hrtimer.c 47.1 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/export.h>
36 37 38 39
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46
#include <linux/sched.h>
47
#include <linux/sched/sysctl.h>
48
#include <linux/sched/rt.h>
49
#include <linux/timer.h>
50 51 52

#include <asm/uaccess.h>

53 54
#include <trace/events/timer.h>

55 56
/*
 * The timer bases:
57
 *
58 59 60 61
 * There are more clockids then hrtimer bases. Thus, we index
 * into the timer bases by the hrtimer_base_type enum. When trying
 * to reach a base using a clockid, hrtimer_clockid_to_base()
 * is used to convert from clockid to the proper hrtimer_base_type.
62
 */
63
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
64
{
65 66

	.clock_base =
67
	{
68
		{
69 70
			.index = HRTIMER_BASE_MONOTONIC,
			.clockid = CLOCK_MONOTONIC,
71
			.get_time = &ktime_get,
72
			.resolution = KTIME_LOW_RES,
73
		},
T
Thomas Gleixner 已提交
74 75 76 77 78 79
		{
			.index = HRTIMER_BASE_REALTIME,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
			.resolution = KTIME_LOW_RES,
		},
80
		{
81 82
			.index = HRTIMER_BASE_BOOTTIME,
			.clockid = CLOCK_BOOTTIME,
83 84 85
			.get_time = &ktime_get_boottime,
			.resolution = KTIME_LOW_RES,
		},
86
	}
87 88
};

89
static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
90 91 92 93
	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
};
94 95 96 97 98 99 100

static inline int hrtimer_clockid_to_base(clockid_t clock_id)
{
	return hrtimer_clock_to_base_table[clock_id];
}


101 102 103 104
/*
 * Get the coarse grained time at the softirq based on xtime and
 * wall_to_monotonic.
 */
105
static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
106
{
107
	ktime_t xtim, mono, boot;
108
	struct timespec xts, tom, slp;
109

110
	get_xtime_and_monotonic_and_sleep_offset(&xts, &tom, &slp);
111

J
john stultz 已提交
112
	xtim = timespec_to_ktime(xts);
113 114
	mono = ktime_add(xtim, timespec_to_ktime(tom));
	boot = ktime_add(mono, timespec_to_ktime(slp));
115
	base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
116 117
	base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
	base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
118 119
}

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
138 139 140
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
141
{
142
	struct hrtimer_clock_base *base;
143 144 145 146

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
147
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
148 149 150
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
151
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
152 153 154 155 156
		}
		cpu_relax();
	}
}

157 158 159 160 161 162

/*
 * Get the preferred target CPU for NOHZ
 */
static int hrtimer_get_target(int this_cpu, int pinned)
{
163
#ifdef CONFIG_NO_HZ_COMMON
164 165
	if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
		return get_nohz_timer_target();
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
#endif
	return this_cpu;
}

/*
 * With HIGHRES=y we do not migrate the timer when it is expiring
 * before the next event on the target cpu because we cannot reprogram
 * the target cpu hardware and we would cause it to fire late.
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	ktime_t expires;

	if (!new_base->cpu_base->hres_active)
		return 0;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
#else
	return 0;
#endif
}

193 194 195
/*
 * Switch the timer base to the current CPU when possible.
 */
196
static inline struct hrtimer_clock_base *
197 198
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
199
{
200 201
	struct hrtimer_clock_base *new_base;
	struct hrtimer_cpu_base *new_cpu_base;
202 203
	int this_cpu = smp_processor_id();
	int cpu = hrtimer_get_target(this_cpu, pinned);
204
	int basenum = base->index;
205

206 207
again:
	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
208
	new_base = &new_cpu_base->clock_base[basenum];
209 210 211

	if (base != new_base) {
		/*
212
		 * We are trying to move timer to new_base.
213 214 215 216 217 218 219
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
220
		if (unlikely(hrtimer_callback_running(timer)))
221 222 223 224
			return base;

		/* See the comment in lock_timer_base() */
		timer->base = NULL;
225 226
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
227

228 229
		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
			cpu = this_cpu;
230 231
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
232 233
			timer->base = base;
			goto again;
234
		}
235 236 237 238 239 240 241
		timer->base = new_base;
	}
	return new_base;
}

#else /* CONFIG_SMP */

242
static inline struct hrtimer_clock_base *
243 244
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
245
	struct hrtimer_clock_base *base = timer->base;
246

247
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
248 249 250 251

	return base;
}

252
# define switch_hrtimer_base(t, b, p)	(b)
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
# ifndef CONFIG_KTIME_SCALAR
/**
 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 * @kt:		addend
 * @nsec:	the scalar nsec value to add
 *
 * Returns the sum of kt and nsec in ktime_t format
 */
ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_add(kt, tmp);
}
283 284

EXPORT_SYMBOL_GPL(ktime_add_ns);
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308

/**
 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
 * @kt:		minuend
 * @nsec:	the scalar nsec value to subtract
 *
 * Returns the subtraction of @nsec from @kt in ktime_t format
 */
ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_sub(kt, tmp);
}

EXPORT_SYMBOL_GPL(ktime_sub_ns);
309 310 311 312 313
# endif /* !CONFIG_KTIME_SCALAR */

/*
 * Divide a ktime value by a nanosecond value
 */
D
Davide Libenzi 已提交
314
u64 ktime_divns(const ktime_t kt, s64 div)
315
{
316
	u64 dclc;
317 318
	int sft = 0;

319
	dclc = ktime_to_ns(kt);
320 321 322 323 324 325 326 327
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	dclc >>= sft;
	do_div(dclc, (unsigned long) div);

D
Davide Libenzi 已提交
328
	return dclc;
329 330 331
}
#endif /* BITS_PER_LONG >= 64 */

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
	ktime_t res = ktime_add(lhs, rhs);

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

349 350
EXPORT_SYMBOL_GPL(ktime_add_safe);

351 352 353 354
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

355 356 357 358 359
static void *hrtimer_debug_hint(void *addr)
{
	return ((struct hrtimer *) addr)->function;
}

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
{
	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
419
	.debug_hint	= hrtimer_debug_hint,
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
454
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
455 456 457 458 459 460 461 462 463 464 465 466

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

static inline void debug_activate(struct hrtimer *timer)
{
	debug_hrtimer_activate(timer);
	trace_hrtimer_start(timer);
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
static inline int hrtimer_hres_active(void)
{
524
	return __this_cpu_read(hrtimer_bases.hres_active);
525 526 527 528 529 530 531
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
532 533
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
534 535 536
{
	int i;
	struct hrtimer_clock_base *base = cpu_base->clock_base;
537
	ktime_t expires, expires_next;
538

539
	expires_next.tv64 = KTIME_MAX;
540 541 542

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
		struct hrtimer *timer;
543
		struct timerqueue_node *next;
544

545 546
		next = timerqueue_getnext(&base->active);
		if (!next)
547
			continue;
548 549
		timer = container_of(next, struct hrtimer, node);

550
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
551 552 553 554 555 556 557
		/*
		 * clock_was_set() has changed base->offset so the
		 * result might be negative. Fix it up to prevent a
		 * false positive in clockevents_program_event()
		 */
		if (expires.tv64 < 0)
			expires.tv64 = 0;
558 559
		if (expires.tv64 < expires_next.tv64)
			expires_next = expires;
560 561
	}

562 563 564 565 566
	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
		return;

	cpu_base->expires_next.tv64 = expires_next.tv64;

567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
	if (cpu_base->expires_next.tv64 != KTIME_MAX)
		tick_program_event(cpu_base->expires_next, 1);
}

/*
 * Shared reprogramming for clock_realtime and clock_monotonic
 *
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
static int hrtimer_reprogram(struct hrtimer *timer,
			     struct hrtimer_clock_base *base)
{
583
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
584
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
585 586
	int res;

587
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
588

589 590 591
	/*
	 * When the callback is running, we do not reprogram the clock event
	 * device. The timer callback is either running on a different CPU or
592
	 * the callback is executed in the hrtimer_interrupt context. The
593 594 595 596 597 598
	 * reprogramming is handled either by the softirq, which called the
	 * callback or at the end of the hrtimer_interrupt.
	 */
	if (hrtimer_callback_running(timer))
		return 0;

599 600 601 602 603 604 605 606 607
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
	 * expiry time which is less than base->offset. Nothing wrong
	 * about that, just avoid to call into the tick code, which
	 * has now objections against negative expiry values.
	 */
	if (expires.tv64 < 0)
		return -ETIME;

608 609 610 611 612 613 614 615 616 617
	if (expires.tv64 >= cpu_base->expires_next.tv64)
		return 0;

	/*
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
	if (cpu_base->hang_detected)
618 619 620 621 622 623 624
		return 0;

	/*
	 * Clockevents returns -ETIME, when the event was in the past.
	 */
	res = tick_program_event(expires, 0);
	if (!IS_ERR_VALUE(res))
625
		cpu_base->expires_next = expires;
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
	return res;
}

/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

/*
 * When High resolution timers are active, try to reprogram. Note, that in case
 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
 * check happens. The timer gets enqueued into the rbtree. The reprogramming
 * and expiry check is done in the hrtimer_interrupt or in the softirq.
 */
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
645
					    struct hrtimer_clock_base *base)
646
{
647
	return base->cpu_base->hres_active && hrtimer_reprogram(timer, base);
648 649
}

650 651 652 653 654 655 656 657
static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
{
	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;

	return ktime_get_update_offsets(offs_real, offs_boot);
}

658 659 660 661 662 663 664 665 666 667 668 669 670
/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
	struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);

	if (!hrtimer_hres_active())
		return;

	raw_spin_lock(&base->lock);
671
	hrtimer_update_base(base);
672 673 674
	hrtimer_force_reprogram(base, 0);
	raw_spin_unlock(&base->lock);
}
675

676 677 678
/*
 * Switch to high resolution mode
 */
679
static int hrtimer_switch_to_hres(void)
680
{
681
	int i, cpu = smp_processor_id();
I
Ingo Molnar 已提交
682
	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
683 684 685
	unsigned long flags;

	if (base->hres_active)
686
		return 1;
687 688 689 690 691

	local_irq_save(flags);

	if (tick_init_highres()) {
		local_irq_restore(flags);
I
Ingo Molnar 已提交
692 693
		printk(KERN_WARNING "Could not switch to high resolution "
				    "mode on CPU %d\n", cpu);
694
		return 0;
695 696
	}
	base->hres_active = 1;
697 698
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
		base->clock_base[i].resolution = KTIME_HIGH_RES;
699 700 701 702 703

	tick_setup_sched_timer();
	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
	local_irq_restore(flags);
704
	return 1;
705 706
}

707 708 709 710 711 712 713 714 715 716 717 718 719
/*
 * Called from timekeeping code to reprogramm the hrtimer interrupt
 * device. If called from the timer interrupt context we defer it to
 * softirq context.
 */
void clock_was_set_delayed(void)
{
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);

	cpu_base->clock_was_set = 1;
	__raise_softirq_irqoff(HRTIMER_SOFTIRQ);
}

720 721 722 723
#else

static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
724
static inline int hrtimer_switch_to_hres(void) { return 0; }
725 726
static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
727
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
728
					    struct hrtimer_clock_base *base)
729 730 731 732
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
733
static inline void retrigger_next_event(void *arg) { }
734 735 736

#endif /* CONFIG_HIGH_RES_TIMERS */

737 738 739 740 741 742 743 744 745 746 747 748 749
/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
750
#ifdef CONFIG_HIGH_RES_TIMERS
751 752
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 1);
753 754
#endif
	timerfd_clock_was_set();
755 756 757 758 759 760 761 762 763 764 765 766
}

/*
 * During resume we might have to reprogram the high resolution timer
 * interrupt (on the local CPU):
 */
void hrtimers_resume(void)
{
	WARN_ONCE(!irqs_disabled(),
		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");

	retrigger_next_event(NULL);
767
	timerfd_clock_was_set();
768 769
}

770
static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
771
{
772
#ifdef CONFIG_TIMER_STATS
773 774
	if (timer->start_site)
		return;
775
	timer->start_site = __builtin_return_address(0);
776 777
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
778 779 780 781 782 783 784 785
#endif
}

static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
#endif
786
}
787 788 789 790 791 792 793 794

static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	if (likely(!timer_stats_active))
		return;
	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
				 timer->function, timer->start_comm, 0);
795
#endif
796
}
797

798
/*
799
 * Counterpart to lock_hrtimer_base above:
800 801 802 803
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
804
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
805 806 807 808 809
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
810
 * @now:	forward past this time
811 812 813
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
814
 * Returns the number of overruns.
815
 */
D
Davide Libenzi 已提交
816
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
817
{
D
Davide Libenzi 已提交
818
	u64 orun = 1;
819
	ktime_t delta;
820

821
	delta = ktime_sub(now, hrtimer_get_expires(timer));
822 823 824 825

	if (delta.tv64 < 0)
		return 0;

826 827 828
	if (interval.tv64 < timer->base->resolution.tv64)
		interval.tv64 = timer->base->resolution.tv64;

829
	if (unlikely(delta.tv64 >= interval.tv64)) {
830
		s64 incr = ktime_to_ns(interval);
831 832

		orun = ktime_divns(delta, incr);
833 834
		hrtimer_add_expires_ns(timer, incr * orun);
		if (hrtimer_get_expires_tv64(timer) > now.tv64)
835 836 837 838 839 840 841
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
842
	hrtimer_add_expires(timer, interval);
843 844 845

	return orun;
}
S
Stas Sergeev 已提交
846
EXPORT_SYMBOL_GPL(hrtimer_forward);
847 848 849 850 851 852

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
853 854
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
855
 */
856 857
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
858
{
859
	debug_activate(timer);
860

861
	timerqueue_add(&base->active, &timer->node);
862
	base->cpu_base->active_bases |= 1 << base->index;
863

864 865 866 867 868
	/*
	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
	 * state of a possibly running callback.
	 */
	timer->state |= HRTIMER_STATE_ENQUEUED;
869

870
	return (&timer->node == base->active.next);
871
}
872 873 874 875 876

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
877 878 879 880 881
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
882
 */
883
static void __remove_hrtimer(struct hrtimer *timer,
884
			     struct hrtimer_clock_base *base,
885
			     unsigned long newstate, int reprogram)
886
{
887
	struct timerqueue_node *next_timer;
888 889 890
	if (!(timer->state & HRTIMER_STATE_ENQUEUED))
		goto out;

891 892 893
	next_timer = timerqueue_getnext(&base->active);
	timerqueue_del(&base->active, &timer->node);
	if (&timer->node == next_timer) {
894 895 896 897 898 899 900 901 902
#ifdef CONFIG_HIGH_RES_TIMERS
		/* Reprogram the clock event device. if enabled */
		if (reprogram && hrtimer_hres_active()) {
			ktime_t expires;

			expires = ktime_sub(hrtimer_get_expires(timer),
					    base->offset);
			if (base->cpu_base->expires_next.tv64 == expires.tv64)
				hrtimer_force_reprogram(base->cpu_base, 1);
903
		}
904
#endif
905
	}
906 907
	if (!timerqueue_getnext(&base->active))
		base->cpu_base->active_bases &= ~(1 << base->index);
908
out:
909
	timer->state = newstate;
910 911 912 913 914 915
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
916
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
917
{
918
	if (hrtimer_is_queued(timer)) {
919
		unsigned long state;
920 921 922 923 924 925 926 927 928 929
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
930
		debug_deactivate(timer);
931
		timer_stats_hrtimer_clear_start_info(timer);
932
		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
933 934 935 936 937 938 939
		/*
		 * We must preserve the CALLBACK state flag here,
		 * otherwise we could move the timer base in
		 * switch_hrtimer_base.
		 */
		state = timer->state & HRTIMER_STATE_CALLBACK;
		__remove_hrtimer(timer, base, state, reprogram);
940 941 942 943 944
		return 1;
	}
	return 0;
}

945 946 947
int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode,
		int wakeup)
948
{
949
	struct hrtimer_clock_base *base, *new_base;
950
	unsigned long flags;
951
	int ret, leftmost;
952 953 954 955 956 957 958

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
	ret = remove_hrtimer(timer, base);

	/* Switch the timer base, if necessary: */
959
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
960

961
	if (mode & HRTIMER_MODE_REL) {
962
		tim = ktime_add_safe(tim, new_base->get_time());
963 964 965 966 967 968 969 970
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
971
		tim = ktime_add_safe(tim, base->resolution);
972 973
#endif
	}
974

975
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
976

977 978
	timer_stats_hrtimer_set_start_info(timer);

979 980
	leftmost = enqueue_hrtimer(timer, new_base);

981 982 983
	/*
	 * Only allow reprogramming if the new base is on this CPU.
	 * (it might still be on another CPU if the timer was pending)
984 985
	 *
	 * XXX send_remote_softirq() ?
986
	 */
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
	if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases)
		&& hrtimer_enqueue_reprogram(timer, new_base)) {
		if (wakeup) {
			/*
			 * We need to drop cpu_base->lock to avoid a
			 * lock ordering issue vs. rq->lock.
			 */
			raw_spin_unlock(&new_base->cpu_base->lock);
			raise_softirq_irqoff(HRTIMER_SOFTIRQ);
			local_irq_restore(flags);
			return ret;
		} else {
			__raise_softirq_irqoff(HRTIMER_SOFTIRQ);
		}
	}
1002 1003 1004 1005 1006

	unlock_hrtimer_base(timer, &flags);

	return ret;
}
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode)
{
	return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
}
1024 1025 1026
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

/**
T
Thomas Gleixner 已提交
1027
 * hrtimer_start - (re)start an hrtimer on the current CPU
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
{
1039
	return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1040
}
1041
EXPORT_SYMBOL_GPL(hrtimer_start);
1042

1043

1044 1045 1046 1047 1048 1049 1050 1051
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
1052
 *    cannot be stopped
1053 1054 1055
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
1056
	struct hrtimer_clock_base *base;
1057 1058 1059 1060 1061
	unsigned long flags;
	int ret = -1;

	base = lock_hrtimer_base(timer, &flags);

1062
	if (!hrtimer_callback_running(timer))
1063 1064 1065 1066 1067 1068 1069
		ret = remove_hrtimer(timer, base);

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1070
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1087
		cpu_relax();
1088 1089
	}
}
1090
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
	unsigned long flags;
	ktime_t rem;

1101
	lock_hrtimer_base(timer, &flags);
1102
	rem = hrtimer_expires_remaining(timer);
1103 1104 1105 1106
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1107
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1108

1109
#ifdef CONFIG_NO_HZ_COMMON
1110 1111 1112 1113 1114 1115 1116 1117
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
 * Returns the delta to the next expiry event or KTIME_MAX if no timer
 * is pending.
 */
ktime_t hrtimer_get_next_event(void)
{
1118 1119
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base = cpu_base->clock_base;
1120 1121 1122 1123
	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
	unsigned long flags;
	int i;

1124
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1125

1126 1127 1128
	if (!hrtimer_hres_active()) {
		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
			struct hrtimer *timer;
1129
			struct timerqueue_node *next;
1130

1131 1132
			next = timerqueue_getnext(&base->active);
			if (!next)
1133
				continue;
1134

1135
			timer = container_of(next, struct hrtimer, node);
1136
			delta.tv64 = hrtimer_get_expires_tv64(timer);
1137 1138 1139 1140
			delta = ktime_sub(delta, base->get_time());
			if (delta.tv64 < mindelta.tv64)
				mindelta.tv64 = delta.tv64;
		}
1141
	}
1142

1143
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1144

1145 1146 1147 1148 1149 1150
	if (mindelta.tv64 < 0)
		mindelta.tv64 = 0;
	return mindelta;
}
#endif

1151 1152
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1153
{
1154
	struct hrtimer_cpu_base *cpu_base;
1155
	int base;
1156

1157 1158
	memset(timer, 0, sizeof(struct hrtimer));

1159
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1160

1161
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1162 1163
		clock_id = CLOCK_MONOTONIC;

1164 1165
	base = hrtimer_clockid_to_base(clock_id);
	timer->base = &cpu_base->clock_base[base];
1166
	timerqueue_init(&timer->node);
1167 1168 1169 1170 1171 1172

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1173
}
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1184
	debug_init(timer, clock_id, mode);
1185 1186
	__hrtimer_init(timer, clock_id, mode);
}
1187
EXPORT_SYMBOL_GPL(hrtimer_init);
1188 1189 1190 1191 1192 1193

/**
 * hrtimer_get_res - get the timer resolution for a clock
 * @which_clock: which clock to query
 * @tp:		 pointer to timespec variable to store the resolution
 *
1194 1195
 * Store the resolution of the clock selected by @which_clock in the
 * variable pointed to by @tp.
1196 1197 1198
 */
int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
{
1199
	struct hrtimer_cpu_base *cpu_base;
1200
	int base = hrtimer_clockid_to_base(which_clock);
1201

1202
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1203
	*tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1204 1205 1206

	return 0;
}
1207
EXPORT_SYMBOL_GPL(hrtimer_get_res);
1208

1209
static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1210 1211 1212 1213 1214 1215
{
	struct hrtimer_clock_base *base = timer->base;
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1216 1217
	WARN_ON(!irqs_disabled());

1218
	debug_deactivate(timer);
1219 1220 1221
	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
	timer_stats_account_hrtimer(timer);
	fn = timer->function;
1222 1223 1224 1225 1226 1227

	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
1228
	raw_spin_unlock(&cpu_base->lock);
1229
	trace_hrtimer_expire_entry(timer, now);
1230
	restart = fn(timer);
1231
	trace_hrtimer_expire_exit(timer);
1232
	raw_spin_lock(&cpu_base->lock);
1233 1234

	/*
T
Thomas Gleixner 已提交
1235 1236 1237
	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
	 * we do not reprogramm the event hardware. Happens either in
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1238 1239 1240
	 */
	if (restart != HRTIMER_NORESTART) {
		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1241
		enqueue_hrtimer(timer, base);
1242
	}
1243 1244 1245

	WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));

1246 1247 1248
	timer->state &= ~HRTIMER_STATE_CALLBACK;
}

1249 1250 1251 1252 1253 1254 1255 1256 1257
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1258 1259
	ktime_t expires_next, now, entry_time, delta;
	int i, retries = 0;
1260 1261 1262 1263 1264

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

1265
	raw_spin_lock(&cpu_base->lock);
1266
	entry_time = now = hrtimer_update_base(cpu_base);
1267
retry:
1268
	expires_next.tv64 = KTIME_MAX;
1269 1270 1271 1272 1273 1274 1275 1276 1277
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
	cpu_base->expires_next.tv64 = KTIME_MAX;

1278
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1279
		struct hrtimer_clock_base *base;
1280
		struct timerqueue_node *node;
1281 1282 1283 1284
		ktime_t basenow;

		if (!(cpu_base->active_bases & (1 << i)))
			continue;
1285

1286
		base = cpu_base->clock_base + i;
1287 1288
		basenow = ktime_add(now, base->offset);

1289
		while ((node = timerqueue_getnext(&base->active))) {
1290 1291
			struct hrtimer *timer;

1292
			timer = container_of(node, struct hrtimer, node);
1293

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */

			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1308 1309
				ktime_t expires;

1310
				expires = ktime_sub(hrtimer_get_expires(timer),
1311 1312 1313 1314 1315 1316
						    base->offset);
				if (expires.tv64 < expires_next.tv64)
					expires_next = expires;
				break;
			}

1317
			__run_hrtimer(timer, &basenow);
1318 1319 1320
		}
	}

1321 1322 1323 1324
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1325
	cpu_base->expires_next = expires_next;
1326
	raw_spin_unlock(&cpu_base->lock);
1327 1328

	/* Reprogramming necessary ? */
1329 1330 1331 1332
	if (expires_next.tv64 == KTIME_MAX ||
	    !tick_program_event(expires_next, 0)) {
		cpu_base->hang_detected = 0;
		return;
1333
	}
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
1344 1345 1346
	 *
	 * Acquire base lock for updating the offsets and retrieving
	 * the current time.
1347
	 */
1348
	raw_spin_lock(&cpu_base->lock);
1349
	now = hrtimer_update_base(cpu_base);
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
1361
	raw_spin_unlock(&cpu_base->lock);
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
	delta = ktime_sub(now, entry_time);
	if (delta.tv64 > cpu_base->max_hang_time.tv64)
		cpu_base->max_hang_time = delta;
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
	if (delta.tv64 > 100 * NSEC_PER_MSEC)
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1376 1377
}

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
/*
 * local version of hrtimer_peek_ahead_timers() called with interrupts
 * disabled.
 */
static void __hrtimer_peek_ahead_timers(void)
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

	td = &__get_cpu_var(tick_cpu_device);
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
/**
 * hrtimer_peek_ahead_timers -- run soft-expired timers now
 *
 * hrtimer_peek_ahead_timers will peek at the timer queue of
 * the current cpu and check if there are any timers for which
 * the soft expires time has passed. If any such timers exist,
 * they are run immediately and then removed from the timer queue.
 *
 */
void hrtimer_peek_ahead_timers(void)
{
1405
	unsigned long flags;
1406

1407
	local_irq_save(flags);
1408
	__hrtimer_peek_ahead_timers();
1409 1410 1411
	local_irq_restore(flags);
}

1412 1413
static void run_hrtimer_softirq(struct softirq_action *h)
{
1414 1415 1416 1417 1418 1419 1420
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);

	if (cpu_base->clock_was_set) {
		cpu_base->clock_was_set = 0;
		clock_was_set();
	}

1421 1422 1423
	hrtimer_peek_ahead_timers();
}

1424 1425 1426 1427 1428
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1429

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
/*
 * Called from timer softirq every jiffy, expire hrtimers:
 *
 * For HRT its the fall back code to run the softirq in the timer
 * softirq context in case the hrtimer initialization failed or has
 * not been done yet.
 */
void hrtimer_run_pending(void)
{
	if (hrtimer_hres_active())
		return;
1441

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
	/*
	 * This _is_ ugly: We have to check in the softirq context,
	 * whether we can switch to highres and / or nohz mode. The
	 * clocksource switch happens in the timer interrupt with
	 * xtime_lock held. Notification from there only sets the
	 * check bit in the tick_oneshot code, otherwise we might
	 * deadlock vs. xtime_lock.
	 */
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
		hrtimer_switch_to_hres();
1452 1453
}

1454
/*
1455
 * Called from hardirq context every jiffy
1456
 */
1457
void hrtimer_run_queues(void)
1458
{
1459
	struct timerqueue_node *node;
1460 1461 1462
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	int index, gettime = 1;
1463

1464
	if (hrtimer_hres_active())
1465 1466
		return;

1467 1468
	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
		base = &cpu_base->clock_base[index];
1469
		if (!timerqueue_getnext(&base->active))
1470
			continue;
1471

1472
		if (gettime) {
1473 1474
			hrtimer_get_softirq_time(cpu_base);
			gettime = 0;
1475
		}
1476

1477
		raw_spin_lock(&cpu_base->lock);
1478

1479
		while ((node = timerqueue_getnext(&base->active))) {
1480
			struct hrtimer *timer;
1481

1482
			timer = container_of(node, struct hrtimer, node);
1483 1484
			if (base->softirq_time.tv64 <=
					hrtimer_get_expires_tv64(timer))
1485 1486
				break;

1487
			__run_hrtimer(timer, &base->softirq_time);
1488
		}
1489
		raw_spin_unlock(&cpu_base->lock);
1490
	}
1491 1492
}

1493 1494 1495
/*
 * Sleep related functions:
 */
1496
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1509
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1510 1511 1512 1513
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1514
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1515

1516
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1517
{
1518
	hrtimer_init_sleeper(t, current);
1519

1520 1521
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1522
		hrtimer_start_expires(&t->timer, mode);
P
Peter Zijlstra 已提交
1523 1524
		if (!hrtimer_active(&t->timer))
			t->task = NULL;
1525

1526 1527
		if (likely(t->task))
			schedule();
1528

1529
		hrtimer_cancel(&t->timer);
1530
		mode = HRTIMER_MODE_ABS;
1531 1532

	} while (t->task && !signal_pending(current));
1533

1534 1535
	__set_current_state(TASK_RUNNING);

1536
	return t->task == NULL;
1537 1538
}

1539 1540 1541 1542 1543
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1544
	rem = hrtimer_expires_remaining(timer);
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1555
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1556
{
1557
	struct hrtimer_sleeper t;
1558
	struct timespec __user  *rmtp;
1559
	int ret = 0;
1560

1561
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1562
				HRTIMER_MODE_ABS);
1563
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1564

1565
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1566
		goto out;
1567

1568
	rmtp = restart->nanosleep.rmtp;
1569
	if (rmtp) {
1570
		ret = update_rmtp(&t.timer, rmtp);
1571
		if (ret <= 0)
1572
			goto out;
1573
	}
1574 1575

	/* The other values in restart are already filled in */
1576 1577 1578 1579
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1580 1581
}

1582
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1583 1584 1585
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1586
	struct hrtimer_sleeper t;
1587
	int ret = 0;
1588 1589 1590 1591 1592
	unsigned long slack;

	slack = current->timer_slack_ns;
	if (rt_task(current))
		slack = 0;
1593

1594
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1595
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1596
	if (do_nanosleep(&t, mode))
1597
		goto out;
1598

1599
	/* Absolute timers do not update the rmtp value and restart: */
1600 1601 1602 1603
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1604

1605
	if (rmtp) {
1606
		ret = update_rmtp(&t.timer, rmtp);
1607
		if (ret <= 0)
1608
			goto out;
1609
	}
1610 1611

	restart = &current_thread_info()->restart_block;
1612
	restart->fn = hrtimer_nanosleep_restart;
1613
	restart->nanosleep.clockid = t.timer.base->clockid;
1614
	restart->nanosleep.rmtp = rmtp;
1615
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1616

1617 1618 1619 1620
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1621 1622
}

1623 1624
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1625
{
1626
	struct timespec tu;
1627 1628 1629 1630 1631 1632 1633

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1634
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1635 1636
}

1637 1638 1639
/*
 * Functions related to boot-time initialization:
 */
R
Randy Dunlap 已提交
1640
static void __cpuinit init_hrtimers_cpu(int cpu)
1641
{
1642
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1643 1644
	int i;

1645
	raw_spin_lock_init(&cpu_base->lock);
1646

1647
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1648
		cpu_base->clock_base[i].cpu_base = cpu_base;
1649 1650
		timerqueue_init_head(&cpu_base->clock_base[i].active);
	}
1651

1652
	hrtimer_init_hres(cpu_base);
1653 1654 1655 1656
}

#ifdef CONFIG_HOTPLUG_CPU

1657
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1658
				struct hrtimer_clock_base *new_base)
1659 1660
{
	struct hrtimer *timer;
1661
	struct timerqueue_node *node;
1662

1663 1664
	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
1665
		BUG_ON(hrtimer_callback_running(timer));
1666
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1667 1668 1669 1670 1671 1672 1673

		/*
		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1674
		timer->base = new_base;
1675
		/*
T
Thomas Gleixner 已提交
1676 1677 1678 1679 1680 1681
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1682
		 */
1683
		enqueue_hrtimer(timer, new_base);
1684

T
Thomas Gleixner 已提交
1685 1686
		/* Clear the migration state bit */
		timer->state &= ~HRTIMER_STATE_MIGRATE;
1687 1688 1689
	}
}

1690
static void migrate_hrtimers(int scpu)
1691
{
1692
	struct hrtimer_cpu_base *old_base, *new_base;
1693
	int i;
1694

1695 1696
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1697 1698 1699 1700

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
	new_base = &__get_cpu_var(hrtimer_bases);
1701 1702 1703 1704
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1705 1706
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1707

1708
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1709
		migrate_hrtimer_list(&old_base->clock_base[i],
1710
				     &new_base->clock_base[i]);
1711 1712
	}

1713 1714
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1715

1716 1717 1718
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1719
}
1720

1721 1722
#endif /* CONFIG_HOTPLUG_CPU */

1723
static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1724 1725
					unsigned long action, void *hcpu)
{
1726
	int scpu = (long)hcpu;
1727 1728 1729 1730

	switch (action) {

	case CPU_UP_PREPARE:
1731
	case CPU_UP_PREPARE_FROZEN:
1732
		init_hrtimers_cpu(scpu);
1733 1734 1735
		break;

#ifdef CONFIG_HOTPLUG_CPU
1736 1737 1738 1739
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
		break;
1740
	case CPU_DEAD:
1741
	case CPU_DEAD_FROZEN:
1742
	{
1743
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1744
		migrate_hrtimers(scpu);
1745
		break;
1746
	}
1747 1748 1749 1750 1751 1752 1753 1754 1755
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1756
static struct notifier_block __cpuinitdata hrtimers_nb = {
1757 1758 1759 1760 1761 1762 1763 1764
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
1765 1766 1767
#ifdef CONFIG_HIGH_RES_TIMERS
	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
#endif
1768 1769
}

1770
/**
1771
 * schedule_hrtimeout_range_clock - sleep until timeout
1772
 * @expires:	timeout value (ktime_t)
1773
 * @delta:	slack in expires timeout (ktime_t)
1774
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1775
 * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1776
 */
1777 1778 1779
int __sched
schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
			       const enum hrtimer_mode mode, int clock)
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
	if (expires && !expires->tv64) {
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
N
Namhyung Kim 已提交
1793
	 * A NULL parameter means "infinite"
1794 1795 1796 1797 1798 1799 1800
	 */
	if (!expires) {
		schedule();
		__set_current_state(TASK_RUNNING);
		return -EINTR;
	}

1801
	hrtimer_init_on_stack(&t.timer, clock, mode);
1802
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1803 1804 1805

	hrtimer_init_sleeper(&t, current);

1806
	hrtimer_start_expires(&t.timer, mode);
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
	if (!hrtimer_active(&t.timer))
		t.task = NULL;

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1884
EXPORT_SYMBOL_GPL(schedule_hrtimeout);