tick-sched.c 31.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 *  linux/kernel/time/tick-sched.c
 *
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
 *
 *  No idle tick implementation for low and high resolution timers
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
P
Pavel Machek 已提交
12
 *  Distribute under GPLv2.
13 14 15 16 17 18 19 20 21
 */
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/hrtimer.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/percpu.h>
#include <linux/profile.h>
#include <linux/sched.h>
22
#include <linux/module.h>
23
#include <linux/irq_work.h>
24
#include <linux/posix-timers.h>
25
#include <linux/context_tracking.h>
26

27 28
#include <asm/irq_regs.h>

29 30
#include "tick-internal.h"

F
Frederic Weisbecker 已提交
31 32
#include <trace/events/timer.h>

33 34 35
/*
 * Per cpu nohz control structure
 */
36
static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
37

38 39 40 41 42
struct tick_sched *tick_get_tick_sched(int cpu)
{
	return &per_cpu(tick_cpu_sched, cpu);
}

43 44 45 46 47 48
#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
/*
 * The time, when the last jiffy update happened. Protected by jiffies_lock.
 */
static ktime_t last_jiffies_update;

49 50 51 52 53 54 55 56
/*
 * Must be called with interrupts disabled !
 */
static void tick_do_update_jiffies64(ktime_t now)
{
	unsigned long ticks = 0;
	ktime_t delta;

57
	/*
58
	 * Do a quick check without holding jiffies_lock:
59 60 61 62 63
	 */
	delta = ktime_sub(now, last_jiffies_update);
	if (delta.tv64 < tick_period.tv64)
		return;

64 65
	/* Reevalute with jiffies_lock held */
	write_seqlock(&jiffies_lock);
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

	delta = ktime_sub(now, last_jiffies_update);
	if (delta.tv64 >= tick_period.tv64) {

		delta = ktime_sub(delta, tick_period);
		last_jiffies_update = ktime_add(last_jiffies_update,
						tick_period);

		/* Slow path for long timeouts */
		if (unlikely(delta.tv64 >= tick_period.tv64)) {
			s64 incr = ktime_to_ns(tick_period);

			ticks = ktime_divns(delta, incr);

			last_jiffies_update = ktime_add_ns(last_jiffies_update,
							   incr * ticks);
		}
		do_timer(++ticks);
84 85 86

		/* Keep the tick_next_period variable up to date */
		tick_next_period = ktime_add(last_jiffies_update, tick_period);
87 88 89
	} else {
		write_sequnlock(&jiffies_lock);
		return;
90
	}
91
	write_sequnlock(&jiffies_lock);
92
	update_wall_time();
93 94 95 96 97 98 99 100 101
}

/*
 * Initialize and return retrieve the jiffies update.
 */
static ktime_t tick_init_jiffy_update(void)
{
	ktime_t period;

102
	write_seqlock(&jiffies_lock);
103 104 105 106
	/* Did we start the jiffies update yet ? */
	if (last_jiffies_update.tv64 == 0)
		last_jiffies_update = tick_next_period;
	period = last_jiffies_update;
107
	write_sequnlock(&jiffies_lock);
108 109 110
	return period;
}

111 112 113 114 115

static void tick_sched_do_timer(ktime_t now)
{
	int cpu = smp_processor_id();

116
#ifdef CONFIG_NO_HZ_COMMON
117 118 119 120 121
	/*
	 * Check if the do_timer duty was dropped. We don't care about
	 * concurrency: This happens only when the cpu in charge went
	 * into a long sleep. If two cpus happen to assign themself to
	 * this duty, then the jiffies update is still serialized by
122
	 * jiffies_lock.
123
	 */
124
	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
125
	    && !tick_nohz_full_cpu(cpu))
126 127 128 129 130 131 132 133
		tick_do_timer_cpu = cpu;
#endif

	/* Check, if the jiffies need an update */
	if (tick_do_timer_cpu == cpu)
		tick_do_update_jiffies64(now);
}

134 135
static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
{
136
#ifdef CONFIG_NO_HZ_COMMON
137 138 139 140 141 142 143 144 145
	/*
	 * When we are idle and the tick is stopped, we have to touch
	 * the watchdog as we might not schedule for a really long
	 * time. This happens on complete idle SMP systems while
	 * waiting on the login prompt. We also increment the "start of
	 * idle" jiffy stamp so the idle accounting adjustment we do
	 * when we go busy again does not account too much ticks.
	 */
	if (ts->tick_stopped) {
146
		touch_softlockup_watchdog_sched();
147 148 149
		if (is_idle_task(current))
			ts->idle_jiffies++;
	}
150
#endif
151 152 153
	update_process_times(user_mode(regs));
	profile_tick(CPU_PROFILING);
}
154
#endif
155

156
#ifdef CONFIG_NO_HZ_FULL
157
cpumask_var_t tick_nohz_full_mask;
158
cpumask_var_t housekeeping_mask;
159
bool tick_nohz_full_running;
160
static atomic_t tick_dep_mask;
161

162
static bool check_tick_dependency(atomic_t *dep)
163
{
164 165 166
	int val = atomic_read(dep);

	if (val & TICK_DEP_MASK_POSIX_TIMER) {
167
		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
168
		return true;
169 170
	}

171
	if (val & TICK_DEP_MASK_PERF_EVENTS) {
172
		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
173
		return true;
174 175
	}

176
	if (val & TICK_DEP_MASK_SCHED) {
177
		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
178
		return true;
179 180
	}

181
	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
182
		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
183 184 185 186
		return true;
	}

	return false;
187 188 189
}

static bool can_stop_full_tick(struct tick_sched *ts)
190 191 192
{
	WARN_ON_ONCE(!irqs_disabled());

193
	if (check_tick_dependency(&tick_dep_mask))
194 195
		return false;

196
	if (check_tick_dependency(&ts->tick_dep_mask))
197 198
		return false;

199
	if (check_tick_dependency(&current->tick_dep_mask))
200 201
		return false;

202
	if (check_tick_dependency(&current->signal->tick_dep_mask))
203 204
		return false;

205 206 207
	return true;
}

208
static void nohz_full_kick_func(struct irq_work *work)
209
{
210
	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
211 212 213
}

static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
214
	.func = nohz_full_kick_func,
215 216
};

217 218 219 220 221 222
/*
 * Kick this CPU if it's full dynticks in order to force it to
 * re-evaluate its dependency on the tick and restart it if necessary.
 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
 * is NMI safe.
 */
223
static void tick_nohz_full_kick(void)
224 225 226 227
{
	if (!tick_nohz_full_cpu(smp_processor_id()))
		return;

228
	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
229 230
}

231
/*
232
 * Kick the CPU if it's full dynticks in order to force it to
233 234
 * re-evaluate its dependency on the tick and restart it if necessary.
 */
235
void tick_nohz_full_kick_cpu(int cpu)
236
{
237 238 239 240
	if (!tick_nohz_full_cpu(cpu))
		return;

	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
241 242 243 244 245 246
}

/*
 * Kick all full dynticks CPUs in order to force these to re-evaluate
 * their dependency on the tick and restart it if necessary.
 */
247
static void tick_nohz_full_kick_all(void)
248
{
249 250
	int cpu;

251
	if (!tick_nohz_full_running)
252 253 254
		return;

	preempt_disable();
255 256
	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
		tick_nohz_full_kick_cpu(cpu);
257 258 259
	preempt_enable();
}

260
static void tick_nohz_dep_set_all(atomic_t *dep,
261 262
				  enum tick_dep_bits bit)
{
263
	int prev;
264

265
	prev = atomic_fetch_or(dep, BIT(bit));
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
	if (!prev)
		tick_nohz_full_kick_all();
}

/*
 * Set a global tick dependency. Used by perf events that rely on freq and
 * by unstable clock.
 */
void tick_nohz_dep_set(enum tick_dep_bits bit)
{
	tick_nohz_dep_set_all(&tick_dep_mask, bit);
}

void tick_nohz_dep_clear(enum tick_dep_bits bit)
{
281
	atomic_andnot(BIT(bit), &tick_dep_mask);
282 283 284 285 286 287 288 289
}

/*
 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
 * manage events throttling.
 */
void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
{
290
	int prev;
291 292 293 294
	struct tick_sched *ts;

	ts = per_cpu_ptr(&tick_cpu_sched, cpu);

295
	prev = atomic_fetch_or(&ts->tick_dep_mask, BIT(bit));
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
	if (!prev) {
		preempt_disable();
		/* Perf needs local kick that is NMI safe */
		if (cpu == smp_processor_id()) {
			tick_nohz_full_kick();
		} else {
			/* Remote irq work not NMI-safe */
			if (!WARN_ON_ONCE(in_nmi()))
				tick_nohz_full_kick_cpu(cpu);
		}
		preempt_enable();
	}
}

void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
{
	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);

314
	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
}

/*
 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
 * per task timers.
 */
void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
{
	/*
	 * We could optimize this with just kicking the target running the task
	 * if that noise matters for nohz full users.
	 */
	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
}

void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
{
332
	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
333 334 335 336 337 338 339 340 341 342 343 344 345
}

/*
 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
 * per process timers.
 */
void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
{
	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
}

void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
{
346
	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
347 348
}

349 350 351 352 353
/*
 * Re-evaluate the need for the tick as we switch the current task.
 * It might need the tick due to per task/process properties:
 * perf events, posix cpu timers, ...
 */
354
void __tick_nohz_task_switch(void)
355 356
{
	unsigned long flags;
357
	struct tick_sched *ts;
358 359 360

	local_irq_save(flags);

361 362 363
	if (!tick_nohz_full_cpu(smp_processor_id()))
		goto out;

364
	ts = this_cpu_ptr(&tick_cpu_sched);
365

366
	if (ts->tick_stopped) {
367 368
		if (atomic_read(&current->tick_dep_mask) ||
		    atomic_read(&current->signal->tick_dep_mask))
369 370
			tick_nohz_full_kick();
	}
371
out:
372 373 374
	local_irq_restore(flags);
}

375
/* Parse the boot-time nohz CPU list from the kernel parameters. */
376
static int __init tick_nohz_full_setup(char *str)
377
{
378 379
	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
380
		pr_warn("NO_HZ: Incorrect nohz_full cpumask\n");
381
		free_bootmem_cpumask_var(tick_nohz_full_mask);
382 383
		return 1;
	}
384
	tick_nohz_full_running = true;
385

386 387
	return 1;
}
388
__setup("nohz_full=", tick_nohz_full_setup);
389

390
static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
391 392
				       unsigned long action,
				       void *hcpu)
393 394 395 396 397 398
{
	unsigned int cpu = (unsigned long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		/*
399 400 401
		 * The boot CPU handles housekeeping duty (unbound timers,
		 * workqueues, timekeeping, ...) on behalf of full dynticks
		 * CPUs. It must remain online when nohz full is enabled.
402
		 */
403
		if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
404
			return NOTIFY_BAD;
405 406 407 408 409
		break;
	}
	return NOTIFY_OK;
}

410 411 412 413 414
static int tick_nohz_init_all(void)
{
	int err = -1;

#ifdef CONFIG_NO_HZ_FULL_ALL
415
	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
416
		WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
417 418
		return err;
	}
419
	err = 0;
420 421
	cpumask_setall(tick_nohz_full_mask);
	tick_nohz_full_running = true;
422 423 424 425
#endif
	return err;
}

426
void __init tick_nohz_init(void)
427
{
428 429
	int cpu;

430
	if (!tick_nohz_full_running) {
431 432 433
		if (tick_nohz_init_all() < 0)
			return;
	}
434

435 436 437 438 439 440 441
	if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
		WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
		cpumask_clear(tick_nohz_full_mask);
		tick_nohz_full_running = false;
		return;
	}

442 443 444 445 446 447
	/*
	 * Full dynticks uses irq work to drive the tick rescheduling on safe
	 * locking contexts. But then we need irq work to raise its own
	 * interrupts to avoid circular dependency on the tick
	 */
	if (!arch_irq_work_has_interrupt()) {
448
		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
449 450 451 452 453 454
		cpumask_clear(tick_nohz_full_mask);
		cpumask_copy(housekeeping_mask, cpu_possible_mask);
		tick_nohz_full_running = false;
		return;
	}

455 456 457
	cpu = smp_processor_id();

	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
458 459
		pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
			cpu);
460 461 462 463 464 465
		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
	}

	cpumask_andnot(housekeeping_mask,
		       cpu_possible_mask, tick_nohz_full_mask);

466
	for_each_cpu(cpu, tick_nohz_full_mask)
467 468
		context_tracking_cpu_set(cpu);

469
	cpu_notifier(tick_nohz_cpu_down_callback, 0);
470 471
	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
		cpumask_pr_args(tick_nohz_full_mask));
472 473 474 475 476 477

	/*
	 * We need at least one CPU to handle housekeeping work such
	 * as timekeeping, unbound timers, workqueues, ...
	 */
	WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
478 479 480
}
#endif

481 482 483
/*
 * NOHZ - aka dynamic tick functionality
 */
484
#ifdef CONFIG_NO_HZ_COMMON
485 486 487
/*
 * NO HZ enabled ?
 */
488
bool tick_nohz_enabled __read_mostly  = true;
489
unsigned long tick_nohz_active  __read_mostly;
490 491 492 493 494
/*
 * Enable / Disable tickless mode
 */
static int __init setup_tick_nohz(char *str)
{
495
	return (kstrtobool(str, &tick_nohz_enabled) == 0);
496 497 498 499
}

__setup("nohz=", setup_tick_nohz);

500 501 502 503 504
int tick_nohz_tick_stopped(void)
{
	return __this_cpu_read(tick_cpu_sched.tick_stopped);
}

505 506 507 508 509 510 511 512 513 514
/**
 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 *
 * Called from interrupt entry when the CPU was idle
 *
 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 * value. We do this unconditionally on any cpu, as we don't know whether the
 * cpu, which has the update task assigned is in a long sleep.
 */
515
static void tick_nohz_update_jiffies(ktime_t now)
516 517 518
{
	unsigned long flags;

519
	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
520 521 522 523

	local_irq_save(flags);
	tick_do_update_jiffies64(now);
	local_irq_restore(flags);
524

525
	touch_softlockup_watchdog_sched();
526 527
}

528 529 530
/*
 * Updates the per cpu time idle statistics counters
 */
531
static void
532
update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
533
{
534
	ktime_t delta;
535

536 537
	if (ts->idle_active) {
		delta = ktime_sub(now, ts->idle_entrytime);
538
		if (nr_iowait_cpu(cpu) > 0)
539
			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
540 541
		else
			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
542
		ts->idle_entrytime = now;
543
	}
544

545
	if (last_update_time)
546 547
		*last_update_time = ktime_to_us(now);

548 549
}

550
static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
551
{
552
	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
553
	ts->idle_active = 0;
554

555
	sched_clock_idle_wakeup_event(0);
556 557
}

558
static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
559
{
560
	ktime_t now = ktime_get();
561

562 563
	ts->idle_entrytime = now;
	ts->idle_active = 1;
564
	sched_clock_idle_sleep_event();
565 566 567
	return now;
}

568 569 570
/**
 * get_cpu_idle_time_us - get the total idle time of a cpu
 * @cpu: CPU number to query
571 572
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
573 574
 *
 * Return the cummulative idle time (since boot) for a given
575
 * CPU, in microseconds.
576 577 578 579 580 581
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
582 583 584
u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
585
	ktime_t now, idle;
586

587
	if (!tick_nohz_active)
588 589
		return -1;

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		idle = ts->idle_sleeptime;
	} else {
		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);

			idle = ktime_add(ts->idle_sleeptime, delta);
		} else {
			idle = ts->idle_sleeptime;
		}
	}

	return ktime_to_us(idle);
605

606
}
607
EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
608

609
/**
610 611
 * get_cpu_iowait_time_us - get the total iowait time of a cpu
 * @cpu: CPU number to query
612 613
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
614 615 616 617 618 619 620 621 622 623 624 625
 *
 * Return the cummulative iowait time (since boot) for a given
 * CPU, in microseconds.
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
626
	ktime_t now, iowait;
627

628
	if (!tick_nohz_active)
629 630
		return -1;

631 632 633 634 635 636 637
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		iowait = ts->iowait_sleeptime;
	} else {
		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
638

639 640 641 642 643
			iowait = ktime_add(ts->iowait_sleeptime, delta);
		} else {
			iowait = ts->iowait_sleeptime;
		}
	}
644

645
	return ktime_to_us(iowait);
646 647 648
}
EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);

649 650 651 652 653 654 655 656 657 658 659 660 661 662
static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
{
	hrtimer_cancel(&ts->sched_timer);
	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);

	/* Forward the time to expire in the future */
	hrtimer_forward(&ts->sched_timer, now, tick_period);

	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
	else
		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
}

663 664
static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
					 ktime_t now, int cpu)
665
{
666
	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
667 668 669
	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
	unsigned long seq, basejiff;
	ktime_t	tick;
670

671 672
	/* Read jiffies and the time when jiffies were updated last */
	do {
673
		seq = read_seqbegin(&jiffies_lock);
674 675
		basemono = last_jiffies_update.tv64;
		basejiff = jiffies;
676
	} while (read_seqretry(&jiffies_lock, seq));
677
	ts->last_jiffies = basejiff;
678

679
	if (rcu_needs_cpu(basemono, &next_rcu) ||
680
	    arch_needs_cpu() || irq_work_needs_cpu()) {
681
		next_tick = basemono + TICK_NSEC;
682
	} else {
683 684 685 686 687 688 689 690 691 692 693
		/*
		 * Get the next pending timer. If high resolution
		 * timers are enabled this only takes the timer wheel
		 * timers into account. If high resolution timers are
		 * disabled this also looks at the next expiring
		 * hrtimer.
		 */
		next_tmr = get_next_timer_interrupt(basejiff, basemono);
		ts->next_timer = next_tmr;
		/* Take the next rcu event into account */
		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
694
	}
695

696 697
	/*
	 * If the tick is due in the next period, keep it ticking or
698
	 * force prod the timer.
699 700 701 702
	 */
	delta = next_tick - basemono;
	if (delta <= (u64)TICK_NSEC) {
		tick.tv64 = 0;
703 704 705 706
		/*
		 * We've not stopped the tick yet, and there's a timer in the
		 * next period, so no point in stopping it either, bail.
		 */
T
Thomas Gleixner 已提交
707 708
		if (!ts->tick_stopped)
			goto out;
709 710 711 712 713 714 715 716 717 718 719 720 721

		/*
		 * If, OTOH, we did stop it, but there's a pending (expired)
		 * timer reprogram the timer hardware to fire now.
		 *
		 * We will not restart the tick proper, just prod the timer
		 * hardware into firing an interrupt to process the pending
		 * timers. Just like tick_irq_exit() will not restart the tick
		 * for 'normal' interrupts.
		 *
		 * Only once we exit the idle loop will we re-enable the tick,
		 * see tick_nohz_idle_exit().
		 */
722
		if (delta == 0) {
T
Thomas Gleixner 已提交
723 724 725 726 727
			tick_nohz_restart(ts, now);
			goto out;
		}
	}

728
	/*
T
Thomas Gleixner 已提交
729 730 731 732 733 734 735
	 * If this cpu is the one which updates jiffies, then give up
	 * the assignment and let it be taken by the cpu which runs
	 * the tick timer next, which might be this cpu as well. If we
	 * don't drop this here the jiffies might be stale and
	 * do_timer() never invoked. Keep track of the fact that it
	 * was the one which had the do_timer() duty last. If this cpu
	 * is the one which had the do_timer() duty last, we limit the
736 737
	 * sleep time to the timekeeping max_deferement value.
	 * Otherwise we can sleep as long as we want.
738
	 */
739
	delta = timekeeping_max_deferment();
T
Thomas Gleixner 已提交
740 741 742 743
	if (cpu == tick_do_timer_cpu) {
		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
		ts->do_timer_last = 1;
	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
744
		delta = KTIME_MAX;
T
Thomas Gleixner 已提交
745 746
		ts->do_timer_last = 0;
	} else if (!ts->do_timer_last) {
747
		delta = KTIME_MAX;
T
Thomas Gleixner 已提交
748
	}
T
Thomas Gleixner 已提交
749

750
#ifdef CONFIG_NO_HZ_FULL
751
	/* Limit the tick delta to the maximum scheduler deferment */
T
Thomas Gleixner 已提交
752
	if (!ts->inidle)
753
		delta = min(delta, scheduler_tick_max_deferment());
754 755
#endif

756 757 758
	/* Calculate the next expiry time */
	if (delta < (KTIME_MAX - basemono))
		expires = basemono + delta;
T
Thomas Gleixner 已提交
759
	else
760 761 762 763
		expires = KTIME_MAX;

	expires = min_t(u64, expires, next_tick);
	tick.tv64 = expires;
764

T
Thomas Gleixner 已提交
765
	/* Skip reprogram of event if its not changed */
766
	if (ts->tick_stopped && (expires == dev->next_event.tv64))
T
Thomas Gleixner 已提交
767
		goto out;
768

T
Thomas Gleixner 已提交
769 770 771 772 773 774 775 776 777 778
	/*
	 * nohz_stop_sched_tick can be called several times before
	 * the nohz_restart_sched_tick is called. This happens when
	 * interrupts arrive which do not cause a reschedule. In the
	 * first call we save the current tick time, so we can restart
	 * the scheduler tick in nohz_restart_sched_tick.
	 */
	if (!ts->tick_stopped) {
		nohz_balance_enter_idle(cpu);
		calc_load_enter_idle();
779
		cpu_load_update_nohz_start();
780

T
Thomas Gleixner 已提交
781 782
		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
		ts->tick_stopped = 1;
783
		trace_tick_stop(1, TICK_DEP_MASK_NONE);
T
Thomas Gleixner 已提交
784
	}
785

T
Thomas Gleixner 已提交
786
	/*
787 788
	 * If the expiration time == KTIME_MAX, then we simply stop
	 * the tick timer.
T
Thomas Gleixner 已提交
789
	 */
790
	if (unlikely(expires == KTIME_MAX)) {
T
Thomas Gleixner 已提交
791 792 793
		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
			hrtimer_cancel(&ts->sched_timer);
		goto out;
794
	}
795

T
Thomas Gleixner 已提交
796
	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
797
		hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
T
Thomas Gleixner 已提交
798
	else
799
		tick_program_event(tick, 1);
800
out:
801
	/* Update the estimated sleep length */
802
	ts->sleep_length = ktime_sub(dev->next_event, now);
803
	return tick;
804 805
}

806
static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
807 808 809
{
	/* Update jiffies first */
	tick_do_update_jiffies64(now);
810
	cpu_load_update_nohz_stop();
811 812

	calc_load_exit_idle();
813
	touch_softlockup_watchdog_sched();
814 815 816 817 818 819 820 821
	/*
	 * Cancel the scheduled timer and restore the tick
	 */
	ts->tick_stopped  = 0;
	ts->idle_exittime = now;

	tick_nohz_restart(ts, now);
}
822 823

static void tick_nohz_full_update_tick(struct tick_sched *ts)
824 825
{
#ifdef CONFIG_NO_HZ_FULL
826
	int cpu = smp_processor_id();
827

828
	if (!tick_nohz_full_cpu(cpu))
829
		return;
830

831 832
	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
		return;
833

834
	if (can_stop_full_tick(ts))
835 836
		tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
	else if (ts->tick_stopped)
837
		tick_nohz_restart_sched_tick(ts, ktime_get());
838 839 840
#endif
}

841 842 843 844 845 846 847 848 849 850 851 852
static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
{
	/*
	 * If this cpu is offline and it is the one which updates
	 * jiffies, then give up the assignment and let it be taken by
	 * the cpu which runs the tick timer next. If we don't drop
	 * this here the jiffies might be stale and do_timer() never
	 * invoked.
	 */
	if (unlikely(!cpu_online(cpu))) {
		if (cpu == tick_do_timer_cpu)
			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
853
		return false;
854 855
	}

856 857
	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
		ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
858
		return false;
859
	}
860 861 862 863 864 865 866

	if (need_resched())
		return false;

	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
		static int ratelimit;

867 868
		if (ratelimit < 10 &&
		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
869 870
			pr_warn("NOHZ: local_softirq_pending %02x\n",
				(unsigned int) local_softirq_pending());
871 872 873 874 875
			ratelimit++;
		}
		return false;
	}

876
	if (tick_nohz_full_enabled()) {
877 878 879 880 881 882 883 884 885 886 887 888 889 890
		/*
		 * Keep the tick alive to guarantee timekeeping progression
		 * if there are full dynticks CPUs around
		 */
		if (tick_do_timer_cpu == cpu)
			return false;
		/*
		 * Boot safety: make sure the timekeeping duty has been
		 * assigned before entering dyntick-idle mode,
		 */
		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
			return false;
	}

891 892 893
	return true;
}

894 895
static void __tick_nohz_idle_enter(struct tick_sched *ts)
{
896
	ktime_t now, expires;
897
	int cpu = smp_processor_id();
898

899
	now = tick_nohz_start_idle(ts);
900

901 902 903 904
	if (can_stop_idle_tick(cpu, ts)) {
		int was_stopped = ts->tick_stopped;

		ts->idle_calls++;
905 906 907 908 909 910

		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
		if (expires.tv64 > 0LL) {
			ts->idle_sleeps++;
			ts->idle_expires = expires;
		}
911 912 913 914

		if (!was_stopped && ts->tick_stopped)
			ts->idle_jiffies = ts->last_jiffies;
	}
915 916 917 918 919 920 921
}

/**
 * tick_nohz_idle_enter - stop the idle tick from the idle task
 *
 * When the next event is more than a tick into the future, stop the idle tick
 * Called when we start the idle loop.
922
 *
923
 * The arch is responsible of calling:
924 925 926 927
 *
 * - rcu_idle_enter() after its last use of RCU before the CPU is put
 *  to sleep.
 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
928
 */
929
void tick_nohz_idle_enter(void)
930 931 932
{
	struct tick_sched *ts;

933 934
	WARN_ON_ONCE(irqs_disabled());

935 936 937 938 939 940 941 942
	/*
 	 * Update the idle state in the scheduler domain hierarchy
 	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
 	 * State will be updated to busy during the first busy tick after
 	 * exiting idle.
 	 */
	set_cpu_sd_state_idle();

943 944
	local_irq_disable();

945
	ts = this_cpu_ptr(&tick_cpu_sched);
946
	ts->inidle = 1;
947
	__tick_nohz_idle_enter(ts);
948 949

	local_irq_enable();
950 951 952 953 954 955 956 957 958 959 960 961
}

/**
 * tick_nohz_irq_exit - update next tick event from interrupt exit
 *
 * When an interrupt fires while we are idle and it doesn't cause
 * a reschedule, it may still add, modify or delete a timer, enqueue
 * an RCU callback, etc...
 * So we need to re-calculate and reprogram the next tick event.
 */
void tick_nohz_irq_exit(void)
{
962
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
963

964
	if (ts->inidle)
965
		__tick_nohz_idle_enter(ts);
966
	else
967
		tick_nohz_full_update_tick(ts);
968 969
}

970 971 972 973 974 975 976
/**
 * tick_nohz_get_sleep_length - return the length of the current sleep
 *
 * Called from power state control code with interrupts disabled
 */
ktime_t tick_nohz_get_sleep_length(void)
{
977
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
978 979 980 981

	return ts->sleep_length;
}

982 983
static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
{
984
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
985
	unsigned long ticks;
986

987
	if (vtime_accounting_cpu_enabled())
988
		return;
989 990 991 992 993 994 995 996 997
	/*
	 * We stopped the tick in idle. Update process times would miss the
	 * time we slept as update_process_times does only a 1 tick
	 * accounting. Enforce that this is accounted to idle !
	 */
	ticks = jiffies - ts->idle_jiffies;
	/*
	 * We might be one off. Do not randomly account a huge number of ticks!
	 */
998 999 1000
	if (ticks && ticks < LONG_MAX)
		account_idle_ticks(ticks);
#endif
1001 1002
}

1003
/**
1004
 * tick_nohz_idle_exit - restart the idle tick from the idle task
1005 1006
 *
 * Restart the idle tick when the CPU is woken up from idle
1007 1008
 * This also exit the RCU extended quiescent state. The CPU
 * can use RCU again after this function is called.
1009
 */
1010
void tick_nohz_idle_exit(void)
1011
{
1012
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1013
	ktime_t now;
1014

1015
	local_irq_disable();
1016

1017 1018 1019 1020 1021
	WARN_ON_ONCE(!ts->inidle);

	ts->inidle = 0;

	if (ts->idle_active || ts->tick_stopped)
1022 1023 1024
		now = ktime_get();

	if (ts->idle_active)
1025
		tick_nohz_stop_idle(ts, now);
1026

1027
	if (ts->tick_stopped) {
1028
		tick_nohz_restart_sched_tick(ts, now);
1029
		tick_nohz_account_idle_ticks(ts);
1030
	}
1031 1032 1033 1034 1035 1036 1037 1038 1039

	local_irq_enable();
}

/*
 * The nohz low res interrupt handler
 */
static void tick_nohz_handler(struct clock_event_device *dev)
{
1040
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1041 1042 1043 1044 1045
	struct pt_regs *regs = get_irq_regs();
	ktime_t now = ktime_get();

	dev->next_event.tv64 = KTIME_MAX;

1046
	tick_sched_do_timer(now);
1047
	tick_sched_handle(ts, regs);
1048

1049 1050 1051 1052
	/* No need to reprogram if we are running tickless  */
	if (unlikely(ts->tick_stopped))
		return;

1053 1054
	hrtimer_forward(&ts->sched_timer, now, tick_period);
	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1055 1056
}

1057 1058 1059 1060 1061 1062 1063
static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
{
	if (!tick_nohz_enabled)
		return;
	ts->nohz_mode = mode;
	/* One update is enough */
	if (!test_and_set_bit(0, &tick_nohz_active))
1064
		timers_update_migration(true);
1065 1066
}

1067 1068 1069 1070 1071
/**
 * tick_nohz_switch_to_nohz - switch to nohz mode
 */
static void tick_nohz_switch_to_nohz(void)
{
1072
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1073 1074
	ktime_t next;

1075
	if (!tick_nohz_enabled)
1076 1077
		return;

1078
	if (tick_switch_to_oneshot(tick_nohz_handler))
1079
		return;
1080

1081 1082 1083 1084 1085 1086 1087 1088
	/*
	 * Recycle the hrtimer in ts, so we can share the
	 * hrtimer_forward with the highres code.
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	/* Get the next period */
	next = tick_init_jiffy_update();

1089
	hrtimer_set_expires(&ts->sched_timer, next);
1090 1091
	hrtimer_forward_now(&ts->sched_timer, tick_period);
	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1092
	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1093 1094
}

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
/*
 * When NOHZ is enabled and the tick is stopped, we need to kick the
 * tick timer from irq_enter() so that the jiffies update is kept
 * alive during long running softirqs. That's ugly as hell, but
 * correctness is key even if we need to fix the offending softirq in
 * the first place.
 *
 * Note, this is different to tick_nohz_restart. We just kick the
 * timer and do not touch the other magic bits which need to be done
 * when idle is left.
 */
1106
static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
1107
{
1108 1109
#if 0
	/* Switch back to 2.6.27 behaviour */
1110
	ktime_t delta;
1111

1112 1113 1114 1115
	/*
	 * Do not touch the tick device, when the next expiry is either
	 * already reached or less/equal than the tick period.
	 */
1116
	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1117 1118 1119 1120
	if (delta.tv64 <= tick_period.tv64)
		return;

	tick_nohz_restart(ts, now);
1121
#endif
1122 1123
}

1124
static inline void tick_nohz_irq_enter(void)
1125
{
1126
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1127 1128 1129 1130 1131 1132
	ktime_t now;

	if (!ts->idle_active && !ts->tick_stopped)
		return;
	now = ktime_get();
	if (ts->idle_active)
1133
		tick_nohz_stop_idle(ts, now);
1134 1135
	if (ts->tick_stopped) {
		tick_nohz_update_jiffies(now);
1136
		tick_nohz_kick_tick(ts, now);
1137 1138 1139
	}
}

1140 1141 1142
#else

static inline void tick_nohz_switch_to_nohz(void) { }
1143
static inline void tick_nohz_irq_enter(void) { }
1144
static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1145

1146
#endif /* CONFIG_NO_HZ_COMMON */
1147

1148 1149 1150
/*
 * Called from irq_enter to notify about the possible interruption of idle()
 */
1151
void tick_irq_enter(void)
1152
{
1153
	tick_check_oneshot_broadcast_this_cpu();
1154
	tick_nohz_irq_enter();
1155 1156
}

1157 1158 1159 1160 1161
/*
 * High resolution timer specific code
 */
#ifdef CONFIG_HIGH_RES_TIMERS
/*
P
Pavel Machek 已提交
1162
 * We rearm the timer until we get disabled by the idle code.
1163
 * Called with interrupts disabled.
1164 1165 1166 1167 1168 1169 1170
 */
static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
{
	struct tick_sched *ts =
		container_of(timer, struct tick_sched, sched_timer);
	struct pt_regs *regs = get_irq_regs();
	ktime_t now = ktime_get();
1171

1172
	tick_sched_do_timer(now);
1173 1174 1175 1176 1177

	/*
	 * Do not call, when we are not in irq context and have
	 * no valid regs pointer
	 */
1178 1179
	if (regs)
		tick_sched_handle(ts, regs);
1180

1181 1182 1183 1184
	/* No need to reprogram if we are in idle or full dynticks mode */
	if (unlikely(ts->tick_stopped))
		return HRTIMER_NORESTART;

1185 1186 1187 1188 1189
	hrtimer_forward(timer, now, tick_period);

	return HRTIMER_RESTART;
}

M
Mike Galbraith 已提交
1190 1191
static int sched_skew_tick;

1192 1193 1194 1195 1196 1197 1198 1199
static int __init skew_tick(char *str)
{
	get_option(&str, &sched_skew_tick);

	return 0;
}
early_param("skew_tick", skew_tick);

1200 1201 1202 1203 1204
/**
 * tick_setup_sched_timer - setup the tick emulation timer
 */
void tick_setup_sched_timer(void)
{
1205
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1206 1207 1208 1209 1210 1211 1212 1213
	ktime_t now = ktime_get();

	/*
	 * Emulate tick processing via per-CPU hrtimers:
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	ts->sched_timer.function = tick_sched_timer;

1214
	/* Get the next period (per cpu) */
1215
	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1216

1217
	/* Offset the tick to avert jiffies_lock contention. */
M
Mike Galbraith 已提交
1218 1219 1220 1221 1222 1223 1224
	if (sched_skew_tick) {
		u64 offset = ktime_to_ns(tick_period) >> 1;
		do_div(offset, num_possible_cpus());
		offset *= smp_processor_id();
		hrtimer_add_expires_ns(&ts->sched_timer, offset);
	}

1225 1226
	hrtimer_forward(&ts->sched_timer, now, tick_period);
	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1227
	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1228
}
1229
#endif /* HIGH_RES_TIMERS */
1230

1231
#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1232 1233 1234 1235
void tick_cancel_sched_timer(int cpu)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);

1236
# ifdef CONFIG_HIGH_RES_TIMERS
1237 1238
	if (ts->sched_timer.base)
		hrtimer_cancel(&ts->sched_timer);
1239
# endif
1240

1241
	memset(ts, 0, sizeof(*ts));
1242
}
1243
#endif
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260

/**
 * Async notification about clocksource changes
 */
void tick_clock_notify(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
}

/*
 * Async notification about clock event changes
 */
void tick_oneshot_notify(void)
{
1261
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271

	set_bit(0, &ts->check_clocks);
}

/**
 * Check, if a change happened, which makes oneshot possible.
 *
 * Called cyclic from the hrtimer softirq (driven by the timer
 * softirq) allow_nohz signals, that we can switch into low-res nohz
 * mode, because high resolution timers are disabled (either compile
1272
 * or runtime). Called with interrupts disabled.
1273 1274 1275
 */
int tick_check_oneshot_change(int allow_nohz)
{
1276
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1277 1278 1279 1280 1281 1282 1283

	if (!test_and_clear_bit(0, &ts->check_clocks))
		return 0;

	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
		return 0;

1284
	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1285 1286 1287 1288 1289 1290 1291 1292
		return 0;

	if (!allow_nohz)
		return 1;

	tick_nohz_switch_to_nohz();
	return 0;
}