intel_pstate.c 41.6 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
28
#include <linux/acpi.h>
29
#include <linux/vmalloc.h>
30 31 32 33 34
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
35
#include <asm/cpufeature.h>
36

37 38 39 40
#define ATOM_RATIOS		0x66a
#define ATOM_VIDS		0x66b
#define ATOM_TURBO_RATIOS	0x66c
#define ATOM_TURBO_VIDS		0x66d
41

42
#define FRAC_BITS 8
43 44
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
45

46 47 48 49 50
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

51
static inline int32_t div_fp(s64 x, s64 y)
52
{
53
	return div64_s64((int64_t)x << FRAC_BITS, y);
54 55
}

56 57 58 59 60 61 62 63 64 65 66
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
/**
 * struct sample -	Store performance sample
 * @core_pct_busy:	Ratio of APERF/MPERF in percent, which is actual
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
 *			P state. This can be different than core_pct_busy
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @freq:		Effective frequency calculated from APERF/MPERF
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
86
struct sample {
87
	int32_t core_pct_busy;
88
	int32_t busy_scaled;
89 90
	u64 aperf;
	u64 mperf;
91
	u64 tsc;
92
	int freq;
93
	u64 time;
94 95
};

96 97 98 99 100 101 102 103 104 105 106 107 108 109
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
 *
 * Stores the per cpu model P state limits and current P state.
 */
110 111 112 113
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
114
	int	max_pstate_physical;
115
	int	scaling;
116 117 118
	int	turbo_pstate;
};

119 120 121 122 123 124 125 126 127 128 129 130 131
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
132
struct vid_data {
133 134 135
	int min;
	int max;
	int turbo;
136 137 138
	int32_t ratio;
};

139 140 141 142 143 144 145 146 147 148 149 150
/**
 * struct _pid -	Stores PID data
 * @setpoint:		Target set point for busyness or performance
 * @integral:		Storage for accumulated error values
 * @p_gain:		PID proportional gain
 * @i_gain:		PID integral gain
 * @d_gain:		PID derivative gain
 * @deadband:		PID deadband
 * @last_err:		Last error storage for integral part of PID calculation
 *
 * Stores PID coefficients and last error for PID controller.
 */
151 152 153 154 155 156 157
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
158
	int32_t last_err;
159 160
};

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
 * @update_util:	CPUFreq utility callback information
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @pid:		Stores PID parameters for this CPU
 * @last_sample_time:	Last Sample time
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
 *
 * This structure stores per CPU instance data for all CPUs.
 */
178 179 180
struct cpudata {
	int cpu;

181
	struct update_util_data update_util;
182 183

	struct pstate_data pstate;
184
	struct vid_data vid;
185 186
	struct _pid pid;

187
	u64	last_sample_time;
188 189
	u64	prev_aperf;
	u64	prev_mperf;
190
	u64	prev_tsc;
191
	u64	prev_cummulative_iowait;
192
	struct sample sample;
193 194 195
};

static struct cpudata **all_cpu_data;
196 197 198 199 200 201 202 203 204 205 206 207 208

/**
 * struct pid_adjust_policy - Stores static PID configuration data
 * @sample_rate_ms:	PID calculation sample rate in ms
 * @sample_rate_ns:	Sample rate calculation in ns
 * @deadband:		PID deadband
 * @setpoint:		PID Setpoint
 * @p_gain_pct:		PID proportional gain
 * @i_gain_pct:		PID integral gain
 * @d_gain_pct:		PID derivative gain
 *
 * Stores per CPU model static PID configuration data.
 */
209 210
struct pstate_adjust_policy {
	int sample_rate_ms;
211
	s64 sample_rate_ns;
212 213 214 215 216 217 218
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

219 220 221 222 223 224 225 226 227 228 229 230 231 232
/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 * @get_target_pstate:	Callback to a function to calculate next P state to use
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
233 234
struct pstate_funcs {
	int (*get_max)(void);
235
	int (*get_max_physical)(void);
236 237
	int (*get_min)(void);
	int (*get_turbo)(void);
238
	int (*get_scaling)(void);
239
	u64 (*get_val)(struct cpudata*, int pstate);
240
	void (*get_vid)(struct cpudata *);
241
	int32_t (*get_target_pstate)(struct cpudata *);
242 243
};

244 245 246 247 248
/**
 * struct cpu_defaults- Per CPU model default config data
 * @pid_policy:	PID config data
 * @funcs:		Callback function data
 */
249 250 251
struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
252 253
};

254
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
255
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
256

257 258
static struct pstate_adjust_policy pid_params;
static struct pstate_funcs pstate_funcs;
D
Dirk Brandewie 已提交
259
static int hwp_active;
260

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288

/**
 * struct perf_limits - Store user and policy limits
 * @no_turbo:		User requested turbo state from intel_pstate sysfs
 * @turbo_disabled:	Platform turbo status either from msr
 *			MSR_IA32_MISC_ENABLE or when maximum available pstate
 *			matches the maximum turbo pstate
 * @max_perf_pct:	Effective maximum performance limit in percentage, this
 *			is minimum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @min_perf_pct:	Effective minimum performance limit in percentage, this
 *			is maximum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
 *			This value is used to limit max pstate
 * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
 *			This value is used to limit min pstate
 * @max_policy_pct:	The maximum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @max_sysfs_pct:	The maximum performance in percentage enforced by
 *			intel pstate sysfs interface
 * @min_policy_pct:	The minimum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @min_sysfs_pct:	The minimum performance in percentage enforced by
 *			intel pstate sysfs interface
 *
 * Storage for user and policy defined limits.
 */
289 290
struct perf_limits {
	int no_turbo;
291
	int turbo_disabled;
292 293 294 295
	int max_perf_pct;
	int min_perf_pct;
	int32_t max_perf;
	int32_t min_perf;
296 297
	int max_policy_pct;
	int max_sysfs_pct;
298 299
	int min_policy_pct;
	int min_sysfs_pct;
300 301
};

302 303 304 305 306 307 308 309 310 311 312 313 314 315
static struct perf_limits performance_limits = {
	.no_turbo = 0,
	.turbo_disabled = 0,
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 100,
	.min_perf = int_tofp(1),
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
};

static struct perf_limits powersave_limits = {
316
	.no_turbo = 0,
317
	.turbo_disabled = 0,
318 319 320 321
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 0,
	.min_perf = 0,
322 323
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
324 325
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
326 327
};

328 329 330 331 332 333
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
static struct perf_limits *limits = &performance_limits;
#else
static struct perf_limits *limits = &powersave_limits;
#endif

334
static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
335
			     int deadband, int integral) {
336 337
	pid->setpoint = int_tofp(setpoint);
	pid->deadband  = int_tofp(deadband);
338
	pid->integral  = int_tofp(integral);
339
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
340 341 342 343
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
344
	pid->p_gain = div_fp(percent, 100);
345 346 347 348
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
349
	pid->i_gain = div_fp(percent, 100);
350 351 352 353
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{
354
	pid->d_gain = div_fp(percent, 100);
355 356
}

357
static signed int pid_calc(struct _pid *pid, int32_t busy)
358
{
359
	signed int result;
360 361 362
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

363
	fp_error = pid->setpoint - busy;
364

365
	if (abs(fp_error) <= pid->deadband)
366 367 368 369 370 371
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

372 373 374 375 376 377 378 379
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
380 381 382 383 384 385
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

386 387
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
388 389

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
390
	result = result + (1 << (FRAC_BITS-1));
391 392 393 394 395
	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
396 397 398
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
399

400
	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
401 402 403 404 405
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
406

407 408 409 410 411 412
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

413 414 415 416 417 418 419
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
420
	limits->turbo_disabled =
421 422 423 424
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

425
static void intel_pstate_hwp_set(const struct cpumask *cpumask)
D
Dirk Brandewie 已提交
426
{
427 428 429 430 431 432 433
	int min, hw_min, max, hw_max, cpu, range, adj_range;
	u64 value, cap;

	rdmsrl(MSR_HWP_CAPABILITIES, cap);
	hw_min = HWP_LOWEST_PERF(cap);
	hw_max = HWP_HIGHEST_PERF(cap);
	range = hw_max - hw_min;
D
Dirk Brandewie 已提交
434

435
	for_each_cpu(cpu, cpumask) {
D
Dirk Brandewie 已提交
436
		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
437
		adj_range = limits->min_perf_pct * range / 100;
438
		min = hw_min + adj_range;
D
Dirk Brandewie 已提交
439 440 441
		value &= ~HWP_MIN_PERF(~0L);
		value |= HWP_MIN_PERF(min);

442
		adj_range = limits->max_perf_pct * range / 100;
443
		max = hw_min + adj_range;
444
		if (limits->no_turbo) {
445 446 447
			hw_max = HWP_GUARANTEED_PERF(cap);
			if (hw_max < max)
				max = hw_max;
D
Dirk Brandewie 已提交
448 449 450 451 452 453
		}

		value &= ~HWP_MAX_PERF(~0L);
		value |= HWP_MAX_PERF(max);
		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
	}
454
}
D
Dirk Brandewie 已提交
455

456 457 458 459
static void intel_pstate_hwp_set_online_cpus(void)
{
	get_online_cpus();
	intel_pstate_hwp_set(cpu_online_mask);
D
Dirk Brandewie 已提交
460 461 462
	put_online_cpus();
}

463 464 465 466 467 468 469
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
	intel_pstate_reset_all_pid();
	return 0;
}
470

471 472 473 474 475
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
476
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
477 478 479 480 481 482 483

struct pid_param {
	char *name;
	void *value;
};

static struct pid_param pid_files[] = {
484 485 486 487 488 489
	{"sample_rate_ms", &pid_params.sample_rate_ms},
	{"d_gain_pct", &pid_params.d_gain_pct},
	{"i_gain_pct", &pid_params.i_gain_pct},
	{"deadband", &pid_params.deadband},
	{"setpoint", &pid_params.setpoint},
	{"p_gain_pct", &pid_params.p_gain_pct},
490 491 492
	{NULL, NULL}
};

493
static void __init intel_pstate_debug_expose_params(void)
494
{
495
	struct dentry *debugfs_parent;
496 497
	int i = 0;

D
Dirk Brandewie 已提交
498 499
	if (hwp_active)
		return;
500 501 502 503 504
	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
	while (pid_files[i].name) {
		debugfs_create_file(pid_files[i].name, 0660,
505 506
				    debugfs_parent, pid_files[i].value,
				    &fops_pid_param);
507 508 509 510 511 512 513 514 515 516 517
		i++;
	}
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
518
		return sprintf(buf, "%u\n", limits->object);		\
519 520
	}

521 522 523 524 525 526 527 528 529 530 531
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
532
	turbo_fp = div_fp(no_turbo, total);
533 534 535 536
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
	return sprintf(buf, "%u\n", turbo_pct);
}

537 538 539 540 541 542 543 544 545 546 547
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	return sprintf(buf, "%u\n", total);
}

548 549 550 551 552 553
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

	update_turbo_state();
554 555
	if (limits->turbo_disabled)
		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
556
	else
557
		ret = sprintf(buf, "%u\n", limits->no_turbo);
558 559 560 561

	return ret;
}

562
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
563
			      const char *buf, size_t count)
564 565 566
{
	unsigned int input;
	int ret;
567

568 569 570
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
571 572

	update_turbo_state();
573
	if (limits->turbo_disabled) {
574
		pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n");
575
		return -EPERM;
576
	}
D
Dirk Brandewie 已提交
577

578
	limits->no_turbo = clamp_t(int, input, 0, 1);
579

D
Dirk Brandewie 已提交
580
	if (hwp_active)
581
		intel_pstate_hwp_set_online_cpus();
D
Dirk Brandewie 已提交
582

583 584 585 586
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
587
				  const char *buf, size_t count)
588 589 590
{
	unsigned int input;
	int ret;
591

592 593 594 595
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

596 597 598 599 600 601 602
	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
	limits->max_perf_pct = max(limits->min_perf_pct,
				   limits->max_perf_pct);
603
	limits->max_perf = div_fp(limits->max_perf_pct, 100);
604

D
Dirk Brandewie 已提交
605
	if (hwp_active)
606
		intel_pstate_hwp_set_online_cpus();
607 608 609 610
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
611
				  const char *buf, size_t count)
612 613 614
{
	unsigned int input;
	int ret;
615

616 617 618
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
619

620 621 622 623 624 625 626
	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->min_perf_pct = min(limits->max_perf_pct,
				   limits->min_perf_pct);
627
	limits->min_perf = div_fp(limits->min_perf_pct, 100);
628

D
Dirk Brandewie 已提交
629
	if (hwp_active)
630
		intel_pstate_hwp_set_online_cpus();
631 632 633 634 635 636 637 638 639
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
640
define_one_global_ro(turbo_pct);
641
define_one_global_ro(num_pstates);
642 643 644 645 646

static struct attribute *intel_pstate_attributes[] = {
	&no_turbo.attr,
	&max_perf_pct.attr,
	&min_perf_pct.attr,
647
	&turbo_pct.attr,
648
	&num_pstates.attr,
649 650 651 652 653 654 655
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

656
static void __init intel_pstate_sysfs_expose_params(void)
657
{
658
	struct kobject *intel_pstate_kobject;
659 660 661 662 663
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
	BUG_ON(!intel_pstate_kobject);
664
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
665 666 667
	BUG_ON(rc);
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
668

669
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
670
{
671 672 673
	/* First disable HWP notification interrupt as we don't process them */
	wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);

674
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
D
Dirk Brandewie 已提交
675 676
}

677
static int atom_get_min_pstate(void)
678 679
{
	u64 value;
680

681
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
682
	return (value >> 8) & 0x7F;
683 684
}

685
static int atom_get_max_pstate(void)
686 687
{
	u64 value;
688

689
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
690
	return (value >> 16) & 0x7F;
691
}
692

693
static int atom_get_turbo_pstate(void)
694 695
{
	u64 value;
696

697
	rdmsrl(ATOM_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
698
	return value & 0x7F;
699 700
}

701
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
702 703 704 705 706
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

707
	val = (u64)pstate << 8;
708
	if (limits->no_turbo && !limits->turbo_disabled)
709 710 711 712 713 714 715
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
716
	vid = ceiling_fp(vid_fp);
717

718 719 720
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

721
	return val | vid;
722 723
}

724
static int silvermont_get_scaling(void)
725 726 727
{
	u64 value;
	int i;
728 729 730
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
731 732

	rdmsrl(MSR_FSB_FREQ, value);
733 734
	i = value & 0x7;
	WARN_ON(i > 4);
735

736 737
	return silvermont_freq_table[i];
}
738

739 740 741 742 743 744 745 746 747 748 749 750 751 752
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
753 754
}

755
static void atom_get_vid(struct cpudata *cpudata)
756 757 758
{
	u64 value;

759
	rdmsrl(ATOM_VIDS, value);
D
Dirk Brandewie 已提交
760 761
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
762 763 764 765
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
766

767
	rdmsrl(ATOM_TURBO_VIDS, value);
768
	cpudata->vid.turbo = value & 0x7f;
769 770
}

771
static int core_get_min_pstate(void)
772 773
{
	u64 value;
774

775
	rdmsrl(MSR_PLATFORM_INFO, value);
776 777 778
	return (value >> 40) & 0xFF;
}

779
static int core_get_max_pstate_physical(void)
780 781
{
	u64 value;
782

783
	rdmsrl(MSR_PLATFORM_INFO, value);
784 785 786
	return (value >> 8) & 0xFF;
}

787
static int core_get_max_pstate(void)
788
{
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
	u64 tar;
	u64 plat_info;
	int max_pstate;
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
		/* Do some sanity checking for safety */
		if (plat_info & 0x600000000) {
			u64 tdp_ctrl;
			u64 tdp_ratio;
			int tdp_msr;

			err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
			if (err)
				goto skip_tar;

			tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
			err = rdmsrl_safe(tdp_msr, &tdp_ratio);
			if (err)
				goto skip_tar;

			if (tdp_ratio - 1 == tar) {
				max_pstate = tar;
				pr_debug("max_pstate=TAC %x\n", max_pstate);
			} else {
				goto skip_tar;
			}
		}
	}
822

823 824
skip_tar:
	return max_pstate;
825 826
}

827
static int core_get_turbo_pstate(void)
828 829 830
{
	u64 value;
	int nont, ret;
831

832
	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
833
	nont = core_get_max_pstate();
834
	ret = (value) & 255;
835 836 837 838 839
	if (ret <= nont)
		ret = nont;
	return ret;
}

840 841 842 843 844
static inline int core_get_scaling(void)
{
	return 100000;
}

845
static u64 core_get_val(struct cpudata *cpudata, int pstate)
846 847 848
{
	u64 val;

849
	val = (u64)pstate << 8;
850
	if (limits->no_turbo && !limits->turbo_disabled)
851 852
		val |= (u64)1 << 32;

853
	return val;
854 855
}

856 857 858 859 860 861 862 863 864 865 866 867 868
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

869 870 871 872 873 874 875 876 877 878 879
static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
880
		.get_max_physical = core_get_max_pstate_physical,
881 882
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
883
		.get_scaling = core_get_scaling,
884
		.get_val = core_get_val,
885
		.get_target_pstate = get_target_pstate_use_performance,
886 887 888
	},
};

889 890 891 892 893 894 895 896 897 898 899 900 901 902
static struct cpu_defaults silvermont_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
903
		.get_val = atom_get_val,
904 905
		.get_scaling = silvermont_get_scaling,
		.get_vid = atom_get_vid,
906
		.get_target_pstate = get_target_pstate_use_cpu_load,
907 908 909 910
	},
};

static struct cpu_defaults airmont_params = {
911 912 913
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
914
		.setpoint = 60,
915 916 917 918 919
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
920 921 922 923
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
924
		.get_val = atom_get_val,
925
		.get_scaling = airmont_get_scaling,
926
		.get_vid = atom_get_vid,
927
		.get_target_pstate = get_target_pstate_use_cpu_load,
928 929 930
	},
};

931 932 933 934 935 936 937 938 939 940 941
static struct cpu_defaults knl_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
942
		.get_max_physical = core_get_max_pstate_physical,
943 944
		.get_min = core_get_min_pstate,
		.get_turbo = knl_get_turbo_pstate,
945
		.get_scaling = core_get_scaling,
946
		.get_val = core_get_val,
947
		.get_target_pstate = get_target_pstate_use_performance,
948 949 950
	},
};

951 952 953
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
954
	int max_perf_adj;
955
	int min_perf;
956

957
	if (limits->no_turbo || limits->turbo_disabled)
958 959
		max_perf = cpu->pstate.max_pstate;

960 961 962 963 964
	/*
	 * performance can be limited by user through sysfs, by cpufreq
	 * policy, or by cpu specific default values determined through
	 * experimentation.
	 */
965
	max_perf_adj = fp_toint(max_perf * limits->max_perf);
966 967
	*max = clamp_t(int, max_perf_adj,
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
968

969
	min_perf = fp_toint(max_perf * limits->min_perf);
970
	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
971 972
}

973
static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate)
974
{
975
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
976
	cpu->pstate.current_pstate = pstate;
977
}
978

979 980 981 982 983 984 985 986 987 988 989 990
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	int pstate = cpu->pstate.min_pstate;

	intel_pstate_record_pstate(cpu, pstate);
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
991 992 993 994
}

static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
995 996
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
997
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
998
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
999
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1000

1001 1002
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1003 1004

	intel_pstate_set_min_pstate(cpu);
1005 1006
}

1007
static inline void intel_pstate_calc_busy(struct cpudata *cpu)
1008
{
1009
	struct sample *sample = &cpu->sample;
1010
	int64_t core_pct;
1011

1012 1013
	core_pct = sample->aperf * int_tofp(100);
	core_pct = div64_u64(core_pct, sample->mperf);
1014

1015
	sample->core_pct_busy = (int32_t)core_pct;
1016 1017
}

1018
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1019 1020
{
	u64 aperf, mperf;
1021
	unsigned long flags;
1022
	u64 tsc;
1023

1024
	local_irq_save(flags);
1025 1026
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1027
	tsc = rdtsc();
1028
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1029
		local_irq_restore(flags);
1030
		return false;
1031
	}
1032
	local_irq_restore(flags);
1033

1034
	cpu->last_sample_time = cpu->sample.time;
1035
	cpu->sample.time = time;
1036 1037
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1038
	cpu->sample.tsc =  tsc;
1039 1040
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1041
	cpu->sample.tsc -= cpu->prev_tsc;
1042

1043 1044
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1045
	cpu->prev_tsc = tsc;
1046 1047 1048 1049 1050 1051 1052 1053
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
	return !!cpu->last_sample_time;
1054 1055
}

1056 1057 1058 1059 1060 1061
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
	return div64_u64(cpu->pstate.max_pstate_physical * cpu->sample.aperf *
		cpu->pstate.scaling, cpu->sample.mperf);
}

1062 1063 1064
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
1065 1066 1067
	u64 cummulative_iowait, delta_iowait_us;
	u64 delta_iowait_mperf;
	u64 mperf, now;
1068 1069
	int32_t cpu_load;

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
	cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);

	/*
	 * Convert iowait time into number of IO cycles spent at max_freq.
	 * IO is considered as busy only for the cpu_load algorithm. For
	 * performance this is not needed since we always try to reach the
	 * maximum P-State, so we are already boosting the IOs.
	 */
	delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
	delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
		cpu->pstate.max_pstate, MSEC_PER_SEC);

	mperf = cpu->sample.mperf + delta_iowait_mperf;
	cpu->prev_cummulative_iowait = cummulative_iowait;

1085 1086 1087 1088 1089 1090
	/*
	 * The load can be estimated as the ratio of the mperf counter
	 * running at a constant frequency during active periods
	 * (C0) and the time stamp counter running at the same frequency
	 * also during C-states.
	 */
1091
	cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
1092 1093 1094 1095 1096
	cpu->sample.busy_scaled = cpu_load;

	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, cpu_load);
}

1097
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1098
{
1099
	int32_t core_busy, max_pstate, current_pstate, sample_ratio;
1100
	u64 duration_ns;
1101

1102 1103
	intel_pstate_calc_busy(cpu);

1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
	/*
	 * core_busy is the ratio of actual performance to max
	 * max_pstate is the max non turbo pstate available
	 * current_pstate was the pstate that was requested during
	 * 	the last sample period.
	 *
	 * We normalize core_busy, which was our actual percent
	 * performance to what we requested during the last sample
	 * period. The result will be a percentage of busy at a
	 * specified pstate.
	 */
1115
	core_busy = cpu->sample.core_pct_busy;
1116 1117
	max_pstate = cpu->pstate.max_pstate_physical;
	current_pstate = cpu->pstate.current_pstate;
1118
	core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
1119

1120
	/*
1121 1122 1123 1124
	 * Since our utilization update callback will not run unless we are
	 * in C0, check if the actual elapsed time is significantly greater (3x)
	 * than our sample interval.  If it is, then we were idle for a long
	 * enough period of time to adjust our busyness.
1125
	 */
1126
	duration_ns = cpu->sample.time - cpu->last_sample_time;
1127
	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1128
		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1129 1130 1131
		core_busy = mul_fp(core_busy, sample_ratio);
	}

1132 1133
	cpu->sample.busy_scaled = core_busy;
	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, core_busy);
1134 1135
}

1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
	int max_perf, min_perf;

	update_turbo_state();

	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
	pstate = clamp_t(int, pstate, min_perf, max_perf);
	if (pstate == cpu->pstate.current_pstate)
		return;

	intel_pstate_record_pstate(cpu, pstate);
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1151 1152
static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
1153
	int from, target_pstate;
1154 1155 1156
	struct sample *sample;

	from = cpu->pstate.current_pstate;
1157

1158
	target_pstate = pstate_funcs.get_target_pstate(cpu);
1159

1160
	intel_pstate_update_pstate(cpu, target_pstate);
1161 1162 1163

	sample = &cpu->sample;
	trace_pstate_sample(fp_toint(sample->core_pct_busy),
1164
		fp_toint(sample->busy_scaled),
1165 1166 1167 1168 1169
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1170
		get_avg_frequency(cpu));
1171 1172
}

1173 1174
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
				     unsigned long util, unsigned long max)
1175
{
1176 1177
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
	u64 delta_ns = time - cpu->sample.time;
1178

1179
	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1180 1181 1182
		bool sample_taken = intel_pstate_sample(cpu, time);

		if (sample_taken && !hwp_active)
1183 1184
			intel_pstate_adjust_busy_pstate(cpu);
	}
1185 1186 1187
}

#define ICPU(model, policy) \
1188 1189
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1190 1191

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1192 1193
	ICPU(0x2a, core_params),
	ICPU(0x2d, core_params),
1194
	ICPU(0x37, silvermont_params),
1195 1196
	ICPU(0x3a, core_params),
	ICPU(0x3c, core_params),
1197
	ICPU(0x3d, core_params),
1198 1199 1200 1201
	ICPU(0x3e, core_params),
	ICPU(0x3f, core_params),
	ICPU(0x45, core_params),
	ICPU(0x46, core_params),
1202
	ICPU(0x47, core_params),
1203
	ICPU(0x4c, airmont_params),
1204
	ICPU(0x4e, core_params),
1205
	ICPU(0x4f, core_params),
1206
	ICPU(0x5e, core_params),
1207
	ICPU(0x56, core_params),
1208
	ICPU(0x57, knl_params),
1209 1210 1211 1212
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

D
Dirk Brandewie 已提交
1213 1214 1215 1216 1217
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
	ICPU(0x56, core_params),
	{}
};

1218 1219 1220 1221
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1222 1223 1224
	if (!all_cpu_data[cpunum])
		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
					       GFP_KERNEL);
1225 1226 1227 1228 1229 1230
	if (!all_cpu_data[cpunum])
		return -ENOMEM;

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1231

1232
	if (hwp_active) {
1233
		intel_pstate_hwp_enable(cpu);
1234 1235 1236
		pid_params.sample_rate_ms = 50;
		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
	}
1237

1238
	intel_pstate_get_cpu_pstates(cpu);
1239

1240 1241
	intel_pstate_busy_pid_reset(cpu);

1242
	pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
	struct sample *sample;
	struct cpudata *cpu;

	cpu = all_cpu_data[cpu_num];
	if (!cpu)
		return 0;
1255
	sample = &cpu->sample;
1256
	return get_avg_frequency(cpu);
1257 1258
}

1259
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1260
{
1261 1262 1263 1264
	struct cpudata *cpu = all_cpu_data[cpu_num];

	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1265 1266
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
				     intel_pstate_update_util);
1267 1268 1269 1270
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1271
	cpufreq_remove_update_util_hook(cpu);
1272 1273 1274
	synchronize_sched();
}

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
static void intel_pstate_set_performance_limits(struct perf_limits *limits)
{
	limits->no_turbo = 0;
	limits->turbo_disabled = 0;
	limits->max_perf_pct = 100;
	limits->max_perf = int_tofp(1);
	limits->min_perf_pct = 100;
	limits->min_perf = int_tofp(1);
	limits->max_policy_pct = 100;
	limits->max_sysfs_pct = 100;
	limits->min_policy_pct = 0;
	limits->min_sysfs_pct = 0;
}

1289 1290
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
1291 1292 1293
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

1294 1295
	intel_pstate_clear_update_util_hook(policy->cpu);

1296
	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1297
		limits = &performance_limits;
1298 1299 1300 1301 1302 1303 1304 1305
		if (policy->max >= policy->cpuinfo.max_freq) {
			pr_debug("intel_pstate: set performance\n");
			intel_pstate_set_performance_limits(limits);
			goto out;
		}
	} else {
		pr_debug("intel_pstate: set powersave\n");
		limits = &powersave_limits;
1306
	}
D
Dirk Brandewie 已提交
1307

1308 1309
	limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
	limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1310 1311
	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
					      policy->cpuinfo.max_freq);
1312
	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1313 1314

	/* Normalize user input to [min_policy_pct, max_policy_pct] */
1315 1316 1317 1318 1319 1320 1321 1322
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
1323
	limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1324 1325

	/* Make sure min_perf_pct <= max_perf_pct */
1326
	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1327

1328 1329
	limits->min_perf = div_fp(limits->min_perf_pct, 100);
	limits->max_perf = div_fp(limits->max_perf_pct, 100);
1330

1331 1332 1333
 out:
	intel_pstate_set_update_util_hook(policy->cpu);

D
Dirk Brandewie 已提交
1334
	if (hwp_active)
1335
		intel_pstate_hwp_set(policy->cpus);
D
Dirk Brandewie 已提交
1336

1337 1338 1339 1340 1341
	return 0;
}

static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
1342
	cpufreq_verify_within_cpu_limits(policy);
1343

1344
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1345
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1346 1347 1348 1349 1350
		return -EINVAL;

	return 0;
}

1351
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1352
{
1353 1354
	int cpu_num = policy->cpu;
	struct cpudata *cpu = all_cpu_data[cpu_num];
1355

1356
	pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);
1357

1358
	intel_pstate_clear_update_util_hook(cpu_num);
1359

D
Dirk Brandewie 已提交
1360 1361 1362
	if (hwp_active)
		return;

1363
	intel_pstate_set_min_pstate(cpu);
1364 1365
}

1366
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1367 1368
{
	struct cpudata *cpu;
1369
	int rc;
1370 1371 1372 1373 1374 1375 1376

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

1377
	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1378 1379 1380 1381
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;

1382 1383
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1384 1385

	/* cpuinfo and default policy values */
1386 1387 1388
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->cpuinfo.max_freq =
		cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
	cpumask_set_cpu(policy->cpu, policy->cpus);

	return 0;
}

static struct cpufreq_driver intel_pstate_driver = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
1401
	.stop_cpu	= intel_pstate_stop_cpu,
1402 1403 1404
	.name		= "intel_pstate",
};

1405
static int __initdata no_load;
D
Dirk Brandewie 已提交
1406
static int __initdata no_hwp;
1407
static int __initdata hwp_only;
1408
static unsigned int force_load;
1409

1410 1411
static int intel_pstate_msrs_not_valid(void)
{
1412
	if (!pstate_funcs.get_max() ||
1413 1414
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
1415 1416 1417 1418
		return -ENODEV;

	return 0;
}
1419

1420
static void copy_pid_params(struct pstate_adjust_policy *policy)
1421 1422
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
1423
	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1424 1425 1426 1427 1428 1429 1430
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

1431
static void copy_cpu_funcs(struct pstate_funcs *funcs)
1432 1433
{
	pstate_funcs.get_max   = funcs->get_max;
1434
	pstate_funcs.get_max_physical = funcs->get_max_physical;
1435 1436
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
1437
	pstate_funcs.get_scaling = funcs->get_scaling;
1438
	pstate_funcs.get_val   = funcs->get_val;
1439
	pstate_funcs.get_vid   = funcs->get_vid;
1440 1441
	pstate_funcs.get_target_pstate = funcs->get_target_pstate;

1442 1443
}

1444
#if IS_ENABLED(CONFIG_ACPI)
1445
#include <acpi/processor.h>
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475

static bool intel_pstate_no_acpi_pss(void)
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
static bool intel_pstate_has_acpi_ppc(void)
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

1496 1497 1498 1499
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1500
	int  oem_pwr_table;
1501 1502 1503 1504
};

/* Hardware vendor-specific info that has its own power management modes */
static struct hw_vendor_info vendor_info[] = {
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
1516 1517 1518 1519
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
1520 1521 1522 1523 1524 1525 1526
	{0, "", ""},
};

static bool intel_pstate_platform_pwr_mgmt_exists(void)
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
1527 1528 1529 1530 1531 1532 1533 1534 1535
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
1536

1537 1538
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1539 1540 1541
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
1542
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1543 1544 1545 1546 1547 1548
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
1549 1550
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
1551
			}
1552 1553 1554 1555 1556 1557
	}

	return false;
}
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1558
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1559 1560
#endif /* CONFIG_ACPI */

1561 1562 1563 1564 1565
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

1566 1567
static int __init intel_pstate_init(void)
{
1568
	int cpu, rc = 0;
1569
	const struct x86_cpu_id *id;
1570
	struct cpu_defaults *cpu_def;
1571

1572 1573 1574
	if (no_load)
		return -ENODEV;

1575 1576 1577 1578 1579 1580
	if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
		copy_cpu_funcs(&core_params.funcs);
		hwp_active++;
		goto hwp_cpu_matched;
	}

1581 1582 1583 1584
	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

1585
	cpu_def = (struct cpu_defaults *)id->driver_data;
1586

1587 1588
	copy_pid_params(&cpu_def->pid_policy);
	copy_cpu_funcs(&cpu_def->funcs);
1589

1590 1591 1592
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

1593 1594 1595 1596 1597 1598 1599 1600
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

1601 1602
	pr_info("Intel P-state driver initializing.\n");

1603
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1604 1605 1606
	if (!all_cpu_data)
		return -ENOMEM;

1607 1608 1609
	if (!hwp_active && hwp_only)
		goto out;

1610 1611 1612 1613 1614 1615
	rc = cpufreq_register_driver(&intel_pstate_driver);
	if (rc)
		goto out;

	intel_pstate_debug_expose_params();
	intel_pstate_sysfs_expose_params();
1616

1617 1618 1619
	if (hwp_active)
		pr_info("intel_pstate: HWP enabled\n");

1620 1621
	return rc;
out:
1622 1623 1624
	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
1625
			intel_pstate_clear_update_util_hook(cpu);
1626 1627 1628 1629 1630 1631
			kfree(all_cpu_data[cpu]);
		}
	}

	put_online_cpus();
	vfree(all_cpu_data);
1632 1633 1634 1635
	return -ENODEV;
}
device_initcall(intel_pstate_init);

1636 1637 1638 1639 1640 1641 1642
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

	if (!strcmp(str, "disable"))
		no_load = 1;
1643 1644
	if (!strcmp(str, "no_hwp")) {
		pr_info("intel_pstate: HWP disabled\n");
D
Dirk Brandewie 已提交
1645
		no_hwp = 1;
1646
	}
1647 1648
	if (!strcmp(str, "force"))
		force_load = 1;
1649 1650
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
1651 1652 1653 1654
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

1655 1656 1657
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");