intel_pstate.c 38.3 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
28
#include <linux/acpi.h>
29
#include <linux/vmalloc.h>
30 31 32 33 34
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
35
#include <asm/cpufeature.h>
36

37 38 39 40
#if IS_ENABLED(CONFIG_ACPI)
#include <acpi/processor.h>
#endif

41 42 43
#define BYT_RATIOS		0x66a
#define BYT_VIDS		0x66b
#define BYT_TURBO_RATIOS	0x66c
44
#define BYT_TURBO_VIDS		0x66d
45

46
#define FRAC_BITS 8
47 48
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
49

50 51 52 53 54
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

55
static inline int32_t div_fp(s64 x, s64 y)
56
{
57
	return div64_s64((int64_t)x << FRAC_BITS, y);
58 59
}

60 61 62 63 64 65 66 67 68 69 70
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

71
struct sample {
72
	int32_t core_pct_busy;
73 74
	u64 aperf;
	u64 mperf;
75
	u64 tsc;
76
	int freq;
77
	ktime_t time;
78 79 80 81 82 83
};

struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
84
	int	max_pstate_physical;
85
	int	scaling;
86 87 88
	int	turbo_pstate;
};

89
struct vid_data {
90 91 92
	int min;
	int max;
	int turbo;
93 94 95
	int32_t ratio;
};

96 97 98 99 100 101 102
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
103
	int32_t last_err;
104 105 106 107 108 109 110 111
};

struct cpudata {
	int cpu;

	struct timer_list timer;

	struct pstate_data pstate;
112
	struct vid_data vid;
113 114
	struct _pid pid;

115
	ktime_t last_sample_time;
116 117
	u64	prev_aperf;
	u64	prev_mperf;
118
	u64	prev_tsc;
119
	struct sample sample;
120 121 122
#if IS_ENABLED(CONFIG_ACPI)
	struct acpi_processor_performance acpi_perf_data;
#endif
123 124 125 126 127 128 129 130 131 132 133 134
};

static struct cpudata **all_cpu_data;
struct pstate_adjust_policy {
	int sample_rate_ms;
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

135 136
struct pstate_funcs {
	int (*get_max)(void);
137
	int (*get_max_physical)(void);
138 139
	int (*get_min)(void);
	int (*get_turbo)(void);
140
	int (*get_scaling)(void);
141 142
	void (*set)(struct cpudata*, int pstate);
	void (*get_vid)(struct cpudata *);
143 144
};

145 146 147
struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
148 149
};

150 151
static struct pstate_adjust_policy pid_params;
static struct pstate_funcs pstate_funcs;
D
Dirk Brandewie 已提交
152
static int hwp_active;
153
static int no_acpi_perf;
154

155 156
struct perf_limits {
	int no_turbo;
157
	int turbo_disabled;
158 159 160 161
	int max_perf_pct;
	int min_perf_pct;
	int32_t max_perf;
	int32_t min_perf;
162 163
	int max_policy_pct;
	int max_sysfs_pct;
164 165
	int min_policy_pct;
	int min_sysfs_pct;
166 167
	int max_perf_ctl;
	int min_perf_ctl;
168 169
};

170 171 172 173 174 175 176 177 178 179 180 181 182 183
static struct perf_limits performance_limits = {
	.no_turbo = 0,
	.turbo_disabled = 0,
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 100,
	.min_perf = int_tofp(1),
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
};

static struct perf_limits powersave_limits = {
184
	.no_turbo = 0,
185
	.turbo_disabled = 0,
186 187 188 189
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 0,
	.min_perf = 0,
190 191
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
192 193
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
194 195
	.max_perf_ctl = 0,
	.min_perf_ctl = 0,
196 197
};

198 199 200 201 202 203
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
static struct perf_limits *limits = &performance_limits;
#else
static struct perf_limits *limits = &powersave_limits;
#endif

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
#if IS_ENABLED(CONFIG_ACPI)
/*
 * The max target pstate ratio is a 8 bit value in both PLATFORM_INFO MSR and
 * in TURBO_RATIO_LIMIT MSR, which pstate driver stores in max_pstate and
 * max_turbo_pstate fields. The PERF_CTL MSR contains 16 bit value for P state
 * ratio, out of it only high 8 bits are used. For example 0x1700 is setting
 * target ratio 0x17. The _PSS control value stores in a format which can be
 * directly written to PERF_CTL MSR. But in intel_pstate driver this shift
 * occurs during write to PERF_CTL (E.g. for cores core_set_pstate()).
 * This function converts the _PSS control value to intel pstate driver format
 * for comparison and assignment.
 */
static int convert_to_native_pstate_format(struct cpudata *cpu, int index)
{
	return cpu->acpi_perf_data.states[index].control >> 8;
}

static int intel_pstate_init_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	bool turbo_absent = false;
	int max_pstate_index;
	int min_pss_ctl, max_pss_ctl, turbo_pss_ctl;
	int i;

	cpu = all_cpu_data[policy->cpu];

	pr_debug("intel_pstate: default limits 0x%x 0x%x 0x%x\n",
		 cpu->pstate.min_pstate, cpu->pstate.max_pstate,
		 cpu->pstate.turbo_pstate);

	if (!cpu->acpi_perf_data.shared_cpu_map &&
	    zalloc_cpumask_var_node(&cpu->acpi_perf_data.shared_cpu_map,
				    GFP_KERNEL, cpu_to_node(policy->cpu))) {
		return -ENOMEM;
	}

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return ret;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		return -EIO;

	pr_debug("intel_pstate: CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++)
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		return 0;

	turbo_pss_ctl = convert_to_native_pstate_format(cpu, 0);
	min_pss_ctl = convert_to_native_pstate_format(cpu,
					cpu->acpi_perf_data.state_count - 1);
	/* Check if there is a turbo freq in _PSS */
	if (turbo_pss_ctl <= cpu->pstate.max_pstate &&
	    turbo_pss_ctl > cpu->pstate.min_pstate) {
		pr_debug("intel_pstate: no turbo range exists in _PSS\n");
278
		limits->no_turbo = limits->turbo_disabled = 1;
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
		cpu->pstate.turbo_pstate = cpu->pstate.max_pstate;
		turbo_absent = true;
	}

	/* Check if the max non turbo p state < Intel P state max */
	max_pstate_index = turbo_absent ? 0 : 1;
	max_pss_ctl = convert_to_native_pstate_format(cpu, max_pstate_index);
	if (max_pss_ctl < cpu->pstate.max_pstate &&
	    max_pss_ctl > cpu->pstate.min_pstate)
		cpu->pstate.max_pstate = max_pss_ctl;

	/* check If min perf > Intel P State min */
	if (min_pss_ctl > cpu->pstate.min_pstate &&
	    min_pss_ctl < cpu->pstate.max_pstate) {
		cpu->pstate.min_pstate = min_pss_ctl;
		policy->cpuinfo.min_freq = min_pss_ctl * cpu->pstate.scaling;
	}

	if (turbo_absent)
		policy->cpuinfo.max_freq = cpu->pstate.max_pstate *
						cpu->pstate.scaling;
	else {
		policy->cpuinfo.max_freq = cpu->pstate.turbo_pstate *
						cpu->pstate.scaling;
		/*
		 * The _PSS table doesn't contain whole turbo frequency range.
		 * This just contains +1 MHZ above the max non turbo frequency,
		 * with control value corresponding to max turbo ratio. But
		 * when cpufreq set policy is called, it will call with this
		 * max frequency, which will cause a reduced performance as
		 * this driver uses real max turbo frequency as the max
		 * frequeny. So correct this frequency in _PSS table to
		 * correct max turbo frequency based on the turbo ratio.
		 * Also need to convert to MHz as _PSS freq is in MHz.
		 */
		cpu->acpi_perf_data.states[0].core_frequency =
						turbo_pss_ctl * 100;
	}

	pr_debug("intel_pstate: Updated limits using _PSS 0x%x 0x%x 0x%x\n",
		 cpu->pstate.min_pstate, cpu->pstate.max_pstate,
		 cpu->pstate.turbo_pstate);
	pr_debug("intel_pstate: policy max_freq=%d Khz min_freq = %d KHz\n",
		 policy->cpuinfo.max_freq, policy->cpuinfo.min_freq);

	return 0;
}

static int intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	if (!no_acpi_perf)
		return 0;

	cpu = all_cpu_data[policy->cpu];
	acpi_processor_unregister_performance(policy->cpu);
	return 0;
}

#else
static int intel_pstate_init_perf_limits(struct cpufreq_policy *policy)
{
	return 0;
}

static int intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	return 0;
}
#endif

351
static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
352
			     int deadband, int integral) {
353 354 355
	pid->setpoint = setpoint;
	pid->deadband  = deadband;
	pid->integral  = int_tofp(integral);
356
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
	pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
	pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{
	pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
}

374
static signed int pid_calc(struct _pid *pid, int32_t busy)
375
{
376
	signed int result;
377 378 379
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

380
	fp_error = int_tofp(pid->setpoint) - busy;
381

382
	if (abs(fp_error) <= int_tofp(pid->deadband))
383 384 385 386 387 388
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

389 390 391 392 393 394 395 396
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
397 398 399 400 401 402
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

403 404
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
405 406

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
407
	result = result + (1 << (FRAC_BITS-1));
408 409 410 411 412
	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
413 414 415
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
416

417
	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
418 419 420 421 422
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
423

424 425 426 427 428 429
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

430 431 432 433 434 435 436
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
437
	limits->turbo_disabled =
438 439 440 441
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

D
Dirk Brandewie 已提交
442 443
static void intel_pstate_hwp_set(void)
{
444 445 446 447 448 449 450
	int min, hw_min, max, hw_max, cpu, range, adj_range;
	u64 value, cap;

	rdmsrl(MSR_HWP_CAPABILITIES, cap);
	hw_min = HWP_LOWEST_PERF(cap);
	hw_max = HWP_HIGHEST_PERF(cap);
	range = hw_max - hw_min;
D
Dirk Brandewie 已提交
451 452 453 454 455

	get_online_cpus();

	for_each_online_cpu(cpu) {
		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
456
		adj_range = limits->min_perf_pct * range / 100;
457
		min = hw_min + adj_range;
D
Dirk Brandewie 已提交
458 459 460
		value &= ~HWP_MIN_PERF(~0L);
		value |= HWP_MIN_PERF(min);

461
		adj_range = limits->max_perf_pct * range / 100;
462
		max = hw_min + adj_range;
463
		if (limits->no_turbo) {
464 465 466
			hw_max = HWP_GUARANTEED_PERF(cap);
			if (hw_max < max)
				max = hw_max;
D
Dirk Brandewie 已提交
467 468 469 470 471 472 473 474 475 476
		}

		value &= ~HWP_MAX_PERF(~0L);
		value |= HWP_MAX_PERF(max);
		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
	}

	put_online_cpus();
}

477 478 479 480 481 482 483
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
	intel_pstate_reset_all_pid();
	return 0;
}
484

485 486 487 488 489
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
490
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
491 492 493 494 495 496 497

struct pid_param {
	char *name;
	void *value;
};

static struct pid_param pid_files[] = {
498 499 500 501 502 503
	{"sample_rate_ms", &pid_params.sample_rate_ms},
	{"d_gain_pct", &pid_params.d_gain_pct},
	{"i_gain_pct", &pid_params.i_gain_pct},
	{"deadband", &pid_params.deadband},
	{"setpoint", &pid_params.setpoint},
	{"p_gain_pct", &pid_params.p_gain_pct},
504 505 506
	{NULL, NULL}
};

507
static void __init intel_pstate_debug_expose_params(void)
508
{
509
	struct dentry *debugfs_parent;
510 511
	int i = 0;

D
Dirk Brandewie 已提交
512 513
	if (hwp_active)
		return;
514 515 516 517 518
	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
	while (pid_files[i].name) {
		debugfs_create_file(pid_files[i].name, 0660,
519 520
				    debugfs_parent, pid_files[i].value,
				    &fops_pid_param);
521 522 523 524 525 526 527 528 529 530 531
		i++;
	}
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
532
		return sprintf(buf, "%u\n", limits->object);		\
533 534
	}

535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
	turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
	return sprintf(buf, "%u\n", turbo_pct);
}

551 552 553 554 555 556 557 558 559 560 561
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	return sprintf(buf, "%u\n", total);
}

562 563 564 565 566 567
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

	update_turbo_state();
568 569
	if (limits->turbo_disabled)
		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
570
	else
571
		ret = sprintf(buf, "%u\n", limits->no_turbo);
572 573 574 575

	return ret;
}

576
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
577
			      const char *buf, size_t count)
578 579 580
{
	unsigned int input;
	int ret;
581

582 583 584
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
585 586

	update_turbo_state();
587
	if (limits->turbo_disabled) {
588
		pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n");
589
		return -EPERM;
590
	}
D
Dirk Brandewie 已提交
591

592
	limits->no_turbo = clamp_t(int, input, 0, 1);
593

D
Dirk Brandewie 已提交
594 595 596
	if (hwp_active)
		intel_pstate_hwp_set();

597 598 599 600
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
601
				  const char *buf, size_t count)
602 603 604
{
	unsigned int input;
	int ret;
605

606 607 608 609
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

610 611 612 613 614 615 616 617 618
	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
	limits->max_perf_pct = max(limits->min_perf_pct,
				   limits->max_perf_pct);
	limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
				  int_tofp(100));
619

D
Dirk Brandewie 已提交
620 621
	if (hwp_active)
		intel_pstate_hwp_set();
622 623 624 625
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
626
				  const char *buf, size_t count)
627 628 629
{
	unsigned int input;
	int ret;
630

631 632 633
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
634

635 636 637 638 639 640 641 642 643
	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->min_perf_pct = min(limits->max_perf_pct,
				   limits->min_perf_pct);
	limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
				  int_tofp(100));
644

D
Dirk Brandewie 已提交
645 646
	if (hwp_active)
		intel_pstate_hwp_set();
647 648 649 650 651 652 653 654 655
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
656
define_one_global_ro(turbo_pct);
657
define_one_global_ro(num_pstates);
658 659 660 661 662

static struct attribute *intel_pstate_attributes[] = {
	&no_turbo.attr,
	&max_perf_pct.attr,
	&min_perf_pct.attr,
663
	&turbo_pct.attr,
664
	&num_pstates.attr,
665 666 667 668 669 670 671
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

672
static void __init intel_pstate_sysfs_expose_params(void)
673
{
674
	struct kobject *intel_pstate_kobject;
675 676 677 678 679
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
	BUG_ON(!intel_pstate_kobject);
680
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
681 682 683
	BUG_ON(rc);
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
684

685
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
686
{
687
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
D
Dirk Brandewie 已提交
688 689
}

690 691 692
static int byt_get_min_pstate(void)
{
	u64 value;
693

694
	rdmsrl(BYT_RATIOS, value);
D
Dirk Brandewie 已提交
695
	return (value >> 8) & 0x7F;
696 697 698 699 700
}

static int byt_get_max_pstate(void)
{
	u64 value;
701

702
	rdmsrl(BYT_RATIOS, value);
D
Dirk Brandewie 已提交
703
	return (value >> 16) & 0x7F;
704
}
705

706 707 708
static int byt_get_turbo_pstate(void)
{
	u64 value;
709

710
	rdmsrl(BYT_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
711
	return value & 0x7F;
712 713
}

714 715 716 717 718 719
static void byt_set_pstate(struct cpudata *cpudata, int pstate)
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

720
	val = (u64)pstate << 8;
721
	if (limits->no_turbo && !limits->turbo_disabled)
722 723 724 725 726 727 728
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
729
	vid = ceiling_fp(vid_fp);
730

731 732 733
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

734 735
	val |= vid;

736
	wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
737 738
}

739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
#define BYT_BCLK_FREQS 5
static int byt_freq_table[BYT_BCLK_FREQS] = { 833, 1000, 1333, 1167, 800};

static int byt_get_scaling(void)
{
	u64 value;
	int i;

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0x3;

	BUG_ON(i > BYT_BCLK_FREQS);

	return byt_freq_table[i] * 100;
}

755 756 757 758 759
static void byt_get_vid(struct cpudata *cpudata)
{
	u64 value;

	rdmsrl(BYT_VIDS, value);
D
Dirk Brandewie 已提交
760 761
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
762 763 764 765
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
766 767 768

	rdmsrl(BYT_TURBO_VIDS, value);
	cpudata->vid.turbo = value & 0x7f;
769 770
}

771
static int core_get_min_pstate(void)
772 773
{
	u64 value;
774

775
	rdmsrl(MSR_PLATFORM_INFO, value);
776 777 778
	return (value >> 40) & 0xFF;
}

779
static int core_get_max_pstate_physical(void)
780 781
{
	u64 value;
782

783
	rdmsrl(MSR_PLATFORM_INFO, value);
784 785 786
	return (value >> 8) & 0xFF;
}

787
static int core_get_max_pstate(void)
788
{
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
	u64 tar;
	u64 plat_info;
	int max_pstate;
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
		/* Do some sanity checking for safety */
		if (plat_info & 0x600000000) {
			u64 tdp_ctrl;
			u64 tdp_ratio;
			int tdp_msr;

			err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
			if (err)
				goto skip_tar;

			tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
			err = rdmsrl_safe(tdp_msr, &tdp_ratio);
			if (err)
				goto skip_tar;

			if (tdp_ratio - 1 == tar) {
				max_pstate = tar;
				pr_debug("max_pstate=TAC %x\n", max_pstate);
			} else {
				goto skip_tar;
			}
		}
	}
822

823 824
skip_tar:
	return max_pstate;
825 826
}

827
static int core_get_turbo_pstate(void)
828 829 830
{
	u64 value;
	int nont, ret;
831

832
	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
833
	nont = core_get_max_pstate();
834
	ret = (value) & 255;
835 836 837 838 839
	if (ret <= nont)
		ret = nont;
	return ret;
}

840 841 842 843 844
static inline int core_get_scaling(void)
{
	return 100000;
}

845
static void core_set_pstate(struct cpudata *cpudata, int pstate)
846 847 848
{
	u64 val;

849
	val = (u64)pstate << 8;
850
	if (limits->no_turbo && !limits->turbo_disabled)
851 852
		val |= (u64)1 << 32;

853
	wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
854 855
}

856 857 858 859 860 861 862 863 864 865 866 867 868
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

869 870 871 872 873 874 875 876 877 878 879
static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
880
		.get_max_physical = core_get_max_pstate_physical,
881 882
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
883
		.get_scaling = core_get_scaling,
884 885 886 887
		.set = core_set_pstate,
	},
};

888 889 890 891
static struct cpu_defaults byt_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
892
		.setpoint = 60,
893 894 895 896 897 898
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = byt_get_max_pstate,
899
		.get_max_physical = byt_get_max_pstate,
900
		.get_min = byt_get_min_pstate,
901
		.get_turbo = byt_get_turbo_pstate,
902
		.set = byt_set_pstate,
903
		.get_scaling = byt_get_scaling,
904
		.get_vid = byt_get_vid,
905 906 907
	},
};

908 909 910 911 912 913 914 915 916 917 918
static struct cpu_defaults knl_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
919
		.get_max_physical = core_get_max_pstate_physical,
920 921
		.get_min = core_get_min_pstate,
		.get_turbo = knl_get_turbo_pstate,
922
		.get_scaling = core_get_scaling,
923 924 925 926
		.set = core_set_pstate,
	},
};

927 928 929
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
930
	int max_perf_adj;
931
	int min_perf;
932

933
	if (limits->no_turbo || limits->turbo_disabled)
934 935
		max_perf = cpu->pstate.max_pstate;

936 937 938 939 940
	/*
	 * performance can be limited by user through sysfs, by cpufreq
	 * policy, or by cpu specific default values determined through
	 * experimentation.
	 */
941 942 943
	if (limits->max_perf_ctl && limits->max_sysfs_pct >=
						limits->max_policy_pct) {
		*max = limits->max_perf_ctl;
944 945
	} else {
		max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf),
946
					limits->max_perf));
947 948 949
		*max = clamp_t(int, max_perf_adj, cpu->pstate.min_pstate,
			       cpu->pstate.turbo_pstate);
	}
950

951 952
	if (limits->min_perf_ctl) {
		*min = limits->min_perf_ctl;
953 954
	} else {
		min_perf = fp_toint(mul_fp(int_tofp(max_perf),
955
				    limits->min_perf));
956 957
		*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
	}
958 959
}

960
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate, bool force)
961 962 963
{
	int max_perf, min_perf;

964 965
	if (force) {
		update_turbo_state();
966

967
		intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
968

969
		pstate = clamp_t(int, pstate, min_perf, max_perf);
970

971 972 973
		if (pstate == cpu->pstate.current_pstate)
			return;
	}
974
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
975

976 977
	cpu->pstate.current_pstate = pstate;

978
	pstate_funcs.set(cpu, pstate);
979 980 981 982
}

static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
983 984
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
985
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
986
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
987
	cpu->pstate.scaling = pstate_funcs.get_scaling();
988

989 990
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
991
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
992 993
}

994
static inline void intel_pstate_calc_busy(struct cpudata *cpu)
995
{
996
	struct sample *sample = &cpu->sample;
997
	int64_t core_pct;
998

999
	core_pct = int_tofp(sample->aperf) * int_tofp(100);
1000
	core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
1001

1002
	sample->freq = fp_toint(
1003
		mul_fp(int_tofp(
1004 1005
			cpu->pstate.max_pstate_physical *
			cpu->pstate.scaling / 100),
1006
			core_pct));
1007

1008
	sample->core_pct_busy = (int32_t)core_pct;
1009 1010 1011 1012 1013
}

static inline void intel_pstate_sample(struct cpudata *cpu)
{
	u64 aperf, mperf;
1014
	unsigned long flags;
1015
	u64 tsc;
1016

1017
	local_irq_save(flags);
1018 1019
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1020 1021 1022 1023 1024
	if (cpu->prev_mperf == mperf) {
		local_irq_restore(flags);
		return;
	}

1025
	tsc = rdtsc();
1026
	local_irq_restore(flags);
1027

1028 1029
	cpu->last_sample_time = cpu->sample.time;
	cpu->sample.time = ktime_get();
1030 1031
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1032
	cpu->sample.tsc =  tsc;
1033 1034
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1035
	cpu->sample.tsc -= cpu->prev_tsc;
1036

1037
	intel_pstate_calc_busy(cpu);
1038 1039 1040

	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1041
	cpu->prev_tsc = tsc;
1042 1043
}

D
Dirk Brandewie 已提交
1044 1045 1046 1047 1048 1049 1050 1051
static inline void intel_hwp_set_sample_time(struct cpudata *cpu)
{
	int delay;

	delay = msecs_to_jiffies(50);
	mod_timer_pinned(&cpu->timer, jiffies + delay);
}

1052 1053
static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
{
1054
	int delay;
1055

1056
	delay = msecs_to_jiffies(pid_params.sample_rate_ms);
1057 1058 1059
	mod_timer_pinned(&cpu->timer, jiffies + delay);
}

1060
static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
1061
{
1062
	int32_t core_busy, max_pstate, current_pstate, sample_ratio;
1063
	s64 duration_us;
1064
	u32 sample_time;
1065

1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
	/*
	 * core_busy is the ratio of actual performance to max
	 * max_pstate is the max non turbo pstate available
	 * current_pstate was the pstate that was requested during
	 * 	the last sample period.
	 *
	 * We normalize core_busy, which was our actual percent
	 * performance to what we requested during the last sample
	 * period. The result will be a percentage of busy at a
	 * specified pstate.
	 */
1077
	core_busy = cpu->sample.core_pct_busy;
1078
	max_pstate = int_tofp(cpu->pstate.max_pstate_physical);
1079
	current_pstate = int_tofp(cpu->pstate.current_pstate);
1080
	core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
1081

1082 1083 1084 1085 1086 1087 1088
	/*
	 * Since we have a deferred timer, it will not fire unless
	 * we are in C0.  So, determine if the actual elapsed time
	 * is significantly greater (3x) than our sample interval.  If it
	 * is, then we were idle for a long enough period of time
	 * to adjust our busyness.
	 */
1089
	sample_time = pid_params.sample_rate_ms  * USEC_PER_MSEC;
1090 1091
	duration_us = ktime_us_delta(cpu->sample.time,
				     cpu->last_sample_time);
1092 1093
	if (duration_us > sample_time * 3) {
		sample_ratio = div_fp(int_tofp(sample_time),
1094
				      int_tofp(duration_us));
1095 1096 1097
		core_busy = mul_fp(core_busy, sample_ratio);
	}

1098
	return core_busy;
1099 1100 1101 1102
}

static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
1103
	int32_t busy_scaled;
1104
	struct _pid *pid;
1105
	signed int ctl;
1106 1107 1108 1109
	int from;
	struct sample *sample;

	from = cpu->pstate.current_pstate;
1110 1111 1112 1113 1114 1115

	pid = &cpu->pid;
	busy_scaled = intel_pstate_get_scaled_busy(cpu);

	ctl = pid_calc(pid, busy_scaled);

1116
	/* Negative values of ctl increase the pstate and vice versa */
1117
	intel_pstate_set_pstate(cpu, cpu->pstate.current_pstate - ctl, true);
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127

	sample = &cpu->sample;
	trace_pstate_sample(fp_toint(sample->core_pct_busy),
		fp_toint(busy_scaled),
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
		sample->freq);
1128 1129
}

D
Dirk Brandewie 已提交
1130 1131 1132 1133 1134 1135 1136 1137
static void intel_hwp_timer_func(unsigned long __data)
{
	struct cpudata *cpu = (struct cpudata *) __data;

	intel_pstate_sample(cpu);
	intel_hwp_set_sample_time(cpu);
}

1138 1139 1140 1141 1142
static void intel_pstate_timer_func(unsigned long __data)
{
	struct cpudata *cpu = (struct cpudata *) __data;

	intel_pstate_sample(cpu);
1143

1144
	intel_pstate_adjust_busy_pstate(cpu);
1145

1146 1147 1148 1149
	intel_pstate_set_sample_time(cpu);
}

#define ICPU(model, policy) \
1150 1151
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1152 1153

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1154 1155
	ICPU(0x2a, core_params),
	ICPU(0x2d, core_params),
1156
	ICPU(0x37, byt_params),
1157 1158
	ICPU(0x3a, core_params),
	ICPU(0x3c, core_params),
1159
	ICPU(0x3d, core_params),
1160 1161 1162 1163
	ICPU(0x3e, core_params),
	ICPU(0x3f, core_params),
	ICPU(0x45, core_params),
	ICPU(0x46, core_params),
1164
	ICPU(0x47, core_params),
1165
	ICPU(0x4c, byt_params),
1166
	ICPU(0x4e, core_params),
1167
	ICPU(0x4f, core_params),
1168
	ICPU(0x5e, core_params),
1169
	ICPU(0x56, core_params),
1170
	ICPU(0x57, knl_params),
1171 1172 1173 1174
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

D
Dirk Brandewie 已提交
1175 1176 1177 1178 1179
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
	ICPU(0x56, core_params),
	{}
};

1180 1181 1182 1183
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1184 1185 1186
	if (!all_cpu_data[cpunum])
		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
					       GFP_KERNEL);
1187 1188 1189 1190 1191 1192
	if (!all_cpu_data[cpunum])
		return -ENOMEM;

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1193 1194 1195 1196

	if (hwp_active)
		intel_pstate_hwp_enable(cpu);

1197
	intel_pstate_get_cpu_pstates(cpu);
1198

1199
	init_timer_deferrable(&cpu->timer);
1200
	cpu->timer.data = (unsigned long)cpu;
1201
	cpu->timer.expires = jiffies + HZ/100;
D
Dirk Brandewie 已提交
1202 1203 1204 1205 1206 1207

	if (!hwp_active)
		cpu->timer.function = intel_pstate_timer_func;
	else
		cpu->timer.function = intel_hwp_timer_func;

1208 1209 1210 1211 1212
	intel_pstate_busy_pid_reset(cpu);
	intel_pstate_sample(cpu);

	add_timer_on(&cpu->timer, cpunum);

1213
	pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
	struct sample *sample;
	struct cpudata *cpu;

	cpu = all_cpu_data[cpu_num];
	if (!cpu)
		return 0;
1226
	sample = &cpu->sample;
1227 1228 1229 1230 1231
	return sample->freq;
}

static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
1232 1233 1234 1235 1236 1237
#if IS_ENABLED(CONFIG_ACPI)
	struct cpudata *cpu;
	int i;
#endif
	pr_debug("intel_pstate: %s max %u policy->max %u\n", __func__,
		 policy->cpuinfo.max_freq, policy->max);
1238 1239 1240
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

1241 1242
	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE &&
	    policy->max >= policy->cpuinfo.max_freq) {
1243 1244
		pr_debug("intel_pstate: set performance\n");
		limits = &performance_limits;
1245
		return 0;
1246
	}
D
Dirk Brandewie 已提交
1247

1248 1249 1250 1251 1252 1253
	pr_debug("intel_pstate: set powersave\n");
	limits = &powersave_limits;
	limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
	limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
	limits->max_policy_pct = (policy->max * 100) / policy->cpuinfo.max_freq;
	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1254 1255

	/* Normalize user input to [min_policy_pct, max_policy_pct] */
1256 1257 1258 1259 1260 1261 1262 1263
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
1264 1265

	/* Make sure min_perf_pct <= max_perf_pct */
1266
	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1267

1268 1269 1270 1271
	limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
				  int_tofp(100));
	limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
				  int_tofp(100));
1272

1273 1274 1275 1276 1277 1278 1279
#if IS_ENABLED(CONFIG_ACPI)
	cpu = all_cpu_data[policy->cpu];
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		int control;

		control = convert_to_native_pstate_format(cpu, i);
		if (control * cpu->pstate.scaling == policy->max)
1280
			limits->max_perf_ctl = control;
1281
		if (control * cpu->pstate.scaling == policy->min)
1282
			limits->min_perf_ctl = control;
1283 1284 1285
	}

	pr_debug("intel_pstate: max %u policy_max %u perf_ctl [0x%x-0x%x]\n",
1286 1287
		 policy->cpuinfo.max_freq, policy->max, limits->min_perf_ctl,
		 limits->max_perf_ctl);
1288 1289
#endif

D
Dirk Brandewie 已提交
1290 1291 1292
	if (hwp_active)
		intel_pstate_hwp_set();

1293 1294 1295 1296 1297
	return 0;
}

static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
1298
	cpufreq_verify_within_cpu_limits(policy);
1299

1300
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1301
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1302 1303 1304 1305 1306
		return -EINVAL;

	return 0;
}

1307
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1308
{
1309 1310
	int cpu_num = policy->cpu;
	struct cpudata *cpu = all_cpu_data[cpu_num];
1311

1312
	pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);
1313

1314
	del_timer_sync(&all_cpu_data[cpu_num]->timer);
D
Dirk Brandewie 已提交
1315 1316 1317
	if (hwp_active)
		return;

1318
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
1319 1320
}

1321
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1322 1323
{
	struct cpudata *cpu;
1324
	int rc;
1325 1326 1327 1328 1329 1330 1331

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

1332
	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1333 1334 1335 1336
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;

1337 1338
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1339 1340

	/* cpuinfo and default policy values */
1341 1342 1343
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->cpuinfo.max_freq =
		cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1344 1345 1346 1347 1348 1349
	if (!no_acpi_perf)
		intel_pstate_init_perf_limits(policy);
	/*
	 * If there is no acpi perf data or error, we ignore and use Intel P
	 * state calculated limits, So this is not fatal error.
	 */
1350 1351 1352 1353 1354 1355
	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
	cpumask_set_cpu(policy->cpu, policy->cpus);

	return 0;
}

1356 1357 1358 1359 1360
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	return intel_pstate_exit_perf_limits(policy);
}

1361 1362 1363 1364 1365 1366
static struct cpufreq_driver intel_pstate_driver = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
1367
	.exit		= intel_pstate_cpu_exit,
1368
	.stop_cpu	= intel_pstate_stop_cpu,
1369 1370 1371
	.name		= "intel_pstate",
};

1372
static int __initdata no_load;
D
Dirk Brandewie 已提交
1373
static int __initdata no_hwp;
1374
static int __initdata hwp_only;
1375
static unsigned int force_load;
1376

1377 1378
static int intel_pstate_msrs_not_valid(void)
{
1379
	if (!pstate_funcs.get_max() ||
1380 1381
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
1382 1383 1384 1385
		return -ENODEV;

	return 0;
}
1386

1387
static void copy_pid_params(struct pstate_adjust_policy *policy)
1388 1389 1390 1391 1392 1393 1394 1395 1396
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

1397
static void copy_cpu_funcs(struct pstate_funcs *funcs)
1398 1399
{
	pstate_funcs.get_max   = funcs->get_max;
1400
	pstate_funcs.get_max_physical = funcs->get_max_physical;
1401 1402
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
1403
	pstate_funcs.get_scaling = funcs->get_scaling;
1404
	pstate_funcs.set       = funcs->set;
1405
	pstate_funcs.get_vid   = funcs->get_vid;
1406 1407
}

1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
#if IS_ENABLED(CONFIG_ACPI)

static bool intel_pstate_no_acpi_pss(void)
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
static bool intel_pstate_has_acpi_ppc(void)
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

1459 1460 1461 1462
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1463
	int  oem_pwr_table;
1464 1465 1466 1467
};

/* Hardware vendor-specific info that has its own power management modes */
static struct hw_vendor_info vendor_info[] = {
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
1479 1480 1481 1482
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
1483 1484 1485 1486 1487 1488 1489
	{0, "", ""},
};

static bool intel_pstate_platform_pwr_mgmt_exists(void)
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
1490 1491 1492 1493 1494 1495 1496 1497 1498
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
1499

1500 1501
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1502 1503 1504
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
1505
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1506 1507 1508 1509 1510 1511
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
1512 1513
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
1514
			}
1515 1516 1517 1518 1519 1520
	}

	return false;
}
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1521
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1522 1523
#endif /* CONFIG_ACPI */

1524 1525
static int __init intel_pstate_init(void)
{
1526
	int cpu, rc = 0;
1527
	const struct x86_cpu_id *id;
1528
	struct cpu_defaults *cpu_def;
1529

1530 1531 1532
	if (no_load)
		return -ENODEV;

1533 1534 1535 1536
	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

1537 1538 1539 1540 1541 1542 1543
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

1544
	cpu_def = (struct cpu_defaults *)id->driver_data;
1545

1546 1547
	copy_pid_params(&cpu_def->pid_policy);
	copy_cpu_funcs(&cpu_def->funcs);
1548

1549 1550 1551
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

1552 1553
	pr_info("Intel P-state driver initializing.\n");

1554
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1555 1556 1557
	if (!all_cpu_data)
		return -ENOMEM;

1558 1559
	if (static_cpu_has_safe(X86_FEATURE_HWP) && !no_hwp) {
		pr_info("intel_pstate: HWP enabled\n");
1560
		hwp_active++;
1561
	}
D
Dirk Brandewie 已提交
1562

1563 1564 1565
	if (!hwp_active && hwp_only)
		goto out;

1566 1567 1568 1569 1570 1571
	rc = cpufreq_register_driver(&intel_pstate_driver);
	if (rc)
		goto out;

	intel_pstate_debug_expose_params();
	intel_pstate_sysfs_expose_params();
1572

1573 1574
	return rc;
out:
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			del_timer_sync(&all_cpu_data[cpu]->timer);
			kfree(all_cpu_data[cpu]);
		}
	}

	put_online_cpus();
	vfree(all_cpu_data);
1585 1586 1587 1588
	return -ENODEV;
}
device_initcall(intel_pstate_init);

1589 1590 1591 1592 1593 1594 1595
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

	if (!strcmp(str, "disable"))
		no_load = 1;
1596 1597
	if (!strcmp(str, "no_hwp")) {
		pr_info("intel_pstate: HWP disabled\n");
D
Dirk Brandewie 已提交
1598
		no_hwp = 1;
1599
	}
1600 1601
	if (!strcmp(str, "force"))
		force_load = 1;
1602 1603
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
1604 1605 1606
	if (!strcmp(str, "no_acpi"))
		no_acpi_perf = 1;

1607 1608 1609 1610
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

1611 1612 1613
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");