intel_pstate.c 30.0 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
28
#include <linux/acpi.h>
29
#include <linux/vmalloc.h>
30 31 32 33 34
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
35
#include <asm/cpufeature.h>
36

37 38 39
#define BYT_RATIOS		0x66a
#define BYT_VIDS		0x66b
#define BYT_TURBO_RATIOS	0x66c
40
#define BYT_TURBO_VIDS		0x66d
41

42
#define FRAC_BITS 8
43 44
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
45

46 47 48 49 50 51

static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

52
static inline int32_t div_fp(s64 x, s64 y)
53
{
54
	return div64_s64((int64_t)x << FRAC_BITS, y);
55 56
}

57 58 59 60 61 62 63 64 65 66 67
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

68
struct sample {
69
	int32_t core_pct_busy;
70 71
	u64 aperf;
	u64 mperf;
72
	u64 tsc;
73
	int freq;
74
	ktime_t time;
75 76 77 78 79 80
};

struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
81
	int	scaling;
82 83 84
	int	turbo_pstate;
};

85
struct vid_data {
86 87 88
	int min;
	int max;
	int turbo;
89 90 91
	int32_t ratio;
};

92 93 94 95 96 97 98
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
99
	int32_t last_err;
100 101 102 103 104 105 106 107
};

struct cpudata {
	int cpu;

	struct timer_list timer;

	struct pstate_data pstate;
108
	struct vid_data vid;
109 110
	struct _pid pid;

111
	ktime_t last_sample_time;
112 113
	u64	prev_aperf;
	u64	prev_mperf;
114
	u64	prev_tsc;
115
	struct sample sample;
116 117 118 119 120 121 122 123 124 125 126 127
};

static struct cpudata **all_cpu_data;
struct pstate_adjust_policy {
	int sample_rate_ms;
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

128 129 130 131
struct pstate_funcs {
	int (*get_max)(void);
	int (*get_min)(void);
	int (*get_turbo)(void);
132
	int (*get_scaling)(void);
133 134
	void (*set)(struct cpudata*, int pstate);
	void (*get_vid)(struct cpudata *);
135 136
};

137 138 139
struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
140 141
};

142 143
static struct pstate_adjust_policy pid_params;
static struct pstate_funcs pstate_funcs;
D
Dirk Brandewie 已提交
144
static int hwp_active;
145

146 147
struct perf_limits {
	int no_turbo;
148
	int turbo_disabled;
149 150 151 152
	int max_perf_pct;
	int min_perf_pct;
	int32_t max_perf;
	int32_t min_perf;
153 154
	int max_policy_pct;
	int max_sysfs_pct;
155 156
	int min_policy_pct;
	int min_sysfs_pct;
157 158 159 160
};

static struct perf_limits limits = {
	.no_turbo = 0,
161
	.turbo_disabled = 0,
162 163 164 165
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 0,
	.min_perf = 0,
166 167
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
168 169
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
170 171 172
};

static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
173
			     int deadband, int integral) {
174 175 176
	pid->setpoint = setpoint;
	pid->deadband  = deadband;
	pid->integral  = int_tofp(integral);
177
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
	pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
	pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{
	pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
}

195
static signed int pid_calc(struct _pid *pid, int32_t busy)
196
{
197
	signed int result;
198 199 200
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

201
	fp_error = int_tofp(pid->setpoint) - busy;
202

203
	if (abs(fp_error) <= int_tofp(pid->deadband))
204 205 206 207 208 209
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

210 211 212 213 214 215 216 217
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
218 219 220 221 222 223
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

224 225
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
226 227

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
228
	result = result + (1 << (FRAC_BITS-1));
229 230 231 232 233
	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
234 235 236
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
237

238
	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
239 240 241 242 243
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
244

245 246 247 248 249 250
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

251 252 253 254 255 256 257 258 259 260 261 262
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
	limits.turbo_disabled =
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

D
Dirk Brandewie 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
#define PCT_TO_HWP(x) (x * 255 / 100)
static void intel_pstate_hwp_set(void)
{
	int min, max, cpu;
	u64 value, freq;

	get_online_cpus();

	for_each_online_cpu(cpu) {
		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
		min = PCT_TO_HWP(limits.min_perf_pct);
		value &= ~HWP_MIN_PERF(~0L);
		value |= HWP_MIN_PERF(min);

		max = PCT_TO_HWP(limits.max_perf_pct);
		if (limits.no_turbo) {
			rdmsrl( MSR_HWP_CAPABILITIES, freq);
			max = HWP_GUARANTEED_PERF(freq);
		}

		value &= ~HWP_MAX_PERF(~0L);
		value |= HWP_MAX_PERF(max);
		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
	}

	put_online_cpus();
}

291 292 293 294 295 296 297
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
	intel_pstate_reset_all_pid();
	return 0;
}
298

299 300 301 302 303
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
304
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
305 306 307 308 309 310 311

struct pid_param {
	char *name;
	void *value;
};

static struct pid_param pid_files[] = {
312 313 314 315 316 317
	{"sample_rate_ms", &pid_params.sample_rate_ms},
	{"d_gain_pct", &pid_params.d_gain_pct},
	{"i_gain_pct", &pid_params.i_gain_pct},
	{"deadband", &pid_params.deadband},
	{"setpoint", &pid_params.setpoint},
	{"p_gain_pct", &pid_params.p_gain_pct},
318 319 320
	{NULL, NULL}
};

321
static void __init intel_pstate_debug_expose_params(void)
322
{
323
	struct dentry *debugfs_parent;
324 325
	int i = 0;

D
Dirk Brandewie 已提交
326 327
	if (hwp_active)
		return;
328 329 330 331 332
	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
	while (pid_files[i].name) {
		debugfs_create_file(pid_files[i].name, 0660,
333 334
				    debugfs_parent, pid_files[i].value,
				    &fops_pid_param);
335 336 337 338 339 340 341 342 343 344 345 346 347 348
		i++;
	}
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
		return sprintf(buf, "%u\n", limits.object);		\
	}

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
	turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
	return sprintf(buf, "%u\n", turbo_pct);
}

365 366 367 368 369 370 371 372 373 374 375
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	return sprintf(buf, "%u\n", total);
}

376 377 378 379 380 381 382 383 384 385 386 387 388 389
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

	update_turbo_state();
	if (limits.turbo_disabled)
		ret = sprintf(buf, "%u\n", limits.turbo_disabled);
	else
		ret = sprintf(buf, "%u\n", limits.no_turbo);

	return ret;
}

390
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
391
			      const char *buf, size_t count)
392 393 394
{
	unsigned int input;
	int ret;
395

396 397 398
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
399 400

	update_turbo_state();
401
	if (limits.turbo_disabled) {
402
		pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n");
403
		return -EPERM;
404
	}
D
Dirk Brandewie 已提交
405

406 407
	limits.no_turbo = clamp_t(int, input, 0, 1);

D
Dirk Brandewie 已提交
408 409 410
	if (hwp_active)
		intel_pstate_hwp_set();

411 412 413 414
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
415
				  const char *buf, size_t count)
416 417 418
{
	unsigned int input;
	int ret;
419

420 421 422 423
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

424 425
	limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
426 427
	limits.max_perf_pct = max(limits.min_policy_pct, limits.max_perf_pct);
	limits.max_perf_pct = max(limits.min_perf_pct, limits.max_perf_pct);
428
	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
429

D
Dirk Brandewie 已提交
430 431
	if (hwp_active)
		intel_pstate_hwp_set();
432 433 434 435
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
436
				  const char *buf, size_t count)
437 438 439
{
	unsigned int input;
	int ret;
440

441 442 443
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
444 445 446

	limits.min_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
447 448
	limits.min_perf_pct = min(limits.max_policy_pct, limits.min_perf_pct);
	limits.min_perf_pct = min(limits.max_perf_pct, limits.min_perf_pct);
449 450
	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));

D
Dirk Brandewie 已提交
451 452
	if (hwp_active)
		intel_pstate_hwp_set();
453 454 455 456 457 458 459 460 461
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
462
define_one_global_ro(turbo_pct);
463
define_one_global_ro(num_pstates);
464 465 466 467 468

static struct attribute *intel_pstate_attributes[] = {
	&no_turbo.attr,
	&max_perf_pct.attr,
	&min_perf_pct.attr,
469
	&turbo_pct.attr,
470
	&num_pstates.attr,
471 472 473 474 475 476 477
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

478
static void __init intel_pstate_sysfs_expose_params(void)
479
{
480
	struct kobject *intel_pstate_kobject;
481 482 483 484 485
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
	BUG_ON(!intel_pstate_kobject);
486
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
487 488 489
	BUG_ON(rc);
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
490

491
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
492
{
493
	pr_info("intel_pstate: HWP enabled\n");
D
Dirk Brandewie 已提交
494

495
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
D
Dirk Brandewie 已提交
496 497
}

498 499 500
static int byt_get_min_pstate(void)
{
	u64 value;
501

502
	rdmsrl(BYT_RATIOS, value);
D
Dirk Brandewie 已提交
503
	return (value >> 8) & 0x7F;
504 505 506 507 508
}

static int byt_get_max_pstate(void)
{
	u64 value;
509

510
	rdmsrl(BYT_RATIOS, value);
D
Dirk Brandewie 已提交
511
	return (value >> 16) & 0x7F;
512
}
513

514 515 516
static int byt_get_turbo_pstate(void)
{
	u64 value;
517

518
	rdmsrl(BYT_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
519
	return value & 0x7F;
520 521
}

522 523 524 525 526 527
static void byt_set_pstate(struct cpudata *cpudata, int pstate)
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

528
	val = (u64)pstate << 8;
529
	if (limits.no_turbo && !limits.turbo_disabled)
530 531 532 533 534 535 536
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
537
	vid = ceiling_fp(vid_fp);
538

539 540 541
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

542 543
	val |= vid;

544
	wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
545 546
}

547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
#define BYT_BCLK_FREQS 5
static int byt_freq_table[BYT_BCLK_FREQS] = { 833, 1000, 1333, 1167, 800};

static int byt_get_scaling(void)
{
	u64 value;
	int i;

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0x3;

	BUG_ON(i > BYT_BCLK_FREQS);

	return byt_freq_table[i] * 100;
}

563 564 565 566 567
static void byt_get_vid(struct cpudata *cpudata)
{
	u64 value;

	rdmsrl(BYT_VIDS, value);
D
Dirk Brandewie 已提交
568 569
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
570 571 572 573
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
574 575 576

	rdmsrl(BYT_TURBO_VIDS, value);
	cpudata->vid.turbo = value & 0x7f;
577 578
}

579
static int core_get_min_pstate(void)
580 581
{
	u64 value;
582

583
	rdmsrl(MSR_PLATFORM_INFO, value);
584 585 586
	return (value >> 40) & 0xFF;
}

587
static int core_get_max_pstate(void)
588 589
{
	u64 value;
590

591
	rdmsrl(MSR_PLATFORM_INFO, value);
592 593 594
	return (value >> 8) & 0xFF;
}

595
static int core_get_turbo_pstate(void)
596 597 598
{
	u64 value;
	int nont, ret;
599

600
	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
601
	nont = core_get_max_pstate();
602
	ret = (value) & 255;
603 604 605 606 607
	if (ret <= nont)
		ret = nont;
	return ret;
}

608 609 610 611 612
static inline int core_get_scaling(void)
{
	return 100000;
}

613
static void core_set_pstate(struct cpudata *cpudata, int pstate)
614 615 616
{
	u64 val;

617
	val = (u64)pstate << 8;
618
	if (limits.no_turbo && !limits.turbo_disabled)
619 620
		val |= (u64)1 << 32;

621
	wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
622 623
}

624 625 626 627 628 629 630 631 632 633 634 635 636
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

637 638 639 640 641 642 643 644 645 646 647 648 649
static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
650
		.get_scaling = core_get_scaling,
651 652 653 654
		.set = core_set_pstate,
	},
};

655 656 657 658
static struct cpu_defaults byt_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
659
		.setpoint = 60,
660 661 662 663 664 665 666
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = byt_get_max_pstate,
		.get_min = byt_get_min_pstate,
667
		.get_turbo = byt_get_turbo_pstate,
668
		.set = byt_set_pstate,
669
		.get_scaling = byt_get_scaling,
670
		.get_vid = byt_get_vid,
671 672 673
	},
};

674 675 676 677 678 679 680 681 682 683 684 685 686
static struct cpu_defaults knl_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
		.get_min = core_get_min_pstate,
		.get_turbo = knl_get_turbo_pstate,
687
		.get_scaling = core_get_scaling,
688 689 690 691
		.set = core_set_pstate,
	},
};

692 693 694
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
695
	int max_perf_adj;
696
	int min_perf;
697

698
	if (limits.no_turbo || limits.turbo_disabled)
699 700
		max_perf = cpu->pstate.max_pstate;

701 702 703 704 705
	/*
	 * performance can be limited by user through sysfs, by cpufreq
	 * policy, or by cpu specific default values determined through
	 * experimentation.
	 */
706 707
	max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
	*max = clamp_t(int, max_perf_adj,
708 709 710
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);

	min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
711
	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
712 713
}

714
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate, bool force)
715 716 717
{
	int max_perf, min_perf;

718 719
	if (force) {
		update_turbo_state();
720

721
		intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
722

723
		pstate = clamp_t(int, pstate, min_perf, max_perf);
724

725 726 727
		if (pstate == cpu->pstate.current_pstate)
			return;
	}
728
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
729

730 731
	cpu->pstate.current_pstate = pstate;

732
	pstate_funcs.set(cpu, pstate);
733 734 735 736
}

static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
737 738 739
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
740
	cpu->pstate.scaling = pstate_funcs.get_scaling();
741

742 743
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
744
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
745 746
}

747
static inline void intel_pstate_calc_busy(struct cpudata *cpu)
748
{
749
	struct sample *sample = &cpu->sample;
750
	int64_t core_pct;
751

752
	core_pct = int_tofp(sample->aperf) * int_tofp(100);
753
	core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
754

755
	sample->freq = fp_toint(
756 757 758
		mul_fp(int_tofp(
			cpu->pstate.max_pstate * cpu->pstate.scaling / 100),
			core_pct));
759

760
	sample->core_pct_busy = (int32_t)core_pct;
761 762 763 764 765
}

static inline void intel_pstate_sample(struct cpudata *cpu)
{
	u64 aperf, mperf;
766
	unsigned long flags;
767
	u64 tsc;
768

769
	local_irq_save(flags);
770 771
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
772
	tsc = native_read_tsc();
773
	local_irq_restore(flags);
774

775 776
	cpu->last_sample_time = cpu->sample.time;
	cpu->sample.time = ktime_get();
777 778
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
779
	cpu->sample.tsc =  tsc;
780 781
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
782
	cpu->sample.tsc -= cpu->prev_tsc;
783

784
	intel_pstate_calc_busy(cpu);
785 786 787

	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
788
	cpu->prev_tsc = tsc;
789 790
}

D
Dirk Brandewie 已提交
791 792 793 794 795 796 797 798
static inline void intel_hwp_set_sample_time(struct cpudata *cpu)
{
	int delay;

	delay = msecs_to_jiffies(50);
	mod_timer_pinned(&cpu->timer, jiffies + delay);
}

799 800
static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
{
801
	int delay;
802

803
	delay = msecs_to_jiffies(pid_params.sample_rate_ms);
804 805 806
	mod_timer_pinned(&cpu->timer, jiffies + delay);
}

807
static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
808
{
809
	int32_t core_busy, max_pstate, current_pstate, sample_ratio;
810
	s64 duration_us;
811
	u32 sample_time;
812

813 814 815 816 817 818 819 820 821 822 823
	/*
	 * core_busy is the ratio of actual performance to max
	 * max_pstate is the max non turbo pstate available
	 * current_pstate was the pstate that was requested during
	 * 	the last sample period.
	 *
	 * We normalize core_busy, which was our actual percent
	 * performance to what we requested during the last sample
	 * period. The result will be a percentage of busy at a
	 * specified pstate.
	 */
824
	core_busy = cpu->sample.core_pct_busy;
825
	max_pstate = int_tofp(cpu->pstate.max_pstate);
826
	current_pstate = int_tofp(cpu->pstate.current_pstate);
827
	core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
828

829 830 831 832 833 834 835
	/*
	 * Since we have a deferred timer, it will not fire unless
	 * we are in C0.  So, determine if the actual elapsed time
	 * is significantly greater (3x) than our sample interval.  If it
	 * is, then we were idle for a long enough period of time
	 * to adjust our busyness.
	 */
836
	sample_time = pid_params.sample_rate_ms  * USEC_PER_MSEC;
837 838
	duration_us = ktime_us_delta(cpu->sample.time,
				     cpu->last_sample_time);
839 840
	if (duration_us > sample_time * 3) {
		sample_ratio = div_fp(int_tofp(sample_time),
841
				      int_tofp(duration_us));
842 843 844
		core_busy = mul_fp(core_busy, sample_ratio);
	}

845
	return core_busy;
846 847 848 849
}

static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
850
	int32_t busy_scaled;
851
	struct _pid *pid;
852
	signed int ctl;
853 854 855 856
	int from;
	struct sample *sample;

	from = cpu->pstate.current_pstate;
857 858 859 860 861 862

	pid = &cpu->pid;
	busy_scaled = intel_pstate_get_scaled_busy(cpu);

	ctl = pid_calc(pid, busy_scaled);

863
	/* Negative values of ctl increase the pstate and vice versa */
864
	intel_pstate_set_pstate(cpu, cpu->pstate.current_pstate - ctl, true);
865 866 867 868 869 870 871 872 873 874

	sample = &cpu->sample;
	trace_pstate_sample(fp_toint(sample->core_pct_busy),
		fp_toint(busy_scaled),
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
		sample->freq);
875 876
}

D
Dirk Brandewie 已提交
877 878 879 880 881 882 883 884
static void intel_hwp_timer_func(unsigned long __data)
{
	struct cpudata *cpu = (struct cpudata *) __data;

	intel_pstate_sample(cpu);
	intel_hwp_set_sample_time(cpu);
}

885 886 887 888 889
static void intel_pstate_timer_func(unsigned long __data)
{
	struct cpudata *cpu = (struct cpudata *) __data;

	intel_pstate_sample(cpu);
890

891
	intel_pstate_adjust_busy_pstate(cpu);
892

893 894 895 896
	intel_pstate_set_sample_time(cpu);
}

#define ICPU(model, policy) \
897 898
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
899 900

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
901 902
	ICPU(0x2a, core_params),
	ICPU(0x2d, core_params),
903
	ICPU(0x37, byt_params),
904 905
	ICPU(0x3a, core_params),
	ICPU(0x3c, core_params),
906
	ICPU(0x3d, core_params),
907 908 909 910
	ICPU(0x3e, core_params),
	ICPU(0x3f, core_params),
	ICPU(0x45, core_params),
	ICPU(0x46, core_params),
911
	ICPU(0x47, core_params),
912
	ICPU(0x4c, byt_params),
913
	ICPU(0x4e, core_params),
914
	ICPU(0x4f, core_params),
915
	ICPU(0x5e, core_params),
916
	ICPU(0x56, core_params),
917
	ICPU(0x57, knl_params),
918 919 920 921
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

D
Dirk Brandewie 已提交
922 923 924 925 926
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
	ICPU(0x56, core_params),
	{}
};

927 928 929 930
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

931 932 933
	if (!all_cpu_data[cpunum])
		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
					       GFP_KERNEL);
934 935 936 937 938 939
	if (!all_cpu_data[cpunum])
		return -ENOMEM;

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
940 941 942 943

	if (hwp_active)
		intel_pstate_hwp_enable(cpu);

944
	intel_pstate_get_cpu_pstates(cpu);
945

946
	init_timer_deferrable(&cpu->timer);
947
	cpu->timer.data = (unsigned long)cpu;
948
	cpu->timer.expires = jiffies + HZ/100;
D
Dirk Brandewie 已提交
949 950 951 952 953 954

	if (!hwp_active)
		cpu->timer.function = intel_pstate_timer_func;
	else
		cpu->timer.function = intel_hwp_timer_func;

955 956 957 958 959
	intel_pstate_busy_pid_reset(cpu);
	intel_pstate_sample(cpu);

	add_timer_on(&cpu->timer, cpunum);

960
	pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);
961 962 963 964 965 966 967 968 969 970 971 972

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
	struct sample *sample;
	struct cpudata *cpu;

	cpu = all_cpu_data[cpu_num];
	if (!cpu)
		return 0;
973
	sample = &cpu->sample;
974 975 976 977 978
	return sample->freq;
}

static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
979 980 981
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

982 983
	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE &&
	    policy->max >= policy->cpuinfo.max_freq) {
984
		limits.min_policy_pct = 100;
985 986
		limits.min_perf_pct = 100;
		limits.min_perf = int_tofp(1);
987
		limits.max_policy_pct = 100;
988 989
		limits.max_perf_pct = 100;
		limits.max_perf = int_tofp(1);
990
		limits.no_turbo = 0;
991
		return 0;
992
	}
D
Dirk Brandewie 已提交
993

994 995
	limits.min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
	limits.min_policy_pct = clamp_t(int, limits.min_policy_pct, 0 , 100);
996
	limits.max_policy_pct = (policy->max * 100) / policy->cpuinfo.max_freq;
997
	limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
998 999 1000 1001

	/* Normalize user input to [min_policy_pct, max_policy_pct] */
	limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
	limits.min_perf_pct = min(limits.max_policy_pct, limits.min_perf_pct);
1002
	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
1003 1004 1005 1006 1007 1008
	limits.max_perf_pct = max(limits.min_policy_pct, limits.max_perf_pct);

	/* Make sure min_perf_pct <= max_perf_pct */
	limits.min_perf_pct = min(limits.max_perf_pct, limits.min_perf_pct);

	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
1009
	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
1010

D
Dirk Brandewie 已提交
1011 1012 1013
	if (hwp_active)
		intel_pstate_hwp_set();

1014 1015 1016 1017 1018
	return 0;
}

static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
1019
	cpufreq_verify_within_cpu_limits(policy);
1020

1021
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1022
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1023 1024 1025 1026 1027
		return -EINVAL;

	return 0;
}

1028
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1029
{
1030 1031
	int cpu_num = policy->cpu;
	struct cpudata *cpu = all_cpu_data[cpu_num];
1032

1033
	pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);
1034

1035
	del_timer_sync(&all_cpu_data[cpu_num]->timer);
D
Dirk Brandewie 已提交
1036 1037 1038
	if (hwp_active)
		return;

1039
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
1040 1041
}

1042
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1043 1044
{
	struct cpudata *cpu;
1045
	int rc;
1046 1047 1048 1049 1050 1051 1052

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

1053
	if (limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
1054 1055 1056 1057
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;

1058 1059
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1060 1061

	/* cpuinfo and default policy values */
1062 1063 1064
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->cpuinfo.max_freq =
		cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
	cpumask_set_cpu(policy->cpu, policy->cpus);

	return 0;
}

static struct cpufreq_driver intel_pstate_driver = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
1077
	.stop_cpu	= intel_pstate_stop_cpu,
1078 1079 1080
	.name		= "intel_pstate",
};

1081
static int __initdata no_load;
D
Dirk Brandewie 已提交
1082
static int __initdata no_hwp;
1083
static int __initdata hwp_only;
1084
static unsigned int force_load;
1085

1086 1087
static int intel_pstate_msrs_not_valid(void)
{
1088
	if (!pstate_funcs.get_max() ||
1089 1090
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
1091 1092 1093 1094
		return -ENODEV;

	return 0;
}
1095

1096
static void copy_pid_params(struct pstate_adjust_policy *policy)
1097 1098 1099 1100 1101 1102 1103 1104 1105
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

1106
static void copy_cpu_funcs(struct pstate_funcs *funcs)
1107 1108 1109 1110
{
	pstate_funcs.get_max   = funcs->get_max;
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
1111
	pstate_funcs.get_scaling = funcs->get_scaling;
1112
	pstate_funcs.set       = funcs->set;
1113
	pstate_funcs.get_vid   = funcs->get_vid;
1114 1115
}

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
#if IS_ENABLED(CONFIG_ACPI)
#include <acpi/processor.h>

static bool intel_pstate_no_acpi_pss(void)
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
static bool intel_pstate_has_acpi_ppc(void)
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

1168 1169 1170 1171
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1172
	int  oem_pwr_table;
1173 1174 1175 1176
};

/* Hardware vendor-specific info that has its own power management modes */
static struct hw_vendor_info vendor_info[] = {
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
1188 1189 1190 1191
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
1192 1193 1194 1195 1196 1197 1198
	{0, "", ""},
};

static bool intel_pstate_platform_pwr_mgmt_exists(void)
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
1199 1200 1201 1202 1203 1204 1205 1206 1207
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
1208

1209 1210
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1211 1212 1213
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
1214
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1215 1216 1217 1218 1219 1220
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
1221 1222
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
1223
			}
1224 1225 1226 1227 1228 1229
	}

	return false;
}
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1230
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1231 1232
#endif /* CONFIG_ACPI */

1233 1234
static int __init intel_pstate_init(void)
{
1235
	int cpu, rc = 0;
1236
	const struct x86_cpu_id *id;
1237
	struct cpu_defaults *cpu_def;
1238

1239 1240 1241
	if (no_load)
		return -ENODEV;

1242 1243 1244 1245
	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

1246 1247 1248 1249 1250 1251 1252
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

1253
	cpu_def = (struct cpu_defaults *)id->driver_data;
1254

1255 1256
	copy_pid_params(&cpu_def->pid_policy);
	copy_cpu_funcs(&cpu_def->funcs);
1257

1258 1259 1260
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

1261 1262
	pr_info("Intel P-state driver initializing.\n");

1263
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1264 1265 1266
	if (!all_cpu_data)
		return -ENOMEM;

1267
	if (static_cpu_has_safe(X86_FEATURE_HWP) && !no_hwp)
1268
		hwp_active++;
D
Dirk Brandewie 已提交
1269

1270 1271 1272
	if (!hwp_active && hwp_only)
		goto out;

1273 1274 1275 1276 1277 1278
	rc = cpufreq_register_driver(&intel_pstate_driver);
	if (rc)
		goto out;

	intel_pstate_debug_expose_params();
	intel_pstate_sysfs_expose_params();
1279

1280 1281
	return rc;
out:
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			del_timer_sync(&all_cpu_data[cpu]->timer);
			kfree(all_cpu_data[cpu]);
		}
	}

	put_online_cpus();
	vfree(all_cpu_data);
1292 1293 1294 1295
	return -ENODEV;
}
device_initcall(intel_pstate_init);

1296 1297 1298 1299 1300 1301 1302
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

	if (!strcmp(str, "disable"))
		no_load = 1;
D
Dirk Brandewie 已提交
1303 1304
	if (!strcmp(str, "no_hwp"))
		no_hwp = 1;
1305 1306
	if (!strcmp(str, "force"))
		force_load = 1;
1307 1308
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
1309 1310 1311 1312
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

1313 1314 1315
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");