intel_pstate.c 63.9 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
30
#include <linux/acpi.h>
31
#include <linux/vmalloc.h>
32 33 34 35 36
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
37
#include <asm/cpufeature.h>
38
#include <asm/intel-family.h>
39

40 41
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000

42 43 44 45
#define ATOM_RATIOS		0x66a
#define ATOM_VIDS		0x66b
#define ATOM_TURBO_RATIOS	0x66c
#define ATOM_TURBO_VIDS		0x66d
46

47 48
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
49
#include <acpi/cppc_acpi.h>
50 51
#endif

52
#define FRAC_BITS 8
53 54
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
55

56 57
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
58 59
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
60

61 62 63 64 65
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

66
static inline int32_t div_fp(s64 x, s64 y)
67
{
68
	return div64_s64((int64_t)x << FRAC_BITS, y);
69 70
}

71 72 73 74 75 76 77 78 79 80 81
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

82 83 84 85 86 87 88 89 90 91
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

92 93
/**
 * struct sample -	Store performance sample
94
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
95 96
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
97
 *			P state. This can be different than core_avg_perf
98 99 100 101 102 103 104 105 106 107 108 109
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
110
struct sample {
111
	int32_t core_avg_perf;
112
	int32_t busy_scaled;
113 114
	u64 aperf;
	u64 mperf;
115
	u64 tsc;
116
	u64 time;
117 118
};

119 120 121 122 123 124 125 126 127 128 129
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
130 131
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
132 133 134
 *
 * Stores the per cpu model P state limits and current P state.
 */
135 136 137 138
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
139
	int	max_pstate_physical;
140
	int	scaling;
141
	int	turbo_pstate;
142 143
	unsigned int max_freq;
	unsigned int turbo_freq;
144 145
};

146 147 148 149 150 151 152 153 154 155 156 157 158
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
159
struct vid_data {
160 161 162
	int min;
	int max;
	int turbo;
163 164 165
	int32_t ratio;
};

166 167 168 169 170 171 172 173 174 175 176 177
/**
 * struct _pid -	Stores PID data
 * @setpoint:		Target set point for busyness or performance
 * @integral:		Storage for accumulated error values
 * @p_gain:		PID proportional gain
 * @i_gain:		PID integral gain
 * @d_gain:		PID derivative gain
 * @deadband:		PID deadband
 * @last_err:		Last error storage for integral part of PID calculation
 *
 * Stores PID coefficients and last error for PID controller.
 */
178 179 180 181 182 183 184
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
185
	int32_t last_err;
186 187
};

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
/**
 * struct perf_limits - Store user and policy limits
 * @no_turbo:		User requested turbo state from intel_pstate sysfs
 * @turbo_disabled:	Platform turbo status either from msr
 *			MSR_IA32_MISC_ENABLE or when maximum available pstate
 *			matches the maximum turbo pstate
 * @max_perf_pct:	Effective maximum performance limit in percentage, this
 *			is minimum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @min_perf_pct:	Effective minimum performance limit in percentage, this
 *			is maximum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
 *			This value is used to limit max pstate
 * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
 *			This value is used to limit min pstate
 * @max_policy_pct:	The maximum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @max_sysfs_pct:	The maximum performance in percentage enforced by
 *			intel pstate sysfs interface, unused when per cpu
 *			controls are enforced
 * @min_policy_pct:	The minimum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @min_sysfs_pct:	The minimum performance in percentage enforced by
 *			intel pstate sysfs interface, unused when per cpu
 *			controls are enforced
 *
 * Storage for user and policy defined limits.
 */
struct perf_limits {
	int no_turbo;
	int turbo_disabled;
	int max_perf_pct;
	int min_perf_pct;
	int32_t max_perf;
	int32_t min_perf;
	int max_policy_pct;
	int max_sysfs_pct;
	int min_policy_pct;
	int min_sysfs_pct;
};

230 231 232
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
233
 * @policy:		CPUFreq policy value
234
 * @update_util:	CPUFreq utility callback information
235
 * @update_util_set:	CPUFreq utility callback is set
236 237
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
238 239 240 241 242 243 244 245 246 247
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @pid:		Stores PID parameters for this CPU
 * @last_sample_time:	Last Sample time
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
248 249 250
 * @perf_limits:	Pointer to perf_limit unique to this CPU
 *			Not all field in the structure are applicable
 *			when per cpu controls are enforced
251 252
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
253 254 255
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
256
 * @epp_policy:		Last saved policy used to set EPP/EPB
257 258 259 260
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
261 262 263
 *
 * This structure stores per CPU instance data for all CPUs.
 */
264 265 266
struct cpudata {
	int cpu;

267
	unsigned int policy;
268
	struct update_util_data update_util;
269
	bool   update_util_set;
270 271

	struct pstate_data pstate;
272
	struct vid_data vid;
273 274
	struct _pid pid;

275
	u64	last_update;
276
	u64	last_sample_time;
277 278
	u64	prev_aperf;
	u64	prev_mperf;
279
	u64	prev_tsc;
280
	u64	prev_cummulative_iowait;
281
	struct sample sample;
282
	struct perf_limits *perf_limits;
283 284 285 286
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
287
	unsigned int iowait_boost;
288
	s16 epp_powersave;
289
	s16 epp_policy;
290 291
	s16 epp_default;
	s16 epp_saved;
292 293 294
};

static struct cpudata **all_cpu_data;
295 296

/**
297
 * struct pstate_adjust_policy - Stores static PID configuration data
298 299 300 301 302 303 304 305 306 307
 * @sample_rate_ms:	PID calculation sample rate in ms
 * @sample_rate_ns:	Sample rate calculation in ns
 * @deadband:		PID deadband
 * @setpoint:		PID Setpoint
 * @p_gain_pct:		PID proportional gain
 * @i_gain_pct:		PID integral gain
 * @d_gain_pct:		PID derivative gain
 *
 * Stores per CPU model static PID configuration data.
 */
308 309
struct pstate_adjust_policy {
	int sample_rate_ms;
310
	s64 sample_rate_ns;
311 312 313 314 315 316 317
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

318 319 320 321 322 323 324 325 326 327 328 329 330 331
/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 * @get_target_pstate:	Callback to a function to calculate next P state to use
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
332 333
struct pstate_funcs {
	int (*get_max)(void);
334
	int (*get_max_physical)(void);
335 336
	int (*get_min)(void);
	int (*get_turbo)(void);
337
	int (*get_scaling)(void);
338
	u64 (*get_val)(struct cpudata*, int pstate);
339
	void (*get_vid)(struct cpudata *);
340
	int32_t (*get_target_pstate)(struct cpudata *);
341 342
};

343 344 345 346 347
/**
 * struct cpu_defaults- Per CPU model default config data
 * @pid_policy:	PID config data
 * @funcs:		Callback function data
 */
348 349 350
struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
351 352
};

353
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
354
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
355

356 357 358
static struct pstate_adjust_policy pid_params __read_mostly;
static struct pstate_funcs pstate_funcs __read_mostly;
static int hwp_active __read_mostly;
359
static bool per_cpu_limits __read_mostly;
360

361 362 363
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
364

365 366 367 368
static struct perf_limits performance_limits = {
	.no_turbo = 0,
	.turbo_disabled = 0,
	.max_perf_pct = 100,
369
	.max_perf = int_ext_tofp(1),
370
	.min_perf_pct = 100,
371
	.min_perf = int_ext_tofp(1),
372 373 374 375 376 377 378
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
};

static struct perf_limits powersave_limits = {
379
	.no_turbo = 0,
380
	.turbo_disabled = 0,
381
	.max_perf_pct = 100,
382
	.max_perf = int_ext_tofp(1),
383 384
	.min_perf_pct = 0,
	.min_perf = 0,
385 386
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
387 388
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
389 390
};

391 392 393 394 395 396
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
static struct perf_limits *limits = &performance_limits;
#else
static struct perf_limits *limits = &powersave_limits;
#endif

397 398
static DEFINE_MUTEX(intel_pstate_limits_lock);

399
#ifdef CONFIG_ACPI
400 401 402 403 404 405 406 407 408 409

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

	return acpi_ppc;
}

410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
#else
static void intel_pstate_set_itmt_prio(int cpu)
{
}
#endif

461 462 463 464 465 466
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

467 468
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
469
		return;
470
	}
471

472
	if (!intel_pstate_get_ppc_enable_status())
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
515
	 * correct max turbo frequency based on the turbo state.
516 517
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
518
	if (!limits->turbo_disabled)
519 520 521
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
522
	pr_debug("_PPC limits will be enforced\n");
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}

#else
543
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
544 545 546
{
}

547
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
548 549 550 551
{
}
#endif

552
static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
553
			     int deadband, int integral) {
554 555
	pid->setpoint = int_tofp(setpoint);
	pid->deadband  = int_tofp(deadband);
556
	pid->integral  = int_tofp(integral);
557
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
558 559 560 561
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
562
	pid->p_gain = div_fp(percent, 100);
563 564 565 566
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
567
	pid->i_gain = div_fp(percent, 100);
568 569 570 571
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{
572
	pid->d_gain = div_fp(percent, 100);
573 574
}

575
static signed int pid_calc(struct _pid *pid, int32_t busy)
576
{
577
	signed int result;
578 579 580
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

581
	fp_error = pid->setpoint - busy;
582

583
	if (abs(fp_error) <= pid->deadband)
584 585 586 587 588 589
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

590 591 592 593 594 595 596 597
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
598 599 600 601 602 603
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

604 605
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
606 607

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
608
	result = result + (1 << (FRAC_BITS-1));
609 610 611 612 613
	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
614 615 616
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
617

618
	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
619 620 621 622 623
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
624

625 626 627 628 629 630
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

631 632 633 634 635 636 637
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
638
	limits->turbo_disabled =
639 640 641 642
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

	if (!static_cpu_has(X86_FEATURE_EPB))
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

662 663 664 665 666 667 668 669 670 671 672
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
673
		epp = (hwp_req_data >> 24) & 0xff;
674
	} else {
675 676
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
677
	}
678 679 680 681

	return epp;
}

682
static int intel_pstate_set_epb(int cpu, s16 pref)
683 684
{
	u64 epb;
685
	int ret;
686 687

	if (!static_cpu_has(X86_FEATURE_EPB))
688
		return -ENXIO;
689

690 691 692
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
693 694 695

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
696 697

	return 0;
698 699
}

700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};

static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
{
	s16 epp;
	int index = -EINVAL;

	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * Range:
		 *	0x00-0x3F	:	Performance
		 *	0x40-0x7F	:	Balance performance
		 *	0x80-0xBF	:	Balance power
		 *	0xC0-0xFF	:	Power
		 * The EPP is a 8 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 6) + 1;
	} else if (static_cpu_has(X86_FEATURE_EPB)) {
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
					      int pref_index)
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

	mutex_lock(&intel_pstate_limits_lock);

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		u64 value;

		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
		if (ret)
			goto return_pref;

		value &= ~GENMASK_ULL(31, 24);

		/*
		 * If epp is not default, convert from index into
		 * energy_perf_strings to epp value, by shifting 6
		 * bits left to use only top two bits in epp.
		 * The resultant epp need to shifted by 24 bits to
		 * epp position in MSR_HWP_REQUEST.
		 */
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 6;

		value |= (u64)epp << 24;
		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}
return_pref:
	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	char str_preference[21];
	int ret, i = 0;

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

	while (energy_perf_strings[i] != NULL) {
		if (!strcmp(str_preference, energy_perf_strings[i])) {
			intel_pstate_set_energy_pref_index(cpu_data, i);
			return count;
		}
		++i;
	}

	return -EINVAL;
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	int preference;

	preference = intel_pstate_get_energy_pref_index(cpu_data);
	if (preference < 0)
		return preference;

	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
}

cpufreq_freq_attr_rw(energy_performance_preference);

static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
	NULL,
};

860
static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
D
Dirk Brandewie 已提交
861
{
862
	int min, hw_min, max, hw_max, cpu, range, adj_range;
863
	struct perf_limits *perf_limits = limits;
864 865
	u64 value, cap;

866
	for_each_cpu(cpu, policy->cpus) {
867
		int max_perf_pct, min_perf_pct;
868 869
		struct cpudata *cpu_data = all_cpu_data[cpu];
		s16 epp;
870 871 872 873

		if (per_cpu_limits)
			perf_limits = all_cpu_data[cpu]->perf_limits;

874 875 876 877 878
		rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
		hw_min = HWP_LOWEST_PERF(cap);
		hw_max = HWP_HIGHEST_PERF(cap);
		range = hw_max - hw_min;

879 880 881
		max_perf_pct = perf_limits->max_perf_pct;
		min_perf_pct = perf_limits->min_perf_pct;

D
Dirk Brandewie 已提交
882
		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
883
		adj_range = min_perf_pct * range / 100;
884
		min = hw_min + adj_range;
D
Dirk Brandewie 已提交
885 886 887
		value &= ~HWP_MIN_PERF(~0L);
		value |= HWP_MIN_PERF(min);

888
		adj_range = max_perf_pct * range / 100;
889
		max = hw_min + adj_range;
890
		if (limits->no_turbo) {
891 892 893
			hw_max = HWP_GUARANTEED_PERF(cap);
			if (hw_max < max)
				max = hw_max;
D
Dirk Brandewie 已提交
894 895 896 897
		}

		value &= ~HWP_MAX_PERF(~0L);
		value |= HWP_MAX_PERF(max);
898 899 900 901 902 903

		if (cpu_data->epp_policy == cpu_data->policy)
			goto skip_epp;

		cpu_data->epp_policy = cpu_data->policy;

904 905 906 907 908 909
		if (cpu_data->epp_saved >= 0) {
			epp = cpu_data->epp_saved;
			cpu_data->epp_saved = -EINVAL;
			goto update_epp;
		}

910 911
		if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
			epp = intel_pstate_get_epp(cpu_data, value);
912
			cpu_data->epp_powersave = epp;
913
			/* If EPP read was failed, then don't try to write */
914
			if (epp < 0)
915 916 917 918 919 920
				goto skip_epp;


			epp = 0;
		} else {
			/* skip setting EPP, when saved value is invalid */
921
			if (cpu_data->epp_powersave < 0)
922 923 924 925 926 927 928 929 930 931 932 933 934
				goto skip_epp;

			/*
			 * No need to restore EPP when it is not zero. This
			 * means:
			 *  - Policy is not changed
			 *  - user has manually changed
			 *  - Error reading EPB
			 */
			epp = intel_pstate_get_epp(cpu_data, value);
			if (epp)
				goto skip_epp;

935
			epp = cpu_data->epp_powersave;
936
		}
937
update_epp:
938 939 940 941 942 943 944
		if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
			value &= ~GENMASK_ULL(31, 24);
			value |= (u64)epp << 24;
		} else {
			intel_pstate_set_epb(cpu, epp);
		}
skip_epp:
D
Dirk Brandewie 已提交
945 946
		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
	}
947
}
D
Dirk Brandewie 已提交
948

949 950 951
static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
{
	if (hwp_active)
952
		intel_pstate_hwp_set(policy);
953 954 955 956

	return 0;
}

957 958 959 960 961 962 963 964 965 966 967 968
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

969 970
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
971 972
	int ret;

973 974 975
	if (!hwp_active)
		return 0;

976 977
	mutex_lock(&intel_pstate_limits_lock);

978 979
	all_cpu_data[policy->cpu]->epp_policy = 0;

980 981 982 983 984
	ret = intel_pstate_hwp_set_policy(policy);

	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
985 986
}

987
static void intel_pstate_update_policies(void)
988
{
989 990 991 992
	int cpu;

	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
D
Dirk Brandewie 已提交
993 994
}

995 996 997 998 999 1000 1001
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
	intel_pstate_reset_all_pid();
	return 0;
}
1002

1003 1004 1005 1006 1007
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
1008
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
1009 1010 1011 1012 1013 1014 1015

struct pid_param {
	char *name;
	void *value;
};

static struct pid_param pid_files[] = {
1016 1017 1018 1019 1020 1021
	{"sample_rate_ms", &pid_params.sample_rate_ms},
	{"d_gain_pct", &pid_params.d_gain_pct},
	{"i_gain_pct", &pid_params.i_gain_pct},
	{"deadband", &pid_params.deadband},
	{"setpoint", &pid_params.setpoint},
	{"p_gain_pct", &pid_params.p_gain_pct},
1022 1023 1024
	{NULL, NULL}
};

1025
static void __init intel_pstate_debug_expose_params(void)
1026
{
1027
	struct dentry *debugfs_parent;
1028 1029 1030 1031 1032 1033 1034
	int i = 0;

	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
	while (pid_files[i].name) {
		debugfs_create_file(pid_files[i].name, 0660,
1035 1036
				    debugfs_parent, pid_files[i].value,
				    &fops_pid_param);
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
		i++;
	}
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
1048
		return sprintf(buf, "%u\n", limits->object);		\
1049 1050
	}

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1062
	turbo_fp = div_fp(no_turbo, total);
1063 1064 1065 1066
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
	return sprintf(buf, "%u\n", turbo_pct);
}

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	return sprintf(buf, "%u\n", total);
}

1078 1079 1080 1081 1082 1083
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

	update_turbo_state();
1084 1085
	if (limits->turbo_disabled)
		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
1086
	else
1087
		ret = sprintf(buf, "%u\n", limits->no_turbo);
1088 1089 1090 1091

	return ret;
}

1092
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1093
			      const char *buf, size_t count)
1094 1095 1096
{
	unsigned int input;
	int ret;
1097

1098 1099 1100
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1101

1102 1103
	mutex_lock(&intel_pstate_limits_lock);

1104
	update_turbo_state();
1105
	if (limits->turbo_disabled) {
J
Joe Perches 已提交
1106
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1107
		mutex_unlock(&intel_pstate_limits_lock);
1108
		return -EPERM;
1109
	}
D
Dirk Brandewie 已提交
1110

1111
	limits->no_turbo = clamp_t(int, input, 0, 1);
1112

1113 1114
	mutex_unlock(&intel_pstate_limits_lock);

1115 1116
	intel_pstate_update_policies();

1117 1118 1119 1120
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1121
				  const char *buf, size_t count)
1122 1123 1124
{
	unsigned int input;
	int ret;
1125

1126 1127 1128 1129
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

1130 1131
	mutex_lock(&intel_pstate_limits_lock);

1132 1133 1134 1135 1136 1137 1138
	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
	limits->max_perf_pct = max(limits->min_perf_pct,
				   limits->max_perf_pct);
1139
	limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
1140

1141 1142
	mutex_unlock(&intel_pstate_limits_lock);

1143 1144
	intel_pstate_update_policies();

1145 1146 1147 1148
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1149
				  const char *buf, size_t count)
1150 1151 1152
{
	unsigned int input;
	int ret;
1153

1154 1155 1156
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1157

1158 1159
	mutex_lock(&intel_pstate_limits_lock);

1160 1161 1162 1163 1164 1165 1166
	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->min_perf_pct = min(limits->max_perf_pct,
				   limits->min_perf_pct);
1167
	limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
1168

1169 1170
	mutex_unlock(&intel_pstate_limits_lock);

1171 1172
	intel_pstate_update_policies();

1173 1174 1175 1176 1177 1178 1179 1180 1181
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1182
define_one_global_ro(turbo_pct);
1183
define_one_global_ro(num_pstates);
1184 1185 1186

static struct attribute *intel_pstate_attributes[] = {
	&no_turbo.attr,
1187
	&turbo_pct.attr,
1188
	&num_pstates.attr,
1189 1190 1191 1192 1193 1194 1195
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

1196
static void __init intel_pstate_sysfs_expose_params(void)
1197
{
1198
	struct kobject *intel_pstate_kobject;
1199 1200 1201 1202
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1203 1204 1205
	if (WARN_ON(!intel_pstate_kobject))
		return;

1206
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1223 1224
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1225

1226
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1227
{
1228
	/* First disable HWP notification interrupt as we don't process them */
1229 1230
	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1231

1232
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1233
	cpudata->epp_policy = 0;
1234 1235
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1236 1237
}

1238
static int atom_get_min_pstate(void)
1239 1240
{
	u64 value;
1241

1242
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
1243
	return (value >> 8) & 0x7F;
1244 1245
}

1246
static int atom_get_max_pstate(void)
1247 1248
{
	u64 value;
1249

1250
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
1251
	return (value >> 16) & 0x7F;
1252
}
1253

1254
static int atom_get_turbo_pstate(void)
1255 1256
{
	u64 value;
1257

1258
	rdmsrl(ATOM_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1259
	return value & 0x7F;
1260 1261
}

1262
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1263 1264 1265 1266 1267
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1268
	val = (u64)pstate << 8;
1269
	if (limits->no_turbo && !limits->turbo_disabled)
1270 1271 1272 1273 1274 1275 1276
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1277
	vid = ceiling_fp(vid_fp);
1278

1279 1280 1281
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1282
	return val | vid;
1283 1284
}

1285
static int silvermont_get_scaling(void)
1286 1287 1288
{
	u64 value;
	int i;
1289 1290 1291
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1292 1293

	rdmsrl(MSR_FSB_FREQ, value);
1294 1295
	i = value & 0x7;
	WARN_ON(i > 4);
1296

1297 1298
	return silvermont_freq_table[i];
}
1299

1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1314 1315
}

1316
static void atom_get_vid(struct cpudata *cpudata)
1317 1318 1319
{
	u64 value;

1320
	rdmsrl(ATOM_VIDS, value);
D
Dirk Brandewie 已提交
1321 1322
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1323 1324 1325 1326
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1327

1328
	rdmsrl(ATOM_TURBO_VIDS, value);
1329
	cpudata->vid.turbo = value & 0x7f;
1330 1331
}

1332
static int core_get_min_pstate(void)
1333 1334
{
	u64 value;
1335

1336
	rdmsrl(MSR_PLATFORM_INFO, value);
1337 1338 1339
	return (value >> 40) & 0xFF;
}

1340
static int core_get_max_pstate_physical(void)
1341 1342
{
	u64 value;
1343

1344
	rdmsrl(MSR_PLATFORM_INFO, value);
1345 1346 1347
	return (value >> 8) & 0xFF;
}

1348
static int core_get_max_pstate(void)
1349
{
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
	u64 tar;
	u64 plat_info;
	int max_pstate;
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
		/* Do some sanity checking for safety */
		if (plat_info & 0x600000000) {
			u64 tdp_ctrl;
			u64 tdp_ratio;
			int tdp_msr;

			err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
			if (err)
				goto skip_tar;

1370
			tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x3);
1371 1372 1373 1374
			err = rdmsrl_safe(tdp_msr, &tdp_ratio);
			if (err)
				goto skip_tar;

1375 1376 1377 1378 1379
			/* For level 1 and 2, bits[23:16] contain the ratio */
			if (tdp_ctrl)
				tdp_ratio >>= 16;

			tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1380 1381 1382 1383 1384 1385 1386 1387
			if (tdp_ratio - 1 == tar) {
				max_pstate = tar;
				pr_debug("max_pstate=TAC %x\n", max_pstate);
			} else {
				goto skip_tar;
			}
		}
	}
1388

1389 1390
skip_tar:
	return max_pstate;
1391 1392
}

1393
static int core_get_turbo_pstate(void)
1394 1395 1396
{
	u64 value;
	int nont, ret;
1397

1398
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1399
	nont = core_get_max_pstate();
1400
	ret = (value) & 255;
1401 1402 1403 1404 1405
	if (ret <= nont)
		ret = nont;
	return ret;
}

1406 1407 1408 1409 1410
static inline int core_get_scaling(void)
{
	return 100000;
}

1411
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1412 1413 1414
{
	u64 val;

1415
	val = (u64)pstate << 8;
1416
	if (limits->no_turbo && !limits->turbo_disabled)
1417 1418
		val |= (u64)1 << 32;

1419
	return val;
1420 1421
}

1422 1423 1424 1425 1426
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1427
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1428 1429 1430 1431 1432 1433 1434
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1446
		.get_max_physical = core_get_max_pstate_physical,
1447 1448
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
1449
		.get_scaling = core_get_scaling,
1450
		.get_val = core_get_val,
1451
		.get_target_pstate = get_target_pstate_use_performance,
1452 1453 1454
	},
};

1455
static const struct cpu_defaults silvermont_params = {
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1469
		.get_val = atom_get_val,
1470 1471
		.get_scaling = silvermont_get_scaling,
		.get_vid = atom_get_vid,
1472
		.get_target_pstate = get_target_pstate_use_cpu_load,
1473 1474 1475
	},
};

1476
static const struct cpu_defaults airmont_params = {
1477 1478 1479
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
1480
		.setpoint = 60,
1481 1482 1483 1484 1485
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
1486 1487 1488 1489
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1490
		.get_val = atom_get_val,
1491
		.get_scaling = airmont_get_scaling,
1492
		.get_vid = atom_get_vid,
1493
		.get_target_pstate = get_target_pstate_use_cpu_load,
1494 1495 1496
	},
};

1497
static const struct cpu_defaults knl_params = {
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1508
		.get_max_physical = core_get_max_pstate_physical,
1509 1510
		.get_min = core_get_min_pstate,
		.get_turbo = knl_get_turbo_pstate,
1511
		.get_scaling = core_get_scaling,
1512
		.get_val = core_get_val,
1513
		.get_target_pstate = get_target_pstate_use_performance,
1514 1515 1516
	},
};

1517
static const struct cpu_defaults bxt_params = {
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
		.get_max_physical = core_get_max_pstate_physical,
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
		.get_scaling = core_get_scaling,
		.get_val = core_get_val,
		.get_target_pstate = get_target_pstate_use_cpu_load,
	},
};

1537 1538 1539
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
1540
	int max_perf_adj;
1541
	int min_perf;
1542
	struct perf_limits *perf_limits = limits;
1543

1544
	if (limits->no_turbo || limits->turbo_disabled)
1545 1546
		max_perf = cpu->pstate.max_pstate;

1547 1548 1549
	if (per_cpu_limits)
		perf_limits = cpu->perf_limits;

1550 1551 1552 1553 1554
	/*
	 * performance can be limited by user through sysfs, by cpufreq
	 * policy, or by cpu specific default values determined through
	 * experimentation.
	 */
1555
	max_perf_adj = fp_ext_toint(max_perf * perf_limits->max_perf);
1556 1557
	*max = clamp_t(int, max_perf_adj,
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1558

1559
	min_perf = fp_ext_toint(max_perf * perf_limits->min_perf);
1560
	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1561 1562
}

1563
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1564
{
1565 1566
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1567 1568 1569 1570 1571 1572 1573
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1574 1575
}

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
	int min_pstate, max_pstate;

	update_turbo_state();
	intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
	intel_pstate_set_pstate(cpu, max_pstate);
}

1590 1591
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1592 1593
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1594
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1595
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1596
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1597 1598
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1599

1600 1601
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1602 1603

	intel_pstate_set_min_pstate(cpu);
1604 1605
}

1606
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1607
{
1608
	struct sample *sample = &cpu->sample;
1609

1610
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1611 1612
}

1613
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1614 1615
{
	u64 aperf, mperf;
1616
	unsigned long flags;
1617
	u64 tsc;
1618

1619
	local_irq_save(flags);
1620 1621
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1622
	tsc = rdtsc();
1623
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1624
		local_irq_restore(flags);
1625
		return false;
1626
	}
1627
	local_irq_restore(flags);
1628

1629
	cpu->last_sample_time = cpu->sample.time;
1630
	cpu->sample.time = time;
1631 1632
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1633
	cpu->sample.tsc =  tsc;
1634 1635
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1636
	cpu->sample.tsc -= cpu->prev_tsc;
1637

1638 1639
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1640
	cpu->prev_tsc = tsc;
1641 1642 1643 1644 1645 1646 1647 1648
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
	return !!cpu->last_sample_time;
1649 1650
}

1651 1652
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1653 1654
	return mul_ext_fp(cpu->sample.core_avg_perf,
			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1655 1656
}

1657 1658
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1659 1660
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1661 1662
}

1663 1664 1665
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
1666
	int32_t busy_frac, boost;
1667
	int target, avg_pstate;
1668

1669
	busy_frac = div_fp(sample->mperf, sample->tsc);
1670

1671 1672
	boost = cpu->iowait_boost;
	cpu->iowait_boost >>= 1;
1673

1674 1675
	if (busy_frac < boost)
		busy_frac = boost;
1676

1677
	sample->busy_scaled = busy_frac * 100;
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697

	target = limits->no_turbo || limits->turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1698 1699
}

1700
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1701
{
1702
	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1703
	u64 duration_ns;
1704

1705
	/*
1706 1707 1708 1709 1710
	 * perf_scaled is the ratio of the average P-state during the last
	 * sampling period to the P-state requested last time (in percent).
	 *
	 * That measures the system's response to the previous P-state
	 * selection.
1711
	 */
1712 1713
	max_pstate = cpu->pstate.max_pstate_physical;
	current_pstate = cpu->pstate.current_pstate;
1714
	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1715
			       div_fp(100 * max_pstate, current_pstate));
1716

1717
	/*
1718 1719 1720
	 * Since our utilization update callback will not run unless we are
	 * in C0, check if the actual elapsed time is significantly greater (3x)
	 * than our sample interval.  If it is, then we were idle for a long
1721
	 * enough period of time to adjust our performance metric.
1722
	 */
1723
	duration_ns = cpu->sample.time - cpu->last_sample_time;
1724
	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1725
		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1726
		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1727 1728 1729
	} else {
		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
		if (sample_ratio < int_tofp(1))
1730
			perf_scaled = 0;
1731 1732
	}

1733 1734
	cpu->sample.busy_scaled = perf_scaled;
	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1735 1736
}

1737
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1738 1739 1740 1741 1742
{
	int max_perf, min_perf;

	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
	pstate = clamp_t(int, pstate, min_perf, max_perf);
1743
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1744 1745 1746 1747 1748 1749
	return pstate;
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
	pstate = intel_pstate_prepare_request(cpu, pstate);
1750 1751 1752
	if (pstate == cpu->pstate.current_pstate)
		return;

1753
	cpu->pstate.current_pstate = pstate;
1754 1755 1756
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1757 1758
static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
1759
	int from, target_pstate;
1760 1761 1762
	struct sample *sample;

	from = cpu->pstate.current_pstate;
1763

1764 1765
	target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
		cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1766

1767 1768
	update_turbo_state();

1769
	intel_pstate_update_pstate(cpu, target_pstate);
1770 1771

	sample = &cpu->sample;
1772
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1773
		fp_toint(sample->busy_scaled),
1774 1775 1776 1777 1778
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1779 1780
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1781 1782
}

1783
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1784
				     unsigned int flags)
1785
{
1786
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1787 1788
	u64 delta_ns;

1789
	if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
		if (flags & SCHED_CPUFREQ_IOWAIT) {
			cpu->iowait_boost = int_tofp(1);
		} else if (cpu->iowait_boost) {
			/* Clear iowait_boost if the CPU may have been idle. */
			delta_ns = time - cpu->last_update;
			if (delta_ns > TICK_NSEC)
				cpu->iowait_boost = 0;
		}
		cpu->last_update = time;
	}
1800

1801
	delta_ns = time - cpu->sample.time;
1802
	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1803 1804
		bool sample_taken = intel_pstate_sample(cpu, time);

1805
		if (sample_taken) {
1806
			intel_pstate_calc_avg_perf(cpu);
1807 1808 1809
			if (!hwp_active)
				intel_pstate_adjust_busy_pstate(cpu);
		}
1810
	}
1811 1812 1813
}

#define ICPU(model, policy) \
1814 1815
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1816 1817

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_params),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_params),
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_params),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_params),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_params),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_params),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_params),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_params),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_params),
1835
	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_params),
1836
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_params),
1837 1838 1839 1840
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1841
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1842
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1843 1844
	ICPU(INTEL_FAM6_BROADWELL_X, core_params),
	ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
D
Dirk Brandewie 已提交
1845 1846 1847
	{}
};

1848 1849 1850 1851
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
		unsigned int size = sizeof(struct cpudata);

		if (per_cpu_limits)
			size += sizeof(struct perf_limits);

		cpu = kzalloc(size, GFP_KERNEL);
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;
		if (per_cpu_limits)
			cpu->perf_limits = (struct perf_limits *)(cpu + 1);

1868 1869 1870
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
1871
	}
1872 1873 1874 1875

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1876

1877
	if (hwp_active) {
1878
		intel_pstate_hwp_enable(cpu);
1879 1880 1881
		pid_params.sample_rate_ms = 50;
		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
	}
1882

1883
	intel_pstate_get_cpu_pstates(cpu);
1884

1885 1886
	intel_pstate_busy_pid_reset(cpu);

J
Joe Perches 已提交
1887
	pr_debug("controlling: cpu %d\n", cpunum);
1888 1889 1890 1891 1892 1893

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
1894
	struct cpudata *cpu = all_cpu_data[cpu_num];
1895

1896
	return cpu ? get_avg_frequency(cpu) : 0;
1897 1898
}

1899
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1900
{
1901 1902
	struct cpudata *cpu = all_cpu_data[cpu_num];

1903 1904 1905
	if (cpu->update_util_set)
		return;

1906 1907
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1908 1909
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
				     intel_pstate_update_util);
1910
	cpu->update_util_set = true;
1911 1912 1913 1914
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1915 1916 1917 1918 1919
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

1920
	cpufreq_remove_update_util_hook(cpu);
1921
	cpu_data->update_util_set = false;
1922 1923 1924
	synchronize_sched();
}

1925 1926 1927 1928 1929
static void intel_pstate_set_performance_limits(struct perf_limits *limits)
{
	limits->no_turbo = 0;
	limits->turbo_disabled = 0;
	limits->max_perf_pct = 100;
1930
	limits->max_perf = int_ext_tofp(1);
1931
	limits->min_perf_pct = 100;
1932
	limits->min_perf = int_ext_tofp(1);
1933 1934 1935 1936 1937 1938
	limits->max_policy_pct = 100;
	limits->max_sysfs_pct = 100;
	limits->min_policy_pct = 0;
	limits->min_sysfs_pct = 0;
}

1939 1940 1941
static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
					    struct perf_limits *limits)
{
1942

1943 1944 1945
	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
					      policy->cpuinfo.max_freq);
	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0, 100);
1946 1947 1948
	if (policy->max == policy->min) {
		limits->min_policy_pct = limits->max_policy_pct;
	} else {
1949 1950
		limits->min_policy_pct = DIV_ROUND_UP(policy->min * 100,
						      policy->cpuinfo.max_freq);
1951 1952 1953
		limits->min_policy_pct = clamp_t(int, limits->min_policy_pct,
						 0, 100);
	}
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967

	/* Normalize user input to [min_policy_pct, max_policy_pct] */
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);

	/* Make sure min_perf_pct <= max_perf_pct */
	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);

1968 1969 1970 1971
	limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
	limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
	limits->max_perf = round_up(limits->max_perf, EXT_FRAC_BITS);
	limits->min_perf = round_up(limits->min_perf, EXT_FRAC_BITS);
1972 1973 1974 1975 1976

	pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
		 limits->max_perf_pct, limits->min_perf_pct);
}

1977 1978
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
1979
	struct cpudata *cpu;
1980
	struct perf_limits *perf_limits = NULL;
1981

1982 1983 1984
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

1985 1986 1987
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

1988
	cpu = all_cpu_data[policy->cpu];
1989 1990
	cpu->policy = policy->policy;

1991 1992 1993 1994 1995
	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
1996 1997
	}

1998 1999 2000
	if (per_cpu_limits)
		perf_limits = cpu->perf_limits;

2001 2002
	mutex_lock(&intel_pstate_limits_lock);

2003 2004 2005 2006 2007
	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
		if (!perf_limits) {
			limits = &performance_limits;
			perf_limits = limits;
		}
2008
		if (policy->max >= policy->cpuinfo.max_freq) {
J
Joe Perches 已提交
2009
			pr_debug("set performance\n");
2010
			intel_pstate_set_performance_limits(perf_limits);
2011 2012 2013
			goto out;
		}
	} else {
J
Joe Perches 已提交
2014
		pr_debug("set powersave\n");
2015 2016 2017 2018
		if (!perf_limits) {
			limits = &powersave_limits;
			perf_limits = limits;
		}
2019

2020
	}
2021

2022
	intel_pstate_update_perf_limits(policy, perf_limits);
2023
 out:
2024
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2025 2026 2027 2028 2029 2030 2031 2032
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
	}

2033 2034
	intel_pstate_set_update_util_hook(policy->cpu);

2035
	intel_pstate_hwp_set_policy(policy);
D
Dirk Brandewie 已提交
2036

2037 2038
	mutex_unlock(&intel_pstate_limits_lock);

2039 2040 2041 2042 2043
	return 0;
}

static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
2044
	cpufreq_verify_within_cpu_limits(policy);
2045

2046
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2047
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2048 2049 2050 2051 2052
		return -EINVAL;

	return 0;
}

2053 2054 2055 2056 2057
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}

2058
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2059
{
2060
	pr_debug("CPU %d exiting\n", policy->cpu);
2061

2062
	intel_pstate_clear_update_util_hook(policy->cpu);
2063 2064 2065
	if (hwp_active)
		intel_pstate_hwp_save_state(policy);
	else
2066 2067
		intel_cpufreq_stop_cpu(policy);
}
2068

2069 2070 2071
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
2072

2073
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
2074

2075
	return 0;
2076 2077
}

2078
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2079 2080
{
	struct cpudata *cpu;
2081
	int rc;
2082 2083 2084 2085 2086 2087 2088

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

2089 2090 2091 2092 2093 2094 2095
	/*
	 * We need sane value in the cpu->perf_limits, so inherit from global
	 * perf_limits limits, which are seeded with values based on the
	 * CONFIG_CPU_FREQ_DEFAULT_GOV_*, during boot up.
	 */
	if (per_cpu_limits)
		memcpy(cpu->perf_limits, limits, sizeof(struct perf_limits));
2096

2097 2098
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2099 2100

	/* cpuinfo and default policy values */
2101
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2102 2103 2104 2105 2106
	update_turbo_state();
	policy->cpuinfo.max_freq = limits->turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

2107
	intel_pstate_init_acpi_perf_limits(policy);
2108 2109
	cpumask_set_cpu(policy->cpu, policy->cpus);

2110 2111
	policy->fast_switch_possible = true;

2112 2113 2114
	return 0;
}

2115
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2116
{
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2127 2128 2129 2130

	return 0;
}

2131
static struct cpufreq_driver intel_pstate = {
2132 2133 2134
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
2135
	.suspend	= intel_pstate_hwp_save_state,
2136
	.resume		= intel_pstate_resume,
2137 2138
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
2139
	.exit		= intel_pstate_cpu_exit,
2140
	.stop_cpu	= intel_pstate_stop_cpu,
2141 2142 2143
	.name		= "intel_pstate",
};

2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct perf_limits *perf_limits = limits;

	update_turbo_state();
	policy->cpuinfo.max_freq = limits->turbo_disabled ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;

	cpufreq_verify_within_cpu_limits(policy);

	if (per_cpu_limits)
		perf_limits = cpu->perf_limits;

2158 2159
	mutex_lock(&intel_pstate_limits_lock);

2160 2161
	intel_pstate_update_perf_limits(policy, perf_limits);

2162 2163
	mutex_unlock(&intel_pstate_limits_lock);

2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
	return 0;
}

static unsigned int intel_cpufreq_turbo_update(struct cpudata *cpu,
					       struct cpufreq_policy *policy,
					       unsigned int target_freq)
{
	unsigned int max_freq;

	update_turbo_state();

	max_freq = limits->no_turbo || limits->turbo_disabled ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
	policy->cpuinfo.max_freq = max_freq;
	if (policy->max > max_freq)
		policy->max = max_freq;

	if (target_freq > max_freq)
		target_freq = max_freq;

	return target_freq;
}

static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
	int target_pstate;

	freqs.old = policy->cur;
	freqs.new = intel_cpufreq_turbo_update(cpu, policy, target_freq);

	cpufreq_freq_transition_begin(policy, &freqs);
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	if (target_pstate != cpu->pstate.current_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
	}
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	int target_pstate;

	target_freq = intel_cpufreq_turbo_update(cpu, policy, target_freq);
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
	intel_pstate_update_pstate(cpu, target_pstate);
	return target_freq;
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

	return 0;
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
	.exit		= intel_pstate_cpu_exit,
	.stop_cpu	= intel_cpufreq_stop_cpu,
	.name		= "intel_cpufreq",
};

static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;

2260 2261 2262
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2263
static unsigned int force_load __initdata;
2264

2265
static int __init intel_pstate_msrs_not_valid(void)
2266
{
2267
	if (!pstate_funcs.get_max() ||
2268 2269
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2270 2271 2272 2273
		return -ENODEV;

	return 0;
}
2274

2275
static void __init copy_pid_params(struct pstate_adjust_policy *policy)
2276 2277
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
2278
	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
2279 2280 2281 2282 2283 2284 2285
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
#ifdef CONFIG_ACPI
static void intel_pstate_use_acpi_profile(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_MOBILE)
		pstate_funcs.get_target_pstate =
				get_target_pstate_use_cpu_load;
}
#else
static void intel_pstate_use_acpi_profile(void)
{
}
#endif

2299
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2300 2301
{
	pstate_funcs.get_max   = funcs->get_max;
2302
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2303 2304
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2305
	pstate_funcs.get_scaling = funcs->get_scaling;
2306
	pstate_funcs.get_val   = funcs->get_val;
2307
	pstate_funcs.get_vid   = funcs->get_vid;
2308 2309
	pstate_funcs.get_target_pstate = funcs->get_target_pstate;

2310
	intel_pstate_use_acpi_profile();
2311 2312
}

2313
#ifdef CONFIG_ACPI
2314

2315
static bool __init intel_pstate_no_acpi_pss(void)
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

2344
static bool __init intel_pstate_has_acpi_ppc(void)
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

2364 2365 2366 2367
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2368
	int  oem_pwr_table;
2369 2370 2371
};

/* Hardware vendor-specific info that has its own power management modes */
2372
static struct hw_vendor_info vendor_info[] __initdata = {
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
2384 2385 2386 2387
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
2388 2389 2390
	{0, "", ""},
};

2391
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2392 2393 2394
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
2395 2396 2397 2398 2399 2400 2401 2402 2403
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
2404

2405 2406
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2407 2408 2409
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
2410
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2411 2412 2413 2414 2415 2416
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
2417 2418
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
2419
			}
2420 2421 2422 2423
	}

	return false;
}
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2434 2435
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2436
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2437
static inline void intel_pstate_request_control_from_smm(void) {}
2438 2439
#endif /* CONFIG_ACPI */

2440 2441 2442 2443 2444
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

2445 2446
static int __init intel_pstate_init(void)
{
2447
	int cpu, rc = 0;
2448
	const struct x86_cpu_id *id;
2449
	struct cpu_defaults *cpu_def;
2450

2451 2452 2453
	if (no_load)
		return -ENODEV;

2454 2455 2456
	if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
		copy_cpu_funcs(&core_params.funcs);
		hwp_active++;
2457
		intel_pstate.attr = hwp_cpufreq_attrs;
2458 2459 2460
		goto hwp_cpu_matched;
	}

2461 2462 2463 2464
	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

2465
	cpu_def = (struct cpu_defaults *)id->driver_data;
2466

2467 2468
	copy_pid_params(&cpu_def->pid_policy);
	copy_cpu_funcs(&cpu_def->funcs);
2469

2470 2471 2472
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

2473 2474 2475 2476 2477 2478 2479 2480
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

J
Joe Perches 已提交
2481
	pr_info("Intel P-state driver initializing\n");
2482

2483
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2484 2485 2486
	if (!all_cpu_data)
		return -ENOMEM;

2487 2488 2489
	if (!hwp_active && hwp_only)
		goto out;

2490 2491
	intel_pstate_request_control_from_smm();

2492
	rc = cpufreq_register_driver(intel_pstate_driver);
2493 2494 2495
	if (rc)
		goto out;

2496 2497 2498 2499
	if (intel_pstate_driver == &intel_pstate && !hwp_active &&
	    pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
		intel_pstate_debug_expose_params();

2500
	intel_pstate_sysfs_expose_params();
2501

2502
	if (hwp_active)
J
Joe Perches 已提交
2503
		pr_info("HWP enabled\n");
2504

2505 2506
	return rc;
out:
2507 2508 2509
	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
2510 2511 2512
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

2513 2514 2515 2516 2517 2518
			kfree(all_cpu_data[cpu]);
		}
	}

	put_online_cpus();
	vfree(all_cpu_data);
2519 2520 2521 2522
	return -ENODEV;
}
device_initcall(intel_pstate_init);

2523 2524 2525 2526 2527
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

2528
	if (!strcmp(str, "disable")) {
2529
		no_load = 1;
2530 2531 2532 2533 2534
	} else if (!strcmp(str, "passive")) {
		pr_info("Passive mode enabled\n");
		intel_pstate_driver = &intel_cpufreq;
		no_hwp = 1;
	}
2535
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2536
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2537
		no_hwp = 1;
2538
	}
2539 2540
	if (!strcmp(str, "force"))
		force_load = 1;
2541 2542
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2543 2544
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2545 2546 2547 2548 2549 2550

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2551 2552 2553 2554
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2555 2556 2557
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");