intel_pstate.c 34.8 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
28
#include <linux/acpi.h>
29
#include <linux/vmalloc.h>
30 31 32 33 34
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
35
#include <asm/cpufeature.h>
36

37 38 39 40
#define ATOM_RATIOS		0x66a
#define ATOM_VIDS		0x66b
#define ATOM_TURBO_RATIOS	0x66c
#define ATOM_TURBO_VIDS		0x66d
41

42
#define FRAC_BITS 8
43 44
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
45

46 47 48 49 50
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

51
static inline int32_t div_fp(s64 x, s64 y)
52
{
53
	return div64_s64((int64_t)x << FRAC_BITS, y);
54 55
}

56 57 58 59 60 61 62 63 64 65 66
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

67
struct sample {
68
	int32_t core_pct_busy;
69
	int32_t busy_scaled;
70 71
	u64 aperf;
	u64 mperf;
72
	u64 tsc;
73
	int freq;
74
	u64 time;
75 76 77 78 79 80
};

struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
81
	int	max_pstate_physical;
82
	int	scaling;
83 84 85
	int	turbo_pstate;
};

86
struct vid_data {
87 88 89
	int min;
	int max;
	int turbo;
90 91 92
	int32_t ratio;
};

93 94 95 96 97 98 99
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
100
	int32_t last_err;
101 102 103 104 105
};

struct cpudata {
	int cpu;

106
	struct update_util_data update_util;
107 108

	struct pstate_data pstate;
109
	struct vid_data vid;
110 111
	struct _pid pid;

112
	u64	last_sample_time;
113 114
	u64	prev_aperf;
	u64	prev_mperf;
115
	u64	prev_tsc;
116
	u64	prev_cummulative_iowait;
117
	struct sample sample;
118 119 120 121 122
};

static struct cpudata **all_cpu_data;
struct pstate_adjust_policy {
	int sample_rate_ms;
123
	s64 sample_rate_ns;
124 125 126 127 128 129 130
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

131 132
struct pstate_funcs {
	int (*get_max)(void);
133
	int (*get_max_physical)(void);
134 135
	int (*get_min)(void);
	int (*get_turbo)(void);
136
	int (*get_scaling)(void);
137 138
	void (*set)(struct cpudata*, int pstate);
	void (*get_vid)(struct cpudata *);
139
	int32_t (*get_target_pstate)(struct cpudata *);
140 141
};

142 143 144
struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
145 146
};

147
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
148
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
149

150 151
static struct pstate_adjust_policy pid_params;
static struct pstate_funcs pstate_funcs;
D
Dirk Brandewie 已提交
152
static int hwp_active;
153

154 155
struct perf_limits {
	int no_turbo;
156
	int turbo_disabled;
157 158 159 160
	int max_perf_pct;
	int min_perf_pct;
	int32_t max_perf;
	int32_t min_perf;
161 162
	int max_policy_pct;
	int max_sysfs_pct;
163 164
	int min_policy_pct;
	int min_sysfs_pct;
165 166
};

167 168 169 170 171 172 173 174 175 176 177 178 179 180
static struct perf_limits performance_limits = {
	.no_turbo = 0,
	.turbo_disabled = 0,
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 100,
	.min_perf = int_tofp(1),
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
};

static struct perf_limits powersave_limits = {
181
	.no_turbo = 0,
182
	.turbo_disabled = 0,
183 184 185 186
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 0,
	.min_perf = 0,
187 188
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
189 190
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
191 192
};

193 194 195 196 197 198
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
static struct perf_limits *limits = &performance_limits;
#else
static struct perf_limits *limits = &powersave_limits;
#endif

199
static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
200
			     int deadband, int integral) {
201 202
	pid->setpoint = int_tofp(setpoint);
	pid->deadband  = int_tofp(deadband);
203
	pid->integral  = int_tofp(integral);
204
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
	pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
	pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{
	pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
}

222
static signed int pid_calc(struct _pid *pid, int32_t busy)
223
{
224
	signed int result;
225 226 227
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

228
	fp_error = pid->setpoint - busy;
229

230
	if (abs(fp_error) <= pid->deadband)
231 232 233 234 235 236
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

237 238 239 240 241 242 243 244
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
245 246 247 248 249 250
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

251 252
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
253 254

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
255
	result = result + (1 << (FRAC_BITS-1));
256 257 258 259 260
	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
261 262 263
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
264

265
	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
266 267 268 269 270
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
271

272 273 274 275 276 277
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

278 279 280 281 282 283 284
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
285
	limits->turbo_disabled =
286 287 288 289
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

290
static void intel_pstate_hwp_set(const struct cpumask *cpumask)
D
Dirk Brandewie 已提交
291
{
292 293 294 295 296 297 298
	int min, hw_min, max, hw_max, cpu, range, adj_range;
	u64 value, cap;

	rdmsrl(MSR_HWP_CAPABILITIES, cap);
	hw_min = HWP_LOWEST_PERF(cap);
	hw_max = HWP_HIGHEST_PERF(cap);
	range = hw_max - hw_min;
D
Dirk Brandewie 已提交
299

300
	for_each_cpu(cpu, cpumask) {
D
Dirk Brandewie 已提交
301
		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
302
		adj_range = limits->min_perf_pct * range / 100;
303
		min = hw_min + adj_range;
D
Dirk Brandewie 已提交
304 305 306
		value &= ~HWP_MIN_PERF(~0L);
		value |= HWP_MIN_PERF(min);

307
		adj_range = limits->max_perf_pct * range / 100;
308
		max = hw_min + adj_range;
309
		if (limits->no_turbo) {
310 311 312
			hw_max = HWP_GUARANTEED_PERF(cap);
			if (hw_max < max)
				max = hw_max;
D
Dirk Brandewie 已提交
313 314 315 316 317 318
		}

		value &= ~HWP_MAX_PERF(~0L);
		value |= HWP_MAX_PERF(max);
		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
	}
319
}
D
Dirk Brandewie 已提交
320

321 322 323 324
static void intel_pstate_hwp_set_online_cpus(void)
{
	get_online_cpus();
	intel_pstate_hwp_set(cpu_online_mask);
D
Dirk Brandewie 已提交
325 326 327
	put_online_cpus();
}

328 329 330 331 332 333 334
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
	intel_pstate_reset_all_pid();
	return 0;
}
335

336 337 338 339 340
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
341
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
342 343 344 345 346 347 348

struct pid_param {
	char *name;
	void *value;
};

static struct pid_param pid_files[] = {
349 350 351 352 353 354
	{"sample_rate_ms", &pid_params.sample_rate_ms},
	{"d_gain_pct", &pid_params.d_gain_pct},
	{"i_gain_pct", &pid_params.i_gain_pct},
	{"deadband", &pid_params.deadband},
	{"setpoint", &pid_params.setpoint},
	{"p_gain_pct", &pid_params.p_gain_pct},
355 356 357
	{NULL, NULL}
};

358
static void __init intel_pstate_debug_expose_params(void)
359
{
360
	struct dentry *debugfs_parent;
361 362
	int i = 0;

D
Dirk Brandewie 已提交
363 364
	if (hwp_active)
		return;
365 366 367 368 369
	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
	while (pid_files[i].name) {
		debugfs_create_file(pid_files[i].name, 0660,
370 371
				    debugfs_parent, pid_files[i].value,
				    &fops_pid_param);
372 373 374 375 376 377 378 379 380 381 382
		i++;
	}
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
383
		return sprintf(buf, "%u\n", limits->object);		\
384 385
	}

386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
	turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
	return sprintf(buf, "%u\n", turbo_pct);
}

402 403 404 405 406 407 408 409 410 411 412
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	return sprintf(buf, "%u\n", total);
}

413 414 415 416 417 418
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

	update_turbo_state();
419 420
	if (limits->turbo_disabled)
		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
421
	else
422
		ret = sprintf(buf, "%u\n", limits->no_turbo);
423 424 425 426

	return ret;
}

427
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
428
			      const char *buf, size_t count)
429 430 431
{
	unsigned int input;
	int ret;
432

433 434 435
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
436 437

	update_turbo_state();
438
	if (limits->turbo_disabled) {
439
		pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n");
440
		return -EPERM;
441
	}
D
Dirk Brandewie 已提交
442

443
	limits->no_turbo = clamp_t(int, input, 0, 1);
444

D
Dirk Brandewie 已提交
445
	if (hwp_active)
446
		intel_pstate_hwp_set_online_cpus();
D
Dirk Brandewie 已提交
447

448 449 450 451
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
452
				  const char *buf, size_t count)
453 454 455
{
	unsigned int input;
	int ret;
456

457 458 459 460
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

461 462 463 464 465 466 467 468 469
	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
	limits->max_perf_pct = max(limits->min_perf_pct,
				   limits->max_perf_pct);
	limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
				  int_tofp(100));
470

D
Dirk Brandewie 已提交
471
	if (hwp_active)
472
		intel_pstate_hwp_set_online_cpus();
473 474 475 476
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
477
				  const char *buf, size_t count)
478 479 480
{
	unsigned int input;
	int ret;
481

482 483 484
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
485

486 487 488 489 490 491 492 493 494
	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->min_perf_pct = min(limits->max_perf_pct,
				   limits->min_perf_pct);
	limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
				  int_tofp(100));
495

D
Dirk Brandewie 已提交
496
	if (hwp_active)
497
		intel_pstate_hwp_set_online_cpus();
498 499 500 501 502 503 504 505 506
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
507
define_one_global_ro(turbo_pct);
508
define_one_global_ro(num_pstates);
509 510 511 512 513

static struct attribute *intel_pstate_attributes[] = {
	&no_turbo.attr,
	&max_perf_pct.attr,
	&min_perf_pct.attr,
514
	&turbo_pct.attr,
515
	&num_pstates.attr,
516 517 518 519 520 521 522
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

523
static void __init intel_pstate_sysfs_expose_params(void)
524
{
525
	struct kobject *intel_pstate_kobject;
526 527 528 529 530
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
	BUG_ON(!intel_pstate_kobject);
531
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
532 533 534
	BUG_ON(rc);
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
535

536
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
537
{
538 539 540
	/* First disable HWP notification interrupt as we don't process them */
	wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);

541
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
D
Dirk Brandewie 已提交
542 543
}

544
static int atom_get_min_pstate(void)
545 546
{
	u64 value;
547

548
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
549
	return (value >> 8) & 0x7F;
550 551
}

552
static int atom_get_max_pstate(void)
553 554
{
	u64 value;
555

556
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
557
	return (value >> 16) & 0x7F;
558
}
559

560
static int atom_get_turbo_pstate(void)
561 562
{
	u64 value;
563

564
	rdmsrl(ATOM_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
565
	return value & 0x7F;
566 567
}

568
static void atom_set_pstate(struct cpudata *cpudata, int pstate)
569 570 571 572 573
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

574
	val = (u64)pstate << 8;
575
	if (limits->no_turbo && !limits->turbo_disabled)
576 577 578 579 580 581 582
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
583
	vid = ceiling_fp(vid_fp);
584

585 586 587
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

588 589
	val |= vid;

590
	wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
591 592
}

593
static int silvermont_get_scaling(void)
594 595 596
{
	u64 value;
	int i;
597 598 599
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
600 601

	rdmsrl(MSR_FSB_FREQ, value);
602 603
	i = value & 0x7;
	WARN_ON(i > 4);
604

605 606
	return silvermont_freq_table[i];
}
607

608 609 610 611 612 613 614 615 616 617 618 619 620 621
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
622 623
}

624
static void atom_get_vid(struct cpudata *cpudata)
625 626 627
{
	u64 value;

628
	rdmsrl(ATOM_VIDS, value);
D
Dirk Brandewie 已提交
629 630
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
631 632 633 634
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
635

636
	rdmsrl(ATOM_TURBO_VIDS, value);
637
	cpudata->vid.turbo = value & 0x7f;
638 639
}

640
static int core_get_min_pstate(void)
641 642
{
	u64 value;
643

644
	rdmsrl(MSR_PLATFORM_INFO, value);
645 646 647
	return (value >> 40) & 0xFF;
}

648
static int core_get_max_pstate_physical(void)
649 650
{
	u64 value;
651

652
	rdmsrl(MSR_PLATFORM_INFO, value);
653 654 655
	return (value >> 8) & 0xFF;
}

656
static int core_get_max_pstate(void)
657
{
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
	u64 tar;
	u64 plat_info;
	int max_pstate;
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
		/* Do some sanity checking for safety */
		if (plat_info & 0x600000000) {
			u64 tdp_ctrl;
			u64 tdp_ratio;
			int tdp_msr;

			err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
			if (err)
				goto skip_tar;

			tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
			err = rdmsrl_safe(tdp_msr, &tdp_ratio);
			if (err)
				goto skip_tar;

			if (tdp_ratio - 1 == tar) {
				max_pstate = tar;
				pr_debug("max_pstate=TAC %x\n", max_pstate);
			} else {
				goto skip_tar;
			}
		}
	}
691

692 693
skip_tar:
	return max_pstate;
694 695
}

696
static int core_get_turbo_pstate(void)
697 698 699
{
	u64 value;
	int nont, ret;
700

701
	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
702
	nont = core_get_max_pstate();
703
	ret = (value) & 255;
704 705 706 707 708
	if (ret <= nont)
		ret = nont;
	return ret;
}

709 710 711 712 713
static inline int core_get_scaling(void)
{
	return 100000;
}

714
static void core_set_pstate(struct cpudata *cpudata, int pstate)
715 716 717
{
	u64 val;

718
	val = (u64)pstate << 8;
719
	if (limits->no_turbo && !limits->turbo_disabled)
720 721
		val |= (u64)1 << 32;

722
	wrmsrl(MSR_IA32_PERF_CTL, val);
723 724
}

725 726 727 728 729 730 731 732 733 734 735 736 737
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

738 739 740 741 742 743 744 745 746 747 748
static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
749
		.get_max_physical = core_get_max_pstate_physical,
750 751
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
752
		.get_scaling = core_get_scaling,
753
		.set = core_set_pstate,
754
		.get_target_pstate = get_target_pstate_use_performance,
755 756 757
	},
};

758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
static struct cpu_defaults silvermont_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
		.set = atom_set_pstate,
		.get_scaling = silvermont_get_scaling,
		.get_vid = atom_get_vid,
775
		.get_target_pstate = get_target_pstate_use_cpu_load,
776 777 778 779
	},
};

static struct cpu_defaults airmont_params = {
780 781 782
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
783
		.setpoint = 60,
784 785 786 787 788
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
789 790 791 792 793
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
		.set = atom_set_pstate,
794
		.get_scaling = airmont_get_scaling,
795
		.get_vid = atom_get_vid,
796
		.get_target_pstate = get_target_pstate_use_cpu_load,
797 798 799
	},
};

800 801 802 803 804 805 806 807 808 809 810
static struct cpu_defaults knl_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
811
		.get_max_physical = core_get_max_pstate_physical,
812 813
		.get_min = core_get_min_pstate,
		.get_turbo = knl_get_turbo_pstate,
814
		.get_scaling = core_get_scaling,
815
		.set = core_set_pstate,
816
		.get_target_pstate = get_target_pstate_use_performance,
817 818 819
	},
};

820 821 822
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
823
	int max_perf_adj;
824
	int min_perf;
825

826
	if (limits->no_turbo || limits->turbo_disabled)
827 828
		max_perf = cpu->pstate.max_pstate;

829 830 831 832 833
	/*
	 * performance can be limited by user through sysfs, by cpufreq
	 * policy, or by cpu specific default values determined through
	 * experimentation.
	 */
834
	max_perf_adj = fp_toint(max_perf * limits->max_perf);
835 836
	*max = clamp_t(int, max_perf_adj,
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
837

838
	min_perf = fp_toint(max_perf * limits->min_perf);
839
	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
840 841
}

842
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate, bool force)
843 844 845
{
	int max_perf, min_perf;

846 847
	if (force) {
		update_turbo_state();
848

849
		intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
850

851
		pstate = clamp_t(int, pstate, min_perf, max_perf);
852

853 854 855
		if (pstate == cpu->pstate.current_pstate)
			return;
	}
856
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
857

858 859
	cpu->pstate.current_pstate = pstate;

860
	pstate_funcs.set(cpu, pstate);
861 862 863 864
}

static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
865 866
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
867
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
868
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
869
	cpu->pstate.scaling = pstate_funcs.get_scaling();
870

871 872
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
873
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
874 875
}

876
static inline void intel_pstate_calc_busy(struct cpudata *cpu)
877
{
878
	struct sample *sample = &cpu->sample;
879
	int64_t core_pct;
880

881
	core_pct = int_tofp(sample->aperf) * int_tofp(100);
882
	core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
883

884
	sample->core_pct_busy = (int32_t)core_pct;
885 886
}

887
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
888 889
{
	u64 aperf, mperf;
890
	unsigned long flags;
891
	u64 tsc;
892

893
	local_irq_save(flags);
894 895
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
896
	tsc = rdtsc();
897
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
898
		local_irq_restore(flags);
899
		return false;
900
	}
901
	local_irq_restore(flags);
902

903
	cpu->last_sample_time = cpu->sample.time;
904
	cpu->sample.time = time;
905 906
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
907
	cpu->sample.tsc =  tsc;
908 909
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
910
	cpu->sample.tsc -= cpu->prev_tsc;
911

912 913
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
914
	cpu->prev_tsc = tsc;
915
	return true;
916 917
}

918 919 920 921 922 923
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
	return div64_u64(cpu->pstate.max_pstate_physical * cpu->sample.aperf *
		cpu->pstate.scaling, cpu->sample.mperf);
}

924 925 926
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
927 928 929
	u64 cummulative_iowait, delta_iowait_us;
	u64 delta_iowait_mperf;
	u64 mperf, now;
930 931
	int32_t cpu_load;

932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
	cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);

	/*
	 * Convert iowait time into number of IO cycles spent at max_freq.
	 * IO is considered as busy only for the cpu_load algorithm. For
	 * performance this is not needed since we always try to reach the
	 * maximum P-State, so we are already boosting the IOs.
	 */
	delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
	delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
		cpu->pstate.max_pstate, MSEC_PER_SEC);

	mperf = cpu->sample.mperf + delta_iowait_mperf;
	cpu->prev_cummulative_iowait = cummulative_iowait;

947 948 949 950 951 952
	/*
	 * The load can be estimated as the ratio of the mperf counter
	 * running at a constant frequency during active periods
	 * (C0) and the time stamp counter running at the same frequency
	 * also during C-states.
	 */
953
	cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
954 955 956 957 958
	cpu->sample.busy_scaled = cpu_load;

	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, cpu_load);
}

959
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
960
{
961
	int32_t core_busy, max_pstate, current_pstate, sample_ratio;
962
	u64 duration_ns;
963

964 965
	intel_pstate_calc_busy(cpu);

966 967 968 969 970 971 972 973 974 975 976
	/*
	 * core_busy is the ratio of actual performance to max
	 * max_pstate is the max non turbo pstate available
	 * current_pstate was the pstate that was requested during
	 * 	the last sample period.
	 *
	 * We normalize core_busy, which was our actual percent
	 * performance to what we requested during the last sample
	 * period. The result will be a percentage of busy at a
	 * specified pstate.
	 */
977
	core_busy = cpu->sample.core_pct_busy;
978
	max_pstate = int_tofp(cpu->pstate.max_pstate_physical);
979
	current_pstate = int_tofp(cpu->pstate.current_pstate);
980
	core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
981

982
	/*
983 984 985 986
	 * Since our utilization update callback will not run unless we are
	 * in C0, check if the actual elapsed time is significantly greater (3x)
	 * than our sample interval.  If it is, then we were idle for a long
	 * enough period of time to adjust our busyness.
987
	 */
988 989 990 991 992
	duration_ns = cpu->sample.time - cpu->last_sample_time;
	if ((s64)duration_ns > pid_params.sample_rate_ns * 3
	    && cpu->last_sample_time > 0) {
		sample_ratio = div_fp(int_tofp(pid_params.sample_rate_ns),
				      int_tofp(duration_ns));
993 994 995
		core_busy = mul_fp(core_busy, sample_ratio);
	}

996 997
	cpu->sample.busy_scaled = core_busy;
	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, core_busy);
998 999 1000 1001
}

static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
1002
	int from, target_pstate;
1003 1004 1005
	struct sample *sample;

	from = cpu->pstate.current_pstate;
1006

1007
	target_pstate = pstate_funcs.get_target_pstate(cpu);
1008

1009
	intel_pstate_set_pstate(cpu, target_pstate, true);
1010 1011 1012

	sample = &cpu->sample;
	trace_pstate_sample(fp_toint(sample->core_pct_busy),
1013
		fp_toint(sample->busy_scaled),
1014 1015 1016 1017 1018
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1019
		get_avg_frequency(cpu));
1020 1021
}

1022 1023
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
				     unsigned long util, unsigned long max)
1024
{
1025 1026
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
	u64 delta_ns = time - cpu->sample.time;
1027

1028
	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1029 1030 1031
		bool sample_taken = intel_pstate_sample(cpu, time);

		if (sample_taken && !hwp_active)
1032 1033
			intel_pstate_adjust_busy_pstate(cpu);
	}
1034 1035 1036
}

#define ICPU(model, policy) \
1037 1038
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1039 1040

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1041 1042
	ICPU(0x2a, core_params),
	ICPU(0x2d, core_params),
1043
	ICPU(0x37, silvermont_params),
1044 1045
	ICPU(0x3a, core_params),
	ICPU(0x3c, core_params),
1046
	ICPU(0x3d, core_params),
1047 1048 1049 1050
	ICPU(0x3e, core_params),
	ICPU(0x3f, core_params),
	ICPU(0x45, core_params),
	ICPU(0x46, core_params),
1051
	ICPU(0x47, core_params),
1052
	ICPU(0x4c, airmont_params),
1053
	ICPU(0x4e, core_params),
1054
	ICPU(0x4f, core_params),
1055
	ICPU(0x5e, core_params),
1056
	ICPU(0x56, core_params),
1057
	ICPU(0x57, knl_params),
1058 1059 1060 1061
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

D
Dirk Brandewie 已提交
1062 1063 1064 1065 1066
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
	ICPU(0x56, core_params),
	{}
};

1067 1068 1069 1070
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1071 1072 1073
	if (!all_cpu_data[cpunum])
		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
					       GFP_KERNEL);
1074 1075 1076 1077 1078 1079
	if (!all_cpu_data[cpunum])
		return -ENOMEM;

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1080

1081
	if (hwp_active) {
1082
		intel_pstate_hwp_enable(cpu);
1083 1084 1085
		pid_params.sample_rate_ms = 50;
		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
	}
1086

1087
	intel_pstate_get_cpu_pstates(cpu);
1088

1089
	intel_pstate_busy_pid_reset(cpu);
1090
	intel_pstate_sample(cpu, 0);
1091

1092 1093
	cpu->update_util.func = intel_pstate_update_util;
	cpufreq_set_update_util_data(cpunum, &cpu->update_util);
1094

1095
	pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
	struct sample *sample;
	struct cpudata *cpu;

	cpu = all_cpu_data[cpu_num];
	if (!cpu)
		return 0;
1108
	sample = &cpu->sample;
1109
	return get_avg_frequency(cpu);
1110 1111 1112 1113
}

static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
1114 1115 1116
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

1117 1118
	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE &&
	    policy->max >= policy->cpuinfo.max_freq) {
1119 1120
		pr_debug("intel_pstate: set performance\n");
		limits = &performance_limits;
1121
		if (hwp_active)
1122
			intel_pstate_hwp_set(policy->cpus);
1123
		return 0;
1124
	}
D
Dirk Brandewie 已提交
1125

1126 1127 1128 1129
	pr_debug("intel_pstate: set powersave\n");
	limits = &powersave_limits;
	limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
	limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1130 1131
	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
					      policy->cpuinfo.max_freq);
1132
	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1133 1134

	/* Normalize user input to [min_policy_pct, max_policy_pct] */
1135 1136 1137 1138 1139 1140 1141 1142
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
1143
	limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1144 1145

	/* Make sure min_perf_pct <= max_perf_pct */
1146
	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1147

1148 1149 1150 1151
	limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
				  int_tofp(100));
	limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
				  int_tofp(100));
1152

D
Dirk Brandewie 已提交
1153
	if (hwp_active)
1154
		intel_pstate_hwp_set(policy->cpus);
D
Dirk Brandewie 已提交
1155

1156 1157 1158 1159 1160
	return 0;
}

static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
1161
	cpufreq_verify_within_cpu_limits(policy);
1162

1163
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1164
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1165 1166 1167 1168 1169
		return -EINVAL;

	return 0;
}

1170
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1171
{
1172 1173
	int cpu_num = policy->cpu;
	struct cpudata *cpu = all_cpu_data[cpu_num];
1174

1175
	pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);
1176

1177
	cpufreq_set_update_util_data(cpu_num, NULL);
1178
	synchronize_sched();
1179

D
Dirk Brandewie 已提交
1180 1181 1182
	if (hwp_active)
		return;

1183
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
1184 1185
}

1186
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1187 1188
{
	struct cpudata *cpu;
1189
	int rc;
1190 1191 1192 1193 1194 1195 1196

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

1197
	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1198 1199 1200 1201
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;

1202 1203
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1204 1205

	/* cpuinfo and default policy values */
1206 1207 1208
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->cpuinfo.max_freq =
		cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
	cpumask_set_cpu(policy->cpu, policy->cpus);

	return 0;
}

static struct cpufreq_driver intel_pstate_driver = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
1221
	.stop_cpu	= intel_pstate_stop_cpu,
1222 1223 1224
	.name		= "intel_pstate",
};

1225
static int __initdata no_load;
D
Dirk Brandewie 已提交
1226
static int __initdata no_hwp;
1227
static int __initdata hwp_only;
1228
static unsigned int force_load;
1229

1230 1231
static int intel_pstate_msrs_not_valid(void)
{
1232
	if (!pstate_funcs.get_max() ||
1233 1234
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
1235 1236 1237 1238
		return -ENODEV;

	return 0;
}
1239

1240
static void copy_pid_params(struct pstate_adjust_policy *policy)
1241 1242
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
1243
	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1244 1245 1246 1247 1248 1249 1250
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

1251
static void copy_cpu_funcs(struct pstate_funcs *funcs)
1252 1253
{
	pstate_funcs.get_max   = funcs->get_max;
1254
	pstate_funcs.get_max_physical = funcs->get_max_physical;
1255 1256
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
1257
	pstate_funcs.get_scaling = funcs->get_scaling;
1258
	pstate_funcs.set       = funcs->set;
1259
	pstate_funcs.get_vid   = funcs->get_vid;
1260 1261
	pstate_funcs.get_target_pstate = funcs->get_target_pstate;

1262 1263
}

1264
#if IS_ENABLED(CONFIG_ACPI)
1265
#include <acpi/processor.h>
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295

static bool intel_pstate_no_acpi_pss(void)
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
static bool intel_pstate_has_acpi_ppc(void)
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

1316 1317 1318 1319
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1320
	int  oem_pwr_table;
1321 1322 1323 1324
};

/* Hardware vendor-specific info that has its own power management modes */
static struct hw_vendor_info vendor_info[] = {
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
1336 1337 1338 1339
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
1340 1341 1342 1343 1344 1345 1346
	{0, "", ""},
};

static bool intel_pstate_platform_pwr_mgmt_exists(void)
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
1347 1348 1349 1350 1351 1352 1353 1354 1355
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
1356

1357 1358
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1359 1360 1361
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
1362
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1363 1364 1365 1366 1367 1368
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
1369 1370
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
1371
			}
1372 1373 1374 1375 1376 1377
	}

	return false;
}
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1378
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1379 1380
#endif /* CONFIG_ACPI */

1381 1382 1383 1384 1385
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

1386 1387
static int __init intel_pstate_init(void)
{
1388
	int cpu, rc = 0;
1389
	const struct x86_cpu_id *id;
1390
	struct cpu_defaults *cpu_def;
1391

1392 1393 1394
	if (no_load)
		return -ENODEV;

1395 1396 1397 1398 1399 1400
	if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
		copy_cpu_funcs(&core_params.funcs);
		hwp_active++;
		goto hwp_cpu_matched;
	}

1401 1402 1403 1404
	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

1405
	cpu_def = (struct cpu_defaults *)id->driver_data;
1406

1407 1408
	copy_pid_params(&cpu_def->pid_policy);
	copy_cpu_funcs(&cpu_def->funcs);
1409

1410 1411 1412
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

1413 1414 1415 1416 1417 1418 1419 1420
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

1421 1422
	pr_info("Intel P-state driver initializing.\n");

1423
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1424 1425 1426
	if (!all_cpu_data)
		return -ENOMEM;

1427 1428 1429
	if (!hwp_active && hwp_only)
		goto out;

1430 1431 1432 1433 1434 1435
	rc = cpufreq_register_driver(&intel_pstate_driver);
	if (rc)
		goto out;

	intel_pstate_debug_expose_params();
	intel_pstate_sysfs_expose_params();
1436

1437 1438 1439
	if (hwp_active)
		pr_info("intel_pstate: HWP enabled\n");

1440 1441
	return rc;
out:
1442 1443 1444
	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
1445
			cpufreq_set_update_util_data(cpu, NULL);
1446
			synchronize_sched();
1447 1448 1449 1450 1451 1452
			kfree(all_cpu_data[cpu]);
		}
	}

	put_online_cpus();
	vfree(all_cpu_data);
1453 1454 1455 1456
	return -ENODEV;
}
device_initcall(intel_pstate_init);

1457 1458 1459 1460 1461 1462 1463
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

	if (!strcmp(str, "disable"))
		no_load = 1;
1464 1465
	if (!strcmp(str, "no_hwp")) {
		pr_info("intel_pstate: HWP disabled\n");
D
Dirk Brandewie 已提交
1466
		no_hwp = 1;
1467
	}
1468 1469
	if (!strcmp(str, "force"))
		force_load = 1;
1470 1471
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
1472 1473 1474 1475
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

1476 1477 1478
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");