intel_pstate.c 69.8 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
30
#include <linux/acpi.h>
31
#include <linux/vmalloc.h>
32 33 34 35 36
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
37
#include <asm/cpufeature.h>
38
#include <asm/intel-family.h>
39

40 41
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000

42 43 44 45
#define ATOM_RATIOS		0x66a
#define ATOM_VIDS		0x66b
#define ATOM_TURBO_RATIOS	0x66c
#define ATOM_TURBO_VIDS		0x66d
46

47 48
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
49
#include <acpi/cppc_acpi.h>
50 51
#endif

52
#define FRAC_BITS 8
53 54
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
55

56 57
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
58 59
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
60

61 62 63 64 65
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

66
static inline int32_t div_fp(s64 x, s64 y)
67
{
68
	return div64_s64((int64_t)x << FRAC_BITS, y);
69 70
}

71 72 73 74 75 76 77 78 79 80 81
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

82 83 84 85 86 87 88 89 90 91
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

92 93
/**
 * struct sample -	Store performance sample
94
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
95 96
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
97
 *			P state. This can be different than core_avg_perf
98 99 100 101 102 103 104 105 106 107 108 109
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
110
struct sample {
111
	int32_t core_avg_perf;
112
	int32_t busy_scaled;
113 114
	u64 aperf;
	u64 mperf;
115
	u64 tsc;
116
	u64 time;
117 118
};

119 120 121 122 123 124 125 126 127 128 129
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
130 131
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
132 133 134
 *
 * Stores the per cpu model P state limits and current P state.
 */
135 136 137 138
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
139
	int	max_pstate_physical;
140
	int	scaling;
141
	int	turbo_pstate;
142 143
	unsigned int max_freq;
	unsigned int turbo_freq;
144 145
};

146 147 148 149 150 151 152 153 154 155 156 157 158
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
159
struct vid_data {
160 161 162
	int min;
	int max;
	int turbo;
163 164 165
	int32_t ratio;
};

166 167 168 169 170 171 172 173 174 175 176 177
/**
 * struct _pid -	Stores PID data
 * @setpoint:		Target set point for busyness or performance
 * @integral:		Storage for accumulated error values
 * @p_gain:		PID proportional gain
 * @i_gain:		PID integral gain
 * @d_gain:		PID derivative gain
 * @deadband:		PID deadband
 * @last_err:		Last error storage for integral part of PID calculation
 *
 * Stores PID coefficients and last error for PID controller.
 */
178 179 180 181 182 183 184
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
185
	int32_t last_err;
186 187
};

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
/**
 * struct perf_limits - Store user and policy limits
 * @no_turbo:		User requested turbo state from intel_pstate sysfs
 * @turbo_disabled:	Platform turbo status either from msr
 *			MSR_IA32_MISC_ENABLE or when maximum available pstate
 *			matches the maximum turbo pstate
 * @max_perf_pct:	Effective maximum performance limit in percentage, this
 *			is minimum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @min_perf_pct:	Effective minimum performance limit in percentage, this
 *			is maximum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
 *			This value is used to limit max pstate
 * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
 *			This value is used to limit min pstate
 * @max_policy_pct:	The maximum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @max_sysfs_pct:	The maximum performance in percentage enforced by
 *			intel pstate sysfs interface, unused when per cpu
 *			controls are enforced
 * @min_policy_pct:	The minimum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @min_sysfs_pct:	The minimum performance in percentage enforced by
 *			intel pstate sysfs interface, unused when per cpu
 *			controls are enforced
 *
 * Storage for user and policy defined limits.
 */
struct perf_limits {
	int no_turbo;
	int turbo_disabled;
	int max_perf_pct;
	int min_perf_pct;
	int32_t max_perf;
	int32_t min_perf;
	int max_policy_pct;
	int max_sysfs_pct;
	int min_policy_pct;
	int min_sysfs_pct;
};

230 231 232
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
233
 * @policy:		CPUFreq policy value
234
 * @update_util:	CPUFreq utility callback information
235
 * @update_util_set:	CPUFreq utility callback is set
236 237
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
238 239 240 241 242 243 244 245 246 247
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @pid:		Stores PID parameters for this CPU
 * @last_sample_time:	Last Sample time
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
248 249 250
 * @perf_limits:	Pointer to perf_limit unique to this CPU
 *			Not all field in the structure are applicable
 *			when per cpu controls are enforced
251 252
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
253 254 255
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
256
 * @epp_policy:		Last saved policy used to set EPP/EPB
257 258 259 260
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
261 262 263
 *
 * This structure stores per CPU instance data for all CPUs.
 */
264 265 266
struct cpudata {
	int cpu;

267
	unsigned int policy;
268
	struct update_util_data update_util;
269
	bool   update_util_set;
270 271

	struct pstate_data pstate;
272
	struct vid_data vid;
273 274
	struct _pid pid;

275
	u64	last_update;
276
	u64	last_sample_time;
277 278
	u64	prev_aperf;
	u64	prev_mperf;
279
	u64	prev_tsc;
280
	u64	prev_cummulative_iowait;
281
	struct sample sample;
282
	struct perf_limits *perf_limits;
283 284 285 286
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
287
	unsigned int iowait_boost;
288
	s16 epp_powersave;
289
	s16 epp_policy;
290 291
	s16 epp_default;
	s16 epp_saved;
292 293 294
};

static struct cpudata **all_cpu_data;
295 296

/**
297
 * struct pstate_adjust_policy - Stores static PID configuration data
298 299 300 301 302 303 304 305 306 307
 * @sample_rate_ms:	PID calculation sample rate in ms
 * @sample_rate_ns:	Sample rate calculation in ns
 * @deadband:		PID deadband
 * @setpoint:		PID Setpoint
 * @p_gain_pct:		PID proportional gain
 * @i_gain_pct:		PID integral gain
 * @d_gain_pct:		PID derivative gain
 *
 * Stores per CPU model static PID configuration data.
 */
308 309
struct pstate_adjust_policy {
	int sample_rate_ms;
310
	s64 sample_rate_ns;
311 312 313 314 315 316 317
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

318 319 320 321 322 323 324 325 326 327 328 329 330 331
/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 * @get_target_pstate:	Callback to a function to calculate next P state to use
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
332 333
struct pstate_funcs {
	int (*get_max)(void);
334
	int (*get_max_physical)(void);
335 336
	int (*get_min)(void);
	int (*get_turbo)(void);
337
	int (*get_scaling)(void);
338
	u64 (*get_val)(struct cpudata*, int pstate);
339
	void (*get_vid)(struct cpudata *);
340
	int32_t (*get_target_pstate)(struct cpudata *);
341 342
};

343 344 345 346 347
/**
 * struct cpu_defaults- Per CPU model default config data
 * @pid_policy:	PID config data
 * @funcs:		Callback function data
 */
348 349 350
struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
351 352
};

353
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
354
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
355

356 357 358
static struct pstate_adjust_policy pid_params __read_mostly;
static struct pstate_funcs pstate_funcs __read_mostly;
static int hwp_active __read_mostly;
359
static bool per_cpu_limits __read_mostly;
360

361 362
static bool driver_registered __read_mostly;

363 364 365
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
366

367 368 369
static struct perf_limits performance_limits;
static struct perf_limits powersave_limits;
static struct perf_limits *limits;
370

371 372 373 374 375 376 377 378
static void intel_pstate_init_limits(struct perf_limits *limits)
{
	memset(limits, 0, sizeof(*limits));
	limits->max_perf_pct = 100;
	limits->max_perf = int_ext_tofp(1);
	limits->max_policy_pct = 100;
	limits->max_sysfs_pct = 100;
}
379

380 381 382 383 384 385
static void intel_pstate_set_performance_limits(struct perf_limits *limits)
{
	intel_pstate_init_limits(limits);
	limits->min_perf_pct = 100;
	limits->min_perf = int_ext_tofp(1);
}
386

387
static DEFINE_MUTEX(intel_pstate_driver_lock);
388 389
static DEFINE_MUTEX(intel_pstate_limits_lock);

390
#ifdef CONFIG_ACPI
391 392 393 394 395 396 397 398 399 400

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

	return acpi_ppc;
}

401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
#else
static void intel_pstate_set_itmt_prio(int cpu)
{
}
#endif

452 453 454 455 456 457
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

458 459
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
460
		return;
461
	}
462

463
	if (!intel_pstate_get_ppc_enable_status())
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
506
	 * correct max turbo frequency based on the turbo state.
507 508
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
509
	if (!limits->turbo_disabled)
510 511 512
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
513
	pr_debug("_PPC limits will be enforced\n");
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}
#else
533
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
534 535 536
{
}

537
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
538 539 540 541
{
}
#endif

542
static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
543
			     int deadband, int integral) {
544 545
	pid->setpoint = int_tofp(setpoint);
	pid->deadband  = int_tofp(deadband);
546
	pid->integral  = int_tofp(integral);
547
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
548 549 550 551
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
552
	pid->p_gain = div_fp(percent, 100);
553 554 555 556
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
557
	pid->i_gain = div_fp(percent, 100);
558 559 560 561
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{
562
	pid->d_gain = div_fp(percent, 100);
563 564
}

565
static signed int pid_calc(struct _pid *pid, int32_t busy)
566
{
567
	signed int result;
568 569 570
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

571
	fp_error = pid->setpoint - busy;
572

573
	if (abs(fp_error) <= pid->deadband)
574 575 576 577 578 579
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

580 581 582 583 584 585 586 587
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
588 589 590 591 592 593
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

594 595
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
596 597

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
598
	result = result + (1 << (FRAC_BITS-1));
599 600 601 602 603
	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
604 605 606
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
607

608
	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
609 610 611 612 613
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
614

615 616 617 618 619 620
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

621 622 623 624 625 626 627
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
628
	limits->turbo_disabled =
629 630 631 632
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

	if (!static_cpu_has(X86_FEATURE_EPB))
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

652 653 654 655 656 657 658 659 660 661 662
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
663
		epp = (hwp_req_data >> 24) & 0xff;
664
	} else {
665 666
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
667
	}
668 669 670 671

	return epp;
}

672
static int intel_pstate_set_epb(int cpu, s16 pref)
673 674
{
	u64 epb;
675
	int ret;
676 677

	if (!static_cpu_has(X86_FEATURE_EPB))
678
		return -ENXIO;
679

680 681 682
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
683 684 685

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
686 687

	return 0;
688 689
}

690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};

static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
{
	s16 epp;
	int index = -EINVAL;

	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * Range:
		 *	0x00-0x3F	:	Performance
		 *	0x40-0x7F	:	Balance performance
		 *	0x80-0xBF	:	Balance power
		 *	0xC0-0xFF	:	Power
		 * The EPP is a 8 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 6) + 1;
	} else if (static_cpu_has(X86_FEATURE_EPB)) {
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
					      int pref_index)
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

	mutex_lock(&intel_pstate_limits_lock);

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		u64 value;

		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
		if (ret)
			goto return_pref;

		value &= ~GENMASK_ULL(31, 24);

		/*
		 * If epp is not default, convert from index into
		 * energy_perf_strings to epp value, by shifting 6
		 * bits left to use only top two bits in epp.
		 * The resultant epp need to shifted by 24 bits to
		 * epp position in MSR_HWP_REQUEST.
		 */
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 6;

		value |= (u64)epp << 24;
		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}
return_pref:
	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	char str_preference[21];
	int ret, i = 0;

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

	while (energy_perf_strings[i] != NULL) {
		if (!strcmp(str_preference, energy_perf_strings[i])) {
			intel_pstate_set_energy_pref_index(cpu_data, i);
			return count;
		}
		++i;
	}

	return -EINVAL;
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	int preference;

	preference = intel_pstate_get_energy_pref_index(cpu_data);
	if (preference < 0)
		return preference;

	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
}

cpufreq_freq_attr_rw(energy_performance_preference);

static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
	NULL,
};

850
static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
D
Dirk Brandewie 已提交
851
{
852
	int min, hw_min, max, hw_max, cpu, range, adj_range;
853
	struct perf_limits *perf_limits = limits;
854 855
	u64 value, cap;

856
	for_each_cpu(cpu, policy->cpus) {
857
		int max_perf_pct, min_perf_pct;
858 859
		struct cpudata *cpu_data = all_cpu_data[cpu];
		s16 epp;
860 861 862 863

		if (per_cpu_limits)
			perf_limits = all_cpu_data[cpu]->perf_limits;

864 865
		rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
		hw_min = HWP_LOWEST_PERF(cap);
866 867 868 869
		if (limits->no_turbo)
			hw_max = HWP_GUARANTEED_PERF(cap);
		else
			hw_max = HWP_HIGHEST_PERF(cap);
870 871
		range = hw_max - hw_min;

872 873 874
		max_perf_pct = perf_limits->max_perf_pct;
		min_perf_pct = perf_limits->min_perf_pct;

D
Dirk Brandewie 已提交
875
		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
876
		adj_range = min_perf_pct * range / 100;
877
		min = hw_min + adj_range;
D
Dirk Brandewie 已提交
878 879 880
		value &= ~HWP_MIN_PERF(~0L);
		value |= HWP_MIN_PERF(min);

881
		adj_range = max_perf_pct * range / 100;
882
		max = hw_min + adj_range;
D
Dirk Brandewie 已提交
883 884 885

		value &= ~HWP_MAX_PERF(~0L);
		value |= HWP_MAX_PERF(max);
886 887 888 889 890 891

		if (cpu_data->epp_policy == cpu_data->policy)
			goto skip_epp;

		cpu_data->epp_policy = cpu_data->policy;

892 893 894 895 896 897
		if (cpu_data->epp_saved >= 0) {
			epp = cpu_data->epp_saved;
			cpu_data->epp_saved = -EINVAL;
			goto update_epp;
		}

898 899
		if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
			epp = intel_pstate_get_epp(cpu_data, value);
900
			cpu_data->epp_powersave = epp;
901
			/* If EPP read was failed, then don't try to write */
902
			if (epp < 0)
903 904 905 906 907 908
				goto skip_epp;


			epp = 0;
		} else {
			/* skip setting EPP, when saved value is invalid */
909
			if (cpu_data->epp_powersave < 0)
910 911 912 913 914 915 916 917 918 919 920 921 922
				goto skip_epp;

			/*
			 * No need to restore EPP when it is not zero. This
			 * means:
			 *  - Policy is not changed
			 *  - user has manually changed
			 *  - Error reading EPB
			 */
			epp = intel_pstate_get_epp(cpu_data, value);
			if (epp)
				goto skip_epp;

923
			epp = cpu_data->epp_powersave;
924
		}
925
update_epp:
926 927 928 929 930 931 932
		if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
			value &= ~GENMASK_ULL(31, 24);
			value |= (u64)epp << 24;
		} else {
			intel_pstate_set_epb(cpu, epp);
		}
skip_epp:
D
Dirk Brandewie 已提交
933 934
		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
	}
935
}
D
Dirk Brandewie 已提交
936

937 938 939
static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
{
	if (hwp_active)
940
		intel_pstate_hwp_set(policy);
941 942 943 944

	return 0;
}

945 946 947 948 949 950 951 952 953 954 955 956
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

957 958
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
959 960
	int ret;

961 962 963
	if (!hwp_active)
		return 0;

964 965
	mutex_lock(&intel_pstate_limits_lock);

966 967
	all_cpu_data[policy->cpu]->epp_policy = 0;

968 969 970 971 972
	ret = intel_pstate_hwp_set_policy(policy);

	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
973 974
}

975
static void intel_pstate_update_policies(void)
976 977
	__releases(&intel_pstate_limits_lock)
	__acquires(&intel_pstate_limits_lock)
978
{
979
	struct perf_limits *saved_limits = limits;
980 981
	int cpu;

982 983
	mutex_unlock(&intel_pstate_limits_lock);

984 985
	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
986 987 988 989

	mutex_lock(&intel_pstate_limits_lock);

	limits = saved_limits;
D
Dirk Brandewie 已提交
990 991
}

992 993 994 995 996 997 998
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
	intel_pstate_reset_all_pid();
	return 0;
}
999

1000 1001 1002 1003 1004
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
1005
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
1006

1007 1008
static struct dentry *debugfs_parent;

1009 1010 1011
struct pid_param {
	char *name;
	void *value;
1012
	struct dentry *dentry;
1013 1014 1015
};

static struct pid_param pid_files[] = {
1016 1017 1018 1019 1020 1021 1022
	{"sample_rate_ms", &pid_params.sample_rate_ms, },
	{"d_gain_pct", &pid_params.d_gain_pct, },
	{"i_gain_pct", &pid_params.i_gain_pct, },
	{"deadband", &pid_params.deadband, },
	{"setpoint", &pid_params.setpoint, },
	{"p_gain_pct", &pid_params.p_gain_pct, },
	{NULL, NULL, }
1023 1024
};

1025
static void intel_pstate_debug_expose_params(void)
1026
{
1027
	int i;
1028 1029 1030 1031

	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
1032 1033 1034 1035 1036 1037 1038 1039 1040

	for (i = 0; pid_files[i].name; i++) {
		struct dentry *dentry;

		dentry = debugfs_create_file(pid_files[i].name, 0660,
					     debugfs_parent, pid_files[i].value,
					     &fops_pid_param);
		if (!IS_ERR(dentry))
			pid_files[i].dentry = dentry;
1041 1042 1043
	}
}

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
static void intel_pstate_debug_hide_params(void)
{
	int i;

	if (IS_ERR_OR_NULL(debugfs_parent))
		return;

	for (i = 0; pid_files[i].name; i++) {
		debugfs_remove(pid_files[i].dentry);
		pid_files[i].dentry = NULL;
1054
	}
1055 1056 1057

	debugfs_remove(debugfs_parent);
	debugfs_parent = NULL;
1058 1059 1060 1061 1062 1063 1064 1065 1066
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
1067
		return sprintf(buf, "%u\n", limits->object);		\
1068 1069
	}

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);

static ssize_t show_status(struct kobject *kobj,
			   struct attribute *attr, char *buf)
{
	ssize_t ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_show_status(buf);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret;
}

static ssize_t store_status(struct kobject *a, struct attribute *b,
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

1098 1099 1100 1101 1102 1103 1104
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

1105 1106 1107 1108 1109 1110 1111
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1112 1113 1114 1115
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1116
	turbo_fp = div_fp(no_turbo, total);
1117
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1118 1119 1120

	mutex_unlock(&intel_pstate_driver_lock);

1121 1122 1123
	return sprintf(buf, "%u\n", turbo_pct);
}

1124 1125 1126 1127 1128 1129
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

1130 1131 1132 1133 1134 1135 1136
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1137 1138
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1139 1140 1141

	mutex_unlock(&intel_pstate_driver_lock);

1142 1143 1144
	return sprintf(buf, "%u\n", total);
}

1145 1146 1147 1148 1149
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

1150 1151 1152 1153 1154 1155 1156
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1157
	update_turbo_state();
1158 1159
	if (limits->turbo_disabled)
		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
1160
	else
1161
		ret = sprintf(buf, "%u\n", limits->no_turbo);
1162

1163 1164
	mutex_unlock(&intel_pstate_driver_lock);

1165 1166 1167
	return ret;
}

1168
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1169
			      const char *buf, size_t count)
1170 1171 1172
{
	unsigned int input;
	int ret;
1173

1174 1175 1176
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1177

1178 1179 1180 1181 1182 1183 1184
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1185 1186
	mutex_lock(&intel_pstate_limits_lock);

1187
	update_turbo_state();
1188
	if (limits->turbo_disabled) {
J
Joe Perches 已提交
1189
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1190
		mutex_unlock(&intel_pstate_limits_lock);
1191
		mutex_unlock(&intel_pstate_driver_lock);
1192
		return -EPERM;
1193
	}
D
Dirk Brandewie 已提交
1194

1195
	limits->no_turbo = clamp_t(int, input, 0, 1);
1196

1197 1198
	intel_pstate_update_policies();

1199 1200
	mutex_unlock(&intel_pstate_limits_lock);

1201 1202
	mutex_unlock(&intel_pstate_driver_lock);

1203 1204 1205 1206
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1207
				  const char *buf, size_t count)
1208 1209 1210
{
	unsigned int input;
	int ret;
1211

1212 1213 1214 1215
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

1216 1217 1218 1219 1220 1221 1222
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1223 1224
	mutex_lock(&intel_pstate_limits_lock);

1225 1226 1227 1228 1229 1230 1231
	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
	limits->max_perf_pct = max(limits->min_perf_pct,
				   limits->max_perf_pct);
1232
	limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
1233

1234 1235
	intel_pstate_update_policies();

1236 1237
	mutex_unlock(&intel_pstate_limits_lock);

1238 1239
	mutex_unlock(&intel_pstate_driver_lock);

1240 1241 1242 1243
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1244
				  const char *buf, size_t count)
1245 1246 1247
{
	unsigned int input;
	int ret;
1248

1249 1250 1251
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1252

1253 1254 1255 1256 1257 1258 1259
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1260 1261
	mutex_lock(&intel_pstate_limits_lock);

1262 1263 1264 1265 1266 1267 1268
	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->min_perf_pct = min(limits->max_perf_pct,
				   limits->min_perf_pct);
1269
	limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
1270

1271 1272
	intel_pstate_update_policies();

1273 1274
	mutex_unlock(&intel_pstate_limits_lock);

1275 1276
	mutex_unlock(&intel_pstate_driver_lock);

1277 1278 1279 1280 1281 1282
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

1283
define_one_global_rw(status);
1284 1285 1286
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1287
define_one_global_ro(turbo_pct);
1288
define_one_global_ro(num_pstates);
1289 1290

static struct attribute *intel_pstate_attributes[] = {
1291
	&status.attr,
1292
	&no_turbo.attr,
1293
	&turbo_pct.attr,
1294
	&num_pstates.attr,
1295 1296 1297 1298 1299 1300 1301
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

1302
static void __init intel_pstate_sysfs_expose_params(void)
1303
{
1304
	struct kobject *intel_pstate_kobject;
1305 1306 1307 1308
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1309 1310 1311
	if (WARN_ON(!intel_pstate_kobject))
		return;

1312
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1329 1330
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1331

1332
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1333
{
1334
	/* First disable HWP notification interrupt as we don't process them */
1335 1336
	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1337

1338
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1339
	cpudata->epp_policy = 0;
1340 1341
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1342 1343
}

1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
#define MSR_IA32_POWER_CTL_BIT_EE	19

/* Disable energy efficiency optimization */
static void intel_pstate_disable_ee(int cpu)
{
	u64 power_ctl;
	int ret;

	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
	if (ret)
		return;

	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
		pr_info("Disabling energy efficiency optimization\n");
		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
	}
}

1363
static int atom_get_min_pstate(void)
1364 1365
{
	u64 value;
1366

1367
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
1368
	return (value >> 8) & 0x7F;
1369 1370
}

1371
static int atom_get_max_pstate(void)
1372 1373
{
	u64 value;
1374

1375
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
1376
	return (value >> 16) & 0x7F;
1377
}
1378

1379
static int atom_get_turbo_pstate(void)
1380 1381
{
	u64 value;
1382

1383
	rdmsrl(ATOM_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1384
	return value & 0x7F;
1385 1386
}

1387
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1388 1389 1390 1391 1392
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1393
	val = (u64)pstate << 8;
1394
	if (limits->no_turbo && !limits->turbo_disabled)
1395 1396 1397 1398 1399 1400 1401
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1402
	vid = ceiling_fp(vid_fp);
1403

1404 1405 1406
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1407
	return val | vid;
1408 1409
}

1410
static int silvermont_get_scaling(void)
1411 1412 1413
{
	u64 value;
	int i;
1414 1415 1416
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1417 1418

	rdmsrl(MSR_FSB_FREQ, value);
1419 1420
	i = value & 0x7;
	WARN_ON(i > 4);
1421

1422 1423
	return silvermont_freq_table[i];
}
1424

1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1439 1440
}

1441
static void atom_get_vid(struct cpudata *cpudata)
1442 1443 1444
{
	u64 value;

1445
	rdmsrl(ATOM_VIDS, value);
D
Dirk Brandewie 已提交
1446 1447
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1448 1449 1450 1451
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1452

1453
	rdmsrl(ATOM_TURBO_VIDS, value);
1454
	cpudata->vid.turbo = value & 0x7f;
1455 1456
}

1457
static int core_get_min_pstate(void)
1458 1459
{
	u64 value;
1460

1461
	rdmsrl(MSR_PLATFORM_INFO, value);
1462 1463 1464
	return (value >> 40) & 0xFF;
}

1465
static int core_get_max_pstate_physical(void)
1466 1467
{
	u64 value;
1468

1469
	rdmsrl(MSR_PLATFORM_INFO, value);
1470 1471 1472
	return (value >> 8) & 0xFF;
}

1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
static int core_get_tdp_ratio(u64 plat_info)
{
	/* Check how many TDP levels present */
	if (plat_info & 0x600000000) {
		u64 tdp_ctrl;
		u64 tdp_ratio;
		int tdp_msr;
		int err;

		/* Get the TDP level (0, 1, 2) to get ratios */
		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
		if (err)
			return err;

		/* TDP MSR are continuous starting at 0x648 */
		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
		if (err)
			return err;

		/* For level 1 and 2, bits[23:16] contain the ratio */
		if (tdp_ctrl & 0x03)
			tdp_ratio >>= 16;

		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);

		return (int)tdp_ratio;
	}

	return -ENXIO;
}

1506
static int core_get_max_pstate(void)
1507
{
1508 1509 1510
	u64 tar;
	u64 plat_info;
	int max_pstate;
1511
	int tdp_ratio;
1512 1513 1514 1515 1516
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

1517 1518 1519 1520 1521 1522 1523 1524 1525
	tdp_ratio = core_get_tdp_ratio(plat_info);
	if (tdp_ratio <= 0)
		return max_pstate;

	if (hwp_active) {
		/* Turbo activation ratio is not used on HWP platforms */
		return tdp_ratio;
	}

1526 1527
	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
1528 1529
		int tar_levels;

1530
		/* Do some sanity checking for safety */
1531 1532 1533 1534
		tar_levels = tar & 0xff;
		if (tdp_ratio - 1 == tar_levels) {
			max_pstate = tar_levels;
			pr_debug("max_pstate=TAC %x\n", max_pstate);
1535 1536
		}
	}
1537

1538
	return max_pstate;
1539 1540
}

1541
static int core_get_turbo_pstate(void)
1542 1543 1544
{
	u64 value;
	int nont, ret;
1545

1546
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1547
	nont = core_get_max_pstate();
1548
	ret = (value) & 255;
1549 1550 1551 1552 1553
	if (ret <= nont)
		ret = nont;
	return ret;
}

1554 1555 1556 1557 1558
static inline int core_get_scaling(void)
{
	return 100000;
}

1559
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1560 1561 1562
{
	u64 val;

1563
	val = (u64)pstate << 8;
1564
	if (limits->no_turbo && !limits->turbo_disabled)
1565 1566
		val |= (u64)1 << 32;

1567
	return val;
1568 1569
}

1570 1571 1572 1573 1574
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1575
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1576 1577 1578 1579 1580 1581 1582
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1594
		.get_max_physical = core_get_max_pstate_physical,
1595 1596
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
1597
		.get_scaling = core_get_scaling,
1598
		.get_val = core_get_val,
1599
		.get_target_pstate = get_target_pstate_use_performance,
1600 1601 1602
	},
};

1603
static const struct cpu_defaults silvermont_params = {
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1617
		.get_val = atom_get_val,
1618 1619
		.get_scaling = silvermont_get_scaling,
		.get_vid = atom_get_vid,
1620
		.get_target_pstate = get_target_pstate_use_cpu_load,
1621 1622 1623
	},
};

1624
static const struct cpu_defaults airmont_params = {
1625 1626 1627
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
1628
		.setpoint = 60,
1629 1630 1631 1632 1633
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
1634 1635 1636 1637
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1638
		.get_val = atom_get_val,
1639
		.get_scaling = airmont_get_scaling,
1640
		.get_vid = atom_get_vid,
1641
		.get_target_pstate = get_target_pstate_use_cpu_load,
1642 1643 1644
	},
};

1645
static const struct cpu_defaults knl_params = {
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1656
		.get_max_physical = core_get_max_pstate_physical,
1657 1658
		.get_min = core_get_min_pstate,
		.get_turbo = knl_get_turbo_pstate,
1659
		.get_scaling = core_get_scaling,
1660
		.get_val = core_get_val,
1661
		.get_target_pstate = get_target_pstate_use_performance,
1662 1663 1664
	},
};

1665
static const struct cpu_defaults bxt_params = {
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
		.get_max_physical = core_get_max_pstate_physical,
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
		.get_scaling = core_get_scaling,
		.get_val = core_get_val,
		.get_target_pstate = get_target_pstate_use_cpu_load,
	},
};

1685 1686 1687
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
1688
	int max_perf_adj;
1689
	int min_perf;
1690
	struct perf_limits *perf_limits = limits;
1691

1692
	if (limits->no_turbo || limits->turbo_disabled)
1693 1694
		max_perf = cpu->pstate.max_pstate;

1695 1696 1697
	if (per_cpu_limits)
		perf_limits = cpu->perf_limits;

1698 1699 1700 1701 1702
	/*
	 * performance can be limited by user through sysfs, by cpufreq
	 * policy, or by cpu specific default values determined through
	 * experimentation.
	 */
1703
	max_perf_adj = fp_ext_toint(max_perf * perf_limits->max_perf);
1704 1705
	*max = clamp_t(int, max_perf_adj,
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1706

1707
	min_perf = fp_ext_toint(max_perf * perf_limits->min_perf);
1708
	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1709 1710
}

1711
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1712
{
1713 1714
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1715 1716 1717 1718 1719 1720 1721
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1722 1723
}

1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
	int min_pstate, max_pstate;

	update_turbo_state();
	intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
	intel_pstate_set_pstate(cpu, max_pstate);
}

1738 1739
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1740 1741
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1742
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1743
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1744
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1745 1746
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1747

1748 1749
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1750 1751

	intel_pstate_set_min_pstate(cpu);
1752 1753
}

1754
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1755
{
1756
	struct sample *sample = &cpu->sample;
1757

1758
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1759 1760
}

1761
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1762 1763
{
	u64 aperf, mperf;
1764
	unsigned long flags;
1765
	u64 tsc;
1766

1767
	local_irq_save(flags);
1768 1769
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1770
	tsc = rdtsc();
1771
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1772
		local_irq_restore(flags);
1773
		return false;
1774
	}
1775
	local_irq_restore(flags);
1776

1777
	cpu->last_sample_time = cpu->sample.time;
1778
	cpu->sample.time = time;
1779 1780
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1781
	cpu->sample.tsc =  tsc;
1782 1783
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1784
	cpu->sample.tsc -= cpu->prev_tsc;
1785

1786 1787
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1788
	cpu->prev_tsc = tsc;
1789 1790 1791 1792 1793 1794 1795 1796
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
	return !!cpu->last_sample_time;
1797 1798
}

1799 1800
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1801 1802
	return mul_ext_fp(cpu->sample.core_avg_perf,
			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1803 1804
}

1805 1806
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1807 1808
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1809 1810
}

1811 1812 1813
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
1814
	int32_t busy_frac, boost;
1815
	int target, avg_pstate;
1816

1817
	busy_frac = div_fp(sample->mperf, sample->tsc);
1818

1819 1820
	boost = cpu->iowait_boost;
	cpu->iowait_boost >>= 1;
1821

1822 1823
	if (busy_frac < boost)
		busy_frac = boost;
1824

1825
	sample->busy_scaled = busy_frac * 100;
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845

	target = limits->no_turbo || limits->turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1846 1847
}

1848
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1849
{
1850
	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1851
	u64 duration_ns;
1852

1853
	/*
1854 1855 1856 1857 1858
	 * perf_scaled is the ratio of the average P-state during the last
	 * sampling period to the P-state requested last time (in percent).
	 *
	 * That measures the system's response to the previous P-state
	 * selection.
1859
	 */
1860 1861
	max_pstate = cpu->pstate.max_pstate_physical;
	current_pstate = cpu->pstate.current_pstate;
1862
	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1863
			       div_fp(100 * max_pstate, current_pstate));
1864

1865
	/*
1866 1867 1868
	 * Since our utilization update callback will not run unless we are
	 * in C0, check if the actual elapsed time is significantly greater (3x)
	 * than our sample interval.  If it is, then we were idle for a long
1869
	 * enough period of time to adjust our performance metric.
1870
	 */
1871
	duration_ns = cpu->sample.time - cpu->last_sample_time;
1872
	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1873
		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1874
		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1875 1876 1877
	} else {
		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
		if (sample_ratio < int_tofp(1))
1878
			perf_scaled = 0;
1879 1880
	}

1881 1882
	cpu->sample.busy_scaled = perf_scaled;
	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1883 1884
}

1885
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1886 1887 1888 1889 1890
{
	int max_perf, min_perf;

	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
	pstate = clamp_t(int, pstate, min_perf, max_perf);
1891 1892 1893 1894 1895
	return pstate;
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
1896 1897 1898
	if (pstate == cpu->pstate.current_pstate)
		return;

1899
	cpu->pstate.current_pstate = pstate;
1900 1901 1902
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1903 1904
static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
1905
	int from, target_pstate;
1906 1907 1908
	struct sample *sample;

	from = cpu->pstate.current_pstate;
1909

1910 1911
	target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
		cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1912

1913 1914
	update_turbo_state();

1915 1916
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1917
	intel_pstate_update_pstate(cpu, target_pstate);
1918 1919

	sample = &cpu->sample;
1920
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1921
		fp_toint(sample->busy_scaled),
1922 1923 1924 1925 1926
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1927 1928
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1929 1930
}

1931
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1932
				     unsigned int flags)
1933
{
1934
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1935 1936
	u64 delta_ns;

1937
	if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
		if (flags & SCHED_CPUFREQ_IOWAIT) {
			cpu->iowait_boost = int_tofp(1);
		} else if (cpu->iowait_boost) {
			/* Clear iowait_boost if the CPU may have been idle. */
			delta_ns = time - cpu->last_update;
			if (delta_ns > TICK_NSEC)
				cpu->iowait_boost = 0;
		}
		cpu->last_update = time;
	}
1948

1949
	delta_ns = time - cpu->sample.time;
1950
	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1951 1952
		bool sample_taken = intel_pstate_sample(cpu, time);

1953
		if (sample_taken) {
1954
			intel_pstate_calc_avg_perf(cpu);
1955 1956 1957
			if (!hwp_active)
				intel_pstate_adjust_busy_pstate(cpu);
		}
1958
	}
1959 1960 1961
}

#define ICPU(model, policy) \
1962 1963
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1964 1965

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_params),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_params),
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_params),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_params),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_params),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_params),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_params),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_params),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_params),
1983
	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_params),
1984
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_params),
1985 1986 1987 1988
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1989
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1990
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1991 1992
	ICPU(INTEL_FAM6_BROADWELL_X, core_params),
	ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
D
Dirk Brandewie 已提交
1993 1994 1995
	{}
};

1996 1997 1998 1999 2000
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_params),
	{}
};

2001 2002 2003 2004
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
		unsigned int size = sizeof(struct cpudata);

		if (per_cpu_limits)
			size += sizeof(struct perf_limits);

		cpu = kzalloc(size, GFP_KERNEL);
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;
		if (per_cpu_limits)
			cpu->perf_limits = (struct perf_limits *)(cpu + 1);

2021 2022 2023
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
2024
	}
2025 2026 2027 2028

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
2029

2030
	if (hwp_active) {
2031 2032 2033 2034 2035 2036
		const struct x86_cpu_id *id;

		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
		if (id)
			intel_pstate_disable_ee(cpunum);

2037
		intel_pstate_hwp_enable(cpu);
2038 2039 2040
		pid_params.sample_rate_ms = 50;
		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
	}
2041

2042
	intel_pstate_get_cpu_pstates(cpu);
2043

2044 2045
	intel_pstate_busy_pid_reset(cpu);

J
Joe Perches 已提交
2046
	pr_debug("controlling: cpu %d\n", cpunum);
2047 2048 2049 2050 2051 2052

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
2053
	struct cpudata *cpu = all_cpu_data[cpu_num];
2054

2055
	return cpu ? get_avg_frequency(cpu) : 0;
2056 2057
}

2058
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2059
{
2060 2061
	struct cpudata *cpu = all_cpu_data[cpu_num];

2062 2063 2064
	if (cpu->update_util_set)
		return;

2065 2066
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
2067 2068
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
				     intel_pstate_update_util);
2069
	cpu->update_util_set = true;
2070 2071 2072 2073
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
2074 2075 2076 2077 2078
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

2079
	cpufreq_remove_update_util_hook(cpu);
2080
	cpu_data->update_util_set = false;
2081 2082 2083
	synchronize_sched();
}

2084 2085 2086
static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
					    struct perf_limits *limits)
{
2087

2088 2089 2090
	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
					      policy->cpuinfo.max_freq);
	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0, 100);
2091 2092 2093
	if (policy->max == policy->min) {
		limits->min_policy_pct = limits->max_policy_pct;
	} else {
2094 2095
		limits->min_policy_pct = DIV_ROUND_UP(policy->min * 100,
						      policy->cpuinfo.max_freq);
2096 2097 2098
		limits->min_policy_pct = clamp_t(int, limits->min_policy_pct,
						 0, 100);
	}
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112

	/* Normalize user input to [min_policy_pct, max_policy_pct] */
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);

	/* Make sure min_perf_pct <= max_perf_pct */
	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);

2113 2114 2115 2116
	limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
	limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
	limits->max_perf = round_up(limits->max_perf, EXT_FRAC_BITS);
	limits->min_perf = round_up(limits->min_perf, EXT_FRAC_BITS);
2117 2118 2119 2120 2121

	pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
		 limits->max_perf_pct, limits->min_perf_pct);
}

2122 2123
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
2124
	struct cpudata *cpu;
2125
	struct perf_limits *perf_limits = NULL;
2126

2127 2128 2129
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

2130 2131 2132
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

2133
	cpu = all_cpu_data[policy->cpu];
2134 2135
	cpu->policy = policy->policy;

2136 2137 2138 2139 2140
	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
2141 2142
	}

2143 2144 2145
	if (per_cpu_limits)
		perf_limits = cpu->perf_limits;

2146 2147
	mutex_lock(&intel_pstate_limits_lock);

2148 2149 2150 2151 2152
	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
		if (!perf_limits) {
			limits = &performance_limits;
			perf_limits = limits;
		}
2153 2154
		if (policy->max >= policy->cpuinfo.max_freq &&
		    !limits->no_turbo) {
J
Joe Perches 已提交
2155
			pr_debug("set performance\n");
2156
			intel_pstate_set_performance_limits(perf_limits);
2157 2158 2159
			goto out;
		}
	} else {
J
Joe Perches 已提交
2160
		pr_debug("set powersave\n");
2161 2162 2163 2164
		if (!perf_limits) {
			limits = &powersave_limits;
			perf_limits = limits;
		}
2165

2166
	}
2167

2168
	intel_pstate_update_perf_limits(policy, perf_limits);
2169
 out:
2170
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2171 2172 2173 2174 2175 2176 2177 2178
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
	}

2179 2180
	intel_pstate_set_update_util_hook(policy->cpu);

2181
	intel_pstate_hwp_set_policy(policy);
D
Dirk Brandewie 已提交
2182

2183 2184
	mutex_unlock(&intel_pstate_limits_lock);

2185 2186 2187 2188 2189
	return 0;
}

static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct perf_limits *perf_limits;

	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
		perf_limits = &performance_limits;
	else
		perf_limits = &powersave_limits;

	update_turbo_state();
	policy->cpuinfo.max_freq = perf_limits->turbo_disabled ||
					perf_limits->no_turbo ?
					cpu->pstate.max_freq :
					cpu->pstate.turbo_freq;

2204
	cpufreq_verify_within_cpu_limits(policy);
2205

2206
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2207
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2208 2209
		return -EINVAL;

2210 2211 2212 2213 2214
	/* When per-CPU limits are used, sysfs limits are not used */
	if (!per_cpu_limits) {
		unsigned int max_freq, min_freq;

		max_freq = policy->cpuinfo.max_freq *
2215
					perf_limits->max_sysfs_pct / 100;
2216
		min_freq = policy->cpuinfo.max_freq *
2217
					perf_limits->min_sysfs_pct / 100;
2218 2219 2220
		cpufreq_verify_within_limits(policy, min_freq, max_freq);
	}

2221 2222 2223
	return 0;
}

2224 2225 2226 2227 2228
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}

2229
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2230
{
2231
	pr_debug("CPU %d exiting\n", policy->cpu);
2232

2233
	intel_pstate_clear_update_util_hook(policy->cpu);
2234 2235 2236
	if (hwp_active)
		intel_pstate_hwp_save_state(policy);
	else
2237 2238
		intel_cpufreq_stop_cpu(policy);
}
2239

2240 2241 2242
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
2243

2244
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
2245

2246
	return 0;
2247 2248
}

2249
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2250 2251
{
	struct cpudata *cpu;
2252
	int rc;
2253 2254 2255 2256 2257 2258 2259

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

2260 2261 2262 2263 2264 2265 2266
	/*
	 * We need sane value in the cpu->perf_limits, so inherit from global
	 * perf_limits limits, which are seeded with values based on the
	 * CONFIG_CPU_FREQ_DEFAULT_GOV_*, during boot up.
	 */
	if (per_cpu_limits)
		memcpy(cpu->perf_limits, limits, sizeof(struct perf_limits));
2267

2268 2269
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2270 2271

	/* cpuinfo and default policy values */
2272
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2273 2274 2275 2276 2277
	update_turbo_state();
	policy->cpuinfo.max_freq = limits->turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

2278
	intel_pstate_init_acpi_perf_limits(policy);
2279 2280
	cpumask_set_cpu(policy->cpu, policy->cpus);

2281 2282
	policy->fast_switch_possible = true;

2283 2284 2285
	return 0;
}

2286
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2287
{
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2298 2299 2300 2301

	return 0;
}

2302
static struct cpufreq_driver intel_pstate = {
2303 2304 2305
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
2306
	.suspend	= intel_pstate_hwp_save_state,
2307
	.resume		= intel_pstate_resume,
2308 2309
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
2310
	.exit		= intel_pstate_cpu_exit,
2311
	.stop_cpu	= intel_pstate_stop_cpu,
2312 2313 2314
	.name		= "intel_pstate",
};

2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
	policy->cpuinfo.max_freq = limits->turbo_disabled ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;

	cpufreq_verify_within_cpu_limits(policy);

	return 0;
}

static unsigned int intel_cpufreq_turbo_update(struct cpudata *cpu,
					       struct cpufreq_policy *policy,
					       unsigned int target_freq)
{
	unsigned int max_freq;

	update_turbo_state();

	max_freq = limits->no_turbo || limits->turbo_disabled ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
	policy->cpuinfo.max_freq = max_freq;
	if (policy->max > max_freq)
		policy->max = max_freq;

	if (target_freq > max_freq)
		target_freq = max_freq;

	return target_freq;
}

static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
	int target_pstate;

	freqs.old = policy->cur;
	freqs.new = intel_cpufreq_turbo_update(cpu, policy, target_freq);

	cpufreq_freq_transition_begin(policy, &freqs);
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	if (target_pstate != cpu->pstate.current_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
	}
2377
	freqs.new = target_pstate * cpu->pstate.scaling;
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	int target_pstate;

	target_freq = intel_cpufreq_turbo_update(cpu, policy, target_freq);
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2391
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2392
	intel_pstate_update_pstate(cpu, target_pstate);
2393
	return target_pstate * cpu->pstate.scaling;
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

	return 0;
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
	.exit		= intel_pstate_cpu_exit,
	.stop_cpu	= intel_cpufreq_stop_cpu,
	.name		= "intel_cpufreq",
};

static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;

2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
static void intel_pstate_driver_cleanup(void)
{
	unsigned int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

			kfree(all_cpu_data[cpu]);
			all_cpu_data[cpu] = NULL;
		}
	}
	put_online_cpus();
}

static int intel_pstate_register_driver(void)
{
	int ret;

2444 2445
	intel_pstate_init_limits(&powersave_limits);
	intel_pstate_set_performance_limits(&performance_limits);
2446 2447 2448 2449 2450
	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE) &&
	    intel_pstate_driver == &intel_pstate)
		limits = &performance_limits;
	else
		limits = &powersave_limits;
2451

2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
	ret = cpufreq_register_driver(intel_pstate_driver);
	if (ret) {
		intel_pstate_driver_cleanup();
		return ret;
	}

	mutex_lock(&intel_pstate_limits_lock);
	driver_registered = true;
	mutex_unlock(&intel_pstate_limits_lock);

	if (intel_pstate_driver == &intel_pstate && !hwp_active &&
	    pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
		intel_pstate_debug_expose_params();

	return 0;
}

static int intel_pstate_unregister_driver(void)
{
	if (hwp_active)
		return -EBUSY;

	if (intel_pstate_driver == &intel_pstate && !hwp_active &&
	    pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
		intel_pstate_debug_hide_params();

	mutex_lock(&intel_pstate_limits_lock);
	driver_registered = false;
	mutex_unlock(&intel_pstate_limits_lock);

	cpufreq_unregister_driver(intel_pstate_driver);
	intel_pstate_driver_cleanup();

	return 0;
}

static ssize_t intel_pstate_show_status(char *buf)
{
	if (!driver_registered)
		return sprintf(buf, "off\n");

	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
					"active" : "passive");
}

static int intel_pstate_update_status(const char *buf, size_t size)
{
	int ret;

	if (size == 3 && !strncmp(buf, "off", size))
		return driver_registered ?
			intel_pstate_unregister_driver() : -EINVAL;

	if (size == 6 && !strncmp(buf, "active", size)) {
		if (driver_registered) {
			if (intel_pstate_driver == &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

		intel_pstate_driver = &intel_pstate;
		return intel_pstate_register_driver();
	}

	if (size == 7 && !strncmp(buf, "passive", size)) {
		if (driver_registered) {
			if (intel_pstate_driver != &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

		intel_pstate_driver = &intel_cpufreq;
		return intel_pstate_register_driver();
	}

	return -EINVAL;
}

2536 2537 2538
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2539
static unsigned int force_load __initdata;
2540

2541
static int __init intel_pstate_msrs_not_valid(void)
2542
{
2543
	if (!pstate_funcs.get_max() ||
2544 2545
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2546 2547 2548 2549
		return -ENODEV;

	return 0;
}
2550

2551
static void __init copy_pid_params(struct pstate_adjust_policy *policy)
2552 2553
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
2554
	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
2555 2556 2557 2558 2559 2560 2561
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
#ifdef CONFIG_ACPI
static void intel_pstate_use_acpi_profile(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_MOBILE)
		pstate_funcs.get_target_pstate =
				get_target_pstate_use_cpu_load;
}
#else
static void intel_pstate_use_acpi_profile(void)
{
}
#endif

2575
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2576 2577
{
	pstate_funcs.get_max   = funcs->get_max;
2578
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2579 2580
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2581
	pstate_funcs.get_scaling = funcs->get_scaling;
2582
	pstate_funcs.get_val   = funcs->get_val;
2583
	pstate_funcs.get_vid   = funcs->get_vid;
2584 2585
	pstate_funcs.get_target_pstate = funcs->get_target_pstate;

2586
	intel_pstate_use_acpi_profile();
2587 2588
}

2589
#ifdef CONFIG_ACPI
2590

2591
static bool __init intel_pstate_no_acpi_pss(void)
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

2620
static bool __init intel_pstate_has_acpi_ppc(void)
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

2640 2641 2642 2643
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2644
	int  oem_pwr_table;
2645 2646 2647
};

/* Hardware vendor-specific info that has its own power management modes */
2648
static struct hw_vendor_info vendor_info[] __initdata = {
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
2660 2661 2662 2663
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
2664 2665 2666
	{0, "", ""},
};

2667
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2668 2669 2670
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
2671 2672 2673 2674 2675 2676 2677 2678 2679
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
2680

2681 2682
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2683 2684 2685
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
2686
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2687 2688 2689 2690 2691 2692
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
2693 2694
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
2695
			}
2696 2697 2698 2699
	}

	return false;
}
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2710 2711
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2712
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2713
static inline void intel_pstate_request_control_from_smm(void) {}
2714 2715
#endif /* CONFIG_ACPI */

2716 2717 2718 2719 2720
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

2721 2722 2723
static int __init intel_pstate_init(void)
{
	const struct x86_cpu_id *id;
2724
	struct cpu_defaults *cpu_def;
2725
	int rc = 0;
2726

2727 2728 2729
	if (no_load)
		return -ENODEV;

2730 2731 2732
	if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
		copy_cpu_funcs(&core_params.funcs);
		hwp_active++;
2733
		intel_pstate.attr = hwp_cpufreq_attrs;
2734 2735 2736
		goto hwp_cpu_matched;
	}

2737 2738 2739 2740
	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

2741
	cpu_def = (struct cpu_defaults *)id->driver_data;
2742

2743 2744
	copy_pid_params(&cpu_def->pid_policy);
	copy_cpu_funcs(&cpu_def->funcs);
2745

2746 2747 2748
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

2749 2750 2751 2752 2753 2754 2755 2756
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

2757 2758 2759
	if (!hwp_active && hwp_only)
		return -ENOTSUPP;

J
Joe Perches 已提交
2760
	pr_info("Intel P-state driver initializing\n");
2761

2762
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2763 2764 2765
	if (!all_cpu_data)
		return -ENOMEM;

2766 2767
	intel_pstate_request_control_from_smm();

2768
	intel_pstate_sysfs_expose_params();
2769

2770
	mutex_lock(&intel_pstate_driver_lock);
2771
	rc = intel_pstate_register_driver();
2772
	mutex_unlock(&intel_pstate_driver_lock);
2773 2774
	if (rc)
		return rc;
2775

2776
	if (hwp_active)
J
Joe Perches 已提交
2777
		pr_info("HWP enabled\n");
2778

2779
	return 0;
2780 2781 2782
}
device_initcall(intel_pstate_init);

2783 2784 2785 2786 2787
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

2788
	if (!strcmp(str, "disable")) {
2789
		no_load = 1;
2790 2791 2792 2793 2794
	} else if (!strcmp(str, "passive")) {
		pr_info("Passive mode enabled\n");
		intel_pstate_driver = &intel_cpufreq;
		no_hwp = 1;
	}
2795
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2796
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2797
		no_hwp = 1;
2798
	}
2799 2800
	if (!strcmp(str, "force"))
		force_load = 1;
2801 2802
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2803 2804
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2805 2806 2807 2808 2809 2810

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2811 2812 2813 2814
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2815 2816 2817
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");