intel_pstate.c 46.1 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
30
#include <linux/acpi.h>
31
#include <linux/vmalloc.h>
32 33 34 35 36
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
37
#include <asm/cpufeature.h>
38

39 40 41 42
#define ATOM_RATIOS		0x66a
#define ATOM_VIDS		0x66b
#define ATOM_TURBO_RATIOS	0x66c
#define ATOM_TURBO_VIDS		0x66d
43

44 45 46 47
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
#endif

48
#define FRAC_BITS 8
49 50
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
51

52 53 54 55 56
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

57
static inline int32_t div_fp(s64 x, s64 y)
58
{
59
	return div64_s64((int64_t)x << FRAC_BITS, y);
60 61
}

62 63 64 65 66 67 68 69 70 71 72
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
/**
 * struct sample -	Store performance sample
 * @core_pct_busy:	Ratio of APERF/MPERF in percent, which is actual
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
 *			P state. This can be different than core_pct_busy
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @freq:		Effective frequency calculated from APERF/MPERF
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
92
struct sample {
93
	int32_t core_pct_busy;
94
	int32_t busy_scaled;
95 96
	u64 aperf;
	u64 mperf;
97
	u64 tsc;
98
	int freq;
99
	u64 time;
100 101
};

102 103 104 105 106 107 108 109 110 111 112 113 114 115
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
 *
 * Stores the per cpu model P state limits and current P state.
 */
116 117 118 119
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
120
	int	max_pstate_physical;
121
	int	scaling;
122 123 124
	int	turbo_pstate;
};

125 126 127 128 129 130 131 132 133 134 135 136 137
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
138
struct vid_data {
139 140 141
	int min;
	int max;
	int turbo;
142 143 144
	int32_t ratio;
};

145 146 147 148 149 150 151 152 153 154 155 156
/**
 * struct _pid -	Stores PID data
 * @setpoint:		Target set point for busyness or performance
 * @integral:		Storage for accumulated error values
 * @p_gain:		PID proportional gain
 * @i_gain:		PID integral gain
 * @d_gain:		PID derivative gain
 * @deadband:		PID deadband
 * @last_err:		Last error storage for integral part of PID calculation
 *
 * Stores PID coefficients and last error for PID controller.
 */
157 158 159 160 161 162 163
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
164
	int32_t last_err;
165 166
};

167 168 169 170 171 172 173 174 175 176 177 178 179 180
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
 * @update_util:	CPUFreq utility callback information
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @pid:		Stores PID parameters for this CPU
 * @last_sample_time:	Last Sample time
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
181 182
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
183 184 185
 *
 * This structure stores per CPU instance data for all CPUs.
 */
186 187 188
struct cpudata {
	int cpu;

189
	struct update_util_data update_util;
190 191

	struct pstate_data pstate;
192
	struct vid_data vid;
193 194
	struct _pid pid;

195
	u64	last_sample_time;
196 197
	u64	prev_aperf;
	u64	prev_mperf;
198
	u64	prev_tsc;
199
	u64	prev_cummulative_iowait;
200
	struct sample sample;
201 202 203 204
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
205 206 207
};

static struct cpudata **all_cpu_data;
208 209 210 211 212 213 214 215 216 217 218 219 220

/**
 * struct pid_adjust_policy - Stores static PID configuration data
 * @sample_rate_ms:	PID calculation sample rate in ms
 * @sample_rate_ns:	Sample rate calculation in ns
 * @deadband:		PID deadband
 * @setpoint:		PID Setpoint
 * @p_gain_pct:		PID proportional gain
 * @i_gain_pct:		PID integral gain
 * @d_gain_pct:		PID derivative gain
 *
 * Stores per CPU model static PID configuration data.
 */
221 222
struct pstate_adjust_policy {
	int sample_rate_ms;
223
	s64 sample_rate_ns;
224 225 226 227 228 229 230
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

231 232 233 234 235 236 237 238 239 240 241 242 243 244
/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 * @get_target_pstate:	Callback to a function to calculate next P state to use
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
245 246
struct pstate_funcs {
	int (*get_max)(void);
247
	int (*get_max_physical)(void);
248 249
	int (*get_min)(void);
	int (*get_turbo)(void);
250
	int (*get_scaling)(void);
251
	u64 (*get_val)(struct cpudata*, int pstate);
252
	void (*get_vid)(struct cpudata *);
253
	int32_t (*get_target_pstate)(struct cpudata *);
254 255
};

256 257 258 259 260
/**
 * struct cpu_defaults- Per CPU model default config data
 * @pid_policy:	PID config data
 * @funcs:		Callback function data
 */
261 262 263
struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
264 265
};

266
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
267
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
268

269 270
static struct pstate_adjust_policy pid_params;
static struct pstate_funcs pstate_funcs;
D
Dirk Brandewie 已提交
271
static int hwp_active;
272

273 274 275
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303

/**
 * struct perf_limits - Store user and policy limits
 * @no_turbo:		User requested turbo state from intel_pstate sysfs
 * @turbo_disabled:	Platform turbo status either from msr
 *			MSR_IA32_MISC_ENABLE or when maximum available pstate
 *			matches the maximum turbo pstate
 * @max_perf_pct:	Effective maximum performance limit in percentage, this
 *			is minimum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @min_perf_pct:	Effective minimum performance limit in percentage, this
 *			is maximum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
 *			This value is used to limit max pstate
 * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
 *			This value is used to limit min pstate
 * @max_policy_pct:	The maximum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @max_sysfs_pct:	The maximum performance in percentage enforced by
 *			intel pstate sysfs interface
 * @min_policy_pct:	The minimum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @min_sysfs_pct:	The minimum performance in percentage enforced by
 *			intel pstate sysfs interface
 *
 * Storage for user and policy defined limits.
 */
304 305
struct perf_limits {
	int no_turbo;
306
	int turbo_disabled;
307 308 309 310
	int max_perf_pct;
	int min_perf_pct;
	int32_t max_perf;
	int32_t min_perf;
311 312
	int max_policy_pct;
	int max_sysfs_pct;
313 314
	int min_policy_pct;
	int min_sysfs_pct;
315 316
};

317 318 319 320 321 322 323 324 325 326 327 328 329 330
static struct perf_limits performance_limits = {
	.no_turbo = 0,
	.turbo_disabled = 0,
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 100,
	.min_perf = int_tofp(1),
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
};

static struct perf_limits powersave_limits = {
331
	.no_turbo = 0,
332
	.turbo_disabled = 0,
333 334 335 336
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 0,
	.min_perf = 0,
337 338
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
339 340
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
341 342
};

343 344 345 346 347 348
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
static struct perf_limits *limits = &performance_limits;
#else
static struct perf_limits *limits = &powersave_limits;
#endif

349
#ifdef CONFIG_ACPI
350 351 352 353 354 355 356 357 358 359

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

	return acpi_ppc;
}

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
/*
 * The max target pstate ratio is a 8 bit value in both PLATFORM_INFO MSR and
 * in TURBO_RATIO_LIMIT MSR, which pstate driver stores in max_pstate and
 * max_turbo_pstate fields. The PERF_CTL MSR contains 16 bit value for P state
 * ratio, out of it only high 8 bits are used. For example 0x1700 is setting
 * target ratio 0x17. The _PSS control value stores in a format which can be
 * directly written to PERF_CTL MSR. But in intel_pstate driver this shift
 * occurs during write to PERF_CTL (E.g. for cores core_set_pstate()).
 * This function converts the _PSS control value to intel pstate driver format
 * for comparison and assignment.
 */
static int convert_to_native_pstate_format(struct cpudata *cpu, int index)
{
	return cpu->acpi_perf_data.states[index].control >> 8;
}

static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int turbo_pss_ctl;
	int ret;
	int i;

383
	if (!intel_pstate_get_ppc_enable_status())
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
	 * correct max turbo frequency based on the turbo ratio.
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
	turbo_pss_ctl = convert_to_native_pstate_format(cpu, 0);
	if (turbo_pss_ctl > cpu->pstate.max_pstate)
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
	pr_info("_PPC limits will be enforced\n");

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}

#else
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
}
#endif

464
static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
465
			     int deadband, int integral) {
466 467
	pid->setpoint = int_tofp(setpoint);
	pid->deadband  = int_tofp(deadband);
468
	pid->integral  = int_tofp(integral);
469
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
470 471 472 473
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
474
	pid->p_gain = div_fp(percent, 100);
475 476 477 478
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
479
	pid->i_gain = div_fp(percent, 100);
480 481 482 483
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{
484
	pid->d_gain = div_fp(percent, 100);
485 486
}

487
static signed int pid_calc(struct _pid *pid, int32_t busy)
488
{
489
	signed int result;
490 491 492
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

493
	fp_error = pid->setpoint - busy;
494

495
	if (abs(fp_error) <= pid->deadband)
496 497 498 499 500 501
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

502 503 504 505 506 507 508 509
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
510 511 512 513 514 515
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

516 517
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
518 519

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
520
	result = result + (1 << (FRAC_BITS-1));
521 522 523 524 525
	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
526 527 528
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
529

530
	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
531 532 533 534 535
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
536

537 538 539 540 541 542
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

543 544 545 546 547 548 549
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
550
	limits->turbo_disabled =
551 552 553 554
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

555
static void intel_pstate_hwp_set(const struct cpumask *cpumask)
D
Dirk Brandewie 已提交
556
{
557 558 559 560 561 562 563
	int min, hw_min, max, hw_max, cpu, range, adj_range;
	u64 value, cap;

	rdmsrl(MSR_HWP_CAPABILITIES, cap);
	hw_min = HWP_LOWEST_PERF(cap);
	hw_max = HWP_HIGHEST_PERF(cap);
	range = hw_max - hw_min;
D
Dirk Brandewie 已提交
564

565
	for_each_cpu(cpu, cpumask) {
D
Dirk Brandewie 已提交
566
		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
567
		adj_range = limits->min_perf_pct * range / 100;
568
		min = hw_min + adj_range;
D
Dirk Brandewie 已提交
569 570 571
		value &= ~HWP_MIN_PERF(~0L);
		value |= HWP_MIN_PERF(min);

572
		adj_range = limits->max_perf_pct * range / 100;
573
		max = hw_min + adj_range;
574
		if (limits->no_turbo) {
575 576 577
			hw_max = HWP_GUARANTEED_PERF(cap);
			if (hw_max < max)
				max = hw_max;
D
Dirk Brandewie 已提交
578 579 580 581 582 583
		}

		value &= ~HWP_MAX_PERF(~0L);
		value |= HWP_MAX_PERF(max);
		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
	}
584
}
D
Dirk Brandewie 已提交
585

586 587 588 589
static void intel_pstate_hwp_set_online_cpus(void)
{
	get_online_cpus();
	intel_pstate_hwp_set(cpu_online_mask);
D
Dirk Brandewie 已提交
590 591 592
	put_online_cpus();
}

593 594 595 596 597 598 599
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
	intel_pstate_reset_all_pid();
	return 0;
}
600

601 602 603 604 605
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
606
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
607 608 609 610 611 612 613

struct pid_param {
	char *name;
	void *value;
};

static struct pid_param pid_files[] = {
614 615 616 617 618 619
	{"sample_rate_ms", &pid_params.sample_rate_ms},
	{"d_gain_pct", &pid_params.d_gain_pct},
	{"i_gain_pct", &pid_params.i_gain_pct},
	{"deadband", &pid_params.deadband},
	{"setpoint", &pid_params.setpoint},
	{"p_gain_pct", &pid_params.p_gain_pct},
620 621 622
	{NULL, NULL}
};

623
static void __init intel_pstate_debug_expose_params(void)
624
{
625
	struct dentry *debugfs_parent;
626 627
	int i = 0;

D
Dirk Brandewie 已提交
628 629
	if (hwp_active)
		return;
630 631 632 633 634
	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
	while (pid_files[i].name) {
		debugfs_create_file(pid_files[i].name, 0660,
635 636
				    debugfs_parent, pid_files[i].value,
				    &fops_pid_param);
637 638 639 640 641 642 643 644 645 646 647
		i++;
	}
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
648
		return sprintf(buf, "%u\n", limits->object);		\
649 650
	}

651 652 653 654 655 656 657 658 659 660 661
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
662
	turbo_fp = div_fp(no_turbo, total);
663 664 665 666
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
	return sprintf(buf, "%u\n", turbo_pct);
}

667 668 669 670 671 672 673 674 675 676 677
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	return sprintf(buf, "%u\n", total);
}

678 679 680 681 682 683
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

	update_turbo_state();
684 685
	if (limits->turbo_disabled)
		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
686
	else
687
		ret = sprintf(buf, "%u\n", limits->no_turbo);
688 689 690 691

	return ret;
}

692
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
693
			      const char *buf, size_t count)
694 695 696
{
	unsigned int input;
	int ret;
697

698 699 700
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
701 702

	update_turbo_state();
703
	if (limits->turbo_disabled) {
J
Joe Perches 已提交
704
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
705
		return -EPERM;
706
	}
D
Dirk Brandewie 已提交
707

708
	limits->no_turbo = clamp_t(int, input, 0, 1);
709

D
Dirk Brandewie 已提交
710
	if (hwp_active)
711
		intel_pstate_hwp_set_online_cpus();
D
Dirk Brandewie 已提交
712

713 714 715 716
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
717
				  const char *buf, size_t count)
718 719 720
{
	unsigned int input;
	int ret;
721

722 723 724 725
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

726 727 728 729 730 731 732
	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
	limits->max_perf_pct = max(limits->min_perf_pct,
				   limits->max_perf_pct);
733
	limits->max_perf = div_fp(limits->max_perf_pct, 100);
734

D
Dirk Brandewie 已提交
735
	if (hwp_active)
736
		intel_pstate_hwp_set_online_cpus();
737 738 739 740
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
741
				  const char *buf, size_t count)
742 743 744
{
	unsigned int input;
	int ret;
745

746 747 748
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
749

750 751 752 753 754 755 756
	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->min_perf_pct = min(limits->max_perf_pct,
				   limits->min_perf_pct);
757
	limits->min_perf = div_fp(limits->min_perf_pct, 100);
758

D
Dirk Brandewie 已提交
759
	if (hwp_active)
760
		intel_pstate_hwp_set_online_cpus();
761 762 763 764 765 766 767 768 769
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
770
define_one_global_ro(turbo_pct);
771
define_one_global_ro(num_pstates);
772 773 774 775 776

static struct attribute *intel_pstate_attributes[] = {
	&no_turbo.attr,
	&max_perf_pct.attr,
	&min_perf_pct.attr,
777
	&turbo_pct.attr,
778
	&num_pstates.attr,
779 780 781 782 783 784 785
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

786
static void __init intel_pstate_sysfs_expose_params(void)
787
{
788
	struct kobject *intel_pstate_kobject;
789 790 791 792 793
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
	BUG_ON(!intel_pstate_kobject);
794
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
795 796 797
	BUG_ON(rc);
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
798

799
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
800
{
801 802 803
	/* First disable HWP notification interrupt as we don't process them */
	wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);

804
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
D
Dirk Brandewie 已提交
805 806
}

807
static int atom_get_min_pstate(void)
808 809
{
	u64 value;
810

811
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
812
	return (value >> 8) & 0x7F;
813 814
}

815
static int atom_get_max_pstate(void)
816 817
{
	u64 value;
818

819
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
820
	return (value >> 16) & 0x7F;
821
}
822

823
static int atom_get_turbo_pstate(void)
824 825
{
	u64 value;
826

827
	rdmsrl(ATOM_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
828
	return value & 0x7F;
829 830
}

831
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
832 833 834 835 836
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

837
	val = (u64)pstate << 8;
838
	if (limits->no_turbo && !limits->turbo_disabled)
839 840 841 842 843 844 845
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
846
	vid = ceiling_fp(vid_fp);
847

848 849 850
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

851
	return val | vid;
852 853
}

854
static int silvermont_get_scaling(void)
855 856 857
{
	u64 value;
	int i;
858 859 860
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
861 862

	rdmsrl(MSR_FSB_FREQ, value);
863 864
	i = value & 0x7;
	WARN_ON(i > 4);
865

866 867
	return silvermont_freq_table[i];
}
868

869 870 871 872 873 874 875 876 877 878 879 880 881 882
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
883 884
}

885
static void atom_get_vid(struct cpudata *cpudata)
886 887 888
{
	u64 value;

889
	rdmsrl(ATOM_VIDS, value);
D
Dirk Brandewie 已提交
890 891
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
892 893 894 895
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
896

897
	rdmsrl(ATOM_TURBO_VIDS, value);
898
	cpudata->vid.turbo = value & 0x7f;
899 900
}

901
static int core_get_min_pstate(void)
902 903
{
	u64 value;
904

905
	rdmsrl(MSR_PLATFORM_INFO, value);
906 907 908
	return (value >> 40) & 0xFF;
}

909
static int core_get_max_pstate_physical(void)
910 911
{
	u64 value;
912

913
	rdmsrl(MSR_PLATFORM_INFO, value);
914 915 916
	return (value >> 8) & 0xFF;
}

917
static int core_get_max_pstate(void)
918
{
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
	u64 tar;
	u64 plat_info;
	int max_pstate;
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
		/* Do some sanity checking for safety */
		if (plat_info & 0x600000000) {
			u64 tdp_ctrl;
			u64 tdp_ratio;
			int tdp_msr;

			err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
			if (err)
				goto skip_tar;

			tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
			err = rdmsrl_safe(tdp_msr, &tdp_ratio);
			if (err)
				goto skip_tar;

			if (tdp_ratio - 1 == tar) {
				max_pstate = tar;
				pr_debug("max_pstate=TAC %x\n", max_pstate);
			} else {
				goto skip_tar;
			}
		}
	}
952

953 954
skip_tar:
	return max_pstate;
955 956
}

957
static int core_get_turbo_pstate(void)
958 959 960
{
	u64 value;
	int nont, ret;
961

962
	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
963
	nont = core_get_max_pstate();
964
	ret = (value) & 255;
965 966 967 968 969
	if (ret <= nont)
		ret = nont;
	return ret;
}

970 971 972 973 974
static inline int core_get_scaling(void)
{
	return 100000;
}

975
static u64 core_get_val(struct cpudata *cpudata, int pstate)
976 977 978
{
	u64 val;

979
	val = (u64)pstate << 8;
980
	if (limits->no_turbo && !limits->turbo_disabled)
981 982
		val |= (u64)1 << 32;

983
	return val;
984 985
}

986 987 988 989 990 991 992 993 994 995 996 997 998
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1010
		.get_max_physical = core_get_max_pstate_physical,
1011 1012
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
1013
		.get_scaling = core_get_scaling,
1014
		.get_val = core_get_val,
1015
		.get_target_pstate = get_target_pstate_use_performance,
1016 1017 1018
	},
};

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
static struct cpu_defaults silvermont_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1033
		.get_val = atom_get_val,
1034 1035
		.get_scaling = silvermont_get_scaling,
		.get_vid = atom_get_vid,
1036
		.get_target_pstate = get_target_pstate_use_cpu_load,
1037 1038 1039 1040
	},
};

static struct cpu_defaults airmont_params = {
1041 1042 1043
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
1044
		.setpoint = 60,
1045 1046 1047 1048 1049
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
1050 1051 1052 1053
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1054
		.get_val = atom_get_val,
1055
		.get_scaling = airmont_get_scaling,
1056
		.get_vid = atom_get_vid,
1057
		.get_target_pstate = get_target_pstate_use_cpu_load,
1058 1059 1060
	},
};

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
static struct cpu_defaults knl_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1072
		.get_max_physical = core_get_max_pstate_physical,
1073 1074
		.get_min = core_get_min_pstate,
		.get_turbo = knl_get_turbo_pstate,
1075
		.get_scaling = core_get_scaling,
1076
		.get_val = core_get_val,
1077
		.get_target_pstate = get_target_pstate_use_performance,
1078 1079 1080
	},
};

1081 1082 1083
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
1084
	int max_perf_adj;
1085
	int min_perf;
1086

1087
	if (limits->no_turbo || limits->turbo_disabled)
1088 1089
		max_perf = cpu->pstate.max_pstate;

1090 1091 1092 1093 1094
	/*
	 * performance can be limited by user through sysfs, by cpufreq
	 * policy, or by cpu specific default values determined through
	 * experimentation.
	 */
1095
	max_perf_adj = fp_toint(max_perf * limits->max_perf);
1096 1097
	*max = clamp_t(int, max_perf_adj,
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1098

1099
	min_perf = fp_toint(max_perf * limits->min_perf);
1100
	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1101 1102
}

1103
static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate)
1104
{
1105
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1106
	cpu->pstate.current_pstate = pstate;
1107
}
1108

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	int pstate = cpu->pstate.min_pstate;

	intel_pstate_record_pstate(cpu, pstate);
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1121 1122 1123 1124
}

static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1125 1126
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1127
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1128
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1129
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1130

1131 1132
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1133 1134

	intel_pstate_set_min_pstate(cpu);
1135 1136
}

1137
static inline void intel_pstate_calc_busy(struct cpudata *cpu)
1138
{
1139
	struct sample *sample = &cpu->sample;
1140
	int64_t core_pct;
1141

1142 1143
	core_pct = sample->aperf * int_tofp(100);
	core_pct = div64_u64(core_pct, sample->mperf);
1144

1145
	sample->core_pct_busy = (int32_t)core_pct;
1146 1147
}

1148
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1149 1150
{
	u64 aperf, mperf;
1151
	unsigned long flags;
1152
	u64 tsc;
1153

1154
	local_irq_save(flags);
1155 1156
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1157
	tsc = rdtsc();
1158
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1159
		local_irq_restore(flags);
1160
		return false;
1161
	}
1162
	local_irq_restore(flags);
1163

1164
	cpu->last_sample_time = cpu->sample.time;
1165
	cpu->sample.time = time;
1166 1167
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1168
	cpu->sample.tsc =  tsc;
1169 1170
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1171
	cpu->sample.tsc -= cpu->prev_tsc;
1172

1173 1174
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1175
	cpu->prev_tsc = tsc;
1176 1177 1178 1179 1180 1181 1182 1183
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
	return !!cpu->last_sample_time;
1184 1185
}

1186 1187 1188 1189 1190 1191
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
	return div64_u64(cpu->pstate.max_pstate_physical * cpu->sample.aperf *
		cpu->pstate.scaling, cpu->sample.mperf);
}

1192 1193 1194 1195 1196 1197
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
	return div64_u64(cpu->pstate.max_pstate_physical * cpu->sample.aperf,
			 cpu->sample.mperf);
}

1198 1199 1200
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
1201 1202 1203
	u64 cummulative_iowait, delta_iowait_us;
	u64 delta_iowait_mperf;
	u64 mperf, now;
1204 1205
	int32_t cpu_load;

1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
	cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);

	/*
	 * Convert iowait time into number of IO cycles spent at max_freq.
	 * IO is considered as busy only for the cpu_load algorithm. For
	 * performance this is not needed since we always try to reach the
	 * maximum P-State, so we are already boosting the IOs.
	 */
	delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
	delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
		cpu->pstate.max_pstate, MSEC_PER_SEC);

	mperf = cpu->sample.mperf + delta_iowait_mperf;
	cpu->prev_cummulative_iowait = cummulative_iowait;

1221 1222 1223 1224 1225 1226
	/*
	 * The load can be estimated as the ratio of the mperf counter
	 * running at a constant frequency during active periods
	 * (C0) and the time stamp counter running at the same frequency
	 * also during C-states.
	 */
1227
	cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
1228 1229
	cpu->sample.busy_scaled = cpu_load;

1230
	return get_avg_pstate(cpu) - pid_calc(&cpu->pid, cpu_load);
1231 1232
}

1233
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1234
{
1235
	int32_t core_busy, max_pstate, current_pstate, sample_ratio;
1236
	u64 duration_ns;
1237

1238 1239
	intel_pstate_calc_busy(cpu);

1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
	/*
	 * core_busy is the ratio of actual performance to max
	 * max_pstate is the max non turbo pstate available
	 * current_pstate was the pstate that was requested during
	 * 	the last sample period.
	 *
	 * We normalize core_busy, which was our actual percent
	 * performance to what we requested during the last sample
	 * period. The result will be a percentage of busy at a
	 * specified pstate.
	 */
1251
	core_busy = cpu->sample.core_pct_busy;
1252 1253
	max_pstate = cpu->pstate.max_pstate_physical;
	current_pstate = cpu->pstate.current_pstate;
1254
	core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
1255

1256
	/*
1257 1258 1259 1260
	 * Since our utilization update callback will not run unless we are
	 * in C0, check if the actual elapsed time is significantly greater (3x)
	 * than our sample interval.  If it is, then we were idle for a long
	 * enough period of time to adjust our busyness.
1261
	 */
1262
	duration_ns = cpu->sample.time - cpu->last_sample_time;
1263
	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1264
		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1265
		core_busy = mul_fp(core_busy, sample_ratio);
1266 1267 1268 1269
	} else {
		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
		if (sample_ratio < int_tofp(1))
			core_busy = 0;
1270 1271
	}

1272 1273
	cpu->sample.busy_scaled = core_busy;
	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, core_busy);
1274 1275
}

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
	int max_perf, min_perf;

	update_turbo_state();

	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
	pstate = clamp_t(int, pstate, min_perf, max_perf);
	if (pstate == cpu->pstate.current_pstate)
		return;

	intel_pstate_record_pstate(cpu, pstate);
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1291 1292
static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
1293
	int from, target_pstate;
1294 1295 1296
	struct sample *sample;

	from = cpu->pstate.current_pstate;
1297

1298
	target_pstate = pstate_funcs.get_target_pstate(cpu);
1299

1300
	intel_pstate_update_pstate(cpu, target_pstate);
1301 1302 1303

	sample = &cpu->sample;
	trace_pstate_sample(fp_toint(sample->core_pct_busy),
1304
		fp_toint(sample->busy_scaled),
1305 1306 1307 1308 1309
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1310
		get_avg_frequency(cpu));
1311 1312
}

1313 1314
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
				     unsigned long util, unsigned long max)
1315
{
1316 1317
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
	u64 delta_ns = time - cpu->sample.time;
1318

1319
	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1320 1321 1322
		bool sample_taken = intel_pstate_sample(cpu, time);

		if (sample_taken && !hwp_active)
1323 1324
			intel_pstate_adjust_busy_pstate(cpu);
	}
1325 1326 1327
}

#define ICPU(model, policy) \
1328 1329
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1330 1331

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1332 1333
	ICPU(0x2a, core_params),
	ICPU(0x2d, core_params),
1334
	ICPU(0x37, silvermont_params),
1335 1336
	ICPU(0x3a, core_params),
	ICPU(0x3c, core_params),
1337
	ICPU(0x3d, core_params),
1338 1339 1340 1341
	ICPU(0x3e, core_params),
	ICPU(0x3f, core_params),
	ICPU(0x45, core_params),
	ICPU(0x46, core_params),
1342
	ICPU(0x47, core_params),
1343
	ICPU(0x4c, airmont_params),
1344
	ICPU(0x4e, core_params),
1345
	ICPU(0x4f, core_params),
1346
	ICPU(0x5e, core_params),
1347
	ICPU(0x56, core_params),
1348
	ICPU(0x57, knl_params),
1349 1350 1351 1352
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

D
Dirk Brandewie 已提交
1353 1354 1355 1356 1357
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
	ICPU(0x56, core_params),
	{}
};

1358 1359 1360 1361
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1362 1363 1364
	if (!all_cpu_data[cpunum])
		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
					       GFP_KERNEL);
1365 1366 1367 1368 1369 1370
	if (!all_cpu_data[cpunum])
		return -ENOMEM;

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1371

1372
	if (hwp_active) {
1373
		intel_pstate_hwp_enable(cpu);
1374 1375 1376
		pid_params.sample_rate_ms = 50;
		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
	}
1377

1378
	intel_pstate_get_cpu_pstates(cpu);
1379

1380 1381
	intel_pstate_busy_pid_reset(cpu);

J
Joe Perches 已提交
1382
	pr_debug("controlling: cpu %d\n", cpunum);
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
	struct sample *sample;
	struct cpudata *cpu;

	cpu = all_cpu_data[cpu_num];
	if (!cpu)
		return 0;
1395
	sample = &cpu->sample;
1396
	return get_avg_frequency(cpu);
1397 1398
}

1399
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1400
{
1401 1402 1403 1404
	struct cpudata *cpu = all_cpu_data[cpu_num];

	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1405 1406
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
				     intel_pstate_update_util);
1407 1408 1409 1410
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1411
	cpufreq_remove_update_util_hook(cpu);
1412 1413 1414
	synchronize_sched();
}

1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
static void intel_pstate_set_performance_limits(struct perf_limits *limits)
{
	limits->no_turbo = 0;
	limits->turbo_disabled = 0;
	limits->max_perf_pct = 100;
	limits->max_perf = int_tofp(1);
	limits->min_perf_pct = 100;
	limits->min_perf = int_tofp(1);
	limits->max_policy_pct = 100;
	limits->max_sysfs_pct = 100;
	limits->min_policy_pct = 0;
	limits->min_sysfs_pct = 0;
}

1429 1430
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
1431 1432
	struct cpudata *cpu;

1433 1434 1435
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

1436 1437
	intel_pstate_clear_update_util_hook(policy->cpu);

1438 1439 1440 1441 1442 1443 1444 1445 1446
	cpu = all_cpu_data[0];
	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate) {
		if (policy->max < policy->cpuinfo.max_freq &&
		    policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
			pr_debug("policy->max > max non turbo frequency\n");
			policy->max = policy->cpuinfo.max_freq;
		}
	}

1447
	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1448
		limits = &performance_limits;
1449
		if (policy->max >= policy->cpuinfo.max_freq) {
J
Joe Perches 已提交
1450
			pr_debug("set performance\n");
1451 1452 1453 1454
			intel_pstate_set_performance_limits(limits);
			goto out;
		}
	} else {
J
Joe Perches 已提交
1455
		pr_debug("set powersave\n");
1456
		limits = &powersave_limits;
1457
	}
D
Dirk Brandewie 已提交
1458

1459 1460
	limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
	limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1461 1462
	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
					      policy->cpuinfo.max_freq);
1463
	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1464 1465

	/* Normalize user input to [min_policy_pct, max_policy_pct] */
1466 1467 1468 1469 1470 1471 1472 1473
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
1474
	limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1475 1476

	/* Make sure min_perf_pct <= max_perf_pct */
1477
	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1478

1479 1480
	limits->min_perf = div_fp(limits->min_perf_pct, 100);
	limits->max_perf = div_fp(limits->max_perf_pct, 100);
1481

1482 1483 1484
 out:
	intel_pstate_set_update_util_hook(policy->cpu);

D
Dirk Brandewie 已提交
1485
	if (hwp_active)
1486
		intel_pstate_hwp_set(policy->cpus);
D
Dirk Brandewie 已提交
1487

1488 1489 1490 1491 1492
	return 0;
}

static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
1493
	cpufreq_verify_within_cpu_limits(policy);
1494

1495
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1496
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1497 1498 1499 1500 1501
		return -EINVAL;

	return 0;
}

1502
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1503
{
1504 1505
	int cpu_num = policy->cpu;
	struct cpudata *cpu = all_cpu_data[cpu_num];
1506

J
Joe Perches 已提交
1507
	pr_debug("CPU %d exiting\n", cpu_num);
1508

1509
	intel_pstate_clear_update_util_hook(cpu_num);
1510

D
Dirk Brandewie 已提交
1511 1512 1513
	if (hwp_active)
		return;

1514
	intel_pstate_set_min_pstate(cpu);
1515 1516
}

1517
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1518 1519
{
	struct cpudata *cpu;
1520
	int rc;
1521 1522 1523 1524 1525 1526 1527

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

1528
	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1529 1530 1531 1532
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;

1533 1534
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1535 1536

	/* cpuinfo and default policy values */
1537 1538 1539
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->cpuinfo.max_freq =
		cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1540
	intel_pstate_init_acpi_perf_limits(policy);
1541 1542 1543 1544 1545 1546
	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
	cpumask_set_cpu(policy->cpu, policy->cpus);

	return 0;
}

1547 1548 1549 1550 1551 1552 1553
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);

	return 0;
}

1554 1555 1556 1557 1558 1559
static struct cpufreq_driver intel_pstate_driver = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
1560
	.exit		= intel_pstate_cpu_exit,
1561
	.stop_cpu	= intel_pstate_stop_cpu,
1562 1563 1564
	.name		= "intel_pstate",
};

1565
static int __initdata no_load;
D
Dirk Brandewie 已提交
1566
static int __initdata no_hwp;
1567
static int __initdata hwp_only;
1568
static unsigned int force_load;
1569

1570 1571
static int intel_pstate_msrs_not_valid(void)
{
1572
	if (!pstate_funcs.get_max() ||
1573 1574
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
1575 1576 1577 1578
		return -ENODEV;

	return 0;
}
1579

1580
static void copy_pid_params(struct pstate_adjust_policy *policy)
1581 1582
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
1583
	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1584 1585 1586 1587 1588 1589 1590
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

1591
static void copy_cpu_funcs(struct pstate_funcs *funcs)
1592 1593
{
	pstate_funcs.get_max   = funcs->get_max;
1594
	pstate_funcs.get_max_physical = funcs->get_max_physical;
1595 1596
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
1597
	pstate_funcs.get_scaling = funcs->get_scaling;
1598
	pstate_funcs.get_val   = funcs->get_val;
1599
	pstate_funcs.get_vid   = funcs->get_vid;
1600 1601
	pstate_funcs.get_target_pstate = funcs->get_target_pstate;

1602 1603
}

1604
#ifdef CONFIG_ACPI
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634

static bool intel_pstate_no_acpi_pss(void)
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
static bool intel_pstate_has_acpi_ppc(void)
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

1655 1656 1657 1658
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1659
	int  oem_pwr_table;
1660 1661 1662 1663
};

/* Hardware vendor-specific info that has its own power management modes */
static struct hw_vendor_info vendor_info[] = {
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
1675 1676 1677 1678
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
1679 1680 1681 1682 1683 1684 1685
	{0, "", ""},
};

static bool intel_pstate_platform_pwr_mgmt_exists(void)
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
1686 1687 1688 1689 1690 1691 1692 1693 1694
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
1695

1696 1697
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1698 1699 1700
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
1701
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1702 1703 1704 1705 1706 1707
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
1708 1709
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
1710
			}
1711 1712 1713 1714 1715 1716
	}

	return false;
}
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1717
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1718 1719
#endif /* CONFIG_ACPI */

1720 1721 1722 1723 1724
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

1725 1726
static int __init intel_pstate_init(void)
{
1727
	int cpu, rc = 0;
1728
	const struct x86_cpu_id *id;
1729
	struct cpu_defaults *cpu_def;
1730

1731 1732 1733
	if (no_load)
		return -ENODEV;

1734 1735 1736 1737 1738 1739
	if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
		copy_cpu_funcs(&core_params.funcs);
		hwp_active++;
		goto hwp_cpu_matched;
	}

1740 1741 1742 1743
	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

1744
	cpu_def = (struct cpu_defaults *)id->driver_data;
1745

1746 1747
	copy_pid_params(&cpu_def->pid_policy);
	copy_cpu_funcs(&cpu_def->funcs);
1748

1749 1750 1751
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

1752 1753 1754 1755 1756 1757 1758 1759
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

J
Joe Perches 已提交
1760
	pr_info("Intel P-state driver initializing\n");
1761

1762
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1763 1764 1765
	if (!all_cpu_data)
		return -ENOMEM;

1766 1767 1768
	if (!hwp_active && hwp_only)
		goto out;

1769 1770 1771 1772 1773 1774
	rc = cpufreq_register_driver(&intel_pstate_driver);
	if (rc)
		goto out;

	intel_pstate_debug_expose_params();
	intel_pstate_sysfs_expose_params();
1775

1776
	if (hwp_active)
J
Joe Perches 已提交
1777
		pr_info("HWP enabled\n");
1778

1779 1780
	return rc;
out:
1781 1782 1783
	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
1784
			intel_pstate_clear_update_util_hook(cpu);
1785 1786 1787 1788 1789 1790
			kfree(all_cpu_data[cpu]);
		}
	}

	put_online_cpus();
	vfree(all_cpu_data);
1791 1792 1793 1794
	return -ENODEV;
}
device_initcall(intel_pstate_init);

1795 1796 1797 1798 1799 1800 1801
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

	if (!strcmp(str, "disable"))
		no_load = 1;
1802
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
1803
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
1804
		no_hwp = 1;
1805
	}
1806 1807
	if (!strcmp(str, "force"))
		force_load = 1;
1808 1809
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
1810 1811 1812 1813 1814 1815

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

1816 1817 1818 1819
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

1820 1821 1822
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");