intel_pstate.c 17.4 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>

#define SAMPLE_COUNT		3

#define FRAC_BITS 8
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)

static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

static inline int32_t div_fp(int32_t x, int32_t y)
{
	return div_s64((int64_t)x << FRAC_BITS, (int64_t)y);
}

struct sample {
	int core_pct_busy;
	u64 aperf;
	u64 mperf;
	int freq;
};

struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
	int	turbo_pstate;
};

struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
	int last_err;
};

struct cpudata {
	int cpu;

	char name[64];

	struct timer_list timer;

	struct pstate_adjust_policy *pstate_policy;
	struct pstate_data pstate;
	struct _pid pid;

	int min_pstate_count;

	u64	prev_aperf;
	u64	prev_mperf;
	int	sample_ptr;
	struct sample samples[SAMPLE_COUNT];
};

static struct cpudata **all_cpu_data;
struct pstate_adjust_policy {
	int sample_rate_ms;
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

static struct pstate_adjust_policy default_policy = {
	.sample_rate_ms = 10,
	.deadband = 0,
	.setpoint = 109,
	.p_gain_pct = 17,
	.d_gain_pct = 0,
	.i_gain_pct = 4,
};

struct perf_limits {
	int no_turbo;
	int max_perf_pct;
	int min_perf_pct;
	int32_t max_perf;
	int32_t min_perf;
118 119
	int max_policy_pct;
	int max_sysfs_pct;
120 121 122 123 124 125 126 127
};

static struct perf_limits limits = {
	.no_turbo = 0,
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 0,
	.min_perf = 0,
128 129
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
};

static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
			int deadband, int integral) {
	pid->setpoint = setpoint;
	pid->deadband  = deadband;
	pid->integral  = int_tofp(integral);
	pid->last_err  = setpoint - busy;
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
	pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
	pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{

	pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
}

static signed int pid_calc(struct _pid *pid, int busy)
{
	signed int err, result;
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

	err = pid->setpoint - busy;
	fp_error = int_tofp(err);

	if (abs(err) <= pid->deadband)
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

	/* limit the integral term */
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

	dterm = mul_fp(pid->d_gain, (err - pid->last_err));
	pid->last_err = err;

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;

	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
	pid_p_gain_set(&cpu->pid, cpu->pstate_policy->p_gain_pct);
	pid_d_gain_set(&cpu->pid, cpu->pstate_policy->d_gain_pct);
	pid_i_gain_set(&cpu->pid, cpu->pstate_policy->i_gain_pct);

	pid_reset(&cpu->pid,
		cpu->pstate_policy->setpoint,
		100,
		cpu->pstate_policy->deadband,
		0);
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
	intel_pstate_reset_all_pid();
	return 0;
}
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get,
			pid_param_set, "%llu\n");

struct pid_param {
	char *name;
	void *value;
};

static struct pid_param pid_files[] = {
	{"sample_rate_ms", &default_policy.sample_rate_ms},
	{"d_gain_pct", &default_policy.d_gain_pct},
	{"i_gain_pct", &default_policy.i_gain_pct},
	{"deadband", &default_policy.deadband},
	{"setpoint", &default_policy.setpoint},
	{"p_gain_pct", &default_policy.p_gain_pct},
	{NULL, NULL}
};

static struct dentry *debugfs_parent;
static void intel_pstate_debug_expose_params(void)
{
	int i = 0;

	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
	while (pid_files[i].name) {
		debugfs_create_file(pid_files[i].name, 0660,
				debugfs_parent, pid_files[i].value,
				&fops_pid_param);
		i++;
	}
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
		return sprintf(buf, "%u\n", limits.object);		\
	}

static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
				const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
	limits.no_turbo = clamp_t(int, input, 0 , 1);

	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
				const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

287 288
	limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
				const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
	limits.min_perf_pct = clamp_t(int, input, 0 , 100);
	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));

	return count;
}

show_one(no_turbo, no_turbo);
show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);

static struct attribute *intel_pstate_attributes[] = {
	&no_turbo.attr,
	&max_perf_pct.attr,
	&min_perf_pct.attr,
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};
static struct kobject *intel_pstate_kobject;

static void intel_pstate_sysfs_expose_params(void)
{
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
	BUG_ON(!intel_pstate_kobject);
	rc = sysfs_create_group(intel_pstate_kobject,
				&intel_pstate_attr_group);
	BUG_ON(rc);
}

/************************** sysfs end ************************/

static int intel_pstate_min_pstate(void)
{
	u64 value;
344
	rdmsrl(MSR_PLATFORM_INFO, value);
345 346 347 348 349 350
	return (value >> 40) & 0xFF;
}

static int intel_pstate_max_pstate(void)
{
	u64 value;
351
	rdmsrl(MSR_PLATFORM_INFO, value);
352 353 354 355 356 357 358
	return (value >> 8) & 0xFF;
}

static int intel_pstate_turbo_pstate(void)
{
	u64 value;
	int nont, ret;
359
	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
	nont = intel_pstate_max_pstate();
	ret = ((value) & 255);
	if (ret <= nont)
		ret = nont;
	return ret;
}

static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
	int min_perf;
	if (limits.no_turbo)
		max_perf = cpu->pstate.max_pstate;

	max_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
	*max = clamp_t(int, max_perf,
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);

	min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
	*min = clamp_t(int, min_perf,
			cpu->pstate.min_pstate, max_perf);
}

static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
{
	int max_perf, min_perf;

	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);

	pstate = clamp_t(int, pstate, min_perf, max_perf);

	if (pstate == cpu->pstate.current_pstate)
		return;

	trace_cpu_frequency(pstate * 100000, cpu->cpu);
395

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
	cpu->pstate.current_pstate = pstate;
	wrmsrl(MSR_IA32_PERF_CTL, pstate << 8);

}

static inline void intel_pstate_pstate_increase(struct cpudata *cpu, int steps)
{
	int target;
	target = cpu->pstate.current_pstate + steps;

	intel_pstate_set_pstate(cpu, target);
}

static inline void intel_pstate_pstate_decrease(struct cpudata *cpu, int steps)
{
	int target;
	target = cpu->pstate.current_pstate - steps;
	intel_pstate_set_pstate(cpu, target);
}

static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
	sprintf(cpu->name, "Intel 2nd generation core");

	cpu->pstate.min_pstate = intel_pstate_min_pstate();
	cpu->pstate.max_pstate = intel_pstate_max_pstate();
	cpu->pstate.turbo_pstate = intel_pstate_turbo_pstate();

	/*
	 * goto max pstate so we don't slow up boot if we are built-in if we are
	 * a module we will take care of it during normal operation
	 */
	intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);
}

static inline void intel_pstate_calc_busy(struct cpudata *cpu,
					struct sample *sample)
{
	u64 core_pct;
	core_pct = div64_u64(sample->aperf * 100, sample->mperf);
436
	sample->freq = cpu->pstate.max_pstate * core_pct * 1000;
437

438
	sample->core_pct_busy = core_pct;
439 440 441 442 443 444 445 446
}

static inline void intel_pstate_sample(struct cpudata *cpu)
{
	u64 aperf, mperf;

	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
447 448 449 450 451 452 453
	cpu->sample_ptr = (cpu->sample_ptr + 1) % SAMPLE_COUNT;
	cpu->samples[cpu->sample_ptr].aperf = aperf;
	cpu->samples[cpu->sample_ptr].mperf = mperf;
	cpu->samples[cpu->sample_ptr].aperf -= cpu->prev_aperf;
	cpu->samples[cpu->sample_ptr].mperf -= cpu->prev_mperf;

	intel_pstate_calc_busy(cpu, &cpu->samples[cpu->sample_ptr]);
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504

	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
}

static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
{
	int sample_time, delay;

	sample_time = cpu->pstate_policy->sample_rate_ms;
	delay = msecs_to_jiffies(sample_time);
	mod_timer_pinned(&cpu->timer, jiffies + delay);
}

static inline int intel_pstate_get_scaled_busy(struct cpudata *cpu)
{
	int32_t busy_scaled;
	int32_t core_busy, turbo_pstate, current_pstate;

	core_busy = int_tofp(cpu->samples[cpu->sample_ptr].core_pct_busy);
	turbo_pstate = int_tofp(cpu->pstate.turbo_pstate);
	current_pstate = int_tofp(cpu->pstate.current_pstate);
	busy_scaled = mul_fp(core_busy, div_fp(turbo_pstate, current_pstate));

	return fp_toint(busy_scaled);
}

static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
	int busy_scaled;
	struct _pid *pid;
	signed int ctl = 0;
	int steps;

	pid = &cpu->pid;
	busy_scaled = intel_pstate_get_scaled_busy(cpu);

	ctl = pid_calc(pid, busy_scaled);

	steps = abs(ctl);
	if (ctl < 0)
		intel_pstate_pstate_increase(cpu, steps);
	else
		intel_pstate_pstate_decrease(cpu, steps);
}

static void intel_pstate_timer_func(unsigned long __data)
{
	struct cpudata *cpu = (struct cpudata *) __data;

	intel_pstate_sample(cpu);
505
	intel_pstate_adjust_busy_pstate(cpu);
506 507 508 509 510 511 512 513

	if (cpu->pstate.current_pstate == cpu->pstate.min_pstate) {
		cpu->min_pstate_count++;
		if (!(cpu->min_pstate_count % 5)) {
			intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);
		}
	} else
		cpu->min_pstate_count = 0;
514

515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
	intel_pstate_set_sample_time(cpu);
}

#define ICPU(model, policy) \
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, (unsigned long)&policy }

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
	ICPU(0x2a, default_policy),
	ICPU(0x2d, default_policy),
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

static int intel_pstate_init_cpu(unsigned int cpunum)
{

	const struct x86_cpu_id *id;
	struct cpudata *cpu;

	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

	all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata), GFP_KERNEL);
	if (!all_cpu_data[cpunum])
		return -ENOMEM;

	cpu = all_cpu_data[cpunum];

	intel_pstate_get_cpu_pstates(cpu);

	cpu->cpu = cpunum;
	cpu->pstate_policy =
		(struct pstate_adjust_policy *)id->driver_data;
	init_timer_deferrable(&cpu->timer);
	cpu->timer.function = intel_pstate_timer_func;
	cpu->timer.data =
		(unsigned long)cpu;
	cpu->timer.expires = jiffies + HZ/100;
	intel_pstate_busy_pid_reset(cpu);
	intel_pstate_sample(cpu);
	intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);

	add_timer_on(&cpu->timer, cpunum);

	pr_info("Intel pstate controlling: cpu %d\n", cpunum);

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
	struct sample *sample;
	struct cpudata *cpu;

	cpu = all_cpu_data[cpu_num];
	if (!cpu)
		return 0;
	sample = &cpu->samples[cpu->sample_ptr];
	return sample->freq;
}

static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];

583 584 585
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

586 587 588 589 590 591
	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
		limits.min_perf_pct = 100;
		limits.min_perf = int_tofp(1);
		limits.max_perf_pct = 100;
		limits.max_perf = int_tofp(1);
		limits.no_turbo = 0;
592
		return 0;
593
	}
594 595 596 597
	limits.min_perf_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
	limits.min_perf_pct = clamp_t(int, limits.min_perf_pct, 0 , 100);
	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));

598 599 600
	limits.max_policy_pct = policy->max * 100 / policy->cpuinfo.max_freq;
	limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
601
	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669

	return 0;
}

static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
	cpufreq_verify_within_limits(policy,
				policy->cpuinfo.min_freq,
				policy->cpuinfo.max_freq);

	if ((policy->policy != CPUFREQ_POLICY_POWERSAVE) &&
		(policy->policy != CPUFREQ_POLICY_PERFORMANCE))
		return -EINVAL;

	return 0;
}

static int __cpuinit intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	int cpu = policy->cpu;

	del_timer(&all_cpu_data[cpu]->timer);
	kfree(all_cpu_data[cpu]);
	all_cpu_data[cpu] = NULL;
	return 0;
}

static int __cpuinit intel_pstate_cpu_init(struct cpufreq_policy *policy)
{
	int rc, min_pstate, max_pstate;
	struct cpudata *cpu;

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

	if (!limits.no_turbo &&
		limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;

	intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
	policy->min = min_pstate * 100000;
	policy->max = max_pstate * 100000;

	/* cpuinfo and default policy values */
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * 100000;
	policy->cpuinfo.max_freq = cpu->pstate.turbo_pstate * 100000;
	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
	cpumask_set_cpu(policy->cpu, policy->cpus);

	return 0;
}

static struct cpufreq_driver intel_pstate_driver = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
	.exit		= intel_pstate_cpu_exit,
	.name		= "intel_pstate",
	.owner		= THIS_MODULE,
};

670 671
static int __initdata no_load;

672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
static int intel_pstate_msrs_not_valid(void)
{
	/* Check that all the msr's we are using are valid. */
	u64 aperf, mperf, tmp;

	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);

	if (!intel_pstate_min_pstate() ||
		!intel_pstate_max_pstate() ||
		!intel_pstate_turbo_pstate())
		return -ENODEV;

	rdmsrl(MSR_IA32_APERF, tmp);
	if (!(tmp - aperf))
		return -ENODEV;

	rdmsrl(MSR_IA32_MPERF, tmp);
	if (!(tmp - mperf))
		return -ENODEV;

	return 0;
}
695 696
static int __init intel_pstate_init(void)
{
697
	int cpu, rc = 0;
698 699
	const struct x86_cpu_id *id;

700 701 702
	if (no_load)
		return -ENODEV;

703 704 705 706
	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

707 708 709
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
	pr_info("Intel P-state driver initializing.\n");

	all_cpu_data = vmalloc(sizeof(void *) * num_possible_cpus());
	if (!all_cpu_data)
		return -ENOMEM;
	memset(all_cpu_data, 0, sizeof(void *) * num_possible_cpus());

	rc = cpufreq_register_driver(&intel_pstate_driver);
	if (rc)
		goto out;

	intel_pstate_debug_expose_params();
	intel_pstate_sysfs_expose_params();
	return rc;
out:
725 726 727 728 729 730 731 732 733 734
	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			del_timer_sync(&all_cpu_data[cpu]->timer);
			kfree(all_cpu_data[cpu]);
		}
	}

	put_online_cpus();
	vfree(all_cpu_data);
735 736 737 738
	return -ENODEV;
}
device_initcall(intel_pstate_init);

739 740 741 742 743 744 745 746 747 748 749
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

	if (!strcmp(str, "disable"))
		no_load = 1;
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

750 751 752
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");