intel_pstate.c 48.1 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
30
#include <linux/acpi.h>
31
#include <linux/vmalloc.h>
32 33 34 35 36
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
37
#include <asm/cpufeature.h>
38
#include <asm/intel-family.h>
39

40 41 42 43
#define ATOM_RATIOS		0x66a
#define ATOM_VIDS		0x66b
#define ATOM_TURBO_RATIOS	0x66c
#define ATOM_TURBO_VIDS		0x66d
44

45 46 47 48
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
#endif

49
#define FRAC_BITS 8
50 51
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
52

53 54 55
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)

56 57 58 59 60
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

61
static inline int32_t div_fp(s64 x, s64 y)
62
{
63
	return div64_s64((int64_t)x << FRAC_BITS, y);
64 65
}

66 67 68 69 70 71 72 73 74 75 76
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

77 78 79 80 81 82 83 84 85 86
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

87 88
/**
 * struct sample -	Store performance sample
89
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
90 91
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
92
 *			P state. This can be different than core_avg_perf
93 94 95 96 97 98 99 100 101 102 103 104
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
105
struct sample {
106
	int32_t core_avg_perf;
107
	int32_t busy_scaled;
108 109
	u64 aperf;
	u64 mperf;
110
	u64 tsc;
111
	u64 time;
112 113
};

114 115 116 117 118 119 120 121 122 123 124 125 126 127
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
 *
 * Stores the per cpu model P state limits and current P state.
 */
128 129 130 131
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
132
	int	max_pstate_physical;
133
	int	scaling;
134 135 136
	int	turbo_pstate;
};

137 138 139 140 141 142 143 144 145 146 147 148 149
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
150
struct vid_data {
151 152 153
	int min;
	int max;
	int turbo;
154 155 156
	int32_t ratio;
};

157 158 159 160 161 162 163 164 165 166 167 168
/**
 * struct _pid -	Stores PID data
 * @setpoint:		Target set point for busyness or performance
 * @integral:		Storage for accumulated error values
 * @p_gain:		PID proportional gain
 * @i_gain:		PID integral gain
 * @d_gain:		PID derivative gain
 * @deadband:		PID deadband
 * @last_err:		Last error storage for integral part of PID calculation
 *
 * Stores PID coefficients and last error for PID controller.
 */
169 170 171 172 173 174 175
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
176
	int32_t last_err;
177 178
};

179 180 181
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
182
 * @policy:		CPUFreq policy value
183
 * @update_util:	CPUFreq utility callback information
184
 * @update_util_set:	CPUFreq utility callback is set
185 186
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
187 188 189 190 191 192 193 194 195 196
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @pid:		Stores PID parameters for this CPU
 * @last_sample_time:	Last Sample time
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
197 198
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
199 200 201
 *
 * This structure stores per CPU instance data for all CPUs.
 */
202 203 204
struct cpudata {
	int cpu;

205
	unsigned int policy;
206
	struct update_util_data update_util;
207
	bool   update_util_set;
208 209

	struct pstate_data pstate;
210
	struct vid_data vid;
211 212
	struct _pid pid;

213
	u64	last_update;
214
	u64	last_sample_time;
215 216
	u64	prev_aperf;
	u64	prev_mperf;
217
	u64	prev_tsc;
218
	u64	prev_cummulative_iowait;
219
	struct sample sample;
220 221 222 223
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
224
	unsigned int iowait_boost;
225 226 227
};

static struct cpudata **all_cpu_data;
228 229

/**
230
 * struct pstate_adjust_policy - Stores static PID configuration data
231 232 233 234 235 236 237 238 239 240
 * @sample_rate_ms:	PID calculation sample rate in ms
 * @sample_rate_ns:	Sample rate calculation in ns
 * @deadband:		PID deadband
 * @setpoint:		PID Setpoint
 * @p_gain_pct:		PID proportional gain
 * @i_gain_pct:		PID integral gain
 * @d_gain_pct:		PID derivative gain
 *
 * Stores per CPU model static PID configuration data.
 */
241 242
struct pstate_adjust_policy {
	int sample_rate_ms;
243
	s64 sample_rate_ns;
244 245 246 247 248 249 250
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

251 252 253 254 255 256 257 258 259 260 261 262 263 264
/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 * @get_target_pstate:	Callback to a function to calculate next P state to use
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
265 266
struct pstate_funcs {
	int (*get_max)(void);
267
	int (*get_max_physical)(void);
268 269
	int (*get_min)(void);
	int (*get_turbo)(void);
270
	int (*get_scaling)(void);
271
	u64 (*get_val)(struct cpudata*, int pstate);
272
	void (*get_vid)(struct cpudata *);
273
	int32_t (*get_target_pstate)(struct cpudata *);
274 275
};

276 277 278 279 280
/**
 * struct cpu_defaults- Per CPU model default config data
 * @pid_policy:	PID config data
 * @funcs:		Callback function data
 */
281 282 283
struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
284 285
};

286
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
287
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
288

289 290 291
static struct pstate_adjust_policy pid_params __read_mostly;
static struct pstate_funcs pstate_funcs __read_mostly;
static int hwp_active __read_mostly;
292

293 294 295
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323

/**
 * struct perf_limits - Store user and policy limits
 * @no_turbo:		User requested turbo state from intel_pstate sysfs
 * @turbo_disabled:	Platform turbo status either from msr
 *			MSR_IA32_MISC_ENABLE or when maximum available pstate
 *			matches the maximum turbo pstate
 * @max_perf_pct:	Effective maximum performance limit in percentage, this
 *			is minimum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @min_perf_pct:	Effective minimum performance limit in percentage, this
 *			is maximum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
 *			This value is used to limit max pstate
 * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
 *			This value is used to limit min pstate
 * @max_policy_pct:	The maximum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @max_sysfs_pct:	The maximum performance in percentage enforced by
 *			intel pstate sysfs interface
 * @min_policy_pct:	The minimum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @min_sysfs_pct:	The minimum performance in percentage enforced by
 *			intel pstate sysfs interface
 *
 * Storage for user and policy defined limits.
 */
324 325
struct perf_limits {
	int no_turbo;
326
	int turbo_disabled;
327 328 329 330
	int max_perf_pct;
	int min_perf_pct;
	int32_t max_perf;
	int32_t min_perf;
331 332
	int max_policy_pct;
	int max_sysfs_pct;
333 334
	int min_policy_pct;
	int min_sysfs_pct;
335 336
};

337 338 339 340 341 342 343 344 345 346 347 348 349 350
static struct perf_limits performance_limits = {
	.no_turbo = 0,
	.turbo_disabled = 0,
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 100,
	.min_perf = int_tofp(1),
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
};

static struct perf_limits powersave_limits = {
351
	.no_turbo = 0,
352
	.turbo_disabled = 0,
353 354 355 356
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 0,
	.min_perf = 0,
357 358
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
359 360
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
361 362
};

363 364 365 366 367 368
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
static struct perf_limits *limits = &performance_limits;
#else
static struct perf_limits *limits = &powersave_limits;
#endif

369
#ifdef CONFIG_ACPI
370 371 372 373 374 375 376 377 378 379

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

	return acpi_ppc;
}

380 381 382 383 384 385
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

386 387 388
	if (hwp_active)
		return;

389
	if (!intel_pstate_get_ppc_enable_status())
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
432
	 * correct max turbo frequency based on the turbo state.
433 434
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
435
	if (!limits->turbo_disabled)
436 437 438
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
439
	pr_debug("_PPC limits will be enforced\n");
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}

#else
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
}
#endif

469
static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
470
			     int deadband, int integral) {
471 472
	pid->setpoint = int_tofp(setpoint);
	pid->deadband  = int_tofp(deadband);
473
	pid->integral  = int_tofp(integral);
474
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
475 476 477 478
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
479
	pid->p_gain = div_fp(percent, 100);
480 481 482 483
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
484
	pid->i_gain = div_fp(percent, 100);
485 486 487 488
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{
489
	pid->d_gain = div_fp(percent, 100);
490 491
}

492
static signed int pid_calc(struct _pid *pid, int32_t busy)
493
{
494
	signed int result;
495 496 497
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

498
	fp_error = pid->setpoint - busy;
499

500
	if (abs(fp_error) <= pid->deadband)
501 502 503 504 505 506
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

507 508 509 510 511 512 513 514
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
515 516 517 518 519 520
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

521 522
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
523 524

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
525
	result = result + (1 << (FRAC_BITS-1));
526 527 528 529 530
	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
531 532 533
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
534

535
	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
536 537 538 539 540
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
541

542 543 544 545 546 547
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

548 549 550 551 552 553 554
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
555
	limits->turbo_disabled =
556 557 558 559
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

560
static void intel_pstate_hwp_set(const struct cpumask *cpumask)
D
Dirk Brandewie 已提交
561
{
562 563 564
	int min, hw_min, max, hw_max, cpu, range, adj_range;
	u64 value, cap;

565
	for_each_cpu(cpu, cpumask) {
566 567 568 569 570
		rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
		hw_min = HWP_LOWEST_PERF(cap);
		hw_max = HWP_HIGHEST_PERF(cap);
		range = hw_max - hw_min;

D
Dirk Brandewie 已提交
571
		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
572
		adj_range = limits->min_perf_pct * range / 100;
573
		min = hw_min + adj_range;
D
Dirk Brandewie 已提交
574 575 576
		value &= ~HWP_MIN_PERF(~0L);
		value |= HWP_MIN_PERF(min);

577
		adj_range = limits->max_perf_pct * range / 100;
578
		max = hw_min + adj_range;
579
		if (limits->no_turbo) {
580 581 582
			hw_max = HWP_GUARANTEED_PERF(cap);
			if (hw_max < max)
				max = hw_max;
D
Dirk Brandewie 已提交
583 584 585 586 587 588
		}

		value &= ~HWP_MAX_PERF(~0L);
		value |= HWP_MAX_PERF(max);
		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
	}
589
}
D
Dirk Brandewie 已提交
590

591 592 593 594 595 596 597 598
static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
{
	if (hwp_active)
		intel_pstate_hwp_set(policy->cpus);

	return 0;
}

599 600 601 602
static void intel_pstate_hwp_set_online_cpus(void)
{
	get_online_cpus();
	intel_pstate_hwp_set(cpu_online_mask);
D
Dirk Brandewie 已提交
603 604 605
	put_online_cpus();
}

606 607 608 609 610 611 612
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
	intel_pstate_reset_all_pid();
	return 0;
}
613

614 615 616 617 618
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
619
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
620 621 622 623 624 625 626

struct pid_param {
	char *name;
	void *value;
};

static struct pid_param pid_files[] = {
627 628 629 630 631 632
	{"sample_rate_ms", &pid_params.sample_rate_ms},
	{"d_gain_pct", &pid_params.d_gain_pct},
	{"i_gain_pct", &pid_params.i_gain_pct},
	{"deadband", &pid_params.deadband},
	{"setpoint", &pid_params.setpoint},
	{"p_gain_pct", &pid_params.p_gain_pct},
633 634 635
	{NULL, NULL}
};

636
static void __init intel_pstate_debug_expose_params(void)
637
{
638
	struct dentry *debugfs_parent;
639 640
	int i = 0;

641 642
	if (hwp_active ||
	    pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load)
D
Dirk Brandewie 已提交
643
		return;
644

645 646 647 648 649
	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
	while (pid_files[i].name) {
		debugfs_create_file(pid_files[i].name, 0660,
650 651
				    debugfs_parent, pid_files[i].value,
				    &fops_pid_param);
652 653 654 655 656 657 658 659 660 661 662
		i++;
	}
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
663
		return sprintf(buf, "%u\n", limits->object);		\
664 665
	}

666 667 668 669 670 671 672 673 674 675 676
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
677
	turbo_fp = div_fp(no_turbo, total);
678 679 680 681
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
	return sprintf(buf, "%u\n", turbo_pct);
}

682 683 684 685 686 687 688 689 690 691 692
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	return sprintf(buf, "%u\n", total);
}

693 694 695 696 697 698
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

	update_turbo_state();
699 700
	if (limits->turbo_disabled)
		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
701
	else
702
		ret = sprintf(buf, "%u\n", limits->no_turbo);
703 704 705 706

	return ret;
}

707
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
708
			      const char *buf, size_t count)
709 710 711
{
	unsigned int input;
	int ret;
712

713 714 715
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
716 717

	update_turbo_state();
718
	if (limits->turbo_disabled) {
J
Joe Perches 已提交
719
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
720
		return -EPERM;
721
	}
D
Dirk Brandewie 已提交
722

723
	limits->no_turbo = clamp_t(int, input, 0, 1);
724

D
Dirk Brandewie 已提交
725
	if (hwp_active)
726
		intel_pstate_hwp_set_online_cpus();
D
Dirk Brandewie 已提交
727

728 729 730 731
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
732
				  const char *buf, size_t count)
733 734 735
{
	unsigned int input;
	int ret;
736

737 738 739 740
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

741 742 743 744 745 746 747
	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
	limits->max_perf_pct = max(limits->min_perf_pct,
				   limits->max_perf_pct);
748
	limits->max_perf = div_fp(limits->max_perf_pct, 100);
749

D
Dirk Brandewie 已提交
750
	if (hwp_active)
751
		intel_pstate_hwp_set_online_cpus();
752 753 754 755
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
756
				  const char *buf, size_t count)
757 758 759
{
	unsigned int input;
	int ret;
760

761 762 763
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
764

765 766 767 768 769 770 771
	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->min_perf_pct = min(limits->max_perf_pct,
				   limits->min_perf_pct);
772
	limits->min_perf = div_fp(limits->min_perf_pct, 100);
773

D
Dirk Brandewie 已提交
774
	if (hwp_active)
775
		intel_pstate_hwp_set_online_cpus();
776 777 778 779 780 781 782 783 784
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
785
define_one_global_ro(turbo_pct);
786
define_one_global_ro(num_pstates);
787 788 789 790 791

static struct attribute *intel_pstate_attributes[] = {
	&no_turbo.attr,
	&max_perf_pct.attr,
	&min_perf_pct.attr,
792
	&turbo_pct.attr,
793
	&num_pstates.attr,
794 795 796 797 798 799 800
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

801
static void __init intel_pstate_sysfs_expose_params(void)
802
{
803
	struct kobject *intel_pstate_kobject;
804 805 806 807 808
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
	BUG_ON(!intel_pstate_kobject);
809
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
810 811 812
	BUG_ON(rc);
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
813

814
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
815
{
816
	/* First disable HWP notification interrupt as we don't process them */
817 818
	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
819

820
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
D
Dirk Brandewie 已提交
821 822
}

823
static int atom_get_min_pstate(void)
824 825
{
	u64 value;
826

827
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
828
	return (value >> 8) & 0x7F;
829 830
}

831
static int atom_get_max_pstate(void)
832 833
{
	u64 value;
834

835
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
836
	return (value >> 16) & 0x7F;
837
}
838

839
static int atom_get_turbo_pstate(void)
840 841
{
	u64 value;
842

843
	rdmsrl(ATOM_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
844
	return value & 0x7F;
845 846
}

847
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
848 849 850 851 852
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

853
	val = (u64)pstate << 8;
854
	if (limits->no_turbo && !limits->turbo_disabled)
855 856 857 858 859 860 861
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
862
	vid = ceiling_fp(vid_fp);
863

864 865 866
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

867
	return val | vid;
868 869
}

870
static int silvermont_get_scaling(void)
871 872 873
{
	u64 value;
	int i;
874 875 876
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
877 878

	rdmsrl(MSR_FSB_FREQ, value);
879 880
	i = value & 0x7;
	WARN_ON(i > 4);
881

882 883
	return silvermont_freq_table[i];
}
884

885 886 887 888 889 890 891 892 893 894 895 896 897 898
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
899 900
}

901
static void atom_get_vid(struct cpudata *cpudata)
902 903 904
{
	u64 value;

905
	rdmsrl(ATOM_VIDS, value);
D
Dirk Brandewie 已提交
906 907
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
908 909 910 911
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
912

913
	rdmsrl(ATOM_TURBO_VIDS, value);
914
	cpudata->vid.turbo = value & 0x7f;
915 916
}

917
static int core_get_min_pstate(void)
918 919
{
	u64 value;
920

921
	rdmsrl(MSR_PLATFORM_INFO, value);
922 923 924
	return (value >> 40) & 0xFF;
}

925
static int core_get_max_pstate_physical(void)
926 927
{
	u64 value;
928

929
	rdmsrl(MSR_PLATFORM_INFO, value);
930 931 932
	return (value >> 8) & 0xFF;
}

933
static int core_get_max_pstate(void)
934
{
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
	u64 tar;
	u64 plat_info;
	int max_pstate;
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
		/* Do some sanity checking for safety */
		if (plat_info & 0x600000000) {
			u64 tdp_ctrl;
			u64 tdp_ratio;
			int tdp_msr;

			err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
			if (err)
				goto skip_tar;

955
			tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x3);
956 957 958 959
			err = rdmsrl_safe(tdp_msr, &tdp_ratio);
			if (err)
				goto skip_tar;

960 961 962 963 964
			/* For level 1 and 2, bits[23:16] contain the ratio */
			if (tdp_ctrl)
				tdp_ratio >>= 16;

			tdp_ratio &= 0xff; /* ratios are only 8 bits long */
965 966 967 968 969 970 971 972
			if (tdp_ratio - 1 == tar) {
				max_pstate = tar;
				pr_debug("max_pstate=TAC %x\n", max_pstate);
			} else {
				goto skip_tar;
			}
		}
	}
973

974 975
skip_tar:
	return max_pstate;
976 977
}

978
static int core_get_turbo_pstate(void)
979 980 981
{
	u64 value;
	int nont, ret;
982

983
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
984
	nont = core_get_max_pstate();
985
	ret = (value) & 255;
986 987 988 989 990
	if (ret <= nont)
		ret = nont;
	return ret;
}

991 992 993 994 995
static inline int core_get_scaling(void)
{
	return 100000;
}

996
static u64 core_get_val(struct cpudata *cpudata, int pstate)
997 998 999
{
	u64 val;

1000
	val = (u64)pstate << 8;
1001
	if (limits->no_turbo && !limits->turbo_disabled)
1002 1003
		val |= (u64)1 << 32;

1004
	return val;
1005 1006
}

1007 1008 1009 1010 1011
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1012
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1013 1014 1015 1016 1017 1018 1019
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1031
		.get_max_physical = core_get_max_pstate_physical,
1032 1033
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
1034
		.get_scaling = core_get_scaling,
1035
		.get_val = core_get_val,
1036
		.get_target_pstate = get_target_pstate_use_performance,
1037 1038 1039
	},
};

1040
static const struct cpu_defaults silvermont_params = {
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1054
		.get_val = atom_get_val,
1055 1056
		.get_scaling = silvermont_get_scaling,
		.get_vid = atom_get_vid,
1057
		.get_target_pstate = get_target_pstate_use_cpu_load,
1058 1059 1060
	},
};

1061
static const struct cpu_defaults airmont_params = {
1062 1063 1064
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
1065
		.setpoint = 60,
1066 1067 1068 1069 1070
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
1071 1072 1073 1074
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1075
		.get_val = atom_get_val,
1076
		.get_scaling = airmont_get_scaling,
1077
		.get_vid = atom_get_vid,
1078
		.get_target_pstate = get_target_pstate_use_cpu_load,
1079 1080 1081
	},
};

1082
static const struct cpu_defaults knl_params = {
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1093
		.get_max_physical = core_get_max_pstate_physical,
1094 1095
		.get_min = core_get_min_pstate,
		.get_turbo = knl_get_turbo_pstate,
1096
		.get_scaling = core_get_scaling,
1097
		.get_val = core_get_val,
1098
		.get_target_pstate = get_target_pstate_use_performance,
1099 1100 1101
	},
};

1102
static const struct cpu_defaults bxt_params = {
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
		.get_max_physical = core_get_max_pstate_physical,
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
		.get_scaling = core_get_scaling,
		.get_val = core_get_val,
		.get_target_pstate = get_target_pstate_use_cpu_load,
	},
};

1122 1123 1124
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
1125
	int max_perf_adj;
1126
	int min_perf;
1127

1128
	if (limits->no_turbo || limits->turbo_disabled)
1129 1130
		max_perf = cpu->pstate.max_pstate;

1131 1132 1133 1134 1135
	/*
	 * performance can be limited by user through sysfs, by cpufreq
	 * policy, or by cpu specific default values determined through
	 * experimentation.
	 */
1136
	max_perf_adj = fp_toint(max_perf * limits->max_perf);
1137 1138
	*max = clamp_t(int, max_perf_adj,
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1139

1140
	min_perf = fp_toint(max_perf * limits->min_perf);
1141
	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1142 1143
}

1144
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1145
{
1146 1147
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1148 1149 1150 1151 1152 1153 1154
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1155 1156
}

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
	int min_pstate, max_pstate;

	update_turbo_state();
	intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
	intel_pstate_set_pstate(cpu, max_pstate);
}

1171 1172
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1173 1174
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1175
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1176
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1177
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1178

1179 1180
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1181 1182

	intel_pstate_set_min_pstate(cpu);
1183 1184
}

1185
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1186
{
1187
	struct sample *sample = &cpu->sample;
1188

1189
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1190 1191
}

1192
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1193 1194
{
	u64 aperf, mperf;
1195
	unsigned long flags;
1196
	u64 tsc;
1197

1198
	local_irq_save(flags);
1199 1200
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1201
	tsc = rdtsc();
1202
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1203
		local_irq_restore(flags);
1204
		return false;
1205
	}
1206
	local_irq_restore(flags);
1207

1208
	cpu->last_sample_time = cpu->sample.time;
1209
	cpu->sample.time = time;
1210 1211
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1212
	cpu->sample.tsc =  tsc;
1213 1214
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1215
	cpu->sample.tsc -= cpu->prev_tsc;
1216

1217 1218
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1219
	cpu->prev_tsc = tsc;
1220 1221 1222 1223 1224 1225 1226 1227
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
	return !!cpu->last_sample_time;
1228 1229
}

1230 1231
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1232 1233
	return mul_ext_fp(cpu->sample.core_avg_perf,
			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1234 1235
}

1236 1237
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1238 1239
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1240 1241
}

1242 1243 1244
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
1245
	int32_t busy_frac, boost;
1246
	int target, avg_pstate;
1247

1248
	busy_frac = div_fp(sample->mperf, sample->tsc);
1249

1250 1251
	boost = cpu->iowait_boost;
	cpu->iowait_boost >>= 1;
1252

1253 1254
	if (busy_frac < boost)
		busy_frac = boost;
1255

1256
	sample->busy_scaled = busy_frac * 100;
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276

	target = limits->no_turbo || limits->turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1277 1278
}

1279
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1280
{
1281
	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1282
	u64 duration_ns;
1283

1284
	/*
1285 1286 1287 1288 1289
	 * perf_scaled is the ratio of the average P-state during the last
	 * sampling period to the P-state requested last time (in percent).
	 *
	 * That measures the system's response to the previous P-state
	 * selection.
1290
	 */
1291 1292
	max_pstate = cpu->pstate.max_pstate_physical;
	current_pstate = cpu->pstate.current_pstate;
1293
	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1294
			       div_fp(100 * max_pstate, current_pstate));
1295

1296
	/*
1297 1298 1299
	 * Since our utilization update callback will not run unless we are
	 * in C0, check if the actual elapsed time is significantly greater (3x)
	 * than our sample interval.  If it is, then we were idle for a long
1300
	 * enough period of time to adjust our performance metric.
1301
	 */
1302
	duration_ns = cpu->sample.time - cpu->last_sample_time;
1303
	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1304
		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1305
		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1306 1307 1308
	} else {
		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
		if (sample_ratio < int_tofp(1))
1309
			perf_scaled = 0;
1310 1311
	}

1312 1313
	cpu->sample.busy_scaled = perf_scaled;
	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1314 1315
}

1316 1317 1318 1319 1320 1321 1322 1323
static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
	int max_perf, min_perf;

	update_turbo_state();

	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
	pstate = clamp_t(int, pstate, min_perf, max_perf);
1324
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1325 1326 1327
	if (pstate == cpu->pstate.current_pstate)
		return;

1328
	cpu->pstate.current_pstate = pstate;
1329 1330 1331
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1332 1333
static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
1334
	int from, target_pstate;
1335 1336 1337
	struct sample *sample;

	from = cpu->pstate.current_pstate;
1338

1339 1340
	target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
		cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1341

1342
	intel_pstate_update_pstate(cpu, target_pstate);
1343 1344

	sample = &cpu->sample;
1345
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1346
		fp_toint(sample->busy_scaled),
1347 1348 1349 1350 1351
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1352 1353
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1354 1355
}

1356
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1357
				     unsigned int flags)
1358
{
1359
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1360 1361
	u64 delta_ns;

1362
	if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
		if (flags & SCHED_CPUFREQ_IOWAIT) {
			cpu->iowait_boost = int_tofp(1);
		} else if (cpu->iowait_boost) {
			/* Clear iowait_boost if the CPU may have been idle. */
			delta_ns = time - cpu->last_update;
			if (delta_ns > TICK_NSEC)
				cpu->iowait_boost = 0;
		}
		cpu->last_update = time;
	}
1373

1374
	delta_ns = time - cpu->sample.time;
1375
	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1376 1377
		bool sample_taken = intel_pstate_sample(cpu, time);

1378
		if (sample_taken) {
1379
			intel_pstate_calc_avg_perf(cpu);
1380 1381 1382
			if (!hwp_active)
				intel_pstate_adjust_busy_pstate(cpu);
		}
1383
	}
1384 1385 1386
}

#define ICPU(model, policy) \
1387 1388
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1389 1390

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_params),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_params),
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_params),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_params),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_params),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_params),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_params),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_params),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_params),
1408
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_params),
1409 1410 1411 1412
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1413
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1414
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1415 1416
	ICPU(INTEL_FAM6_BROADWELL_X, core_params),
	ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
D
Dirk Brandewie 已提交
1417 1418 1419
	{}
};

1420 1421 1422 1423
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1424 1425 1426
	if (!all_cpu_data[cpunum])
		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
					       GFP_KERNEL);
1427 1428 1429 1430 1431 1432
	if (!all_cpu_data[cpunum])
		return -ENOMEM;

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1433

1434
	if (hwp_active) {
1435
		intel_pstate_hwp_enable(cpu);
1436 1437 1438
		pid_params.sample_rate_ms = 50;
		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
	}
1439

1440
	intel_pstate_get_cpu_pstates(cpu);
1441

1442 1443
	intel_pstate_busy_pid_reset(cpu);

J
Joe Perches 已提交
1444
	pr_debug("controlling: cpu %d\n", cpunum);
1445 1446 1447 1448 1449 1450

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
1451
	struct cpudata *cpu = all_cpu_data[cpu_num];
1452

1453
	return cpu ? get_avg_frequency(cpu) : 0;
1454 1455
}

1456
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1457
{
1458 1459
	struct cpudata *cpu = all_cpu_data[cpu_num];

1460 1461 1462
	if (cpu->update_util_set)
		return;

1463 1464
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1465 1466
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
				     intel_pstate_update_util);
1467
	cpu->update_util_set = true;
1468 1469 1470 1471
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1472 1473 1474 1475 1476
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

1477
	cpufreq_remove_update_util_hook(cpu);
1478
	cpu_data->update_util_set = false;
1479 1480 1481
	synchronize_sched();
}

1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
static void intel_pstate_set_performance_limits(struct perf_limits *limits)
{
	limits->no_turbo = 0;
	limits->turbo_disabled = 0;
	limits->max_perf_pct = 100;
	limits->max_perf = int_tofp(1);
	limits->min_perf_pct = 100;
	limits->min_perf = int_tofp(1);
	limits->max_policy_pct = 100;
	limits->max_sysfs_pct = 100;
	limits->min_policy_pct = 0;
	limits->min_sysfs_pct = 0;
}

1496 1497
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
1498 1499
	struct cpudata *cpu;

1500 1501 1502
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

1503 1504 1505
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

1506
	cpu = all_cpu_data[policy->cpu];
1507 1508
	cpu->policy = policy->policy;

1509 1510 1511 1512 1513
	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
1514 1515
	}

1516
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
1517
		limits = &performance_limits;
1518
		if (policy->max >= policy->cpuinfo.max_freq) {
J
Joe Perches 已提交
1519
			pr_debug("set performance\n");
1520 1521 1522 1523
			intel_pstate_set_performance_limits(limits);
			goto out;
		}
	} else {
J
Joe Perches 已提交
1524
		pr_debug("set powersave\n");
1525
		limits = &powersave_limits;
1526
	}
D
Dirk Brandewie 已提交
1527

1528 1529
	limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
	limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1530 1531
	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
					      policy->cpuinfo.max_freq);
1532
	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1533 1534

	/* Normalize user input to [min_policy_pct, max_policy_pct] */
1535 1536 1537 1538 1539 1540 1541 1542
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
1543 1544

	/* Make sure min_perf_pct <= max_perf_pct */
1545
	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1546

1547 1548
	limits->min_perf = div_fp(limits->min_perf_pct, 100);
	limits->max_perf = div_fp(limits->max_perf_pct, 100);
1549
	limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1550

1551
 out:
1552
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
1553 1554 1555 1556 1557 1558 1559 1560
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
	}

1561 1562
	intel_pstate_set_update_util_hook(policy->cpu);

1563
	intel_pstate_hwp_set_policy(policy);
D
Dirk Brandewie 已提交
1564

1565 1566 1567 1568 1569
	return 0;
}

static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
1570
	cpufreq_verify_within_cpu_limits(policy);
1571

1572
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1573
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1574 1575 1576 1577 1578
		return -EINVAL;

	return 0;
}

1579
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1580
{
1581 1582
	int cpu_num = policy->cpu;
	struct cpudata *cpu = all_cpu_data[cpu_num];
1583

J
Joe Perches 已提交
1584
	pr_debug("CPU %d exiting\n", cpu_num);
1585

1586
	intel_pstate_clear_update_util_hook(cpu_num);
1587

D
Dirk Brandewie 已提交
1588 1589 1590
	if (hwp_active)
		return;

1591
	intel_pstate_set_min_pstate(cpu);
1592 1593
}

1594
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1595 1596
{
	struct cpudata *cpu;
1597
	int rc;
1598 1599 1600 1601 1602 1603 1604

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

1605
	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1606 1607 1608 1609
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;

1610 1611
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1612 1613

	/* cpuinfo and default policy values */
1614
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1615 1616 1617 1618 1619
	update_turbo_state();
	policy->cpuinfo.max_freq = limits->turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

1620
	intel_pstate_init_acpi_perf_limits(policy);
1621 1622 1623 1624 1625 1626
	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
	cpumask_set_cpu(policy->cpu, policy->cpus);

	return 0;
}

1627 1628 1629 1630 1631 1632 1633
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);

	return 0;
}

1634 1635 1636 1637
static struct cpufreq_driver intel_pstate_driver = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
1638
	.resume		= intel_pstate_hwp_set_policy,
1639 1640
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
1641
	.exit		= intel_pstate_cpu_exit,
1642
	.stop_cpu	= intel_pstate_stop_cpu,
1643 1644 1645
	.name		= "intel_pstate",
};

1646 1647 1648
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
1649
static unsigned int force_load __initdata;
1650

1651
static int __init intel_pstate_msrs_not_valid(void)
1652
{
1653
	if (!pstate_funcs.get_max() ||
1654 1655
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
1656 1657 1658 1659
		return -ENODEV;

	return 0;
}
1660

1661
static void __init copy_pid_params(struct pstate_adjust_policy *policy)
1662 1663
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
1664
	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1665 1666 1667 1668 1669 1670 1671
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

1672
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
1673 1674
{
	pstate_funcs.get_max   = funcs->get_max;
1675
	pstate_funcs.get_max_physical = funcs->get_max_physical;
1676 1677
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
1678
	pstate_funcs.get_scaling = funcs->get_scaling;
1679
	pstate_funcs.get_val   = funcs->get_val;
1680
	pstate_funcs.get_vid   = funcs->get_vid;
1681 1682
	pstate_funcs.get_target_pstate = funcs->get_target_pstate;

1683 1684
}

1685
#ifdef CONFIG_ACPI
1686

1687
static bool __init intel_pstate_no_acpi_pss(void)
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

1716
static bool __init intel_pstate_has_acpi_ppc(void)
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

1736 1737 1738 1739
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1740
	int  oem_pwr_table;
1741 1742 1743
};

/* Hardware vendor-specific info that has its own power management modes */
1744
static struct hw_vendor_info vendor_info[] __initdata = {
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
1756 1757 1758 1759
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
1760 1761 1762
	{0, "", ""},
};

1763
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
1764 1765 1766
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
1767 1768 1769 1770 1771 1772 1773 1774 1775
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
1776

1777 1778
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1779 1780 1781
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
1782
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1783 1784 1785 1786 1787 1788
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
1789 1790
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
1791
			}
1792 1793 1794 1795 1796 1797
	}

	return false;
}
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1798
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1799 1800
#endif /* CONFIG_ACPI */

1801 1802 1803 1804 1805
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

1806 1807
static int __init intel_pstate_init(void)
{
1808
	int cpu, rc = 0;
1809
	const struct x86_cpu_id *id;
1810
	struct cpu_defaults *cpu_def;
1811

1812 1813 1814
	if (no_load)
		return -ENODEV;

1815 1816 1817 1818 1819 1820
	if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
		copy_cpu_funcs(&core_params.funcs);
		hwp_active++;
		goto hwp_cpu_matched;
	}

1821 1822 1823 1824
	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

1825
	cpu_def = (struct cpu_defaults *)id->driver_data;
1826

1827 1828
	copy_pid_params(&cpu_def->pid_policy);
	copy_cpu_funcs(&cpu_def->funcs);
1829

1830 1831 1832
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

1833 1834 1835 1836 1837 1838 1839 1840
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

J
Joe Perches 已提交
1841
	pr_info("Intel P-state driver initializing\n");
1842

1843
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1844 1845 1846
	if (!all_cpu_data)
		return -ENOMEM;

1847 1848 1849
	if (!hwp_active && hwp_only)
		goto out;

1850 1851 1852 1853 1854 1855
	rc = cpufreq_register_driver(&intel_pstate_driver);
	if (rc)
		goto out;

	intel_pstate_debug_expose_params();
	intel_pstate_sysfs_expose_params();
1856

1857
	if (hwp_active)
J
Joe Perches 已提交
1858
		pr_info("HWP enabled\n");
1859

1860 1861
	return rc;
out:
1862 1863 1864
	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
1865
			intel_pstate_clear_update_util_hook(cpu);
1866 1867 1868 1869 1870 1871
			kfree(all_cpu_data[cpu]);
		}
	}

	put_online_cpus();
	vfree(all_cpu_data);
1872 1873 1874 1875
	return -ENODEV;
}
device_initcall(intel_pstate_init);

1876 1877 1878 1879 1880 1881 1882
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

	if (!strcmp(str, "disable"))
		no_load = 1;
1883
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
1884
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
1885
		no_hwp = 1;
1886
	}
1887 1888
	if (!strcmp(str, "force"))
		force_load = 1;
1889 1890
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
1891 1892 1893 1894 1895 1896

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

1897 1898 1899 1900
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

1901 1902 1903
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");