intel_pstate.c 48.2 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
30
#include <linux/acpi.h>
31
#include <linux/vmalloc.h>
32 33 34 35 36
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
37
#include <asm/cpufeature.h>
38
#include <asm/intel-family.h>
39

40 41 42 43
#define ATOM_RATIOS		0x66a
#define ATOM_VIDS		0x66b
#define ATOM_TURBO_RATIOS	0x66c
#define ATOM_TURBO_VIDS		0x66d
44

45 46 47 48
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
#endif

49
#define FRAC_BITS 8
50 51
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
52

53 54 55
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)

56 57 58 59 60
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

61
static inline int32_t div_fp(s64 x, s64 y)
62
{
63
	return div64_s64((int64_t)x << FRAC_BITS, y);
64 65
}

66 67 68 69 70 71 72 73 74 75 76
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

77 78 79 80 81 82 83 84 85 86
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

87 88
/**
 * struct sample -	Store performance sample
89
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
90 91
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
92
 *			P state. This can be different than core_avg_perf
93 94 95 96 97 98 99 100 101 102 103 104
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
105
struct sample {
106
	int32_t core_avg_perf;
107
	int32_t busy_scaled;
108 109
	u64 aperf;
	u64 mperf;
110
	u64 tsc;
111
	u64 time;
112 113
};

114 115 116 117 118 119 120 121 122 123 124 125 126 127
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
 *
 * Stores the per cpu model P state limits and current P state.
 */
128 129 130 131
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
132
	int	max_pstate_physical;
133
	int	scaling;
134 135 136
	int	turbo_pstate;
};

137 138 139 140 141 142 143 144 145 146 147 148 149
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
150
struct vid_data {
151 152 153
	int min;
	int max;
	int turbo;
154 155 156
	int32_t ratio;
};

157 158 159 160 161 162 163 164 165 166 167 168
/**
 * struct _pid -	Stores PID data
 * @setpoint:		Target set point for busyness or performance
 * @integral:		Storage for accumulated error values
 * @p_gain:		PID proportional gain
 * @i_gain:		PID integral gain
 * @d_gain:		PID derivative gain
 * @deadband:		PID deadband
 * @last_err:		Last error storage for integral part of PID calculation
 *
 * Stores PID coefficients and last error for PID controller.
 */
169 170 171 172 173 174 175
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
176
	int32_t last_err;
177 178
};

179 180 181
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
182
 * @policy:		CPUFreq policy value
183
 * @update_util:	CPUFreq utility callback information
184
 * @update_util_set:	CPUFreq utility callback is set
185 186
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
187 188 189 190 191 192 193 194 195 196
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @pid:		Stores PID parameters for this CPU
 * @last_sample_time:	Last Sample time
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
197 198
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
199 200 201
 *
 * This structure stores per CPU instance data for all CPUs.
 */
202 203 204
struct cpudata {
	int cpu;

205
	unsigned int policy;
206
	struct update_util_data update_util;
207
	bool   update_util_set;
208 209

	struct pstate_data pstate;
210
	struct vid_data vid;
211 212
	struct _pid pid;

213
	u64	last_update;
214
	u64	last_sample_time;
215 216
	u64	prev_aperf;
	u64	prev_mperf;
217
	u64	prev_tsc;
218
	u64	prev_cummulative_iowait;
219
	struct sample sample;
220 221 222 223
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
224
	unsigned int iowait_boost;
225 226 227
};

static struct cpudata **all_cpu_data;
228 229

/**
230
 * struct pstate_adjust_policy - Stores static PID configuration data
231 232 233 234 235 236 237
 * @sample_rate_ms:	PID calculation sample rate in ms
 * @sample_rate_ns:	Sample rate calculation in ns
 * @deadband:		PID deadband
 * @setpoint:		PID Setpoint
 * @p_gain_pct:		PID proportional gain
 * @i_gain_pct:		PID integral gain
 * @d_gain_pct:		PID derivative gain
238
 * @boost_iowait:	Whether or not to use iowait boosting.
239 240 241
 *
 * Stores per CPU model static PID configuration data.
 */
242 243
struct pstate_adjust_policy {
	int sample_rate_ms;
244
	s64 sample_rate_ns;
245 246 247 248 249
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
250
	bool boost_iowait;
251 252
};

253 254 255 256 257 258 259 260 261 262 263 264 265 266
/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 * @get_target_pstate:	Callback to a function to calculate next P state to use
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
267 268
struct pstate_funcs {
	int (*get_max)(void);
269
	int (*get_max_physical)(void);
270 271
	int (*get_min)(void);
	int (*get_turbo)(void);
272
	int (*get_scaling)(void);
273
	u64 (*get_val)(struct cpudata*, int pstate);
274
	void (*get_vid)(struct cpudata *);
275
	int32_t (*get_target_pstate)(struct cpudata *);
276 277
};

278 279 280 281 282
/**
 * struct cpu_defaults- Per CPU model default config data
 * @pid_policy:	PID config data
 * @funcs:		Callback function data
 */
283 284 285
struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
286 287
};

288
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
289
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
290

291 292 293
static struct pstate_adjust_policy pid_params __read_mostly;
static struct pstate_funcs pstate_funcs __read_mostly;
static int hwp_active __read_mostly;
294

295 296 297
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325

/**
 * struct perf_limits - Store user and policy limits
 * @no_turbo:		User requested turbo state from intel_pstate sysfs
 * @turbo_disabled:	Platform turbo status either from msr
 *			MSR_IA32_MISC_ENABLE or when maximum available pstate
 *			matches the maximum turbo pstate
 * @max_perf_pct:	Effective maximum performance limit in percentage, this
 *			is minimum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @min_perf_pct:	Effective minimum performance limit in percentage, this
 *			is maximum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
 *			This value is used to limit max pstate
 * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
 *			This value is used to limit min pstate
 * @max_policy_pct:	The maximum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @max_sysfs_pct:	The maximum performance in percentage enforced by
 *			intel pstate sysfs interface
 * @min_policy_pct:	The minimum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @min_sysfs_pct:	The minimum performance in percentage enforced by
 *			intel pstate sysfs interface
 *
 * Storage for user and policy defined limits.
 */
326 327
struct perf_limits {
	int no_turbo;
328
	int turbo_disabled;
329 330 331 332
	int max_perf_pct;
	int min_perf_pct;
	int32_t max_perf;
	int32_t min_perf;
333 334
	int max_policy_pct;
	int max_sysfs_pct;
335 336
	int min_policy_pct;
	int min_sysfs_pct;
337 338
};

339 340 341 342 343 344 345 346 347 348 349 350 351 352
static struct perf_limits performance_limits = {
	.no_turbo = 0,
	.turbo_disabled = 0,
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 100,
	.min_perf = int_tofp(1),
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
};

static struct perf_limits powersave_limits = {
353
	.no_turbo = 0,
354
	.turbo_disabled = 0,
355 356 357 358
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 0,
	.min_perf = 0,
359 360
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
361 362
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
363 364
};

365 366 367 368 369 370
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
static struct perf_limits *limits = &performance_limits;
#else
static struct perf_limits *limits = &powersave_limits;
#endif

371
#ifdef CONFIG_ACPI
372 373 374 375 376 377 378 379 380 381

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

	return acpi_ppc;
}

382 383 384 385 386 387
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

388 389 390
	if (hwp_active)
		return;

391
	if (!intel_pstate_get_ppc_enable_status())
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
434
	 * correct max turbo frequency based on the turbo state.
435 436
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
437
	if (!limits->turbo_disabled)
438 439 440
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
441
	pr_debug("_PPC limits will be enforced\n");
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}

#else
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
}
#endif

471
static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
472
			     int deadband, int integral) {
473 474
	pid->setpoint = int_tofp(setpoint);
	pid->deadband  = int_tofp(deadband);
475
	pid->integral  = int_tofp(integral);
476
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
477 478 479 480
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
481
	pid->p_gain = div_fp(percent, 100);
482 483 484 485
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
486
	pid->i_gain = div_fp(percent, 100);
487 488 489 490
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{
491
	pid->d_gain = div_fp(percent, 100);
492 493
}

494
static signed int pid_calc(struct _pid *pid, int32_t busy)
495
{
496
	signed int result;
497 498 499
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

500
	fp_error = pid->setpoint - busy;
501

502
	if (abs(fp_error) <= pid->deadband)
503 504 505 506 507 508
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

509 510 511 512 513 514 515 516
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
517 518 519 520 521 522
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

523 524
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
525 526

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
527
	result = result + (1 << (FRAC_BITS-1));
528 529 530 531 532
	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
533 534 535
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
536

537
	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
538 539 540 541 542
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
543

544 545 546 547 548 549
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

550 551 552 553 554 555 556
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
557
	limits->turbo_disabled =
558 559 560 561
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

562
static void intel_pstate_hwp_set(const struct cpumask *cpumask)
D
Dirk Brandewie 已提交
563
{
564 565 566
	int min, hw_min, max, hw_max, cpu, range, adj_range;
	u64 value, cap;

567
	for_each_cpu(cpu, cpumask) {
568 569 570 571 572
		rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
		hw_min = HWP_LOWEST_PERF(cap);
		hw_max = HWP_HIGHEST_PERF(cap);
		range = hw_max - hw_min;

D
Dirk Brandewie 已提交
573
		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
574
		adj_range = limits->min_perf_pct * range / 100;
575
		min = hw_min + adj_range;
D
Dirk Brandewie 已提交
576 577 578
		value &= ~HWP_MIN_PERF(~0L);
		value |= HWP_MIN_PERF(min);

579
		adj_range = limits->max_perf_pct * range / 100;
580
		max = hw_min + adj_range;
581
		if (limits->no_turbo) {
582 583 584
			hw_max = HWP_GUARANTEED_PERF(cap);
			if (hw_max < max)
				max = hw_max;
D
Dirk Brandewie 已提交
585 586 587 588 589 590
		}

		value &= ~HWP_MAX_PERF(~0L);
		value |= HWP_MAX_PERF(max);
		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
	}
591
}
D
Dirk Brandewie 已提交
592

593 594 595 596 597 598 599 600
static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
{
	if (hwp_active)
		intel_pstate_hwp_set(policy->cpus);

	return 0;
}

601 602 603 604
static void intel_pstate_hwp_set_online_cpus(void)
{
	get_online_cpus();
	intel_pstate_hwp_set(cpu_online_mask);
D
Dirk Brandewie 已提交
605 606 607
	put_online_cpus();
}

608 609 610 611 612 613 614
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
	intel_pstate_reset_all_pid();
	return 0;
}
615

616 617 618 619 620
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
621
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
622 623 624 625 626 627 628

struct pid_param {
	char *name;
	void *value;
};

static struct pid_param pid_files[] = {
629 630 631 632 633 634
	{"sample_rate_ms", &pid_params.sample_rate_ms},
	{"d_gain_pct", &pid_params.d_gain_pct},
	{"i_gain_pct", &pid_params.i_gain_pct},
	{"deadband", &pid_params.deadband},
	{"setpoint", &pid_params.setpoint},
	{"p_gain_pct", &pid_params.p_gain_pct},
635 636 637
	{NULL, NULL}
};

638
static void __init intel_pstate_debug_expose_params(void)
639
{
640
	struct dentry *debugfs_parent;
641 642
	int i = 0;

D
Dirk Brandewie 已提交
643 644
	if (hwp_active)
		return;
645 646 647 648 649
	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
	while (pid_files[i].name) {
		debugfs_create_file(pid_files[i].name, 0660,
650 651
				    debugfs_parent, pid_files[i].value,
				    &fops_pid_param);
652 653 654 655 656 657 658 659 660 661 662
		i++;
	}
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
663
		return sprintf(buf, "%u\n", limits->object);		\
664 665
	}

666 667 668 669 670 671 672 673 674 675 676
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
677
	turbo_fp = div_fp(no_turbo, total);
678 679 680 681
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
	return sprintf(buf, "%u\n", turbo_pct);
}

682 683 684 685 686 687 688 689 690 691 692
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	return sprintf(buf, "%u\n", total);
}

693 694 695 696 697 698
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

	update_turbo_state();
699 700
	if (limits->turbo_disabled)
		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
701
	else
702
		ret = sprintf(buf, "%u\n", limits->no_turbo);
703 704 705 706

	return ret;
}

707
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
708
			      const char *buf, size_t count)
709 710 711
{
	unsigned int input;
	int ret;
712

713 714 715
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
716 717

	update_turbo_state();
718
	if (limits->turbo_disabled) {
J
Joe Perches 已提交
719
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
720
		return -EPERM;
721
	}
D
Dirk Brandewie 已提交
722

723
	limits->no_turbo = clamp_t(int, input, 0, 1);
724

D
Dirk Brandewie 已提交
725
	if (hwp_active)
726
		intel_pstate_hwp_set_online_cpus();
D
Dirk Brandewie 已提交
727

728 729 730 731
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
732
				  const char *buf, size_t count)
733 734 735
{
	unsigned int input;
	int ret;
736

737 738 739 740
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

741 742 743 744 745 746 747
	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
	limits->max_perf_pct = max(limits->min_perf_pct,
				   limits->max_perf_pct);
748
	limits->max_perf = div_fp(limits->max_perf_pct, 100);
749

D
Dirk Brandewie 已提交
750
	if (hwp_active)
751
		intel_pstate_hwp_set_online_cpus();
752 753 754 755
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
756
				  const char *buf, size_t count)
757 758 759
{
	unsigned int input;
	int ret;
760

761 762 763
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
764

765 766 767 768 769 770 771
	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->min_perf_pct = min(limits->max_perf_pct,
				   limits->min_perf_pct);
772
	limits->min_perf = div_fp(limits->min_perf_pct, 100);
773

D
Dirk Brandewie 已提交
774
	if (hwp_active)
775
		intel_pstate_hwp_set_online_cpus();
776 777 778 779 780 781 782 783 784
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
785
define_one_global_ro(turbo_pct);
786
define_one_global_ro(num_pstates);
787 788 789 790 791

static struct attribute *intel_pstate_attributes[] = {
	&no_turbo.attr,
	&max_perf_pct.attr,
	&min_perf_pct.attr,
792
	&turbo_pct.attr,
793
	&num_pstates.attr,
794 795 796 797 798 799 800
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

801
static void __init intel_pstate_sysfs_expose_params(void)
802
{
803
	struct kobject *intel_pstate_kobject;
804 805 806 807 808
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
	BUG_ON(!intel_pstate_kobject);
809
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
810 811 812
	BUG_ON(rc);
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
813

814
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
815
{
816
	/* First disable HWP notification interrupt as we don't process them */
817 818
	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
819

820
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
D
Dirk Brandewie 已提交
821 822
}

823
static int atom_get_min_pstate(void)
824 825
{
	u64 value;
826

827
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
828
	return (value >> 8) & 0x7F;
829 830
}

831
static int atom_get_max_pstate(void)
832 833
{
	u64 value;
834

835
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
836
	return (value >> 16) & 0x7F;
837
}
838

839
static int atom_get_turbo_pstate(void)
840 841
{
	u64 value;
842

843
	rdmsrl(ATOM_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
844
	return value & 0x7F;
845 846
}

847
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
848 849 850 851 852
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

853
	val = (u64)pstate << 8;
854
	if (limits->no_turbo && !limits->turbo_disabled)
855 856 857 858 859 860 861
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
862
	vid = ceiling_fp(vid_fp);
863

864 865 866
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

867
	return val | vid;
868 869
}

870
static int silvermont_get_scaling(void)
871 872 873
{
	u64 value;
	int i;
874 875 876
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
877 878

	rdmsrl(MSR_FSB_FREQ, value);
879 880
	i = value & 0x7;
	WARN_ON(i > 4);
881

882 883
	return silvermont_freq_table[i];
}
884

885 886 887 888 889 890 891 892 893 894 895 896 897 898
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
899 900
}

901
static void atom_get_vid(struct cpudata *cpudata)
902 903 904
{
	u64 value;

905
	rdmsrl(ATOM_VIDS, value);
D
Dirk Brandewie 已提交
906 907
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
908 909 910 911
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
912

913
	rdmsrl(ATOM_TURBO_VIDS, value);
914
	cpudata->vid.turbo = value & 0x7f;
915 916
}

917
static int core_get_min_pstate(void)
918 919
{
	u64 value;
920

921
	rdmsrl(MSR_PLATFORM_INFO, value);
922 923 924
	return (value >> 40) & 0xFF;
}

925
static int core_get_max_pstate_physical(void)
926 927
{
	u64 value;
928

929
	rdmsrl(MSR_PLATFORM_INFO, value);
930 931 932
	return (value >> 8) & 0xFF;
}

933
static int core_get_max_pstate(void)
934
{
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
	u64 tar;
	u64 plat_info;
	int max_pstate;
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
		/* Do some sanity checking for safety */
		if (plat_info & 0x600000000) {
			u64 tdp_ctrl;
			u64 tdp_ratio;
			int tdp_msr;

			err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
			if (err)
				goto skip_tar;

955
			tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x3);
956 957 958 959
			err = rdmsrl_safe(tdp_msr, &tdp_ratio);
			if (err)
				goto skip_tar;

960 961 962 963 964
			/* For level 1 and 2, bits[23:16] contain the ratio */
			if (tdp_ctrl)
				tdp_ratio >>= 16;

			tdp_ratio &= 0xff; /* ratios are only 8 bits long */
965 966 967 968 969 970 971 972
			if (tdp_ratio - 1 == tar) {
				max_pstate = tar;
				pr_debug("max_pstate=TAC %x\n", max_pstate);
			} else {
				goto skip_tar;
			}
		}
	}
973

974 975
skip_tar:
	return max_pstate;
976 977
}

978
static int core_get_turbo_pstate(void)
979 980 981
{
	u64 value;
	int nont, ret;
982

983
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
984
	nont = core_get_max_pstate();
985
	ret = (value) & 255;
986 987 988 989 990
	if (ret <= nont)
		ret = nont;
	return ret;
}

991 992 993 994 995
static inline int core_get_scaling(void)
{
	return 100000;
}

996
static u64 core_get_val(struct cpudata *cpudata, int pstate)
997 998 999
{
	u64 val;

1000
	val = (u64)pstate << 8;
1001
	if (limits->no_turbo && !limits->turbo_disabled)
1002 1003
		val |= (u64)1 << 32;

1004
	return val;
1005 1006
}

1007 1008 1009 1010 1011
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1012
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1013 1014 1015 1016 1017 1018 1019
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1031
		.get_max_physical = core_get_max_pstate_physical,
1032 1033
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
1034
		.get_scaling = core_get_scaling,
1035
		.get_val = core_get_val,
1036
		.get_target_pstate = get_target_pstate_use_performance,
1037 1038 1039
	},
};

1040
static const struct cpu_defaults silvermont_params = {
1041 1042 1043 1044 1045 1046 1047
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
1048
		.boost_iowait = true,
1049 1050 1051 1052 1053 1054
	},
	.funcs = {
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1055
		.get_val = atom_get_val,
1056 1057
		.get_scaling = silvermont_get_scaling,
		.get_vid = atom_get_vid,
1058
		.get_target_pstate = get_target_pstate_use_cpu_load,
1059 1060 1061
	},
};

1062
static const struct cpu_defaults airmont_params = {
1063 1064 1065
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
1066
		.setpoint = 60,
1067 1068 1069
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
1070
		.boost_iowait = true,
1071 1072
	},
	.funcs = {
1073 1074 1075 1076
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1077
		.get_val = atom_get_val,
1078
		.get_scaling = airmont_get_scaling,
1079
		.get_vid = atom_get_vid,
1080
		.get_target_pstate = get_target_pstate_use_cpu_load,
1081 1082 1083
	},
};

1084
static const struct cpu_defaults knl_params = {
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1095
		.get_max_physical = core_get_max_pstate_physical,
1096 1097
		.get_min = core_get_min_pstate,
		.get_turbo = knl_get_turbo_pstate,
1098
		.get_scaling = core_get_scaling,
1099
		.get_val = core_get_val,
1100
		.get_target_pstate = get_target_pstate_use_performance,
1101 1102 1103
	},
};

1104
static const struct cpu_defaults bxt_params = {
1105 1106 1107 1108 1109 1110 1111
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
1112
		.boost_iowait = true,
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
	},
	.funcs = {
		.get_max = core_get_max_pstate,
		.get_max_physical = core_get_max_pstate_physical,
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
		.get_scaling = core_get_scaling,
		.get_val = core_get_val,
		.get_target_pstate = get_target_pstate_use_cpu_load,
	},
};

1125 1126 1127
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
1128
	int max_perf_adj;
1129
	int min_perf;
1130

1131
	if (limits->no_turbo || limits->turbo_disabled)
1132 1133
		max_perf = cpu->pstate.max_pstate;

1134 1135 1136 1137 1138
	/*
	 * performance can be limited by user through sysfs, by cpufreq
	 * policy, or by cpu specific default values determined through
	 * experimentation.
	 */
1139
	max_perf_adj = fp_toint(max_perf * limits->max_perf);
1140 1141
	*max = clamp_t(int, max_perf_adj,
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1142

1143
	min_perf = fp_toint(max_perf * limits->min_perf);
1144
	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1145 1146
}

1147
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1148
{
1149 1150
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1151 1152 1153 1154 1155 1156 1157
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1158 1159
}

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
	int min_pstate, max_pstate;

	update_turbo_state();
	intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
	intel_pstate_set_pstate(cpu, max_pstate);
}

1174 1175
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1176 1177
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1178
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1179
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1180
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1181

1182 1183
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1184 1185

	intel_pstate_set_min_pstate(cpu);
1186 1187
}

1188
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1189
{
1190
	struct sample *sample = &cpu->sample;
1191

1192
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1193 1194
}

1195
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1196 1197
{
	u64 aperf, mperf;
1198
	unsigned long flags;
1199
	u64 tsc;
1200

1201
	local_irq_save(flags);
1202 1203
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1204
	tsc = rdtsc();
1205
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1206
		local_irq_restore(flags);
1207
		return false;
1208
	}
1209
	local_irq_restore(flags);
1210

1211
	cpu->last_sample_time = cpu->sample.time;
1212
	cpu->sample.time = time;
1213 1214
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1215
	cpu->sample.tsc =  tsc;
1216 1217
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1218
	cpu->sample.tsc -= cpu->prev_tsc;
1219

1220 1221
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1222
	cpu->prev_tsc = tsc;
1223 1224 1225 1226 1227 1228 1229 1230
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
	return !!cpu->last_sample_time;
1231 1232
}

1233 1234
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1235 1236
	return mul_ext_fp(cpu->sample.core_avg_perf,
			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1237 1238
}

1239 1240
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1241 1242
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1243 1244
}

1245 1246 1247
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
1248
	int32_t busy_frac, boost;
1249
	int target, avg_pstate;
1250

1251
	busy_frac = div_fp(sample->mperf, sample->tsc);
1252

1253 1254
	boost = cpu->iowait_boost;
	cpu->iowait_boost >>= 1;
1255

1256 1257
	if (busy_frac < boost)
		busy_frac = boost;
1258

1259
	sample->busy_scaled = busy_frac * 100;
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

	target = limits->no_turbo || limits->turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1280 1281
}

1282
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1283
{
1284
	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1285
	u64 duration_ns;
1286

1287
	/*
1288 1289 1290 1291 1292
	 * perf_scaled is the ratio of the average P-state during the last
	 * sampling period to the P-state requested last time (in percent).
	 *
	 * That measures the system's response to the previous P-state
	 * selection.
1293
	 */
1294 1295
	max_pstate = cpu->pstate.max_pstate_physical;
	current_pstate = cpu->pstate.current_pstate;
1296
	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1297
			       div_fp(100 * max_pstate, current_pstate));
1298

1299
	/*
1300 1301 1302
	 * Since our utilization update callback will not run unless we are
	 * in C0, check if the actual elapsed time is significantly greater (3x)
	 * than our sample interval.  If it is, then we were idle for a long
1303
	 * enough period of time to adjust our performance metric.
1304
	 */
1305
	duration_ns = cpu->sample.time - cpu->last_sample_time;
1306
	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1307
		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1308
		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1309 1310 1311
	} else {
		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
		if (sample_ratio < int_tofp(1))
1312
			perf_scaled = 0;
1313 1314
	}

1315 1316
	cpu->sample.busy_scaled = perf_scaled;
	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1317 1318
}

1319 1320 1321 1322 1323 1324 1325 1326
static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
	int max_perf, min_perf;

	update_turbo_state();

	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
	pstate = clamp_t(int, pstate, min_perf, max_perf);
1327
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1328 1329 1330
	if (pstate == cpu->pstate.current_pstate)
		return;

1331
	cpu->pstate.current_pstate = pstate;
1332 1333 1334
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1335 1336
static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
1337
	int from, target_pstate;
1338 1339 1340
	struct sample *sample;

	from = cpu->pstate.current_pstate;
1341

1342 1343
	target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
		cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1344

1345
	intel_pstate_update_pstate(cpu, target_pstate);
1346 1347

	sample = &cpu->sample;
1348
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1349
		fp_toint(sample->busy_scaled),
1350 1351 1352 1353 1354
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1355 1356
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1357 1358
}

1359
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1360
				     unsigned int flags)
1361
{
1362
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
	u64 delta_ns;

	if (pid_params.boost_iowait) {
		if (flags & SCHED_CPUFREQ_IOWAIT) {
			cpu->iowait_boost = int_tofp(1);
		} else if (cpu->iowait_boost) {
			/* Clear iowait_boost if the CPU may have been idle. */
			delta_ns = time - cpu->last_update;
			if (delta_ns > TICK_NSEC)
				cpu->iowait_boost = 0;
		}
		cpu->last_update = time;
	}
1376

1377
	delta_ns = time - cpu->sample.time;
1378
	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1379 1380
		bool sample_taken = intel_pstate_sample(cpu, time);

1381
		if (sample_taken) {
1382
			intel_pstate_calc_avg_perf(cpu);
1383 1384 1385
			if (!hwp_active)
				intel_pstate_adjust_busy_pstate(cpu);
		}
1386
	}
1387 1388 1389
}

#define ICPU(model, policy) \
1390 1391
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1392 1393

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_params),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_params),
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_params),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_params),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_params),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_params),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_params),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_params),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_params),
1411
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_params),
1412 1413 1414 1415
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1416
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1417
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1418 1419
	ICPU(INTEL_FAM6_BROADWELL_X, core_params),
	ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
D
Dirk Brandewie 已提交
1420 1421 1422
	{}
};

1423 1424 1425 1426
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1427 1428 1429
	if (!all_cpu_data[cpunum])
		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
					       GFP_KERNEL);
1430 1431 1432 1433 1434 1435
	if (!all_cpu_data[cpunum])
		return -ENOMEM;

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1436

1437
	if (hwp_active) {
1438
		intel_pstate_hwp_enable(cpu);
1439 1440 1441
		pid_params.sample_rate_ms = 50;
		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
	}
1442

1443
	intel_pstate_get_cpu_pstates(cpu);
1444

1445 1446
	intel_pstate_busy_pid_reset(cpu);

J
Joe Perches 已提交
1447
	pr_debug("controlling: cpu %d\n", cpunum);
1448 1449 1450 1451 1452 1453

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
1454
	struct cpudata *cpu = all_cpu_data[cpu_num];
1455

1456
	return cpu ? get_avg_frequency(cpu) : 0;
1457 1458
}

1459
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1460
{
1461 1462
	struct cpudata *cpu = all_cpu_data[cpu_num];

1463 1464 1465
	if (cpu->update_util_set)
		return;

1466 1467
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1468 1469
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
				     intel_pstate_update_util);
1470
	cpu->update_util_set = true;
1471 1472 1473 1474
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1475 1476 1477 1478 1479
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

1480
	cpufreq_remove_update_util_hook(cpu);
1481
	cpu_data->update_util_set = false;
1482 1483 1484
	synchronize_sched();
}

1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
static void intel_pstate_set_performance_limits(struct perf_limits *limits)
{
	limits->no_turbo = 0;
	limits->turbo_disabled = 0;
	limits->max_perf_pct = 100;
	limits->max_perf = int_tofp(1);
	limits->min_perf_pct = 100;
	limits->min_perf = int_tofp(1);
	limits->max_policy_pct = 100;
	limits->max_sysfs_pct = 100;
	limits->min_policy_pct = 0;
	limits->min_sysfs_pct = 0;
}

1499 1500
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
1501 1502
	struct cpudata *cpu;

1503 1504 1505
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

1506 1507 1508
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

1509
	cpu = all_cpu_data[policy->cpu];
1510 1511
	cpu->policy = policy->policy;

1512 1513 1514 1515 1516
	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
1517 1518
	}

1519
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
1520
		limits = &performance_limits;
1521
		if (policy->max >= policy->cpuinfo.max_freq) {
J
Joe Perches 已提交
1522
			pr_debug("set performance\n");
1523 1524 1525 1526
			intel_pstate_set_performance_limits(limits);
			goto out;
		}
	} else {
J
Joe Perches 已提交
1527
		pr_debug("set powersave\n");
1528
		limits = &powersave_limits;
1529
	}
D
Dirk Brandewie 已提交
1530

1531 1532
	limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
	limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1533 1534
	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
					      policy->cpuinfo.max_freq);
1535
	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1536 1537

	/* Normalize user input to [min_policy_pct, max_policy_pct] */
1538 1539 1540 1541 1542 1543 1544 1545
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
1546 1547

	/* Make sure min_perf_pct <= max_perf_pct */
1548
	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1549

1550 1551
	limits->min_perf = div_fp(limits->min_perf_pct, 100);
	limits->max_perf = div_fp(limits->max_perf_pct, 100);
1552
	limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1553

1554
 out:
1555
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
1556 1557 1558 1559 1560 1561 1562 1563
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
	}

1564 1565
	intel_pstate_set_update_util_hook(policy->cpu);

1566
	intel_pstate_hwp_set_policy(policy);
D
Dirk Brandewie 已提交
1567

1568 1569 1570 1571 1572
	return 0;
}

static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
1573
	cpufreq_verify_within_cpu_limits(policy);
1574

1575
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1576
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1577 1578 1579 1580 1581
		return -EINVAL;

	return 0;
}

1582
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1583
{
1584 1585
	int cpu_num = policy->cpu;
	struct cpudata *cpu = all_cpu_data[cpu_num];
1586

J
Joe Perches 已提交
1587
	pr_debug("CPU %d exiting\n", cpu_num);
1588

1589
	intel_pstate_clear_update_util_hook(cpu_num);
1590

D
Dirk Brandewie 已提交
1591 1592 1593
	if (hwp_active)
		return;

1594
	intel_pstate_set_min_pstate(cpu);
1595 1596
}

1597
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1598 1599
{
	struct cpudata *cpu;
1600
	int rc;
1601 1602 1603 1604 1605 1606 1607

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

1608
	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1609 1610 1611 1612
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;

1613 1614
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1615 1616

	/* cpuinfo and default policy values */
1617
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1618 1619 1620 1621 1622
	update_turbo_state();
	policy->cpuinfo.max_freq = limits->turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

1623
	intel_pstate_init_acpi_perf_limits(policy);
1624 1625 1626 1627 1628 1629
	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
	cpumask_set_cpu(policy->cpu, policy->cpus);

	return 0;
}

1630 1631 1632 1633 1634 1635 1636
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);

	return 0;
}

1637 1638 1639 1640
static struct cpufreq_driver intel_pstate_driver = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
1641
	.resume		= intel_pstate_hwp_set_policy,
1642 1643
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
1644
	.exit		= intel_pstate_cpu_exit,
1645
	.stop_cpu	= intel_pstate_stop_cpu,
1646 1647 1648
	.name		= "intel_pstate",
};

1649 1650 1651
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
1652
static unsigned int force_load __initdata;
1653

1654
static int __init intel_pstate_msrs_not_valid(void)
1655
{
1656
	if (!pstate_funcs.get_max() ||
1657 1658
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
1659 1660 1661 1662
		return -ENODEV;

	return 0;
}
1663

1664
static void __init copy_pid_params(struct pstate_adjust_policy *policy)
1665 1666
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
1667
	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1668 1669 1670 1671 1672 1673 1674
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

1675
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
1676 1677
{
	pstate_funcs.get_max   = funcs->get_max;
1678
	pstate_funcs.get_max_physical = funcs->get_max_physical;
1679 1680
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
1681
	pstate_funcs.get_scaling = funcs->get_scaling;
1682
	pstate_funcs.get_val   = funcs->get_val;
1683
	pstate_funcs.get_vid   = funcs->get_vid;
1684 1685
	pstate_funcs.get_target_pstate = funcs->get_target_pstate;

1686 1687
}

1688
#ifdef CONFIG_ACPI
1689

1690
static bool __init intel_pstate_no_acpi_pss(void)
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

1719
static bool __init intel_pstate_has_acpi_ppc(void)
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

1739 1740 1741 1742
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1743
	int  oem_pwr_table;
1744 1745 1746
};

/* Hardware vendor-specific info that has its own power management modes */
1747
static struct hw_vendor_info vendor_info[] __initdata = {
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
1759 1760 1761 1762
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
1763 1764 1765
	{0, "", ""},
};

1766
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
1767 1768 1769
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
1770 1771 1772 1773 1774 1775 1776 1777 1778
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
1779

1780 1781
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1782 1783 1784
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
1785
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1786 1787 1788 1789 1790 1791
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
1792 1793
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
1794
			}
1795 1796 1797 1798 1799 1800
	}

	return false;
}
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1801
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1802 1803
#endif /* CONFIG_ACPI */

1804 1805 1806 1807 1808
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

1809 1810
static int __init intel_pstate_init(void)
{
1811
	int cpu, rc = 0;
1812
	const struct x86_cpu_id *id;
1813
	struct cpu_defaults *cpu_def;
1814

1815 1816 1817
	if (no_load)
		return -ENODEV;

1818 1819 1820 1821 1822 1823
	if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
		copy_cpu_funcs(&core_params.funcs);
		hwp_active++;
		goto hwp_cpu_matched;
	}

1824 1825 1826 1827
	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

1828
	cpu_def = (struct cpu_defaults *)id->driver_data;
1829

1830 1831
	copy_pid_params(&cpu_def->pid_policy);
	copy_cpu_funcs(&cpu_def->funcs);
1832

1833 1834 1835
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

1836 1837 1838 1839 1840 1841 1842 1843
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

J
Joe Perches 已提交
1844
	pr_info("Intel P-state driver initializing\n");
1845

1846
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1847 1848 1849
	if (!all_cpu_data)
		return -ENOMEM;

1850 1851 1852
	if (!hwp_active && hwp_only)
		goto out;

1853 1854 1855 1856 1857 1858
	rc = cpufreq_register_driver(&intel_pstate_driver);
	if (rc)
		goto out;

	intel_pstate_debug_expose_params();
	intel_pstate_sysfs_expose_params();
1859

1860
	if (hwp_active)
J
Joe Perches 已提交
1861
		pr_info("HWP enabled\n");
1862

1863 1864
	return rc;
out:
1865 1866 1867
	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
1868
			intel_pstate_clear_update_util_hook(cpu);
1869 1870 1871 1872 1873 1874
			kfree(all_cpu_data[cpu]);
		}
	}

	put_online_cpus();
	vfree(all_cpu_data);
1875 1876 1877 1878
	return -ENODEV;
}
device_initcall(intel_pstate_init);

1879 1880 1881 1882 1883 1884 1885
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

	if (!strcmp(str, "disable"))
		no_load = 1;
1886
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
1887
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
1888
		no_hwp = 1;
1889
	}
1890 1891
	if (!strcmp(str, "force"))
		force_load = 1;
1892 1893
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
1894 1895 1896 1897 1898 1899

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

1900 1901 1902 1903
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

1904 1905 1906
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");