		value |= (u64)epp << 24;
		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}
return_pref:
	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	char str_preference[21];
	int ret, i = 0;

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

	while (energy_perf_strings[i] != NULL) {
		if (!strcmp(str_preference, energy_perf_strings[i])) {
			intel_pstate_set_energy_pref_index(cpu_data, i);
			return count;
		}
		++i;
	}

	return -EINVAL;
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	int preference;

	preference = intel_pstate_get_energy_pref_index(cpu_data);
	if (preference < 0)
		return preference;

	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
}

cpufreq_freq_attr_rw(energy_performance_preference);

static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
	NULL,
};

846
static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
D
Dirk Brandewie 已提交
847
{
848
	int min, hw_min, max, hw_max, cpu, range, adj_range;
849
	struct perf_limits *perf_limits = limits;
850 851
	u64 value, cap;

852
	for_each_cpu(cpu, policy->cpus) {
853
		int max_perf_pct, min_perf_pct;
854 855
		struct cpudata *cpu_data = all_cpu_data[cpu];
		s16 epp;
856 857 858 859

		if (per_cpu_limits)
			perf_limits = all_cpu_data[cpu]->perf_limits;

860 861
		rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
		hw_min = HWP_LOWEST_PERF(cap);
862 863 864 865
		if (limits->no_turbo)
			hw_max = HWP_GUARANTEED_PERF(cap);
		else
			hw_max = HWP_HIGHEST_PERF(cap);
866 867
		range = hw_max - hw_min;

868 869 870
		max_perf_pct = perf_limits->max_perf_pct;
		min_perf_pct = perf_limits->min_perf_pct;

D
Dirk Brandewie 已提交
871
		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
872
		adj_range = min_perf_pct * range / 100;
873
		min = hw_min + adj_range;
D
Dirk Brandewie 已提交
874 875 876
		value &= ~HWP_MIN_PERF(~0L);
		value |= HWP_MIN_PERF(min);

877
		adj_range = max_perf_pct * range / 100;
878
		max = hw_min + adj_range;
D
Dirk Brandewie 已提交
879 880 881

		value &= ~HWP_MAX_PERF(~0L);
		value |= HWP_MAX_PERF(max);
882 883 884 885 886 887

		if (cpu_data->epp_policy == cpu_data->policy)
			goto skip_epp;

		cpu_data->epp_policy = cpu_data->policy;

888 889 890 891 892 893
		if (cpu_data->epp_saved >= 0) {
			epp = cpu_data->epp_saved;
			cpu_data->epp_saved = -EINVAL;
			goto update_epp;
		}

894 895
		if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
			epp = intel_pstate_get_epp(cpu_data, value);
896
			cpu_data->epp_powersave = epp;
897
			/* If EPP read was failed, then don't try to write */
898
			if (epp < 0)
899 900 901 902 903 904
				goto skip_epp;


			epp = 0;
		} else {
			/* skip setting EPP, when saved value is invalid */
905
			if (cpu_data->epp_powersave < 0)
906 907 908 909 910 911 912 913 914 915 916 917 918
				goto skip_epp;

			/*
			 * No need to restore EPP when it is not zero. This
			 * means:
			 *  - Policy is not changed
			 *  - user has manually changed
			 *  - Error reading EPB
			 */
			epp = intel_pstate_get_epp(cpu_data, value);
			if (epp)
				goto skip_epp;

919
			epp = cpu_data->epp_powersave;
920
		}
921
update_epp:
922 923 924 925 926 927 928
		if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
			value &= ~GENMASK_ULL(31, 24);
			value |= (u64)epp << 24;
		} else {
			intel_pstate_set_epb(cpu, epp);
		}
skip_epp:
D
Dirk Brandewie 已提交
929 930
		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
	}
931
}
D
Dirk Brandewie 已提交
932

933 934 935
static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
{
	if (hwp_active)
936
		intel_pstate_hwp_set(policy);
937 938 939 940

	return 0;
}

941 942 943 944 945 946 947 948 949 950 951 952
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

953 954
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
955 956
	int ret;

957 958 959
	if (!hwp_active)
		return 0;

960 961
	mutex_lock(&intel_pstate_limits_lock);

962 963
	all_cpu_data[policy->cpu]->epp_policy = 0;

964 965 966 967 968
	ret = intel_pstate_hwp_set_policy(policy);

	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
969 970
}

971
static void intel_pstate_update_policies(void)
972 973
	__releases(&intel_pstate_limits_lock)
	__acquires(&intel_pstate_limits_lock)
974
{
975
	struct perf_limits *saved_limits = limits;
976 977
	int cpu;

978 979
	mutex_unlock(&intel_pstate_limits_lock);

980 981
	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
982 983 984 985

	mutex_lock(&intel_pstate_limits_lock);

	limits = saved_limits;
D
Dirk Brandewie 已提交
986 987
}

988 989 990 991 992 993 994
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
	intel_pstate_reset_all_pid();
	return 0;
}
995

996 997 998 999 1000
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
1001
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
1002

1003 1004
static struct dentry *debugfs_parent;

1005 1006 1007
struct pid_param {
	char *name;
	void *value;
1008
	struct dentry *dentry;
1009 1010 1011
};

static struct pid_param pid_files[] = {
1012 1013 1014 1015 1016 1017 1018
	{"sample_rate_ms", &pid_params.sample_rate_ms, },
	{"d_gain_pct", &pid_params.d_gain_pct, },
	{"i_gain_pct", &pid_params.i_gain_pct, },
	{"deadband", &pid_params.deadband, },
	{"setpoint", &pid_params.setpoint, },
	{"p_gain_pct", &pid_params.p_gain_pct, },
	{NULL, NULL, }
1019 1020
};

1021
static void intel_pstate_debug_expose_params(void)
1022
{
1023
	int i;
1024 1025 1026 1027

	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
1028 1029 1030 1031 1032 1033 1034 1035 1036

	for (i = 0; pid_files[i].name; i++) {
		struct dentry *dentry;

		dentry = debugfs_create_file(pid_files[i].name, 0660,
					     debugfs_parent, pid_files[i].value,
					     &fops_pid_param);
		if (!IS_ERR(dentry))
			pid_files[i].dentry = dentry;
1037 1038 1039
	}
}

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
static void intel_pstate_debug_hide_params(void)
{
	int i;

	if (IS_ERR_OR_NULL(debugfs_parent))
		return;

	for (i = 0; pid_files[i].name; i++) {
		debugfs_remove(pid_files[i].dentry);
		pid_files[i].dentry = NULL;
1050
	}
1051 1052 1053

	debugfs_remove(debugfs_parent);
	debugfs_parent = NULL;
1054 1055 1056 1057 1058 1059 1060 1061 1062
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
1063
		return sprintf(buf, "%u\n", limits->object);		\
1064 1065
	}

1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);

static ssize_t show_status(struct kobject *kobj,
			   struct attribute *attr, char *buf)
{
	ssize_t ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_show_status(buf);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret;
}

static ssize_t store_status(struct kobject *a, struct attribute *b,
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

1094 1095 1096 1097 1098 1099 1100
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

1101 1102 1103 1104 1105 1106 1107
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1108 1109 1110 1111
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1112
	turbo_fp = div_fp(no_turbo, total);
1113
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1114 1115 1116

	mutex_unlock(&intel_pstate_driver_lock);

1117 1118 1119
	return sprintf(buf, "%u\n", turbo_pct);
}

1120 1121 1122 1123 1124 1125
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

1126 1127 1128 1129 1130 1131 1132
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1133 1134
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1135 1136 1137

	mutex_unlock(&intel_pstate_driver_lock);

1138 1139 1140
	return sprintf(buf, "%u\n", total);
}

1141 1142 1143 1144 1145
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

1146 1147 1148 1149 1150 1151 1152
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1153
	update_turbo_state();
1154 1155
	if (limits->turbo_disabled)
		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
1156
	else
1157
		ret = sprintf(buf, "%u\n", limits->no_turbo);
1158

1159 1160
	mutex_unlock(&intel_pstate_driver_lock);

1161 1162 1163
	return ret;
}

1164
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1165
			      const char *buf, size_t count)
1166 1167 1168
{
	unsigned int input;
	int ret;
1169

1170 1171 1172
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1173

1174 1175 1176 1177 1178 1179 1180
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1181 1182
	mutex_lock(&intel_pstate_limits_lock);

1183
	update_turbo_state();
1184
	if (limits->turbo_disabled) {
J
Joe Perches 已提交
1185
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1186
		mutex_unlock(&intel_pstate_limits_lock);
1187
		mutex_unlock(&intel_pstate_driver_lock);
1188
		return -EPERM;
1189
	}
D
Dirk Brandewie 已提交
1190

1191
	limits->no_turbo = clamp_t(int, input, 0, 1);
1192

1193 1194
	intel_pstate_update_policies();

1195 1196
	mutex_unlock(&intel_pstate_limits_lock);

1197 1198
	mutex_unlock(&intel_pstate_driver_lock);

1199 1200 1201 1202
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1203
				  const char *buf, size_t count)
1204 1205 1206
{
	unsigned int input;
	int ret;
1207

1208 1209 1210 1211
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

1212 1213 1214 1215 1216 1217 1218
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1219 1220
	mutex_lock(&intel_pstate_limits_lock);

1221 1222 1223 1224 1225 1226 1227
	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
	limits->max_perf_pct = max(limits->min_perf_pct,
				   limits->max_perf_pct);
1228
	limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
1229

1230 1231
	intel_pstate_update_policies();

1232 1233
	mutex_unlock(&intel_pstate_limits_lock);

1234 1235
	mutex_unlock(&intel_pstate_driver_lock);

1236 1237 1238 1239
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1240
				  const char *buf, size_t count)
1241 1242 1243
{
	unsigned int input;
	int ret;
1244

1245 1246 1247
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1248

1249 1250 1251 1252 1253 1254 1255
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1256 1257
	mutex_lock(&intel_pstate_limits_lock);

1258 1259 1260 1261 1262 1263 1264
	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->min_perf_pct = min(limits->max_perf_pct,
				   limits->min_perf_pct);
1265
	limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
1266

1267 1268
	intel_pstate_update_policies();

1269 1270
	mutex_unlock(&intel_pstate_limits_lock);

1271 1272
	mutex_unlock(&intel_pstate_driver_lock);

1273 1274 1275 1276 1277 1278
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

1279
define_one_global_rw(status);
1280 1281 1282
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1283
define_one_global_ro(turbo_pct);
1284
define_one_global_ro(num_pstates);
1285 1286

static struct attribute *intel_pstate_attributes[] = {
1287
	&status.attr,
1288
	&no_turbo.attr,
1289
	&turbo_pct.attr,
1290
	&num_pstates.attr,
1291 1292 1293 1294 1295 1296 1297
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

1298
static void __init intel_pstate_sysfs_expose_params(void)
1299
{
1300
	struct kobject *intel_pstate_kobject;
1301 1302 1303 1304
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1305 1306 1307
	if (WARN_ON(!intel_pstate_kobject))
		return;

1308
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1325 1326
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1327

1328
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1329
{
1330
	/* First disable HWP notification interrupt as we don't process them */
1331 1332
	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1333

1334
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1335
	cpudata->epp_policy = 0;
1336 1337
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1338 1339
}

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
#define MSR_IA32_POWER_CTL_BIT_EE	19

/* Disable energy efficiency optimization */
static void intel_pstate_disable_ee(int cpu)
{
	u64 power_ctl;
	int ret;

	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
	if (ret)
		return;

	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
		pr_info("Disabling energy efficiency optimization\n");
		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
	}
}

1359
static int atom_get_min_pstate(void)
1360 1361
{
	u64 value;
1362

1363
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1364
	return (value >> 8) & 0x7F;
1365 1366
}

1367
static int atom_get_max_pstate(void)
1368 1369
{
	u64 value;
1370

1371
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1372
	return (value >> 16) & 0x7F;
1373
}
1374

1375
static int atom_get_turbo_pstate(void)
1376 1377
{
	u64 value;
1378

1379
	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1380
	return value & 0x7F;
1381 1382
}

1383
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1384 1385 1386 1387 1388
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1389
	val = (u64)pstate << 8;
1390
	if (limits->no_turbo && !limits->turbo_disabled)
1391 1392 1393 1394 1395 1396 1397
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1398
	vid = ceiling_fp(vid_fp);
1399

1400 1401 1402
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1403
	return val | vid;
1404 1405
}

1406
static int silvermont_get_scaling(void)
1407 1408 1409
{
	u64 value;
	int i;
1410 1411 1412
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1413 1414

	rdmsrl(MSR_FSB_FREQ, value);
1415 1416
	i = value & 0x7;
	WARN_ON(i > 4);
1417

1418 1419
	return silvermont_freq_table[i];
}
1420

1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1435 1436
}

1437
static void atom_get_vid(struct cpudata *cpudata)
1438 1439 1440
{
	u64 value;

1441
	rdmsrl(MSR_ATOM_CORE_VIDS, value);
D
Dirk Brandewie 已提交
1442 1443
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1444 1445 1446 1447
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1448

1449
	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1450
	cpudata->vid.turbo = value & 0x7f;
1451 1452
}

1453
static int core_get_min_pstate(void)
1454 1455
{
	u64 value;
1456

1457
	rdmsrl(MSR_PLATFORM_INFO, value);
1458 1459 1460
	return (value >> 40) & 0xFF;
}

1461
static int core_get_max_pstate_physical(void)
1462 1463
{
	u64 value;
1464

1465
	rdmsrl(MSR_PLATFORM_INFO, value);
1466 1467 1468
	return (value >> 8) & 0xFF;
}

1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
static int core_get_tdp_ratio(u64 plat_info)
{
	/* Check how many TDP levels present */
	if (plat_info & 0x600000000) {
		u64 tdp_ctrl;
		u64 tdp_ratio;
		int tdp_msr;
		int err;

		/* Get the TDP level (0, 1, 2) to get ratios */
		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
		if (err)
			return err;

		/* TDP MSR are continuous starting at 0x648 */
		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
		if (err)
			return err;

		/* For level 1 and 2, bits[23:16] contain the ratio */
		if (tdp_ctrl & 0x03)
			tdp_ratio >>= 16;

		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);

		return (int)tdp_ratio;
	}

	return -ENXIO;
}

1502
static int core_get_max_pstate(void)
1503
{
1504 1505 1506
	u64 tar;
	u64 plat_info;
	int max_pstate;
1507
	int tdp_ratio;
1508 1509 1510 1511 1512
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

1513 1514 1515 1516 1517 1518 1519 1520 1521
	tdp_ratio = core_get_tdp_ratio(plat_info);
	if (tdp_ratio <= 0)
		return max_pstate;

	if (hwp_active) {
		/* Turbo activation ratio is not used on HWP platforms */
		return tdp_ratio;
	}

1522 1523
	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
1524 1525
		int tar_levels;

1526
		/* Do some sanity checking for safety */
1527 1528 1529 1530
		tar_levels = tar & 0xff;
		if (tdp_ratio - 1 == tar_levels) {
			max_pstate = tar_levels;
			pr_debug("max_pstate=TAC %x\n", max_pstate);
1531 1532
		}
	}
1533

1534
	return max_pstate;
1535 1536
}

1537
static int core_get_turbo_pstate(void)
1538 1539 1540
{
	u64 value;
	int nont, ret;
1541

1542
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1543
	nont = core_get_max_pstate();
1544
	ret = (value) & 255;
1545 1546 1547 1548 1549
	if (ret <= nont)
		ret = nont;
	return ret;
}

1550 1551 1552 1553 1554
static inline int core_get_scaling(void)
{
	return 100000;
}

1555
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1556 1557 1558
{
	u64 val;

1559
	val = (u64)pstate << 8;
1560
	if (limits->no_turbo && !limits->turbo_disabled)
1561 1562
		val |= (u64)1 << 32;

1563
	return val;
1564 1565
}

1566 1567 1568 1569 1570
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1571
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1572 1573 1574 1575 1576 1577 1578
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1590
		.get_max_physical = core_get_max_pstate_physical,
1591 1592
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
1593
		.get_scaling = core_get_scaling,
1594
		.get_val = core_get_val,
1595
		.get_target_pstate = get_target_pstate_use_performance,
1596 1597 1598
	},
};

1599
static const struct cpu_defaults silvermont_params = {
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1613
		.get_val = atom_get_val,
1614 1615
		.get_scaling = silvermont_get_scaling,
		.get_vid = atom_get_vid,
1616
		.get_target_pstate = get_target_pstate_use_cpu_load,
1617 1618 1619
	},
};

1620
static const struct cpu_defaults airmont_params = {
1621 1622 1623
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
1624
		.setpoint = 60,
1625 1626 1627 1628 1629
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
1630 1631 1632 1633
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1634
		.get_val = atom_get_val,
1635
		.get_scaling = airmont_get_scaling,
1636
		.get_vid = atom_get_vid,
1637
		.get_target_pstate = get_target_pstate_use_cpu_load,
1638 1639 1640
	},
};

1641
static const struct cpu_defaults knl_params = {
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1652
		.get_max_physical = core_get_max_pstate_physical,
1653 1654
		.get_min = core_get_min_pstate,
		.get_turbo = knl_get_turbo_pstate,
1655
		.get_scaling = core_get_scaling,
1656
		.get_val = core_get_val,
1657
		.get_target_pstate = get_target_pstate_use_performance,
1658 1659 1660
	},
};

1661
static const struct cpu_defaults bxt_params = {
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
		.get_max_physical = core_get_max_pstate_physical,
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
		.get_scaling = core_get_scaling,
		.get_val = core_get_val,
		.get_target_pstate = get_target_pstate_use_cpu_load,
	},
};

1681 1682 1683
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
1684
	int max_perf_adj;
1685
	int min_perf;
1686
	struct perf_limits *perf_limits = limits;
1687

1688
	if (limits->no_turbo || limits->turbo_disabled)
1689 1690
		max_perf = cpu->pstate.max_pstate;

1691 1692 1693
	if (per_cpu_limits)
		perf_limits = cpu->perf_limits;

1694 1695 1696 1697 1698
	/*
	 * performance can be limited by user through sysfs, by cpufreq
	 * policy, or by cpu specific default values determined through
	 * experimentation.
	 */
1699
	max_perf_adj = fp_ext_toint(max_perf * perf_limits->max_perf);
1700 1701
	*max = clamp_t(int, max_perf_adj,
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1702

1703
	min_perf = fp_ext_toint(max_perf * perf_limits->min_perf);
1704
	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1705 1706
}

1707
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1708
{
1709 1710
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1711 1712 1713 1714 1715 1716 1717
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1718 1719
}

1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
	int min_pstate, max_pstate;

	update_turbo_state();
	intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
	intel_pstate_set_pstate(cpu, max_pstate);
}

1734 1735
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1736 1737
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1738
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1739
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1740
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1741 1742
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1743

1744 1745
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1746 1747

	intel_pstate_set_min_pstate(cpu);
1748 1749
}

1750
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1751
{
1752
	struct sample *sample = &cpu->sample;
1753

1754
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1755 1756
}

1757
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1758 1759
{
	u64 aperf, mperf;
1760
	unsigned long flags;
1761
	u64 tsc;
1762

1763
	local_irq_save(flags);
1764 1765
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1766
	tsc = rdtsc();
1767
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1768
		local_irq_restore(flags);
1769
		return false;
1770
	}
1771
	local_irq_restore(flags);
1772

1773
	cpu->last_sample_time = cpu->sample.time;
1774
	cpu->sample.time = time;
1775 1776
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1777
	cpu->sample.tsc =  tsc;
1778 1779
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1780
	cpu->sample.tsc -= cpu->prev_tsc;
1781

1782 1783
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1784
	cpu->prev_tsc = tsc;
1785 1786 1787 1788 1789 1790 1791 1792
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
	return !!cpu->last_sample_time;
1793 1794
}

1795 1796
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1797 1798
	return mul_ext_fp(cpu->sample.core_avg_perf,
			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1799 1800
}

1801 1802
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1803 1804
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1805 1806
}

1807 1808 1809
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
1810
	int32_t busy_frac, boost;
1811
	int target, avg_pstate;
1812

1813
	busy_frac = div_fp(sample->mperf, sample->tsc);
1814

1815 1816
	boost = cpu->iowait_boost;
	cpu->iowait_boost >>= 1;
1817

1818 1819
	if (busy_frac < boost)
		busy_frac = boost;
1820

1821
	sample->busy_scaled = busy_frac * 100;
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841

	target = limits->no_turbo || limits->turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1842 1843
}

1844
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1845
{
1846
	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1847
	u64 duration_ns;
1848

1849
	/*
1850 1851 1852 1853 1854
	 * perf_scaled is the ratio of the average P-state during the last
	 * sampling period to the P-state requested last time (in percent).
	 *
	 * That measures the system's response to the previous P-state
	 * selection.
1855
	 */
1856 1857
	max_pstate = cpu->pstate.max_pstate_physical;
	current_pstate = cpu->pstate.current_pstate;
1858
	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1859
			       div_fp(100 * max_pstate, current_pstate));
1860

1861
	/*
1862 1863 1864
	 * Since our utilization update callback will not run unless we are
	 * in C0, check if the actual elapsed time is significantly greater (3x)
	 * than our sample interval.  If it is, then we were idle for a long
1865
	 * enough period of time to adjust our performance metric.
1866
	 */
1867
	duration_ns = cpu->sample.time - cpu->last_sample_time;
1868
	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1869
		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1870
		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1871 1872 1873
	} else {
		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
		if (sample_ratio < int_tofp(1))
1874
			perf_scaled = 0;
1875 1876
	}

1877 1878
	cpu->sample.busy_scaled = perf_scaled;
	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1879 1880
}

1881
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1882 1883 1884 1885 1886
{
	int max_perf, min_perf;

	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
	pstate = clamp_t(int, pstate, min_perf, max_perf);
1887 1888 1889 1890 1891
	return pstate;
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
1892 1893 1894
	if (pstate == cpu->pstate.current_pstate)
		return;

1895
	cpu->pstate.current_pstate = pstate;
1896 1897 1898
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1899 1900
static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
1901
	int from, target_pstate;
1902 1903 1904
	struct sample *sample;

	from = cpu->pstate.current_pstate;
1905

1906 1907
	target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
		cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1908

1909 1910
	update_turbo_state();

1911 1912
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1913
	intel_pstate_update_pstate(cpu, target_pstate);
1914 1915

	sample = &cpu->sample;
1916
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1917
		fp_toint(sample->busy_scaled),
1918 1919 1920 1921 1922
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1923 1924
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1925 1926
}

1927
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1928
				     unsigned int flags)
1929
{
1930
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1931 1932
	u64 delta_ns;

1933
	if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
		if (flags & SCHED_CPUFREQ_IOWAIT) {
			cpu->iowait_boost = int_tofp(1);
		} else if (cpu->iowait_boost) {
			/* Clear iowait_boost if the CPU may have been idle. */
			delta_ns = time - cpu->last_update;
			if (delta_ns > TICK_NSEC)
				cpu->iowait_boost = 0;
		}
		cpu->last_update = time;
	}
1944

1945
	delta_ns = time - cpu->sample.time;
1946
	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1947 1948
		bool sample_taken = intel_pstate_sample(cpu, time);

1949
		if (sample_taken) {
1950
			intel_pstate_calc_avg_perf(cpu);
1951 1952 1953
			if (!hwp_active)
				intel_pstate_adjust_busy_pstate(cpu);
		}
1954
	}
1955 1956 1957
}

#define ICPU(model, policy) \
1958 1959
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1960 1961

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_params),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_params),
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_params),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_params),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_params),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_params),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_params),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_params),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_params),
1979
	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_params),
1980
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_params),
1981 1982 1983 1984
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1985
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1986
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1987 1988
	ICPU(INTEL_FAM6_BROADWELL_X, core_params),
	ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
D
Dirk Brandewie 已提交
1989 1990 1991
	{}
};

1992 1993 1994 1995 1996
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_params),
	{}
};

1997 1998 1999 2000
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
		unsigned int size = sizeof(struct cpudata);

		if (per_cpu_limits)
			size += sizeof(struct perf_limits);

		cpu = kzalloc(size, GFP_KERNEL);
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;
		if (per_cpu_limits)
			cpu->perf_limits = (struct perf_limits *)(cpu + 1);

2017 2018 2019
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
2020
	}
2021 2022 2023 2024

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
2025

2026
	if (hwp_active) {
2027 2028 2029 2030 2031 2032
		const struct x86_cpu_id *id;

		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
		if (id)
			intel_pstate_disable_ee(cpunum);

2033
		intel_pstate_hwp_enable(cpu);
2034 2035 2036
		pid_params.sample_rate_ms = 50;
		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
	}
2037

2038
	intel_pstate_get_cpu_pstates(cpu);
2039

2040 2041
	intel_pstate_busy_pid_reset(cpu);

J
Joe Perches 已提交
2042
	pr_debug("controlling: cpu %d\n", cpunum);
2043 2044 2045 2046 2047 2048

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
2049
	struct cpudata *cpu = all_cpu_data[cpu_num];
2050

2051
	return cpu ? get_avg_frequency(cpu) : 0;
2052 2053
}

2054
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2055
{
2056 2057
	struct cpudata *cpu = all_cpu_data[cpu_num];

2058 2059 2060
	if (cpu->update_util_set)
		return;

2061 2062
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
2063 2064
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
				     intel_pstate_update_util);
2065
	cpu->update_util_set = true;
2066 2067 2068 2069
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
2070 2071 2072 2073 2074
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

2075
	cpufreq_remove_update_util_hook(cpu);
2076
	cpu_data->update_util_set = false;
2077 2078 2079
	synchronize_sched();
}

2080 2081 2082
static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
					    struct perf_limits *limits)
{
2083

2084 2085 2086
	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
					      policy->cpuinfo.max_freq);
	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0, 100);
2087 2088 2089
	if (policy->max == policy->min) {
		limits->min_policy_pct = limits->max_policy_pct;
	} else {
2090 2091
		limits->min_policy_pct = DIV_ROUND_UP(policy->min * 100,
						      policy->cpuinfo.max_freq);
2092 2093 2094
		limits->min_policy_pct = clamp_t(int, limits->min_policy_pct,
						 0, 100);
	}
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108

	/* Normalize user input to [min_policy_pct, max_policy_pct] */
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);

	/* Make sure min_perf_pct <= max_perf_pct */
	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);

2109 2110 2111 2112
	limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
	limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
	limits->max_perf = round_up(limits->max_perf, EXT_FRAC_BITS);
	limits->min_perf = round_up(limits->min_perf, EXT_FRAC_BITS);
2113 2114 2115 2116 2117

	pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
		 limits->max_perf_pct, limits->min_perf_pct);
}

2118 2119
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
2120
	struct cpudata *cpu;
2121
	struct perf_limits *perf_limits = NULL;
2122

2123 2124 2125
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

2126 2127 2128
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

2129
	cpu = all_cpu_data[policy->cpu];
2130 2131
	cpu->policy = policy->policy;

2132 2133 2134 2135 2136
	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
2137 2138
	}

2139 2140 2141
	if (per_cpu_limits)
		perf_limits = cpu->perf_limits;

2142 2143
	mutex_lock(&intel_pstate_limits_lock);

2144
	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
2145
		pr_debug("set performance\n");
2146 2147 2148 2149
		if (!perf_limits) {
			limits = &performance_limits;
			perf_limits = limits;
		}
2150
	} else {
J
Joe Perches 已提交
2151
		pr_debug("set powersave\n");
2152 2153 2154 2155
		if (!perf_limits) {
			limits = &powersave_limits;
			perf_limits = limits;
		}
2156

2157
	}
2158

2159
	intel_pstate_update_perf_limits(policy, perf_limits);
2160

2161
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2162 2163 2164 2165 2166 2167 2168 2169
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
	}

2170 2171
	intel_pstate_set_update_util_hook(policy->cpu);

2172
	intel_pstate_hwp_set_policy(policy);
D
Dirk Brandewie 已提交
2173

2174 2175
	mutex_unlock(&intel_pstate_limits_lock);

2176 2177 2178 2179 2180
	return 0;
}

static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct perf_limits *perf_limits;

	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
		perf_limits = &performance_limits;
	else
		perf_limits = &powersave_limits;

	update_turbo_state();
	policy->cpuinfo.max_freq = perf_limits->turbo_disabled ||
					perf_limits->no_turbo ?
					cpu->pstate.max_freq :
					cpu->pstate.turbo_freq;

2195
	cpufreq_verify_within_cpu_limits(policy);
2196

2197
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2198
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2199 2200
		return -EINVAL;

2201 2202 2203 2204 2205
	/* When per-CPU limits are used, sysfs limits are not used */
	if (!per_cpu_limits) {
		unsigned int max_freq, min_freq;

		max_freq = policy->cpuinfo.max_freq *
2206
					perf_limits->max_sysfs_pct / 100;
2207
		min_freq = policy->cpuinfo.max_freq *
2208
					perf_limits->min_sysfs_pct / 100;
2209 2210 2211
		cpufreq_verify_within_limits(policy, min_freq, max_freq);
	}

2212 2213 2214
	return 0;
}

2215 2216 2217 2218 2219
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}

2220
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2221
{
2222
	pr_debug("CPU %d exiting\n", policy->cpu);
2223

2224
	intel_pstate_clear_update_util_hook(policy->cpu);
2225 2226 2227
	if (hwp_active)
		intel_pstate_hwp_save_state(policy);
	else
2228 2229
		intel_cpufreq_stop_cpu(policy);
}
2230

2231 2232 2233
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
2234

2235
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
2236

2237
	return 0;
2238 2239
}

2240
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2241 2242
{
	struct cpudata *cpu;
2243
	int rc;
2244 2245 2246 2247 2248 2249 2250

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

2251
	if (per_cpu_limits)
2252
		intel_pstate_init_limits(cpu->perf_limits);
2253

2254 2255
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2256 2257

	/* cpuinfo and default policy values */
2258
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2259 2260 2261 2262 2263
	update_turbo_state();
	policy->cpuinfo.max_freq = limits->turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

2264
	intel_pstate_init_acpi_perf_limits(policy);
2265 2266
	cpumask_set_cpu(policy->cpu, policy->cpus);

2267 2268
	policy->fast_switch_possible = true;

2269 2270 2271
	return 0;
}

2272
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2273
{
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2284 2285 2286 2287

	return 0;
}

2288
static struct cpufreq_driver intel_pstate = {
2289 2290 2291
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
2292
	.suspend	= intel_pstate_hwp_save_state,
2293
	.resume		= intel_pstate_resume,
2294 2295
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
2296
	.exit		= intel_pstate_cpu_exit,
2297
	.stop_cpu	= intel_pstate_stop_cpu,
2298 2299 2300
	.name		= "intel_pstate",
};

2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
	policy->cpuinfo.max_freq = limits->turbo_disabled ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;

	cpufreq_verify_within_cpu_limits(policy);

	return 0;
}

static unsigned int intel_cpufreq_turbo_update(struct cpudata *cpu,
					       struct cpufreq_policy *policy,
					       unsigned int target_freq)
{
	unsigned int max_freq;

	update_turbo_state();

	max_freq = limits->no_turbo || limits->turbo_disabled ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
	policy->cpuinfo.max_freq = max_freq;
	if (policy->max > max_freq)
		policy->max = max_freq;

	if (target_freq > max_freq)
		target_freq = max_freq;

	return target_freq;
}

static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
	int target_pstate;

	freqs.old = policy->cur;
	freqs.new = intel_cpufreq_turbo_update(cpu, policy, target_freq);

	cpufreq_freq_transition_begin(policy, &freqs);
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	if (target_pstate != cpu->pstate.current_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
	}
2363
	freqs.new = target_pstate * cpu->pstate.scaling;
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	int target_pstate;

	target_freq = intel_cpufreq_turbo_update(cpu, policy, target_freq);
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2377
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2378
	intel_pstate_update_pstate(cpu, target_pstate);
2379
	return target_pstate * cpu->pstate.scaling;
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

	return 0;
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
	.exit		= intel_pstate_cpu_exit,
	.stop_cpu	= intel_cpufreq_stop_cpu,
	.name		= "intel_cpufreq",
};

static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;

2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
static void intel_pstate_driver_cleanup(void)
{
	unsigned int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

			kfree(all_cpu_data[cpu]);
			all_cpu_data[cpu] = NULL;
		}
	}
	put_online_cpus();
}

static int intel_pstate_register_driver(void)
{
	int ret;

2430 2431
	intel_pstate_init_limits(&powersave_limits);
	intel_pstate_set_performance_limits(&performance_limits);
2432 2433 2434 2435 2436
	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE) &&
	    intel_pstate_driver == &intel_pstate)
		limits = &performance_limits;
	else
		limits = &powersave_limits;
2437

2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
	ret = cpufreq_register_driver(intel_pstate_driver);
	if (ret) {
		intel_pstate_driver_cleanup();
		return ret;
	}

	mutex_lock(&intel_pstate_limits_lock);
	driver_registered = true;
	mutex_unlock(&intel_pstate_limits_lock);

	if (intel_pstate_driver == &intel_pstate && !hwp_active &&
	    pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
		intel_pstate_debug_expose_params();

	return 0;
}

static int intel_pstate_unregister_driver(void)
{
	if (hwp_active)
		return -EBUSY;

	if (intel_pstate_driver == &intel_pstate && !hwp_active &&
	    pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
		intel_pstate_debug_hide_params();

	mutex_lock(&intel_pstate_limits_lock);
	driver_registered = false;
	mutex_unlock(&intel_pstate_limits_lock);

	cpufreq_unregister_driver(intel_pstate_driver);
	intel_pstate_driver_cleanup();

	return 0;
}

static ssize_t intel_pstate_show_status(char *buf)
{
	if (!driver_registered)
		return sprintf(buf, "off\n");

	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
					"active" : "passive");
}

static int intel_pstate_update_status(const char *buf, size_t size)
{
	int ret;

	if (size == 3 && !strncmp(buf, "off", size))
		return driver_registered ?
			intel_pstate_unregister_driver() : -EINVAL;

	if (size == 6 && !strncmp(buf, "active", size)) {
		if (driver_registered) {
			if (intel_pstate_driver == &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

		intel_pstate_driver = &intel_pstate;
		return intel_pstate_register_driver();
	}

	if (size == 7 && !strncmp(buf, "passive", size)) {
		if (driver_registered) {
			if (intel_pstate_driver != &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

		intel_pstate_driver = &intel_cpufreq;
		return intel_pstate_register_driver();
	}

	return -EINVAL;
}

2522 2523 2524
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2525
static unsigned int force_load __initdata;
2526

2527
static int __init intel_pstate_msrs_not_valid(void)
2528
{
2529
	if (!pstate_funcs.get_max() ||
2530 2531
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2532 2533 2534 2535
		return -ENODEV;

	return 0;
}
2536

2537
static void __init copy_pid_params(struct pstate_adjust_policy *policy)
2538 2539
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
2540
	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
2541 2542 2543 2544 2545 2546 2547
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
#ifdef CONFIG_ACPI
static void intel_pstate_use_acpi_profile(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_MOBILE)
		pstate_funcs.get_target_pstate =
				get_target_pstate_use_cpu_load;
}
#else
static void intel_pstate_use_acpi_profile(void)
{
}
#endif

2561
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2562 2563
{
	pstate_funcs.get_max   = funcs->get_max;
2564
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2565 2566
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2567
	pstate_funcs.get_scaling = funcs->get_scaling;
2568
	pstate_funcs.get_val   = funcs->get_val;
2569
	pstate_funcs.get_vid   = funcs->get_vid;
2570 2571
	pstate_funcs.get_target_pstate = funcs->get_target_pstate;

2572
	intel_pstate_use_acpi_profile();
2573 2574
}

2575
#ifdef CONFIG_ACPI
2576

2577
static bool __init intel_pstate_no_acpi_pss(void)
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

2606
static bool __init intel_pstate_has_acpi_ppc(void)
2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

2626 2627 2628 2629
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2630
	int  oem_pwr_table;
2631 2632 2633
};

/* Hardware vendor-specific info that has its own power management modes */
2634
static struct hw_vendor_info vendor_info[] __initdata = {
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
2646 2647 2648 2649
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
2650 2651 2652
	{0, "", ""},
};

2653
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2654 2655 2656
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
2657 2658 2659 2660 2661 2662 2663 2664 2665
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
2666

2667 2668
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2669 2670 2671
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
2672
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2673 2674 2675 2676 2677 2678
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
2679 2680
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
2681
			}
2682 2683 2684 2685
	}

	return false;
}
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2696 2697
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2698
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2699
static inline void intel_pstate_request_control_from_smm(void) {}
2700 2701
#endif /* CONFIG_ACPI */

2702 2703 2704 2705 2706
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

2707 2708 2709
static int __init intel_pstate_init(void)
{
	const struct x86_cpu_id *id;
2710
	struct cpu_defaults *cpu_def;
2711
	int rc = 0;
2712

2713 2714 2715
	if (no_load)
		return -ENODEV;

2716 2717 2718
	if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
		copy_cpu_funcs(&core_params.funcs);
		hwp_active++;
2719
		intel_pstate.attr = hwp_cpufreq_attrs;
2720 2721 2722
		goto hwp_cpu_matched;
	}

2723 2724 2725 2726
	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

2727
	cpu_def = (struct cpu_defaults *)id->driver_data;
2728

2729 2730
	copy_pid_params(&cpu_def->pid_policy);
	copy_cpu_funcs(&cpu_def->funcs);
2731

2732 2733 2734
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

2735 2736 2737 2738 2739 2740 2741 2742
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

2743 2744 2745
	if (!hwp_active && hwp_only)
		return -ENOTSUPP;

J
Joe Perches 已提交
2746
	pr_info("Intel P-state driver initializing\n");
2747

2748
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2749 2750 2751
	if (!all_cpu_data)
		return -ENOMEM;

2752 2753
	intel_pstate_request_control_from_smm();

2754
	intel_pstate_sysfs_expose_params();
2755

2756
	mutex_lock(&intel_pstate_driver_lock);
2757
	rc = intel_pstate_register_driver();
2758
	mutex_unlock(&intel_pstate_driver_lock);
2759 2760
	if (rc)
		return rc;
2761

2762
	if (hwp_active)
J
Joe Perches 已提交
2763
		pr_info("HWP enabled\n");
2764

2765
	return 0;
2766 2767 2768
}
device_initcall(intel_pstate_init);

2769 2770 2771 2772 2773
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

2774
	if (!strcmp(str, "disable")) {
2775
		no_load = 1;
2776 2777 2778 2779 2780
	} else if (!strcmp(str, "passive")) {
		pr_info("Passive mode enabled\n");
		intel_pstate_driver = &intel_cpufreq;
		no_hwp = 1;
	}
2781
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2782
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2783
		no_hwp = 1;
2784
	}
2785 2786
	if (!strcmp(str, "force"))
		force_load = 1;
2787 2788
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2789 2790
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2791 2792 2793 2794 2795 2796

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2797 2798 2799 2800
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2801 2802 2803
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");