intel_pstate.c 42.3 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
28
#include <linux/acpi.h>
29
#include <linux/vmalloc.h>
30 31 32 33 34
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
35
#include <asm/cpufeature.h>
36

37 38 39 40
#define ATOM_RATIOS		0x66a
#define ATOM_VIDS		0x66b
#define ATOM_TURBO_RATIOS	0x66c
#define ATOM_TURBO_VIDS		0x66d
41

42
#define FRAC_BITS 8
43 44
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
45

46 47 48 49 50
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

51
static inline int32_t div_fp(s64 x, s64 y)
52
{
53
	return div64_s64((int64_t)x << FRAC_BITS, y);
54 55
}

56 57 58 59 60 61 62 63 64 65 66
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
/**
 * struct sample -	Store performance sample
 * @core_pct_busy:	Ratio of APERF/MPERF in percent, which is actual
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
 *			P state. This can be different than core_pct_busy
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @freq:		Effective frequency calculated from APERF/MPERF
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
86
struct sample {
87
	int32_t core_pct_busy;
88
	int32_t busy_scaled;
89 90
	u64 aperf;
	u64 mperf;
91
	u64 tsc;
92
	int freq;
93
	u64 time;
94 95
};

96 97 98 99 100 101 102 103 104 105 106 107 108 109
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
 *
 * Stores the per cpu model P state limits and current P state.
 */
110 111 112 113
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
114
	int	max_pstate_physical;
115
	int	scaling;
116 117 118
	int	turbo_pstate;
};

119 120 121 122 123 124 125 126 127 128 129 130 131
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
132
struct vid_data {
133 134 135
	int min;
	int max;
	int turbo;
136 137 138
	int32_t ratio;
};

139 140 141 142 143 144 145 146 147 148 149 150
/**
 * struct _pid -	Stores PID data
 * @setpoint:		Target set point for busyness or performance
 * @integral:		Storage for accumulated error values
 * @p_gain:		PID proportional gain
 * @i_gain:		PID integral gain
 * @d_gain:		PID derivative gain
 * @deadband:		PID deadband
 * @last_err:		Last error storage for integral part of PID calculation
 *
 * Stores PID coefficients and last error for PID controller.
 */
151 152 153 154 155 156 157
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
158
	int32_t last_err;
159 160
};

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
 * @update_util:	CPUFreq utility callback information
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @pid:		Stores PID parameters for this CPU
 * @last_sample_time:	Last Sample time
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
 *
 * This structure stores per CPU instance data for all CPUs.
 */
178 179 180
struct cpudata {
	int cpu;

181
	struct update_util_data update_util;
182 183

	struct pstate_data pstate;
184
	struct vid_data vid;
185 186
	struct _pid pid;

187
	u64	last_sample_time;
188 189
	u64	prev_aperf;
	u64	prev_mperf;
190
	u64	prev_tsc;
191
	u64	prev_cummulative_iowait;
192
	struct sample sample;
193 194 195
};

static struct cpudata **all_cpu_data;
196 197 198 199 200 201 202 203 204 205 206 207 208

/**
 * struct pid_adjust_policy - Stores static PID configuration data
 * @sample_rate_ms:	PID calculation sample rate in ms
 * @sample_rate_ns:	Sample rate calculation in ns
 * @deadband:		PID deadband
 * @setpoint:		PID Setpoint
 * @p_gain_pct:		PID proportional gain
 * @i_gain_pct:		PID integral gain
 * @d_gain_pct:		PID derivative gain
 *
 * Stores per CPU model static PID configuration data.
 */
209 210
struct pstate_adjust_policy {
	int sample_rate_ms;
211
	s64 sample_rate_ns;
212 213 214 215 216 217 218
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

219 220 221 222 223 224 225 226 227 228 229 230 231 232
/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 * @get_target_pstate:	Callback to a function to calculate next P state to use
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
233 234
struct pstate_funcs {
	int (*get_max)(void);
235
	int (*get_max_physical)(void);
236 237
	int (*get_min)(void);
	int (*get_turbo)(void);
238
	int (*get_scaling)(void);
239
	u64 (*get_val)(struct cpudata*, int pstate);
240
	void (*get_vid)(struct cpudata *);
241
	int32_t (*get_target_pstate)(struct cpudata *);
242 243
};

244 245 246 247 248
/**
 * struct cpu_defaults- Per CPU model default config data
 * @pid_policy:	PID config data
 * @funcs:		Callback function data
 */
249 250 251
struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
252 253
};

254
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
255
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
256

257 258
static struct pstate_adjust_policy pid_params;
static struct pstate_funcs pstate_funcs;
D
Dirk Brandewie 已提交
259
static int hwp_active;
260

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288

/**
 * struct perf_limits - Store user and policy limits
 * @no_turbo:		User requested turbo state from intel_pstate sysfs
 * @turbo_disabled:	Platform turbo status either from msr
 *			MSR_IA32_MISC_ENABLE or when maximum available pstate
 *			matches the maximum turbo pstate
 * @max_perf_pct:	Effective maximum performance limit in percentage, this
 *			is minimum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @min_perf_pct:	Effective minimum performance limit in percentage, this
 *			is maximum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
 *			This value is used to limit max pstate
 * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
 *			This value is used to limit min pstate
 * @max_policy_pct:	The maximum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @max_sysfs_pct:	The maximum performance in percentage enforced by
 *			intel pstate sysfs interface
 * @min_policy_pct:	The minimum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @min_sysfs_pct:	The minimum performance in percentage enforced by
 *			intel pstate sysfs interface
 *
 * Storage for user and policy defined limits.
 */
289 290
struct perf_limits {
	int no_turbo;
291
	int turbo_disabled;
292 293 294 295
	int max_perf_pct;
	int min_perf_pct;
	int32_t max_perf;
	int32_t min_perf;
296 297
	int max_policy_pct;
	int max_sysfs_pct;
298 299
	int min_policy_pct;
	int min_sysfs_pct;
300 301
};

302 303 304 305 306 307 308 309 310 311 312 313 314 315
static struct perf_limits performance_limits = {
	.no_turbo = 0,
	.turbo_disabled = 0,
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 100,
	.min_perf = int_tofp(1),
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
};

static struct perf_limits powersave_limits = {
316
	.no_turbo = 0,
317
	.turbo_disabled = 0,
318 319 320 321
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 0,
	.min_perf = 0,
322 323
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
324 325
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
326 327
};

328 329 330 331 332 333
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
static struct perf_limits *limits = &performance_limits;
#else
static struct perf_limits *limits = &powersave_limits;
#endif

334
static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
335
			     int deadband, int integral) {
336 337
	pid->setpoint = int_tofp(setpoint);
	pid->deadband  = int_tofp(deadband);
338
	pid->integral  = int_tofp(integral);
339
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
	pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
	pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{
	pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
}

357
static signed int pid_calc(struct _pid *pid, int32_t busy)
358
{
359
	signed int result;
360 361 362
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

363
	fp_error = pid->setpoint - busy;
364

365
	if (abs(fp_error) <= pid->deadband)
366 367 368 369 370 371
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

372 373 374 375 376 377 378 379
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
380 381 382 383 384 385
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

386 387
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
388 389

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
390
	result = result + (1 << (FRAC_BITS-1));
391 392 393 394 395
	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
396 397 398
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
399

400
	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
401 402 403 404 405
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
406

407 408 409 410 411 412
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

413 414 415 416 417 418 419
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
420
	limits->turbo_disabled =
421 422 423 424
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

425
static void intel_pstate_hwp_set(const struct cpumask *cpumask)
D
Dirk Brandewie 已提交
426
{
427 428 429 430 431 432 433
	int min, hw_min, max, hw_max, cpu, range, adj_range;
	u64 value, cap;

	rdmsrl(MSR_HWP_CAPABILITIES, cap);
	hw_min = HWP_LOWEST_PERF(cap);
	hw_max = HWP_HIGHEST_PERF(cap);
	range = hw_max - hw_min;
D
Dirk Brandewie 已提交
434

435
	for_each_cpu(cpu, cpumask) {
D
Dirk Brandewie 已提交
436
		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
437
		adj_range = limits->min_perf_pct * range / 100;
438
		min = hw_min + adj_range;
D
Dirk Brandewie 已提交
439 440 441
		value &= ~HWP_MIN_PERF(~0L);
		value |= HWP_MIN_PERF(min);

442
		adj_range = limits->max_perf_pct * range / 100;
443
		max = hw_min + adj_range;
444
		if (limits->no_turbo) {
445 446 447
			hw_max = HWP_GUARANTEED_PERF(cap);
			if (hw_max < max)
				max = hw_max;
D
Dirk Brandewie 已提交
448 449 450 451 452 453
		}

		value &= ~HWP_MAX_PERF(~0L);
		value |= HWP_MAX_PERF(max);
		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
	}
454
}
D
Dirk Brandewie 已提交
455

456 457 458 459 460 461 462 463
static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
{
	if (hwp_active)
		intel_pstate_hwp_set(policy->cpus);

	return 0;
}

464 465 466 467
static void intel_pstate_hwp_set_online_cpus(void)
{
	get_online_cpus();
	intel_pstate_hwp_set(cpu_online_mask);
D
Dirk Brandewie 已提交
468 469 470
	put_online_cpus();
}

471 472 473 474 475 476 477
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
	intel_pstate_reset_all_pid();
	return 0;
}
478

479 480 481 482 483
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
484
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
485 486 487 488 489 490 491

struct pid_param {
	char *name;
	void *value;
};

static struct pid_param pid_files[] = {
492 493 494 495 496 497
	{"sample_rate_ms", &pid_params.sample_rate_ms},
	{"d_gain_pct", &pid_params.d_gain_pct},
	{"i_gain_pct", &pid_params.i_gain_pct},
	{"deadband", &pid_params.deadband},
	{"setpoint", &pid_params.setpoint},
	{"p_gain_pct", &pid_params.p_gain_pct},
498 499 500
	{NULL, NULL}
};

501
static void __init intel_pstate_debug_expose_params(void)
502
{
503
	struct dentry *debugfs_parent;
504 505
	int i = 0;

D
Dirk Brandewie 已提交
506 507
	if (hwp_active)
		return;
508 509 510 511 512
	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
	while (pid_files[i].name) {
		debugfs_create_file(pid_files[i].name, 0660,
513 514
				    debugfs_parent, pid_files[i].value,
				    &fops_pid_param);
515 516 517 518 519 520 521 522 523 524 525
		i++;
	}
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
526
		return sprintf(buf, "%u\n", limits->object);		\
527 528
	}

529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
	turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
	return sprintf(buf, "%u\n", turbo_pct);
}

545 546 547 548 549 550 551 552 553 554 555
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	return sprintf(buf, "%u\n", total);
}

556 557 558 559 560 561
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

	update_turbo_state();
562 563
	if (limits->turbo_disabled)
		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
564
	else
565
		ret = sprintf(buf, "%u\n", limits->no_turbo);
566 567 568 569

	return ret;
}

570
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
571
			      const char *buf, size_t count)
572 573 574
{
	unsigned int input;
	int ret;
575

576 577 578
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
579 580

	update_turbo_state();
581
	if (limits->turbo_disabled) {
582
		pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n");
583
		return -EPERM;
584
	}
D
Dirk Brandewie 已提交
585

586
	limits->no_turbo = clamp_t(int, input, 0, 1);
587

D
Dirk Brandewie 已提交
588
	if (hwp_active)
589
		intel_pstate_hwp_set_online_cpus();
D
Dirk Brandewie 已提交
590

591 592 593 594
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
595
				  const char *buf, size_t count)
596 597 598
{
	unsigned int input;
	int ret;
599

600 601 602 603
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

604 605 606 607 608 609 610 611 612
	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
	limits->max_perf_pct = max(limits->min_perf_pct,
				   limits->max_perf_pct);
	limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
				  int_tofp(100));
613

D
Dirk Brandewie 已提交
614
	if (hwp_active)
615
		intel_pstate_hwp_set_online_cpus();
616 617 618 619
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
620
				  const char *buf, size_t count)
621 622 623
{
	unsigned int input;
	int ret;
624

625 626 627
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
628

629 630 631 632 633 634 635 636 637
	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->min_perf_pct = min(limits->max_perf_pct,
				   limits->min_perf_pct);
	limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
				  int_tofp(100));
638

D
Dirk Brandewie 已提交
639
	if (hwp_active)
640
		intel_pstate_hwp_set_online_cpus();
641 642 643 644 645 646 647 648 649
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
650
define_one_global_ro(turbo_pct);
651
define_one_global_ro(num_pstates);
652 653 654 655 656

static struct attribute *intel_pstate_attributes[] = {
	&no_turbo.attr,
	&max_perf_pct.attr,
	&min_perf_pct.attr,
657
	&turbo_pct.attr,
658
	&num_pstates.attr,
659 660 661 662 663 664 665
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

666
static void __init intel_pstate_sysfs_expose_params(void)
667
{
668
	struct kobject *intel_pstate_kobject;
669 670 671 672 673
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
	BUG_ON(!intel_pstate_kobject);
674
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
675 676 677
	BUG_ON(rc);
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
678

679
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
680
{
681 682 683
	/* First disable HWP notification interrupt as we don't process them */
	wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);

684
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
D
Dirk Brandewie 已提交
685 686
}

687
static int atom_get_min_pstate(void)
688 689
{
	u64 value;
690

691
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
692
	return (value >> 8) & 0x7F;
693 694
}

695
static int atom_get_max_pstate(void)
696 697
{
	u64 value;
698

699
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
700
	return (value >> 16) & 0x7F;
701
}
702

703
static int atom_get_turbo_pstate(void)
704 705
{
	u64 value;
706

707
	rdmsrl(ATOM_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
708
	return value & 0x7F;
709 710
}

711
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
712 713 714 715 716
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

717
	val = (u64)pstate << 8;
718
	if (limits->no_turbo && !limits->turbo_disabled)
719 720 721 722 723 724 725
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
726
	vid = ceiling_fp(vid_fp);
727

728 729 730
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

731
	return val | vid;
732 733
}

734
static int silvermont_get_scaling(void)
735 736 737
{
	u64 value;
	int i;
738 739 740
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
741 742

	rdmsrl(MSR_FSB_FREQ, value);
743 744
	i = value & 0x7;
	WARN_ON(i > 4);
745

746 747
	return silvermont_freq_table[i];
}
748

749 750 751 752 753 754 755 756 757 758 759 760 761 762
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
763 764
}

765
static void atom_get_vid(struct cpudata *cpudata)
766 767 768
{
	u64 value;

769
	rdmsrl(ATOM_VIDS, value);
D
Dirk Brandewie 已提交
770 771
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
772 773 774 775
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
776

777
	rdmsrl(ATOM_TURBO_VIDS, value);
778
	cpudata->vid.turbo = value & 0x7f;
779 780
}

781
static int core_get_min_pstate(void)
782 783
{
	u64 value;
784

785
	rdmsrl(MSR_PLATFORM_INFO, value);
786 787 788
	return (value >> 40) & 0xFF;
}

789
static int core_get_max_pstate_physical(void)
790 791
{
	u64 value;
792

793
	rdmsrl(MSR_PLATFORM_INFO, value);
794 795 796
	return (value >> 8) & 0xFF;
}

797
static int core_get_max_pstate(void)
798
{
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
	u64 tar;
	u64 plat_info;
	int max_pstate;
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
		/* Do some sanity checking for safety */
		if (plat_info & 0x600000000) {
			u64 tdp_ctrl;
			u64 tdp_ratio;
			int tdp_msr;

			err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
			if (err)
				goto skip_tar;

			tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
			err = rdmsrl_safe(tdp_msr, &tdp_ratio);
			if (err)
				goto skip_tar;

824 825 826 827 828
			/* For level 1 and 2, bits[23:16] contain the ratio */
			if (tdp_ctrl)
				tdp_ratio >>= 16;

			tdp_ratio &= 0xff; /* ratios are only 8 bits long */
829 830 831 832 833 834 835 836
			if (tdp_ratio - 1 == tar) {
				max_pstate = tar;
				pr_debug("max_pstate=TAC %x\n", max_pstate);
			} else {
				goto skip_tar;
			}
		}
	}
837

838 839
skip_tar:
	return max_pstate;
840 841
}

842
static int core_get_turbo_pstate(void)
843 844 845
{
	u64 value;
	int nont, ret;
846

847
	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
848
	nont = core_get_max_pstate();
849
	ret = (value) & 255;
850 851 852 853 854
	if (ret <= nont)
		ret = nont;
	return ret;
}

855 856 857 858 859
static inline int core_get_scaling(void)
{
	return 100000;
}

860
static u64 core_get_val(struct cpudata *cpudata, int pstate)
861 862 863
{
	u64 val;

864
	val = (u64)pstate << 8;
865
	if (limits->no_turbo && !limits->turbo_disabled)
866 867
		val |= (u64)1 << 32;

868
	return val;
869 870
}

871 872 873 874 875 876 877 878 879 880 881 882 883
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

884 885 886 887 888 889 890 891 892 893 894
static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
895
		.get_max_physical = core_get_max_pstate_physical,
896 897
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
898
		.get_scaling = core_get_scaling,
899
		.get_val = core_get_val,
900
		.get_target_pstate = get_target_pstate_use_performance,
901 902 903
	},
};

904 905 906 907 908 909 910 911 912 913 914 915 916 917
static struct cpu_defaults silvermont_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
918
		.get_val = atom_get_val,
919 920
		.get_scaling = silvermont_get_scaling,
		.get_vid = atom_get_vid,
921
		.get_target_pstate = get_target_pstate_use_cpu_load,
922 923 924 925
	},
};

static struct cpu_defaults airmont_params = {
926 927 928
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
929
		.setpoint = 60,
930 931 932 933 934
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
935 936 937 938
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
939
		.get_val = atom_get_val,
940
		.get_scaling = airmont_get_scaling,
941
		.get_vid = atom_get_vid,
942
		.get_target_pstate = get_target_pstate_use_cpu_load,
943 944 945
	},
};

946 947 948 949 950 951 952 953 954 955 956
static struct cpu_defaults knl_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
957
		.get_max_physical = core_get_max_pstate_physical,
958 959
		.get_min = core_get_min_pstate,
		.get_turbo = knl_get_turbo_pstate,
960
		.get_scaling = core_get_scaling,
961
		.get_val = core_get_val,
962
		.get_target_pstate = get_target_pstate_use_performance,
963 964 965
	},
};

966 967 968
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
969
	int max_perf_adj;
970
	int min_perf;
971

972
	if (limits->no_turbo || limits->turbo_disabled)
973 974
		max_perf = cpu->pstate.max_pstate;

975 976 977 978 979
	/*
	 * performance can be limited by user through sysfs, by cpufreq
	 * policy, or by cpu specific default values determined through
	 * experimentation.
	 */
980
	max_perf_adj = fp_toint(max_perf * limits->max_perf);
981 982
	*max = clamp_t(int, max_perf_adj,
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
983

984
	min_perf = fp_toint(max_perf * limits->min_perf);
985
	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
986 987
}

988
static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate)
989
{
990
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
991
	cpu->pstate.current_pstate = pstate;
992
}
993

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	int pstate = cpu->pstate.min_pstate;

	intel_pstate_record_pstate(cpu, pstate);
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1006 1007 1008 1009
}

static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1010 1011
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1012
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1013
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1014
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1015

1016 1017
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1018 1019

	intel_pstate_set_min_pstate(cpu);
1020 1021
}

1022
static inline void intel_pstate_calc_busy(struct cpudata *cpu)
1023
{
1024
	struct sample *sample = &cpu->sample;
1025
	int64_t core_pct;
1026

1027
	core_pct = int_tofp(sample->aperf) * int_tofp(100);
1028
	core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
1029

1030
	sample->core_pct_busy = (int32_t)core_pct;
1031 1032
}

1033
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1034 1035
{
	u64 aperf, mperf;
1036
	unsigned long flags;
1037
	u64 tsc;
1038

1039
	local_irq_save(flags);
1040 1041
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1042
	tsc = rdtsc();
1043
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1044
		local_irq_restore(flags);
1045
		return false;
1046
	}
1047
	local_irq_restore(flags);
1048

1049
	cpu->last_sample_time = cpu->sample.time;
1050
	cpu->sample.time = time;
1051 1052
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1053
	cpu->sample.tsc =  tsc;
1054 1055
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1056
	cpu->sample.tsc -= cpu->prev_tsc;
1057

1058 1059
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1060
	cpu->prev_tsc = tsc;
1061 1062 1063 1064 1065 1066 1067 1068
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
	return !!cpu->last_sample_time;
1069 1070
}

1071 1072 1073 1074 1075 1076
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
	return div64_u64(cpu->pstate.max_pstate_physical * cpu->sample.aperf *
		cpu->pstate.scaling, cpu->sample.mperf);
}

1077 1078 1079
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
1080 1081 1082
	u64 cummulative_iowait, delta_iowait_us;
	u64 delta_iowait_mperf;
	u64 mperf, now;
1083 1084
	int32_t cpu_load;

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
	cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);

	/*
	 * Convert iowait time into number of IO cycles spent at max_freq.
	 * IO is considered as busy only for the cpu_load algorithm. For
	 * performance this is not needed since we always try to reach the
	 * maximum P-State, so we are already boosting the IOs.
	 */
	delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
	delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
		cpu->pstate.max_pstate, MSEC_PER_SEC);

	mperf = cpu->sample.mperf + delta_iowait_mperf;
	cpu->prev_cummulative_iowait = cummulative_iowait;

1100 1101 1102 1103 1104 1105
	/*
	 * The load can be estimated as the ratio of the mperf counter
	 * running at a constant frequency during active periods
	 * (C0) and the time stamp counter running at the same frequency
	 * also during C-states.
	 */
1106
	cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
1107 1108 1109 1110 1111
	cpu->sample.busy_scaled = cpu_load;

	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, cpu_load);
}

1112
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1113
{
1114
	int32_t core_busy, max_pstate, current_pstate, sample_ratio;
1115
	u64 duration_ns;
1116

1117 1118
	intel_pstate_calc_busy(cpu);

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
	/*
	 * core_busy is the ratio of actual performance to max
	 * max_pstate is the max non turbo pstate available
	 * current_pstate was the pstate that was requested during
	 * 	the last sample period.
	 *
	 * We normalize core_busy, which was our actual percent
	 * performance to what we requested during the last sample
	 * period. The result will be a percentage of busy at a
	 * specified pstate.
	 */
1130
	core_busy = cpu->sample.core_pct_busy;
1131
	max_pstate = int_tofp(cpu->pstate.max_pstate_physical);
1132
	current_pstate = int_tofp(cpu->pstate.current_pstate);
1133
	core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
1134

1135
	/*
1136 1137 1138 1139
	 * Since our utilization update callback will not run unless we are
	 * in C0, check if the actual elapsed time is significantly greater (3x)
	 * than our sample interval.  If it is, then we were idle for a long
	 * enough period of time to adjust our busyness.
1140
	 */
1141
	duration_ns = cpu->sample.time - cpu->last_sample_time;
1142
	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1143 1144
		sample_ratio = div_fp(int_tofp(pid_params.sample_rate_ns),
				      int_tofp(duration_ns));
1145
		core_busy = mul_fp(core_busy, sample_ratio);
1146 1147 1148 1149
	} else {
		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
		if (sample_ratio < int_tofp(1))
			core_busy = 0;
1150 1151
	}

1152 1153
	cpu->sample.busy_scaled = core_busy;
	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, core_busy);
1154 1155
}

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
	int max_perf, min_perf;

	update_turbo_state();

	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
	pstate = clamp_t(int, pstate, min_perf, max_perf);
	if (pstate == cpu->pstate.current_pstate)
		return;

	intel_pstate_record_pstate(cpu, pstate);
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1171 1172
static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
1173
	int from, target_pstate;
1174 1175 1176
	struct sample *sample;

	from = cpu->pstate.current_pstate;
1177

1178
	target_pstate = pstate_funcs.get_target_pstate(cpu);
1179

1180
	intel_pstate_update_pstate(cpu, target_pstate);
1181 1182 1183

	sample = &cpu->sample;
	trace_pstate_sample(fp_toint(sample->core_pct_busy),
1184
		fp_toint(sample->busy_scaled),
1185 1186 1187 1188 1189
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1190
		get_avg_frequency(cpu));
1191 1192
}

1193 1194
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
				     unsigned long util, unsigned long max)
1195
{
1196 1197
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
	u64 delta_ns = time - cpu->sample.time;
1198

1199
	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1200 1201 1202
		bool sample_taken = intel_pstate_sample(cpu, time);

		if (sample_taken && !hwp_active)
1203 1204
			intel_pstate_adjust_busy_pstate(cpu);
	}
1205 1206 1207
}

#define ICPU(model, policy) \
1208 1209
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1210 1211

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1212 1213
	ICPU(0x2a, core_params),
	ICPU(0x2d, core_params),
1214
	ICPU(0x37, silvermont_params),
1215 1216
	ICPU(0x3a, core_params),
	ICPU(0x3c, core_params),
1217
	ICPU(0x3d, core_params),
1218 1219 1220 1221
	ICPU(0x3e, core_params),
	ICPU(0x3f, core_params),
	ICPU(0x45, core_params),
	ICPU(0x46, core_params),
1222
	ICPU(0x47, core_params),
1223
	ICPU(0x4c, airmont_params),
1224
	ICPU(0x4e, core_params),
1225
	ICPU(0x4f, core_params),
1226
	ICPU(0x5e, core_params),
1227
	ICPU(0x56, core_params),
1228
	ICPU(0x57, knl_params),
1229 1230 1231 1232
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

D
Dirk Brandewie 已提交
1233 1234 1235 1236 1237
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
	ICPU(0x56, core_params),
	{}
};

1238 1239 1240 1241
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1242 1243 1244
	if (!all_cpu_data[cpunum])
		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
					       GFP_KERNEL);
1245 1246 1247 1248 1249 1250
	if (!all_cpu_data[cpunum])
		return -ENOMEM;

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1251

1252
	if (hwp_active) {
1253
		intel_pstate_hwp_enable(cpu);
1254 1255 1256
		pid_params.sample_rate_ms = 50;
		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
	}
1257

1258
	intel_pstate_get_cpu_pstates(cpu);
1259

1260 1261
	intel_pstate_busy_pid_reset(cpu);

1262
	cpu->update_util.func = intel_pstate_update_util;
1263

1264
	pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
	struct sample *sample;
	struct cpudata *cpu;

	cpu = all_cpu_data[cpu_num];
	if (!cpu)
		return 0;
1277
	sample = &cpu->sample;
1278
	return get_avg_frequency(cpu);
1279 1280
}

1281
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1282
{
1283 1284 1285 1286 1287
	struct cpudata *cpu = all_cpu_data[cpu_num];

	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
	cpufreq_set_update_util_data(cpu_num, &cpu->update_util);
1288 1289 1290 1291 1292 1293 1294 1295
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
	cpufreq_set_update_util_data(cpu, NULL);
	synchronize_sched();
}

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
static void intel_pstate_set_performance_limits(struct perf_limits *limits)
{
	limits->no_turbo = 0;
	limits->turbo_disabled = 0;
	limits->max_perf_pct = 100;
	limits->max_perf = int_tofp(1);
	limits->min_perf_pct = 100;
	limits->min_perf = int_tofp(1);
	limits->max_policy_pct = 100;
	limits->max_sysfs_pct = 100;
	limits->min_policy_pct = 0;
	limits->min_sysfs_pct = 0;
}

1310 1311
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
1312 1313 1314
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

1315 1316
	intel_pstate_clear_update_util_hook(policy->cpu);

1317
	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1318
		limits = &performance_limits;
1319 1320 1321 1322 1323 1324 1325 1326
		if (policy->max >= policy->cpuinfo.max_freq) {
			pr_debug("intel_pstate: set performance\n");
			intel_pstate_set_performance_limits(limits);
			goto out;
		}
	} else {
		pr_debug("intel_pstate: set powersave\n");
		limits = &powersave_limits;
1327
	}
D
Dirk Brandewie 已提交
1328

1329 1330
	limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
	limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1331 1332
	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
					      policy->cpuinfo.max_freq);
1333
	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1334 1335

	/* Normalize user input to [min_policy_pct, max_policy_pct] */
1336 1337 1338 1339 1340 1341 1342 1343
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
1344
	limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1345 1346

	/* Make sure min_perf_pct <= max_perf_pct */
1347
	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1348

1349 1350 1351 1352
	limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
				  int_tofp(100));
	limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
				  int_tofp(100));
1353

1354 1355 1356
 out:
	intel_pstate_set_update_util_hook(policy->cpu);

1357
	intel_pstate_hwp_set_policy(policy);
D
Dirk Brandewie 已提交
1358

1359 1360 1361 1362 1363
	return 0;
}

static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
1364
	cpufreq_verify_within_cpu_limits(policy);
1365

1366
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1367
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1368 1369 1370 1371 1372
		return -EINVAL;

	return 0;
}

1373
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1374
{
1375 1376
	int cpu_num = policy->cpu;
	struct cpudata *cpu = all_cpu_data[cpu_num];
1377

1378
	pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);
1379

1380
	intel_pstate_clear_update_util_hook(cpu_num);
1381

D
Dirk Brandewie 已提交
1382 1383 1384
	if (hwp_active)
		return;

1385
	intel_pstate_set_min_pstate(cpu);
1386 1387
}

1388
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1389 1390
{
	struct cpudata *cpu;
1391
	int rc;
1392 1393 1394 1395 1396 1397 1398

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

1399
	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1400 1401 1402 1403
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;

1404 1405
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1406 1407

	/* cpuinfo and default policy values */
1408 1409 1410
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->cpuinfo.max_freq =
		cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
	cpumask_set_cpu(policy->cpu, policy->cpus);

	return 0;
}

static struct cpufreq_driver intel_pstate_driver = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
1421
	.resume		= intel_pstate_hwp_set_policy,
1422 1423
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
1424
	.stop_cpu	= intel_pstate_stop_cpu,
1425 1426 1427
	.name		= "intel_pstate",
};

1428
static int __initdata no_load;
D
Dirk Brandewie 已提交
1429
static int __initdata no_hwp;
1430
static int __initdata hwp_only;
1431
static unsigned int force_load;
1432

1433 1434
static int intel_pstate_msrs_not_valid(void)
{
1435
	if (!pstate_funcs.get_max() ||
1436 1437
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
1438 1439 1440 1441
		return -ENODEV;

	return 0;
}
1442

1443
static void copy_pid_params(struct pstate_adjust_policy *policy)
1444 1445
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
1446
	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1447 1448 1449 1450 1451 1452 1453
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

1454
static void copy_cpu_funcs(struct pstate_funcs *funcs)
1455 1456
{
	pstate_funcs.get_max   = funcs->get_max;
1457
	pstate_funcs.get_max_physical = funcs->get_max_physical;
1458 1459
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
1460
	pstate_funcs.get_scaling = funcs->get_scaling;
1461
	pstate_funcs.get_val   = funcs->get_val;
1462
	pstate_funcs.get_vid   = funcs->get_vid;
1463 1464
	pstate_funcs.get_target_pstate = funcs->get_target_pstate;

1465 1466
}

1467
#if IS_ENABLED(CONFIG_ACPI)
1468
#include <acpi/processor.h>
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498

static bool intel_pstate_no_acpi_pss(void)
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
static bool intel_pstate_has_acpi_ppc(void)
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

1519 1520 1521 1522
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1523
	int  oem_pwr_table;
1524 1525 1526 1527
};

/* Hardware vendor-specific info that has its own power management modes */
static struct hw_vendor_info vendor_info[] = {
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
1539 1540 1541 1542
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
1543 1544 1545 1546 1547 1548 1549
	{0, "", ""},
};

static bool intel_pstate_platform_pwr_mgmt_exists(void)
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
1550 1551 1552 1553 1554 1555 1556 1557 1558
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
1559

1560 1561
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1562 1563 1564
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
1565
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1566 1567 1568 1569 1570 1571
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
1572 1573
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
1574
			}
1575 1576 1577 1578 1579 1580
	}

	return false;
}
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1581
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1582 1583
#endif /* CONFIG_ACPI */

1584 1585 1586 1587 1588
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

1589 1590
static int __init intel_pstate_init(void)
{
1591
	int cpu, rc = 0;
1592
	const struct x86_cpu_id *id;
1593
	struct cpu_defaults *cpu_def;
1594

1595 1596 1597
	if (no_load)
		return -ENODEV;

1598 1599 1600 1601 1602 1603
	if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
		copy_cpu_funcs(&core_params.funcs);
		hwp_active++;
		goto hwp_cpu_matched;
	}

1604 1605 1606 1607
	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

1608
	cpu_def = (struct cpu_defaults *)id->driver_data;
1609

1610 1611
	copy_pid_params(&cpu_def->pid_policy);
	copy_cpu_funcs(&cpu_def->funcs);
1612

1613 1614 1615
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

1616 1617 1618 1619 1620 1621 1622 1623
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

1624 1625
	pr_info("Intel P-state driver initializing.\n");

1626
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1627 1628 1629
	if (!all_cpu_data)
		return -ENOMEM;

1630 1631 1632
	if (!hwp_active && hwp_only)
		goto out;

1633 1634 1635 1636 1637 1638
	rc = cpufreq_register_driver(&intel_pstate_driver);
	if (rc)
		goto out;

	intel_pstate_debug_expose_params();
	intel_pstate_sysfs_expose_params();
1639

1640 1641 1642
	if (hwp_active)
		pr_info("intel_pstate: HWP enabled\n");

1643 1644
	return rc;
out:
1645 1646 1647
	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
1648
			intel_pstate_clear_update_util_hook(cpu);
1649 1650 1651 1652 1653 1654
			kfree(all_cpu_data[cpu]);
		}
	}

	put_online_cpus();
	vfree(all_cpu_data);
1655 1656 1657 1658
	return -ENODEV;
}
device_initcall(intel_pstate_init);

1659 1660 1661 1662 1663 1664 1665
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

	if (!strcmp(str, "disable"))
		no_load = 1;
1666 1667
	if (!strcmp(str, "no_hwp")) {
		pr_info("intel_pstate: HWP disabled\n");
D
Dirk Brandewie 已提交
1668
		no_hwp = 1;
1669
	}
1670 1671
	if (!strcmp(str, "force"))
		force_load = 1;
1672 1673
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
1674 1675 1676 1677
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

1678 1679 1680
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");