intel_pstate.c 47.3 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
30
#include <linux/acpi.h>
31
#include <linux/vmalloc.h>
32 33 34 35 36
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
37
#include <asm/cpufeature.h>
38
#include <asm/intel-family.h>
39

40 41 42 43
#define ATOM_RATIOS		0x66a
#define ATOM_VIDS		0x66b
#define ATOM_TURBO_RATIOS	0x66c
#define ATOM_TURBO_VIDS		0x66d
44

45 46 47 48
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
#endif

49
#define FRAC_BITS 8
50 51
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
52

53 54 55
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)

56 57 58 59 60
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

61
static inline int32_t div_fp(s64 x, s64 y)
62
{
63
	return div64_s64((int64_t)x << FRAC_BITS, y);
64 65
}

66 67 68 69 70 71 72 73 74 75 76
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

77 78 79 80 81 82 83 84 85 86
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

87 88
/**
 * struct sample -	Store performance sample
89
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
90 91
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
92
 *			P state. This can be different than core_avg_perf
93 94 95 96 97 98 99 100 101 102 103 104 105
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @freq:		Effective frequency calculated from APERF/MPERF
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
106
struct sample {
107
	int32_t core_avg_perf;
108
	int32_t busy_scaled;
109 110
	u64 aperf;
	u64 mperf;
111
	u64 tsc;
112
	int freq;
113
	u64 time;
114 115
};

116 117 118 119 120 121 122 123 124 125 126 127 128 129
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
 *
 * Stores the per cpu model P state limits and current P state.
 */
130 131 132 133
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
134
	int	max_pstate_physical;
135
	int	scaling;
136 137 138
	int	turbo_pstate;
};

139 140 141 142 143 144 145 146 147 148 149 150 151
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
152
struct vid_data {
153 154 155
	int min;
	int max;
	int turbo;
156 157 158
	int32_t ratio;
};

159 160 161 162 163 164 165 166 167 168 169 170
/**
 * struct _pid -	Stores PID data
 * @setpoint:		Target set point for busyness or performance
 * @integral:		Storage for accumulated error values
 * @p_gain:		PID proportional gain
 * @i_gain:		PID integral gain
 * @d_gain:		PID derivative gain
 * @deadband:		PID deadband
 * @last_err:		Last error storage for integral part of PID calculation
 *
 * Stores PID coefficients and last error for PID controller.
 */
171 172 173 174 175 176 177
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
178
	int32_t last_err;
179 180
};

181 182 183 184
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
 * @update_util:	CPUFreq utility callback information
185
 * @update_util_set:	CPUFreq utility callback is set
186 187 188 189 190 191 192 193 194 195
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @pid:		Stores PID parameters for this CPU
 * @last_sample_time:	Last Sample time
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
196 197
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
198 199 200
 *
 * This structure stores per CPU instance data for all CPUs.
 */
201 202 203
struct cpudata {
	int cpu;

204
	struct update_util_data update_util;
205
	bool   update_util_set;
206 207

	struct pstate_data pstate;
208
	struct vid_data vid;
209 210
	struct _pid pid;

211
	u64	last_sample_time;
212 213
	u64	prev_aperf;
	u64	prev_mperf;
214
	u64	prev_tsc;
215
	u64	prev_cummulative_iowait;
216
	struct sample sample;
217 218 219 220
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
221 222 223
};

static struct cpudata **all_cpu_data;
224 225 226 227 228 229 230 231 232 233 234 235 236

/**
 * struct pid_adjust_policy - Stores static PID configuration data
 * @sample_rate_ms:	PID calculation sample rate in ms
 * @sample_rate_ns:	Sample rate calculation in ns
 * @deadband:		PID deadband
 * @setpoint:		PID Setpoint
 * @p_gain_pct:		PID proportional gain
 * @i_gain_pct:		PID integral gain
 * @d_gain_pct:		PID derivative gain
 *
 * Stores per CPU model static PID configuration data.
 */
237 238
struct pstate_adjust_policy {
	int sample_rate_ms;
239
	s64 sample_rate_ns;
240 241 242 243 244 245 246
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

247 248 249 250 251 252 253 254 255 256 257 258 259 260
/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 * @get_target_pstate:	Callback to a function to calculate next P state to use
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
261 262
struct pstate_funcs {
	int (*get_max)(void);
263
	int (*get_max_physical)(void);
264 265
	int (*get_min)(void);
	int (*get_turbo)(void);
266
	int (*get_scaling)(void);
267
	u64 (*get_val)(struct cpudata*, int pstate);
268
	void (*get_vid)(struct cpudata *);
269
	int32_t (*get_target_pstate)(struct cpudata *);
270 271
};

272 273 274 275 276
/**
 * struct cpu_defaults- Per CPU model default config data
 * @pid_policy:	PID config data
 * @funcs:		Callback function data
 */
277 278 279
struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
280 281
};

282
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
283
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
284

285 286
static struct pstate_adjust_policy pid_params;
static struct pstate_funcs pstate_funcs;
D
Dirk Brandewie 已提交
287
static int hwp_active;
288

289 290 291
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

/**
 * struct perf_limits - Store user and policy limits
 * @no_turbo:		User requested turbo state from intel_pstate sysfs
 * @turbo_disabled:	Platform turbo status either from msr
 *			MSR_IA32_MISC_ENABLE or when maximum available pstate
 *			matches the maximum turbo pstate
 * @max_perf_pct:	Effective maximum performance limit in percentage, this
 *			is minimum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @min_perf_pct:	Effective minimum performance limit in percentage, this
 *			is maximum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
 *			This value is used to limit max pstate
 * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
 *			This value is used to limit min pstate
 * @max_policy_pct:	The maximum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @max_sysfs_pct:	The maximum performance in percentage enforced by
 *			intel pstate sysfs interface
 * @min_policy_pct:	The minimum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @min_sysfs_pct:	The minimum performance in percentage enforced by
 *			intel pstate sysfs interface
 *
 * Storage for user and policy defined limits.
 */
320 321
struct perf_limits {
	int no_turbo;
322
	int turbo_disabled;
323 324 325 326
	int max_perf_pct;
	int min_perf_pct;
	int32_t max_perf;
	int32_t min_perf;
327 328
	int max_policy_pct;
	int max_sysfs_pct;
329 330
	int min_policy_pct;
	int min_sysfs_pct;
331 332
};

333 334 335 336 337 338 339 340 341 342 343 344 345 346
static struct perf_limits performance_limits = {
	.no_turbo = 0,
	.turbo_disabled = 0,
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 100,
	.min_perf = int_tofp(1),
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
};

static struct perf_limits powersave_limits = {
347
	.no_turbo = 0,
348
	.turbo_disabled = 0,
349 350 351 352
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 0,
	.min_perf = 0,
353 354
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
355 356
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
357 358
};

359 360 361 362 363 364
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
static struct perf_limits *limits = &performance_limits;
#else
static struct perf_limits *limits = &powersave_limits;
#endif

365
#ifdef CONFIG_ACPI
366 367 368 369 370 371 372 373 374 375

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

	return acpi_ppc;
}

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
/*
 * The max target pstate ratio is a 8 bit value in both PLATFORM_INFO MSR and
 * in TURBO_RATIO_LIMIT MSR, which pstate driver stores in max_pstate and
 * max_turbo_pstate fields. The PERF_CTL MSR contains 16 bit value for P state
 * ratio, out of it only high 8 bits are used. For example 0x1700 is setting
 * target ratio 0x17. The _PSS control value stores in a format which can be
 * directly written to PERF_CTL MSR. But in intel_pstate driver this shift
 * occurs during write to PERF_CTL (E.g. for cores core_set_pstate()).
 * This function converts the _PSS control value to intel pstate driver format
 * for comparison and assignment.
 */
static int convert_to_native_pstate_format(struct cpudata *cpu, int index)
{
	return cpu->acpi_perf_data.states[index].control >> 8;
}

static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int turbo_pss_ctl;
	int ret;
	int i;

399 400 401
	if (hwp_active)
		return;

402
	if (!intel_pstate_get_ppc_enable_status())
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
	 * correct max turbo frequency based on the turbo ratio.
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
	turbo_pss_ctl = convert_to_native_pstate_format(cpu, 0);
	if (turbo_pss_ctl > cpu->pstate.max_pstate)
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
453
	pr_debug("_PPC limits will be enforced\n");
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}

#else
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
}
#endif

483
static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
484
			     int deadband, int integral) {
485 486
	pid->setpoint = int_tofp(setpoint);
	pid->deadband  = int_tofp(deadband);
487
	pid->integral  = int_tofp(integral);
488
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
489 490 491 492
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
493
	pid->p_gain = div_fp(percent, 100);
494 495 496 497
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
498
	pid->i_gain = div_fp(percent, 100);
499 500 501 502
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{
503
	pid->d_gain = div_fp(percent, 100);
504 505
}

506
static signed int pid_calc(struct _pid *pid, int32_t busy)
507
{
508
	signed int result;
509 510 511
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

512
	fp_error = pid->setpoint - busy;
513

514
	if (abs(fp_error) <= pid->deadband)
515 516 517 518 519 520
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

521 522 523 524 525 526 527 528
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
529 530 531 532 533 534
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

535 536
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
537 538

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
539
	result = result + (1 << (FRAC_BITS-1));
540 541 542 543 544
	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
545 546 547
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
548

549
	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
550 551 552 553 554
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
555

556 557 558 559 560 561
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

562 563 564 565 566 567 568
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
569
	limits->turbo_disabled =
570 571 572 573
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

574
static void intel_pstate_hwp_set(const struct cpumask *cpumask)
D
Dirk Brandewie 已提交
575
{
576 577 578 579 580 581 582
	int min, hw_min, max, hw_max, cpu, range, adj_range;
	u64 value, cap;

	rdmsrl(MSR_HWP_CAPABILITIES, cap);
	hw_min = HWP_LOWEST_PERF(cap);
	hw_max = HWP_HIGHEST_PERF(cap);
	range = hw_max - hw_min;
D
Dirk Brandewie 已提交
583

584
	for_each_cpu(cpu, cpumask) {
D
Dirk Brandewie 已提交
585
		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
586
		adj_range = limits->min_perf_pct * range / 100;
587
		min = hw_min + adj_range;
D
Dirk Brandewie 已提交
588 589 590
		value &= ~HWP_MIN_PERF(~0L);
		value |= HWP_MIN_PERF(min);

591
		adj_range = limits->max_perf_pct * range / 100;
592
		max = hw_min + adj_range;
593
		if (limits->no_turbo) {
594 595 596
			hw_max = HWP_GUARANTEED_PERF(cap);
			if (hw_max < max)
				max = hw_max;
D
Dirk Brandewie 已提交
597 598 599 600 601 602
		}

		value &= ~HWP_MAX_PERF(~0L);
		value |= HWP_MAX_PERF(max);
		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
	}
603
}
D
Dirk Brandewie 已提交
604

605 606 607 608 609 610 611 612
static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
{
	if (hwp_active)
		intel_pstate_hwp_set(policy->cpus);

	return 0;
}

613 614 615 616
static void intel_pstate_hwp_set_online_cpus(void)
{
	get_online_cpus();
	intel_pstate_hwp_set(cpu_online_mask);
D
Dirk Brandewie 已提交
617 618 619
	put_online_cpus();
}

620 621 622 623 624 625 626
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
	intel_pstate_reset_all_pid();
	return 0;
}
627

628 629 630 631 632
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
633
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
634 635 636 637 638 639 640

struct pid_param {
	char *name;
	void *value;
};

static struct pid_param pid_files[] = {
641 642 643 644 645 646
	{"sample_rate_ms", &pid_params.sample_rate_ms},
	{"d_gain_pct", &pid_params.d_gain_pct},
	{"i_gain_pct", &pid_params.i_gain_pct},
	{"deadband", &pid_params.deadband},
	{"setpoint", &pid_params.setpoint},
	{"p_gain_pct", &pid_params.p_gain_pct},
647 648 649
	{NULL, NULL}
};

650
static void __init intel_pstate_debug_expose_params(void)
651
{
652
	struct dentry *debugfs_parent;
653 654
	int i = 0;

D
Dirk Brandewie 已提交
655 656
	if (hwp_active)
		return;
657 658 659 660 661
	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
	while (pid_files[i].name) {
		debugfs_create_file(pid_files[i].name, 0660,
662 663
				    debugfs_parent, pid_files[i].value,
				    &fops_pid_param);
664 665 666 667 668 669 670 671 672 673 674
		i++;
	}
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
675
		return sprintf(buf, "%u\n", limits->object);		\
676 677
	}

678 679 680 681 682 683 684 685 686 687 688
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
689
	turbo_fp = div_fp(no_turbo, total);
690 691 692 693
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
	return sprintf(buf, "%u\n", turbo_pct);
}

694 695 696 697 698 699 700 701 702 703 704
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	return sprintf(buf, "%u\n", total);
}

705 706 707 708 709 710
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

	update_turbo_state();
711 712
	if (limits->turbo_disabled)
		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
713
	else
714
		ret = sprintf(buf, "%u\n", limits->no_turbo);
715 716 717 718

	return ret;
}

719
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
720
			      const char *buf, size_t count)
721 722 723
{
	unsigned int input;
	int ret;
724

725 726 727
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
728 729

	update_turbo_state();
730
	if (limits->turbo_disabled) {
J
Joe Perches 已提交
731
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
732
		return -EPERM;
733
	}
D
Dirk Brandewie 已提交
734

735
	limits->no_turbo = clamp_t(int, input, 0, 1);
736

D
Dirk Brandewie 已提交
737
	if (hwp_active)
738
		intel_pstate_hwp_set_online_cpus();
D
Dirk Brandewie 已提交
739

740 741 742 743
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
744
				  const char *buf, size_t count)
745 746 747
{
	unsigned int input;
	int ret;
748

749 750 751 752
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

753 754 755 756 757 758 759
	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
	limits->max_perf_pct = max(limits->min_perf_pct,
				   limits->max_perf_pct);
760
	limits->max_perf = div_fp(limits->max_perf_pct, 100);
761

D
Dirk Brandewie 已提交
762
	if (hwp_active)
763
		intel_pstate_hwp_set_online_cpus();
764 765 766 767
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
768
				  const char *buf, size_t count)
769 770 771
{
	unsigned int input;
	int ret;
772

773 774 775
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
776

777 778 779 780 781 782 783
	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->min_perf_pct = min(limits->max_perf_pct,
				   limits->min_perf_pct);
784
	limits->min_perf = div_fp(limits->min_perf_pct, 100);
785

D
Dirk Brandewie 已提交
786
	if (hwp_active)
787
		intel_pstate_hwp_set_online_cpus();
788 789 790 791 792 793 794 795 796
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
797
define_one_global_ro(turbo_pct);
798
define_one_global_ro(num_pstates);
799 800 801 802 803

static struct attribute *intel_pstate_attributes[] = {
	&no_turbo.attr,
	&max_perf_pct.attr,
	&min_perf_pct.attr,
804
	&turbo_pct.attr,
805
	&num_pstates.attr,
806 807 808 809 810 811 812
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

813
static void __init intel_pstate_sysfs_expose_params(void)
814
{
815
	struct kobject *intel_pstate_kobject;
816 817 818 819 820
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
	BUG_ON(!intel_pstate_kobject);
821
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
822 823 824
	BUG_ON(rc);
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
825

826
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
827
{
828 829 830
	/* First disable HWP notification interrupt as we don't process them */
	wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);

831
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
D
Dirk Brandewie 已提交
832 833
}

834
static int atom_get_min_pstate(void)
835 836
{
	u64 value;
837

838
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
839
	return (value >> 8) & 0x7F;
840 841
}

842
static int atom_get_max_pstate(void)
843 844
{
	u64 value;
845

846
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
847
	return (value >> 16) & 0x7F;
848
}
849

850
static int atom_get_turbo_pstate(void)
851 852
{
	u64 value;
853

854
	rdmsrl(ATOM_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
855
	return value & 0x7F;
856 857
}

858
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
859 860 861 862 863
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

864
	val = (u64)pstate << 8;
865
	if (limits->no_turbo && !limits->turbo_disabled)
866 867 868 869 870 871 872
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
873
	vid = ceiling_fp(vid_fp);
874

875 876 877
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

878
	return val | vid;
879 880
}

881
static int silvermont_get_scaling(void)
882 883 884
{
	u64 value;
	int i;
885 886 887
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
888 889

	rdmsrl(MSR_FSB_FREQ, value);
890 891
	i = value & 0x7;
	WARN_ON(i > 4);
892

893 894
	return silvermont_freq_table[i];
}
895

896 897 898 899 900 901 902 903 904 905 906 907 908 909
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
910 911
}

912
static void atom_get_vid(struct cpudata *cpudata)
913 914 915
{
	u64 value;

916
	rdmsrl(ATOM_VIDS, value);
D
Dirk Brandewie 已提交
917 918
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
919 920 921 922
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
923

924
	rdmsrl(ATOM_TURBO_VIDS, value);
925
	cpudata->vid.turbo = value & 0x7f;
926 927
}

928
static int core_get_min_pstate(void)
929 930
{
	u64 value;
931

932
	rdmsrl(MSR_PLATFORM_INFO, value);
933 934 935
	return (value >> 40) & 0xFF;
}

936
static int core_get_max_pstate_physical(void)
937 938
{
	u64 value;
939

940
	rdmsrl(MSR_PLATFORM_INFO, value);
941 942 943
	return (value >> 8) & 0xFF;
}

944
static int core_get_max_pstate(void)
945
{
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
	u64 tar;
	u64 plat_info;
	int max_pstate;
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
		/* Do some sanity checking for safety */
		if (plat_info & 0x600000000) {
			u64 tdp_ctrl;
			u64 tdp_ratio;
			int tdp_msr;

			err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
			if (err)
				goto skip_tar;

			tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
			err = rdmsrl_safe(tdp_msr, &tdp_ratio);
			if (err)
				goto skip_tar;

971 972 973 974 975
			/* For level 1 and 2, bits[23:16] contain the ratio */
			if (tdp_ctrl)
				tdp_ratio >>= 16;

			tdp_ratio &= 0xff; /* ratios are only 8 bits long */
976 977 978 979 980 981 982 983
			if (tdp_ratio - 1 == tar) {
				max_pstate = tar;
				pr_debug("max_pstate=TAC %x\n", max_pstate);
			} else {
				goto skip_tar;
			}
		}
	}
984

985 986
skip_tar:
	return max_pstate;
987 988
}

989
static int core_get_turbo_pstate(void)
990 991 992
{
	u64 value;
	int nont, ret;
993

994
	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
995
	nont = core_get_max_pstate();
996
	ret = (value) & 255;
997 998 999 1000 1001
	if (ret <= nont)
		ret = nont;
	return ret;
}

1002 1003 1004 1005 1006
static inline int core_get_scaling(void)
{
	return 100000;
}

1007
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1008 1009 1010
{
	u64 val;

1011
	val = (u64)pstate << 8;
1012
	if (limits->no_turbo && !limits->turbo_disabled)
1013 1014
		val |= (u64)1 << 32;

1015
	return val;
1016 1017
}

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1042
		.get_max_physical = core_get_max_pstate_physical,
1043 1044
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
1045
		.get_scaling = core_get_scaling,
1046
		.get_val = core_get_val,
1047
		.get_target_pstate = get_target_pstate_use_performance,
1048 1049 1050
	},
};

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
static struct cpu_defaults silvermont_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1065
		.get_val = atom_get_val,
1066 1067
		.get_scaling = silvermont_get_scaling,
		.get_vid = atom_get_vid,
1068
		.get_target_pstate = get_target_pstate_use_cpu_load,
1069 1070 1071 1072
	},
};

static struct cpu_defaults airmont_params = {
1073 1074 1075
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
1076
		.setpoint = 60,
1077 1078 1079 1080 1081
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
1082 1083 1084 1085
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1086
		.get_val = atom_get_val,
1087
		.get_scaling = airmont_get_scaling,
1088
		.get_vid = atom_get_vid,
1089
		.get_target_pstate = get_target_pstate_use_cpu_load,
1090 1091 1092
	},
};

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
static struct cpu_defaults knl_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1104
		.get_max_physical = core_get_max_pstate_physical,
1105 1106
		.get_min = core_get_min_pstate,
		.get_turbo = knl_get_turbo_pstate,
1107
		.get_scaling = core_get_scaling,
1108
		.get_val = core_get_val,
1109
		.get_target_pstate = get_target_pstate_use_performance,
1110 1111 1112
	},
};

1113 1114 1115
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
1116
	int max_perf_adj;
1117
	int min_perf;
1118

1119
	if (limits->no_turbo || limits->turbo_disabled)
1120 1121
		max_perf = cpu->pstate.max_pstate;

1122 1123 1124 1125 1126
	/*
	 * performance can be limited by user through sysfs, by cpufreq
	 * policy, or by cpu specific default values determined through
	 * experimentation.
	 */
1127
	max_perf_adj = fp_toint(max_perf * limits->max_perf);
1128 1129
	*max = clamp_t(int, max_perf_adj,
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1130

1131
	min_perf = fp_toint(max_perf * limits->min_perf);
1132
	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1133 1134
}

1135
static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate)
1136
{
1137
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1138
	cpu->pstate.current_pstate = pstate;
1139
}
1140

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	int pstate = cpu->pstate.min_pstate;

	intel_pstate_record_pstate(cpu, pstate);
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1153 1154 1155 1156
}

static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1157 1158
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1159
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1160
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1161
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1162

1163 1164
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1165 1166

	intel_pstate_set_min_pstate(cpu);
1167 1168
}

1169
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1170
{
1171
	struct sample *sample = &cpu->sample;
1172

1173
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1174 1175
}

1176
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1177 1178
{
	u64 aperf, mperf;
1179
	unsigned long flags;
1180
	u64 tsc;
1181

1182
	local_irq_save(flags);
1183 1184
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1185
	tsc = rdtsc();
1186
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1187
		local_irq_restore(flags);
1188
		return false;
1189
	}
1190
	local_irq_restore(flags);
1191

1192
	cpu->last_sample_time = cpu->sample.time;
1193
	cpu->sample.time = time;
1194 1195
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1196
	cpu->sample.tsc =  tsc;
1197 1198
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1199
	cpu->sample.tsc -= cpu->prev_tsc;
1200

1201 1202
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1203
	cpu->prev_tsc = tsc;
1204 1205 1206 1207 1208 1209 1210 1211
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
	return !!cpu->last_sample_time;
1212 1213
}

1214 1215
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1216 1217
	return mul_ext_fp(cpu->sample.core_avg_perf,
			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1218 1219
}

1220 1221
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1222 1223
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1224 1225
}

1226 1227 1228
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
1229 1230 1231
	u64 cummulative_iowait, delta_iowait_us;
	u64 delta_iowait_mperf;
	u64 mperf, now;
1232 1233
	int32_t cpu_load;

1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
	cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);

	/*
	 * Convert iowait time into number of IO cycles spent at max_freq.
	 * IO is considered as busy only for the cpu_load algorithm. For
	 * performance this is not needed since we always try to reach the
	 * maximum P-State, so we are already boosting the IOs.
	 */
	delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
	delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
		cpu->pstate.max_pstate, MSEC_PER_SEC);

	mperf = cpu->sample.mperf + delta_iowait_mperf;
	cpu->prev_cummulative_iowait = cummulative_iowait;

1249 1250 1251 1252 1253 1254
	/*
	 * The load can be estimated as the ratio of the mperf counter
	 * running at a constant frequency during active periods
	 * (C0) and the time stamp counter running at the same frequency
	 * also during C-states.
	 */
1255
	cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
1256 1257
	cpu->sample.busy_scaled = cpu_load;

1258
	return get_avg_pstate(cpu) - pid_calc(&cpu->pid, cpu_load);
1259 1260
}

1261
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1262
{
1263
	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1264
	u64 duration_ns;
1265

1266
	/*
1267 1268 1269 1270
	 * perf_scaled is the average performance during the last sampling
	 * period scaled by the ratio of the maximum P-state to the P-state
	 * requested last time (in percent).  That measures the system's
	 * response to the previous P-state selection.
1271
	 */
1272 1273
	max_pstate = cpu->pstate.max_pstate_physical;
	current_pstate = cpu->pstate.current_pstate;
1274
	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1275
			       div_fp(100 * max_pstate, current_pstate));
1276

1277
	/*
1278 1279 1280
	 * Since our utilization update callback will not run unless we are
	 * in C0, check if the actual elapsed time is significantly greater (3x)
	 * than our sample interval.  If it is, then we were idle for a long
1281
	 * enough period of time to adjust our performance metric.
1282
	 */
1283
	duration_ns = cpu->sample.time - cpu->last_sample_time;
1284
	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1285
		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1286
		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1287 1288 1289
	} else {
		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
		if (sample_ratio < int_tofp(1))
1290
			perf_scaled = 0;
1291 1292
	}

1293 1294
	cpu->sample.busy_scaled = perf_scaled;
	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1295 1296
}

1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
	int max_perf, min_perf;

	update_turbo_state();

	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
	pstate = clamp_t(int, pstate, min_perf, max_perf);
	if (pstate == cpu->pstate.current_pstate)
		return;

	intel_pstate_record_pstate(cpu, pstate);
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1312 1313
static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
1314
	int from, target_pstate;
1315 1316 1317
	struct sample *sample;

	from = cpu->pstate.current_pstate;
1318

1319
	target_pstate = pstate_funcs.get_target_pstate(cpu);
1320

1321
	intel_pstate_update_pstate(cpu, target_pstate);
1322 1323

	sample = &cpu->sample;
1324
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1325
		fp_toint(sample->busy_scaled),
1326 1327 1328 1329 1330
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1331
		get_avg_frequency(cpu));
1332 1333
}

1334 1335
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
				     unsigned long util, unsigned long max)
1336
{
1337 1338
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
	u64 delta_ns = time - cpu->sample.time;
1339

1340
	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1341 1342
		bool sample_taken = intel_pstate_sample(cpu, time);

1343
		if (sample_taken) {
1344
			intel_pstate_calc_avg_perf(cpu);
1345 1346 1347
			if (!hwp_active)
				intel_pstate_adjust_busy_pstate(cpu);
		}
1348
	}
1349 1350 1351
}

#define ICPU(model, policy) \
1352 1353
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1354 1355

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_params),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_params),
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_params),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_params),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_params),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_params),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_params),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_params),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_params),
1373 1374 1375 1376
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

D
Dirk Brandewie 已提交
1377
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
1378
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
D
Dirk Brandewie 已提交
1379 1380 1381
	{}
};

1382 1383 1384 1385
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1386 1387 1388
	if (!all_cpu_data[cpunum])
		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
					       GFP_KERNEL);
1389 1390 1391 1392 1393 1394
	if (!all_cpu_data[cpunum])
		return -ENOMEM;

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1395

1396
	if (hwp_active) {
1397
		intel_pstate_hwp_enable(cpu);
1398 1399 1400
		pid_params.sample_rate_ms = 50;
		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
	}
1401

1402
	intel_pstate_get_cpu_pstates(cpu);
1403

1404 1405
	intel_pstate_busy_pid_reset(cpu);

J
Joe Perches 已提交
1406
	pr_debug("controlling: cpu %d\n", cpunum);
1407 1408 1409 1410 1411 1412

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
1413
	struct cpudata *cpu = all_cpu_data[cpu_num];
1414

1415
	return cpu ? get_avg_frequency(cpu) : 0;
1416 1417
}

1418
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1419
{
1420 1421 1422 1423
	struct cpudata *cpu = all_cpu_data[cpu_num];

	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1424 1425
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
				     intel_pstate_update_util);
1426
	cpu->update_util_set = true;
1427 1428 1429 1430
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1431 1432 1433 1434 1435
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

1436
	cpufreq_remove_update_util_hook(cpu);
1437
	cpu_data->update_util_set = false;
1438 1439 1440
	synchronize_sched();
}

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
static void intel_pstate_set_performance_limits(struct perf_limits *limits)
{
	limits->no_turbo = 0;
	limits->turbo_disabled = 0;
	limits->max_perf_pct = 100;
	limits->max_perf = int_tofp(1);
	limits->min_perf_pct = 100;
	limits->min_perf = int_tofp(1);
	limits->max_policy_pct = 100;
	limits->max_sysfs_pct = 100;
	limits->min_policy_pct = 0;
	limits->min_sysfs_pct = 0;
}

1455 1456
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
1457 1458
	struct cpudata *cpu;

1459 1460 1461
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

1462 1463
	intel_pstate_clear_update_util_hook(policy->cpu);

1464 1465 1466
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

1467
	cpu = all_cpu_data[0];
1468 1469 1470 1471 1472
	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
1473 1474
	}

1475
	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1476
		limits = &performance_limits;
1477
		if (policy->max >= policy->cpuinfo.max_freq) {
J
Joe Perches 已提交
1478
			pr_debug("set performance\n");
1479 1480 1481 1482
			intel_pstate_set_performance_limits(limits);
			goto out;
		}
	} else {
J
Joe Perches 已提交
1483
		pr_debug("set powersave\n");
1484
		limits = &powersave_limits;
1485
	}
D
Dirk Brandewie 已提交
1486

1487 1488
	limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
	limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1489 1490
	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
					      policy->cpuinfo.max_freq);
1491
	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1492 1493

	/* Normalize user input to [min_policy_pct, max_policy_pct] */
1494 1495 1496 1497 1498 1499 1500 1501
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
1502 1503

	/* Make sure min_perf_pct <= max_perf_pct */
1504
	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1505

1506 1507
	limits->min_perf = div_fp(limits->min_perf_pct, 100);
	limits->max_perf = div_fp(limits->max_perf_pct, 100);
1508
	limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1509

1510 1511 1512
 out:
	intel_pstate_set_update_util_hook(policy->cpu);

1513
	intel_pstate_hwp_set_policy(policy);
D
Dirk Brandewie 已提交
1514

1515 1516 1517 1518 1519
	return 0;
}

static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
1520
	cpufreq_verify_within_cpu_limits(policy);
1521

1522
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1523
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1524 1525 1526 1527 1528
		return -EINVAL;

	return 0;
}

1529
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1530
{
1531 1532
	int cpu_num = policy->cpu;
	struct cpudata *cpu = all_cpu_data[cpu_num];
1533

J
Joe Perches 已提交
1534
	pr_debug("CPU %d exiting\n", cpu_num);
1535

1536
	intel_pstate_clear_update_util_hook(cpu_num);
1537

D
Dirk Brandewie 已提交
1538 1539 1540
	if (hwp_active)
		return;

1541
	intel_pstate_set_min_pstate(cpu);
1542 1543
}

1544
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1545 1546
{
	struct cpudata *cpu;
1547
	int rc;
1548 1549 1550 1551 1552 1553 1554

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

1555
	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1556 1557 1558 1559
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;

1560 1561
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1562 1563

	/* cpuinfo and default policy values */
1564
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1565 1566 1567 1568 1569
	update_turbo_state();
	policy->cpuinfo.max_freq = limits->turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

1570
	intel_pstate_init_acpi_perf_limits(policy);
1571 1572 1573 1574 1575 1576
	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
	cpumask_set_cpu(policy->cpu, policy->cpus);

	return 0;
}

1577 1578 1579 1580 1581 1582 1583
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);

	return 0;
}

1584 1585 1586 1587
static struct cpufreq_driver intel_pstate_driver = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
1588
	.resume		= intel_pstate_hwp_set_policy,
1589 1590
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
1591
	.exit		= intel_pstate_cpu_exit,
1592
	.stop_cpu	= intel_pstate_stop_cpu,
1593 1594 1595
	.name		= "intel_pstate",
};

1596
static int __initdata no_load;
D
Dirk Brandewie 已提交
1597
static int __initdata no_hwp;
1598
static int __initdata hwp_only;
1599
static unsigned int force_load;
1600

1601 1602
static int intel_pstate_msrs_not_valid(void)
{
1603
	if (!pstate_funcs.get_max() ||
1604 1605
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
1606 1607 1608 1609
		return -ENODEV;

	return 0;
}
1610

1611
static void copy_pid_params(struct pstate_adjust_policy *policy)
1612 1613
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
1614
	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1615 1616 1617 1618 1619 1620 1621
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

1622
static void copy_cpu_funcs(struct pstate_funcs *funcs)
1623 1624
{
	pstate_funcs.get_max   = funcs->get_max;
1625
	pstate_funcs.get_max_physical = funcs->get_max_physical;
1626 1627
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
1628
	pstate_funcs.get_scaling = funcs->get_scaling;
1629
	pstate_funcs.get_val   = funcs->get_val;
1630
	pstate_funcs.get_vid   = funcs->get_vid;
1631 1632
	pstate_funcs.get_target_pstate = funcs->get_target_pstate;

1633 1634
}

1635
#ifdef CONFIG_ACPI
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665

static bool intel_pstate_no_acpi_pss(void)
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
static bool intel_pstate_has_acpi_ppc(void)
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

1686 1687 1688 1689
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1690
	int  oem_pwr_table;
1691 1692 1693 1694
};

/* Hardware vendor-specific info that has its own power management modes */
static struct hw_vendor_info vendor_info[] = {
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
1706 1707 1708 1709
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
1710 1711 1712 1713 1714 1715 1716
	{0, "", ""},
};

static bool intel_pstate_platform_pwr_mgmt_exists(void)
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
1717 1718 1719 1720 1721 1722 1723 1724 1725
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
1726

1727 1728
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1729 1730 1731
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
1732
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1733 1734 1735 1736 1737 1738
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
1739 1740
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
1741
			}
1742 1743 1744 1745 1746 1747
	}

	return false;
}
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1748
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1749 1750
#endif /* CONFIG_ACPI */

1751 1752 1753 1754 1755
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

1756 1757
static int __init intel_pstate_init(void)
{
1758
	int cpu, rc = 0;
1759
	const struct x86_cpu_id *id;
1760
	struct cpu_defaults *cpu_def;
1761

1762 1763 1764
	if (no_load)
		return -ENODEV;

1765 1766 1767 1768 1769 1770
	if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
		copy_cpu_funcs(&core_params.funcs);
		hwp_active++;
		goto hwp_cpu_matched;
	}

1771 1772 1773 1774
	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

1775
	cpu_def = (struct cpu_defaults *)id->driver_data;
1776

1777 1778
	copy_pid_params(&cpu_def->pid_policy);
	copy_cpu_funcs(&cpu_def->funcs);
1779

1780 1781 1782
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

1783 1784 1785 1786 1787 1788 1789 1790
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

J
Joe Perches 已提交
1791
	pr_info("Intel P-state driver initializing\n");
1792

1793
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1794 1795 1796
	if (!all_cpu_data)
		return -ENOMEM;

1797 1798 1799
	if (!hwp_active && hwp_only)
		goto out;

1800 1801 1802 1803 1804 1805
	rc = cpufreq_register_driver(&intel_pstate_driver);
	if (rc)
		goto out;

	intel_pstate_debug_expose_params();
	intel_pstate_sysfs_expose_params();
1806

1807
	if (hwp_active)
J
Joe Perches 已提交
1808
		pr_info("HWP enabled\n");
1809

1810 1811
	return rc;
out:
1812 1813 1814
	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
1815
			intel_pstate_clear_update_util_hook(cpu);
1816 1817 1818 1819 1820 1821
			kfree(all_cpu_data[cpu]);
		}
	}

	put_online_cpus();
	vfree(all_cpu_data);
1822 1823 1824 1825
	return -ENODEV;
}
device_initcall(intel_pstate_init);

1826 1827 1828 1829 1830 1831 1832
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

	if (!strcmp(str, "disable"))
		no_load = 1;
1833
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
1834
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
1835
		no_hwp = 1;
1836
	}
1837 1838
	if (!strcmp(str, "force"))
		force_load = 1;
1839 1840
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
1841 1842 1843 1844 1845 1846

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

1847 1848 1849 1850
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

1851 1852 1853
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");