intel_pstate.c 22.4 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
28
#include <linux/acpi.h>
29 30 31 32 33 34
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>

35 36 37
#define BYT_RATIOS		0x66a
#define BYT_VIDS		0x66b
#define BYT_TURBO_RATIOS	0x66c
38
#define BYT_TURBO_VIDS		0x66d
39

40

41
#define FRAC_BITS 8
42 43
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
44

45 46 47 48 49 50 51 52 53 54 55 56

static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

static inline int32_t div_fp(int32_t x, int32_t y)
{
	return div_s64((int64_t)x << FRAC_BITS, (int64_t)y);
}

struct sample {
57
	int32_t core_pct_busy;
58 59 60
	u64 aperf;
	u64 mperf;
	int freq;
61
	ktime_t time;
62 63 64 65 66 67 68 69 70
};

struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
	int	turbo_pstate;
};

71
struct vid_data {
72 73 74
	int min;
	int max;
	int turbo;
75 76 77
	int32_t ratio;
};

78 79 80 81 82 83 84
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
85
	int32_t last_err;
86 87 88 89 90 91 92 93
};

struct cpudata {
	int cpu;

	struct timer_list timer;

	struct pstate_data pstate;
94
	struct vid_data vid;
95 96
	struct _pid pid;

97
	ktime_t last_sample_time;
98 99
	u64	prev_aperf;
	u64	prev_mperf;
100
	struct sample sample;
101 102 103 104 105 106 107 108 109 110 111 112
};

static struct cpudata **all_cpu_data;
struct pstate_adjust_policy {
	int sample_rate_ms;
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

113 114 115 116
struct pstate_funcs {
	int (*get_max)(void);
	int (*get_min)(void);
	int (*get_turbo)(void);
117 118
	void (*set)(struct cpudata*, int pstate);
	void (*get_vid)(struct cpudata *);
119 120
};

121 122 123
struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
124 125
};

126 127 128
static struct pstate_adjust_policy pid_params;
static struct pstate_funcs pstate_funcs;

129 130 131 132 133 134
struct perf_limits {
	int no_turbo;
	int max_perf_pct;
	int min_perf_pct;
	int32_t max_perf;
	int32_t min_perf;
135 136
	int max_policy_pct;
	int max_sysfs_pct;
137 138 139 140 141 142 143 144
};

static struct perf_limits limits = {
	.no_turbo = 0,
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 0,
	.min_perf = 0,
145 146
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
147 148 149 150 151 152 153
};

static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
			int deadband, int integral) {
	pid->setpoint = setpoint;
	pid->deadband  = deadband;
	pid->integral  = int_tofp(integral);
154
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
	pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
	pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{

	pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
}

173
static signed int pid_calc(struct _pid *pid, int32_t busy)
174
{
175
	signed int result;
176 177 178
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

179
	fp_error = int_tofp(pid->setpoint) - busy;
180

181
	if (abs(fp_error) <= int_tofp(pid->deadband))
182 183 184 185 186 187 188 189 190 191 192 193 194
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

	/* limit the integral term */
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

195 196
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
197 198

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
199
	result = result + (1 << (FRAC_BITS-1));
200 201 202 203 204
	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
205 206 207
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
208 209

	pid_reset(&cpu->pid,
210
		pid_params.setpoint,
211
		100,
212
		pid_params.deadband,
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
		0);
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
	intel_pstate_reset_all_pid();
	return 0;
}
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get,
			pid_param_set, "%llu\n");

struct pid_param {
	char *name;
	void *value;
};

static struct pid_param pid_files[] = {
246 247 248 249 250 251
	{"sample_rate_ms", &pid_params.sample_rate_ms},
	{"d_gain_pct", &pid_params.d_gain_pct},
	{"i_gain_pct", &pid_params.i_gain_pct},
	{"deadband", &pid_params.deadband},
	{"setpoint", &pid_params.setpoint},
	{"p_gain_pct", &pid_params.p_gain_pct},
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
	{NULL, NULL}
};

static struct dentry *debugfs_parent;
static void intel_pstate_debug_expose_params(void)
{
	int i = 0;

	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
	while (pid_files[i].name) {
		debugfs_create_file(pid_files[i].name, 0660,
				debugfs_parent, pid_files[i].value,
				&fops_pid_param);
		i++;
	}
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
		return sprintf(buf, "%u\n", limits.object);		\
	}

static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
				const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
	limits.no_turbo = clamp_t(int, input, 0 , 1);

	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
				const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

303 304
	limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
				const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
	limits.min_perf_pct = clamp_t(int, input, 0 , 100);
	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));

	return count;
}

show_one(no_turbo, no_turbo);
show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);

static struct attribute *intel_pstate_attributes[] = {
	&no_turbo.attr,
	&max_perf_pct.attr,
	&min_perf_pct.attr,
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};
static struct kobject *intel_pstate_kobject;

static void intel_pstate_sysfs_expose_params(void)
{
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
	BUG_ON(!intel_pstate_kobject);
	rc = sysfs_create_group(intel_pstate_kobject,
				&intel_pstate_attr_group);
	BUG_ON(rc);
}

/************************** sysfs end ************************/
356 357 358 359
static int byt_get_min_pstate(void)
{
	u64 value;
	rdmsrl(BYT_RATIOS, value);
360
	return (value >> 8) & 0x3F;
361 362 363 364 365 366
}

static int byt_get_max_pstate(void)
{
	u64 value;
	rdmsrl(BYT_RATIOS, value);
367
	return (value >> 16) & 0x3F;
368
}
369

370 371 372 373 374 375 376
static int byt_get_turbo_pstate(void)
{
	u64 value;
	rdmsrl(BYT_TURBO_RATIOS, value);
	return value & 0x3F;
}

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
static void byt_set_pstate(struct cpudata *cpudata, int pstate)
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

	val = pstate << 8;
	if (limits.no_turbo)
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
	vid = fp_toint(vid_fp);

394 395 396
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

397 398 399 400 401 402 403 404 405
	val |= vid;

	wrmsrl(MSR_IA32_PERF_CTL, val);
}

static void byt_get_vid(struct cpudata *cpudata)
{
	u64 value;

406

407
	rdmsrl(BYT_VIDS, value);
408 409
	cpudata->vid.min = int_tofp((value >> 8) & 0x3f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x3f);
410 411 412 413
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
414 415 416

	rdmsrl(BYT_TURBO_VIDS, value);
	cpudata->vid.turbo = value & 0x7f;
417 418 419
}


420
static int core_get_min_pstate(void)
421 422
{
	u64 value;
423
	rdmsrl(MSR_PLATFORM_INFO, value);
424 425 426
	return (value >> 40) & 0xFF;
}

427
static int core_get_max_pstate(void)
428 429
{
	u64 value;
430
	rdmsrl(MSR_PLATFORM_INFO, value);
431 432 433
	return (value >> 8) & 0xFF;
}

434
static int core_get_turbo_pstate(void)
435 436 437
{
	u64 value;
	int nont, ret;
438
	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
439
	nont = core_get_max_pstate();
440 441 442 443 444 445
	ret = ((value) & 255);
	if (ret <= nont)
		ret = nont;
	return ret;
}

446
static void core_set_pstate(struct cpudata *cpudata, int pstate)
447 448 449 450 451 452 453
{
	u64 val;

	val = pstate << 8;
	if (limits.no_turbo)
		val |= (u64)1 << 32;

454
	wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
}

static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
		.set = core_set_pstate,
	},
};

474 475 476 477 478 479 480 481 482 483 484 485
static struct cpu_defaults byt_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = byt_get_max_pstate,
		.get_min = byt_get_min_pstate,
486
		.get_turbo = byt_get_turbo_pstate,
487 488
		.set = byt_set_pstate,
		.get_vid = byt_get_vid,
489 490 491 492
	},
};


493 494 495
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
496
	int max_perf_adj;
497 498 499 500
	int min_perf;
	if (limits.no_turbo)
		max_perf = cpu->pstate.max_pstate;

501 502
	max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
	*max = clamp_t(int, max_perf_adj,
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);

	min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
	*min = clamp_t(int, min_perf,
			cpu->pstate.min_pstate, max_perf);
}

static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
{
	int max_perf, min_perf;

	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);

	pstate = clamp_t(int, pstate, min_perf, max_perf);

	if (pstate == cpu->pstate.current_pstate)
		return;

	trace_cpu_frequency(pstate * 100000, cpu->cpu);
522

523 524
	cpu->pstate.current_pstate = pstate;

525
	pstate_funcs.set(cpu, pstate);
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
}

static inline void intel_pstate_pstate_increase(struct cpudata *cpu, int steps)
{
	int target;
	target = cpu->pstate.current_pstate + steps;

	intel_pstate_set_pstate(cpu, target);
}

static inline void intel_pstate_pstate_decrease(struct cpudata *cpu, int steps)
{
	int target;
	target = cpu->pstate.current_pstate - steps;
	intel_pstate_set_pstate(cpu, target);
}

static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
545 546 547
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
548

549 550
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
551
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
552 553
}

554
static inline void intel_pstate_calc_busy(struct cpudata *cpu)
555
{
556
	struct sample *sample = &cpu->sample;
557 558
	int64_t core_pct;
	int32_t rem;
559

560 561 562 563 564
	core_pct = int_tofp(sample->aperf) * int_tofp(100);
	core_pct = div_u64_rem(core_pct, int_tofp(sample->mperf), &rem);

	if ((rem << 1) >= int_tofp(sample->mperf))
		core_pct += 1;
565

566
	sample->freq = fp_toint(
567
		mul_fp(int_tofp(cpu->pstate.max_pstate * 1000), core_pct));
568

569
	sample->core_pct_busy = (int32_t)core_pct;
570 571 572 573 574 575 576 577
}

static inline void intel_pstate_sample(struct cpudata *cpu)
{
	u64 aperf, mperf;

	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
578

579 580 581
	aperf = aperf >> FRAC_BITS;
	mperf = mperf >> FRAC_BITS;

582 583
	cpu->last_sample_time = cpu->sample.time;
	cpu->sample.time = ktime_get();
584 585 586 587
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
588

589
	intel_pstate_calc_busy(cpu);
590 591 592 593 594 595 596 597 598

	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
}

static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
{
	int sample_time, delay;

599
	sample_time = pid_params.sample_rate_ms;
600 601 602 603
	delay = msecs_to_jiffies(sample_time);
	mod_timer_pinned(&cpu->timer, jiffies + delay);
}

604
static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
605
{
606 607 608
	int32_t core_busy, max_pstate, current_pstate, sample_ratio;
	u32 duration_us;
	u32 sample_time;
609

610
	core_busy = cpu->sample.core_pct_busy;
611
	max_pstate = int_tofp(cpu->pstate.max_pstate);
612
	current_pstate = int_tofp(cpu->pstate.current_pstate);
613
	core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
614 615 616 617 618 619 620 621 622 623

	sample_time = (pid_params.sample_rate_ms  * USEC_PER_MSEC);
	duration_us = (u32) ktime_us_delta(cpu->sample.time,
					cpu->last_sample_time);
	if (duration_us > sample_time * 3) {
		sample_ratio = div_fp(int_tofp(sample_time),
				int_tofp(duration_us));
		core_busy = mul_fp(core_busy, sample_ratio);
	}

624
	return core_busy;
625 626 627 628
}

static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
629
	int32_t busy_scaled;
630 631 632 633 634 635 636 637 638 639
	struct _pid *pid;
	signed int ctl = 0;
	int steps;

	pid = &cpu->pid;
	busy_scaled = intel_pstate_get_scaled_busy(cpu);

	ctl = pid_calc(pid, busy_scaled);

	steps = abs(ctl);
640

641 642 643 644 645 646 647 648 649
	if (ctl < 0)
		intel_pstate_pstate_increase(cpu, steps);
	else
		intel_pstate_pstate_decrease(cpu, steps);
}

static void intel_pstate_timer_func(unsigned long __data)
{
	struct cpudata *cpu = (struct cpudata *) __data;
650
	struct sample *sample;
651 652

	intel_pstate_sample(cpu);
653

654
	sample = &cpu->sample;
655

656
	intel_pstate_adjust_busy_pstate(cpu);
657 658 659 660 661 662 663 664

	trace_pstate_sample(fp_toint(sample->core_pct_busy),
			fp_toint(intel_pstate_get_scaled_busy(cpu)),
			cpu->pstate.current_pstate,
			sample->mperf,
			sample->aperf,
			sample->freq);

665 666 667 668
	intel_pstate_set_sample_time(cpu);
}

#define ICPU(model, policy) \
669 670
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
671 672

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
673 674
	ICPU(0x2a, core_params),
	ICPU(0x2d, core_params),
675
	ICPU(0x37, byt_params),
676 677
	ICPU(0x3a, core_params),
	ICPU(0x3c, core_params),
678
	ICPU(0x3d, core_params),
679 680 681 682
	ICPU(0x3e, core_params),
	ICPU(0x3f, core_params),
	ICPU(0x45, core_params),
	ICPU(0x46, core_params),
683 684
	ICPU(0x4f, core_params),
	ICPU(0x56, core_params),
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

	all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata), GFP_KERNEL);
	if (!all_cpu_data[cpunum])
		return -ENOMEM;

	cpu = all_cpu_data[cpunum];

	intel_pstate_get_cpu_pstates(cpu);

	cpu->cpu = cpunum;
702

703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
	init_timer_deferrable(&cpu->timer);
	cpu->timer.function = intel_pstate_timer_func;
	cpu->timer.data =
		(unsigned long)cpu;
	cpu->timer.expires = jiffies + HZ/100;
	intel_pstate_busy_pid_reset(cpu);
	intel_pstate_sample(cpu);

	add_timer_on(&cpu->timer, cpunum);

	pr_info("Intel pstate controlling: cpu %d\n", cpunum);

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
	struct sample *sample;
	struct cpudata *cpu;

	cpu = all_cpu_data[cpu_num];
	if (!cpu)
		return 0;
726
	sample = &cpu->sample;
727 728 729 730 731 732 733 734 735
	return sample->freq;
}

static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];

736 737 738
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

739 740 741 742 743 744
	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
		limits.min_perf_pct = 100;
		limits.min_perf = int_tofp(1);
		limits.max_perf_pct = 100;
		limits.max_perf = int_tofp(1);
		limits.no_turbo = 0;
745
		return 0;
746
	}
747 748 749 750
	limits.min_perf_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
	limits.min_perf_pct = clamp_t(int, limits.min_perf_pct, 0 , 100);
	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));

751 752 753
	limits.max_policy_pct = policy->max * 100 / policy->cpuinfo.max_freq;
	limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
754
	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
755 756 757 758 759 760

	return 0;
}

static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
761
	cpufreq_verify_within_cpu_limits(policy);
762 763 764 765 766 767 768 769

	if ((policy->policy != CPUFREQ_POLICY_POWERSAVE) &&
		(policy->policy != CPUFREQ_POLICY_PERFORMANCE))
		return -EINVAL;

	return 0;
}

770
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
771
{
772 773
	int cpu_num = policy->cpu;
	struct cpudata *cpu = all_cpu_data[cpu_num];
774

775 776
	pr_info("intel_pstate CPU %d exiting\n", cpu_num);

777
	del_timer_sync(&all_cpu_data[cpu_num]->timer);
778 779 780
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
	kfree(all_cpu_data[cpu_num]);
	all_cpu_data[cpu_num] = NULL;
781 782
}

783
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
784 785
{
	struct cpudata *cpu;
786
	int rc;
787 788 789 790 791 792 793 794 795 796 797 798 799

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

	if (!limits.no_turbo &&
		limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;

800 801
	policy->min = cpu->pstate.min_pstate * 100000;
	policy->max = cpu->pstate.turbo_pstate * 100000;
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817

	/* cpuinfo and default policy values */
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * 100000;
	policy->cpuinfo.max_freq = cpu->pstate.turbo_pstate * 100000;
	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
	cpumask_set_cpu(policy->cpu, policy->cpus);

	return 0;
}

static struct cpufreq_driver intel_pstate_driver = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
818
	.stop_cpu	= intel_pstate_stop_cpu,
819 820 821
	.name		= "intel_pstate",
};

822 823
static int __initdata no_load;

824 825 826 827 828 829 830 831
static int intel_pstate_msrs_not_valid(void)
{
	/* Check that all the msr's we are using are valid. */
	u64 aperf, mperf, tmp;

	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);

832 833 834
	if (!pstate_funcs.get_max() ||
		!pstate_funcs.get_min() ||
		!pstate_funcs.get_turbo())
835 836 837 838 839 840 841 842 843 844 845 846
		return -ENODEV;

	rdmsrl(MSR_IA32_APERF, tmp);
	if (!(tmp - aperf))
		return -ENODEV;

	rdmsrl(MSR_IA32_MPERF, tmp);
	if (!(tmp - mperf))
		return -ENODEV;

	return 0;
}
847

848
static void copy_pid_params(struct pstate_adjust_policy *policy)
849 850 851 852 853 854 855 856 857
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

858
static void copy_cpu_funcs(struct pstate_funcs *funcs)
859 860 861 862 863
{
	pstate_funcs.get_max   = funcs->get_max;
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
	pstate_funcs.set       = funcs->set;
864
	pstate_funcs.get_vid   = funcs->get_vid;
865 866
}

867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
#if IS_ENABLED(CONFIG_ACPI)
#include <acpi/processor.h>

static bool intel_pstate_no_acpi_pss(void)
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
};

/* Hardware vendor-specific info that has its own power management modes */
static struct hw_vendor_info vendor_info[] = {
	{1, "HP    ", "ProLiant"},
	{0, "", ""},
};

static bool intel_pstate_platform_pwr_mgmt_exists(void)
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;

	if (acpi_disabled
	    || ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE)
		    && !strncmp(hdr.oem_table_id, v_info->oem_table_id, ACPI_OEM_TABLE_ID_SIZE)
		    && intel_pstate_no_acpi_pss())
			return true;
	}

	return false;
}
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
#endif /* CONFIG_ACPI */

933 934
static int __init intel_pstate_init(void)
{
935
	int cpu, rc = 0;
936
	const struct x86_cpu_id *id;
937
	struct cpu_defaults *cpu_info;
938

939 940 941
	if (no_load)
		return -ENODEV;

942 943 944 945
	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

946 947 948 949 950 951 952
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

953 954 955 956 957
	cpu_info = (struct cpu_defaults *)id->driver_data;

	copy_pid_params(&cpu_info->pid_policy);
	copy_cpu_funcs(&cpu_info->funcs);

958 959 960
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

961 962
	pr_info("Intel P-state driver initializing.\n");

963
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
964 965 966 967 968 969 970 971 972
	if (!all_cpu_data)
		return -ENOMEM;

	rc = cpufreq_register_driver(&intel_pstate_driver);
	if (rc)
		goto out;

	intel_pstate_debug_expose_params();
	intel_pstate_sysfs_expose_params();
973

974 975
	return rc;
out:
976 977 978 979 980 981 982 983 984 985
	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			del_timer_sync(&all_cpu_data[cpu]->timer);
			kfree(all_cpu_data[cpu]);
		}
	}

	put_online_cpus();
	vfree(all_cpu_data);
986 987 988 989
	return -ENODEV;
}
device_initcall(intel_pstate_init);

990 991 992 993 994 995 996 997 998 999 1000
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

	if (!strcmp(str, "disable"))
		no_load = 1;
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

1001 1002 1003
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");