intel_pstate.c 22.9 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
28
#include <linux/acpi.h>
29 30 31 32 33 34
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>

35 36 37
#define BYT_RATIOS		0x66a
#define BYT_VIDS		0x66b
#define BYT_TURBO_RATIOS	0x66c
38
#define BYT_TURBO_VIDS		0x66d
39

40
#define FRAC_BITS 8
41 42
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
43

44 45 46 47 48 49 50 51

static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

static inline int32_t div_fp(int32_t x, int32_t y)
{
52
	return div_s64((int64_t)x << FRAC_BITS, y);
53 54 55
}

struct sample {
56
	int32_t core_pct_busy;
57 58 59
	u64 aperf;
	u64 mperf;
	int freq;
60
	ktime_t time;
61 62 63 64 65 66 67 68 69
};

struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
	int	turbo_pstate;
};

70
struct vid_data {
71 72 73
	int min;
	int max;
	int turbo;
74 75 76
	int32_t ratio;
};

77 78 79 80 81 82 83
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
84
	int32_t last_err;
85 86 87 88 89 90 91 92
};

struct cpudata {
	int cpu;

	struct timer_list timer;

	struct pstate_data pstate;
93
	struct vid_data vid;
94 95
	struct _pid pid;

96
	ktime_t last_sample_time;
97 98
	u64	prev_aperf;
	u64	prev_mperf;
99
	struct sample sample;
100 101 102 103 104 105 106 107 108 109 110 111
};

static struct cpudata **all_cpu_data;
struct pstate_adjust_policy {
	int sample_rate_ms;
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

112 113 114 115
struct pstate_funcs {
	int (*get_max)(void);
	int (*get_min)(void);
	int (*get_turbo)(void);
116 117
	void (*set)(struct cpudata*, int pstate);
	void (*get_vid)(struct cpudata *);
118 119
};

120 121 122
struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
123 124
};

125 126 127
static struct pstate_adjust_policy pid_params;
static struct pstate_funcs pstate_funcs;

128 129
struct perf_limits {
	int no_turbo;
130
	int turbo_disabled;
131 132 133 134
	int max_perf_pct;
	int min_perf_pct;
	int32_t max_perf;
	int32_t min_perf;
135 136
	int max_policy_pct;
	int max_sysfs_pct;
137 138 139 140 141 142 143 144
};

static struct perf_limits limits = {
	.no_turbo = 0,
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 0,
	.min_perf = 0,
145 146
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
147 148 149 150 151 152 153
};

static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
			int deadband, int integral) {
	pid->setpoint = setpoint;
	pid->deadband  = deadband;
	pid->integral  = int_tofp(integral);
154
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
	pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
	pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{
	pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
}

172
static signed int pid_calc(struct _pid *pid, int32_t busy)
173
{
174
	signed int result;
175 176 177
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

178
	fp_error = int_tofp(pid->setpoint) - busy;
179

180
	if (abs(fp_error) <= int_tofp(pid->deadband))
181 182 183 184 185 186 187 188 189 190 191 192 193
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

	/* limit the integral term */
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

194 195
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
196 197

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
198
	result = result + (1 << (FRAC_BITS-1));
199 200 201 202 203
	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
204 205 206
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
207 208

	pid_reset(&cpu->pid,
209
		pid_params.setpoint,
210
		100,
211
		pid_params.deadband,
212 213 214 215 216 217
		0);
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
218

219 220 221 222 223 224 225 226 227 228 229 230 231
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
	intel_pstate_reset_all_pid();
	return 0;
}
232

233 234 235 236 237 238 239 240 241 242 243 244 245 246
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get,
			pid_param_set, "%llu\n");

struct pid_param {
	char *name;
	void *value;
};

static struct pid_param pid_files[] = {
247 248 249 250 251 252
	{"sample_rate_ms", &pid_params.sample_rate_ms},
	{"d_gain_pct", &pid_params.d_gain_pct},
	{"i_gain_pct", &pid_params.i_gain_pct},
	{"deadband", &pid_params.deadband},
	{"setpoint", &pid_params.setpoint},
	{"p_gain_pct", &pid_params.p_gain_pct},
253 254 255
	{NULL, NULL}
};

256
static void __init intel_pstate_debug_expose_params(void)
257
{
258
	struct dentry *debugfs_parent;
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
	int i = 0;

	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
	while (pid_files[i].name) {
		debugfs_create_file(pid_files[i].name, 0660,
				debugfs_parent, pid_files[i].value,
				&fops_pid_param);
		i++;
	}
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
		return sprintf(buf, "%u\n", limits.object);		\
	}

static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
				const char *buf, size_t count)
{
	unsigned int input;
	int ret;
287

288 289 290 291
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
	limits.no_turbo = clamp_t(int, input, 0 , 1);
292 293 294 295
	if (limits.turbo_disabled) {
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
		limits.no_turbo = limits.turbo_disabled;
	}
296 297 298 299 300 301 302 303
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
				const char *buf, size_t count)
{
	unsigned int input;
	int ret;
304

305 306 307 308
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

309 310
	limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
311
	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
312

313 314 315 316 317 318 319 320
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
				const char *buf, size_t count)
{
	unsigned int input;
	int ret;
321

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
	limits.min_perf_pct = clamp_t(int, input, 0 , 100);
	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));

	return count;
}

show_one(no_turbo, no_turbo);
show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);

static struct attribute *intel_pstate_attributes[] = {
	&no_turbo.attr,
	&max_perf_pct.attr,
	&min_perf_pct.attr,
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

350
static void __init intel_pstate_sysfs_expose_params(void)
351
{
352
	struct kobject *intel_pstate_kobject;
353 354 355 356 357 358 359 360 361 362 363
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
	BUG_ON(!intel_pstate_kobject);
	rc = sysfs_create_group(intel_pstate_kobject,
				&intel_pstate_attr_group);
	BUG_ON(rc);
}

/************************** sysfs end ************************/
364 365 366
static int byt_get_min_pstate(void)
{
	u64 value;
367

368
	rdmsrl(BYT_RATIOS, value);
D
Dirk Brandewie 已提交
369
	return (value >> 8) & 0x7F;
370 371 372 373 374
}

static int byt_get_max_pstate(void)
{
	u64 value;
375

376
	rdmsrl(BYT_RATIOS, value);
D
Dirk Brandewie 已提交
377
	return (value >> 16) & 0x7F;
378
}
379

380 381 382
static int byt_get_turbo_pstate(void)
{
	u64 value;
383

384
	rdmsrl(BYT_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
385
	return value & 0x7F;
386 387
}

388 389 390 391 392 393 394
static void byt_set_pstate(struct cpudata *cpudata, int pstate)
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

	val = pstate << 8;
395
	if (limits.no_turbo && !limits.turbo_disabled)
396 397 398 399 400 401 402 403 404
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
	vid = fp_toint(vid_fp);

405 406 407
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

408 409 410 411 412 413 414 415 416 417
	val |= vid;

	wrmsrl(MSR_IA32_PERF_CTL, val);
}

static void byt_get_vid(struct cpudata *cpudata)
{
	u64 value;

	rdmsrl(BYT_VIDS, value);
D
Dirk Brandewie 已提交
418 419
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
420 421 422 423
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
424 425 426

	rdmsrl(BYT_TURBO_VIDS, value);
	cpudata->vid.turbo = value & 0x7f;
427 428
}

429
static int core_get_min_pstate(void)
430 431
{
	u64 value;
432

433
	rdmsrl(MSR_PLATFORM_INFO, value);
434 435 436
	return (value >> 40) & 0xFF;
}

437
static int core_get_max_pstate(void)
438 439
{
	u64 value;
440

441
	rdmsrl(MSR_PLATFORM_INFO, value);
442 443 444
	return (value >> 8) & 0xFF;
}

445
static int core_get_turbo_pstate(void)
446 447 448
{
	u64 value;
	int nont, ret;
449

450
	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
451
	nont = core_get_max_pstate();
452 453 454 455 456 457
	ret = ((value) & 255);
	if (ret <= nont)
		ret = nont;
	return ret;
}

458
static void core_set_pstate(struct cpudata *cpudata, int pstate)
459 460 461 462
{
	u64 val;

	val = pstate << 8;
463
	if (limits.no_turbo && !limits.turbo_disabled)
464 465
		val |= (u64)1 << 32;

466
	wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
}

static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
		.set = core_set_pstate,
	},
};

486 487 488 489 490 491 492 493 494 495 496 497
static struct cpu_defaults byt_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = byt_get_max_pstate,
		.get_min = byt_get_min_pstate,
498
		.get_turbo = byt_get_turbo_pstate,
499 500
		.set = byt_set_pstate,
		.get_vid = byt_get_vid,
501 502 503
	},
};

504 505 506
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
507
	int max_perf_adj;
508
	int min_perf;
509

510 511 512
	if (limits.no_turbo)
		max_perf = cpu->pstate.max_pstate;

513 514
	max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
	*max = clamp_t(int, max_perf_adj,
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);

	min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
	*min = clamp_t(int, min_perf,
			cpu->pstate.min_pstate, max_perf);
}

static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
{
	int max_perf, min_perf;

	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);

	pstate = clamp_t(int, pstate, min_perf, max_perf);

	if (pstate == cpu->pstate.current_pstate)
		return;

	trace_cpu_frequency(pstate * 100000, cpu->cpu);
534

535 536
	cpu->pstate.current_pstate = pstate;

537
	pstate_funcs.set(cpu, pstate);
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
}

static inline void intel_pstate_pstate_increase(struct cpudata *cpu, int steps)
{
	int target;
	target = cpu->pstate.current_pstate + steps;

	intel_pstate_set_pstate(cpu, target);
}

static inline void intel_pstate_pstate_decrease(struct cpudata *cpu, int steps)
{
	int target;
	target = cpu->pstate.current_pstate - steps;
	intel_pstate_set_pstate(cpu, target);
}

static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
557 558 559
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
560

561 562
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
563
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
564 565
}

566
static inline void intel_pstate_calc_busy(struct cpudata *cpu)
567
{
568
	struct sample *sample = &cpu->sample;
569 570
	int64_t core_pct;
	int32_t rem;
571

572 573 574 575 576
	core_pct = int_tofp(sample->aperf) * int_tofp(100);
	core_pct = div_u64_rem(core_pct, int_tofp(sample->mperf), &rem);

	if ((rem << 1) >= int_tofp(sample->mperf))
		core_pct += 1;
577

578
	sample->freq = fp_toint(
579
		mul_fp(int_tofp(cpu->pstate.max_pstate * 1000), core_pct));
580

581
	sample->core_pct_busy = (int32_t)core_pct;
582 583 584 585 586 587 588 589
}

static inline void intel_pstate_sample(struct cpudata *cpu)
{
	u64 aperf, mperf;

	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
590

591 592 593
	aperf = aperf >> FRAC_BITS;
	mperf = mperf >> FRAC_BITS;

594 595
	cpu->last_sample_time = cpu->sample.time;
	cpu->sample.time = ktime_get();
596 597 598 599
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
600

601
	intel_pstate_calc_busy(cpu);
602 603 604 605 606 607 608 609 610

	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
}

static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
{
	int sample_time, delay;

611
	sample_time = pid_params.sample_rate_ms;
612 613 614 615
	delay = msecs_to_jiffies(sample_time);
	mod_timer_pinned(&cpu->timer, jiffies + delay);
}

616
static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
617
{
618 619 620
	int32_t core_busy, max_pstate, current_pstate, sample_ratio;
	u32 duration_us;
	u32 sample_time;
621

622
	core_busy = cpu->sample.core_pct_busy;
623
	max_pstate = int_tofp(cpu->pstate.max_pstate);
624
	current_pstate = int_tofp(cpu->pstate.current_pstate);
625
	core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
626 627 628 629 630 631 632 633 634 635

	sample_time = (pid_params.sample_rate_ms  * USEC_PER_MSEC);
	duration_us = (u32) ktime_us_delta(cpu->sample.time,
					cpu->last_sample_time);
	if (duration_us > sample_time * 3) {
		sample_ratio = div_fp(int_tofp(sample_time),
				int_tofp(duration_us));
		core_busy = mul_fp(core_busy, sample_ratio);
	}

636
	return core_busy;
637 638 639 640
}

static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
641
	int32_t busy_scaled;
642 643 644 645 646 647 648 649 650 651
	struct _pid *pid;
	signed int ctl = 0;
	int steps;

	pid = &cpu->pid;
	busy_scaled = intel_pstate_get_scaled_busy(cpu);

	ctl = pid_calc(pid, busy_scaled);

	steps = abs(ctl);
652

653 654 655 656 657 658 659 660 661
	if (ctl < 0)
		intel_pstate_pstate_increase(cpu, steps);
	else
		intel_pstate_pstate_decrease(cpu, steps);
}

static void intel_pstate_timer_func(unsigned long __data)
{
	struct cpudata *cpu = (struct cpudata *) __data;
662
	struct sample *sample;
663 664

	intel_pstate_sample(cpu);
665

666
	sample = &cpu->sample;
667

668
	intel_pstate_adjust_busy_pstate(cpu);
669 670 671 672 673 674 675 676

	trace_pstate_sample(fp_toint(sample->core_pct_busy),
			fp_toint(intel_pstate_get_scaled_busy(cpu)),
			cpu->pstate.current_pstate,
			sample->mperf,
			sample->aperf,
			sample->freq);

677 678 679 680
	intel_pstate_set_sample_time(cpu);
}

#define ICPU(model, policy) \
681 682
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
683 684

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
685 686
	ICPU(0x2a, core_params),
	ICPU(0x2d, core_params),
687
	ICPU(0x37, byt_params),
688 689
	ICPU(0x3a, core_params),
	ICPU(0x3c, core_params),
690
	ICPU(0x3d, core_params),
691 692 693 694
	ICPU(0x3e, core_params),
	ICPU(0x3f, core_params),
	ICPU(0x45, core_params),
	ICPU(0x46, core_params),
695 696
	ICPU(0x4f, core_params),
	ICPU(0x56, core_params),
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

	all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata), GFP_KERNEL);
	if (!all_cpu_data[cpunum])
		return -ENOMEM;

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
712
	intel_pstate_get_cpu_pstates(cpu);
713

714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
	init_timer_deferrable(&cpu->timer);
	cpu->timer.function = intel_pstate_timer_func;
	cpu->timer.data =
		(unsigned long)cpu;
	cpu->timer.expires = jiffies + HZ/100;
	intel_pstate_busy_pid_reset(cpu);
	intel_pstate_sample(cpu);

	add_timer_on(&cpu->timer, cpunum);

	pr_info("Intel pstate controlling: cpu %d\n", cpunum);

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
	struct sample *sample;
	struct cpudata *cpu;

	cpu = all_cpu_data[cpu_num];
	if (!cpu)
		return 0;
737
	sample = &cpu->sample;
738 739 740 741 742 743 744 745 746
	return sample->freq;
}

static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];

747 748 749
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

750 751 752 753 754
	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
		limits.min_perf_pct = 100;
		limits.min_perf = int_tofp(1);
		limits.max_perf_pct = 100;
		limits.max_perf = int_tofp(1);
755
		limits.no_turbo = limits.turbo_disabled;
756
		return 0;
757
	}
758 759 760 761
	limits.min_perf_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
	limits.min_perf_pct = clamp_t(int, limits.min_perf_pct, 0 , 100);
	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));

762 763 764
	limits.max_policy_pct = policy->max * 100 / policy->cpuinfo.max_freq;
	limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
765
	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
766 767 768 769 770 771

	return 0;
}

static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
772
	cpufreq_verify_within_cpu_limits(policy);
773 774 775 776 777 778 779 780

	if ((policy->policy != CPUFREQ_POLICY_POWERSAVE) &&
		(policy->policy != CPUFREQ_POLICY_PERFORMANCE))
		return -EINVAL;

	return 0;
}

781
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
782
{
783 784
	int cpu_num = policy->cpu;
	struct cpudata *cpu = all_cpu_data[cpu_num];
785

786 787
	pr_info("intel_pstate CPU %d exiting\n", cpu_num);

788
	del_timer_sync(&all_cpu_data[cpu_num]->timer);
789 790 791
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
	kfree(all_cpu_data[cpu_num]);
	all_cpu_data[cpu_num] = NULL;
792 793
}

794
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
795 796
{
	struct cpudata *cpu;
797
	int rc;
798
	u64 misc_en;
799 800 801 802 803 804 805

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

806 807 808 809 810 811 812
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
	if (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		cpu->pstate.max_pstate == cpu->pstate.turbo_pstate) {
		limits.turbo_disabled = 1;
		limits.no_turbo = 1;
	}
	if (limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
813 814 815 816
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;

817 818
	policy->min = cpu->pstate.min_pstate * 100000;
	policy->max = cpu->pstate.turbo_pstate * 100000;
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834

	/* cpuinfo and default policy values */
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * 100000;
	policy->cpuinfo.max_freq = cpu->pstate.turbo_pstate * 100000;
	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
	cpumask_set_cpu(policy->cpu, policy->cpus);

	return 0;
}

static struct cpufreq_driver intel_pstate_driver = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
835
	.stop_cpu	= intel_pstate_stop_cpu,
836 837 838
	.name		= "intel_pstate",
};

839 840
static int __initdata no_load;

841 842 843 844 845 846 847 848
static int intel_pstate_msrs_not_valid(void)
{
	/* Check that all the msr's we are using are valid. */
	u64 aperf, mperf, tmp;

	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);

849 850 851
	if (!pstate_funcs.get_max() ||
		!pstate_funcs.get_min() ||
		!pstate_funcs.get_turbo())
852 853 854 855 856 857 858 859 860 861 862 863
		return -ENODEV;

	rdmsrl(MSR_IA32_APERF, tmp);
	if (!(tmp - aperf))
		return -ENODEV;

	rdmsrl(MSR_IA32_MPERF, tmp);
	if (!(tmp - mperf))
		return -ENODEV;

	return 0;
}
864

865
static void copy_pid_params(struct pstate_adjust_policy *policy)
866 867 868 869 870 871 872 873 874
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

875
static void copy_cpu_funcs(struct pstate_funcs *funcs)
876 877 878 879 880
{
	pstate_funcs.get_max   = funcs->get_max;
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
	pstate_funcs.set       = funcs->set;
881
	pstate_funcs.get_vid   = funcs->get_vid;
882 883
}

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
#if IS_ENABLED(CONFIG_ACPI)
#include <acpi/processor.h>

static bool intel_pstate_no_acpi_pss(void)
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
};

/* Hardware vendor-specific info that has its own power management modes */
static struct hw_vendor_info vendor_info[] = {
	{1, "HP    ", "ProLiant"},
	{0, "", ""},
};

static bool intel_pstate_platform_pwr_mgmt_exists(void)
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;

	if (acpi_disabled
	    || ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE)
		    && !strncmp(hdr.oem_table_id, v_info->oem_table_id, ACPI_OEM_TABLE_ID_SIZE)
		    && intel_pstate_no_acpi_pss())
			return true;
	}

	return false;
}
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
#endif /* CONFIG_ACPI */

950 951
static int __init intel_pstate_init(void)
{
952
	int cpu, rc = 0;
953
	const struct x86_cpu_id *id;
954
	struct cpu_defaults *cpu_info;
955

956 957 958
	if (no_load)
		return -ENODEV;

959 960 961 962
	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

963 964 965 966 967 968 969
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

970 971 972 973 974
	cpu_info = (struct cpu_defaults *)id->driver_data;

	copy_pid_params(&cpu_info->pid_policy);
	copy_cpu_funcs(&cpu_info->funcs);

975 976 977
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

978 979
	pr_info("Intel P-state driver initializing.\n");

980
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
981 982 983 984 985 986 987 988 989
	if (!all_cpu_data)
		return -ENOMEM;

	rc = cpufreq_register_driver(&intel_pstate_driver);
	if (rc)
		goto out;

	intel_pstate_debug_expose_params();
	intel_pstate_sysfs_expose_params();
990

991 992
	return rc;
out:
993 994 995 996 997 998 999 1000 1001 1002
	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			del_timer_sync(&all_cpu_data[cpu]->timer);
			kfree(all_cpu_data[cpu]);
		}
	}

	put_online_cpus();
	vfree(all_cpu_data);
1003 1004 1005 1006
	return -ENODEV;
}
device_initcall(intel_pstate_init);

1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

	if (!strcmp(str, "disable"))
		no_load = 1;
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

1018 1019 1020
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");