compression.c 48.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Copyright (C) 2008 Oracle.  All rights reserved.
 */

#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/backing-dev.h>
#include <linux/writeback.h>
17
#include <linux/slab.h>
18
#include <linux/sched/mm.h>
19
#include <linux/log2.h>
20
#include <crypto/hash.h>
21
#include "misc.h"
C
Chris Mason 已提交
22 23 24 25 26 27 28 29 30
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "volumes.h"
#include "ordered-data.h"
#include "compression.h"
#include "extent_io.h"
#include "extent_map.h"
31
#include "subpage.h"
32
#include "zoned.h"
C
Chris Mason 已提交
33

34 35 36 37 38 39 40 41 42 43
static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };

const char* btrfs_compress_type2str(enum btrfs_compression_type type)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
	case BTRFS_COMPRESS_LZO:
	case BTRFS_COMPRESS_ZSTD:
	case BTRFS_COMPRESS_NONE:
		return btrfs_compress_types[type];
44 45
	default:
		break;
46 47 48 49 50
	}

	return NULL;
}

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
bool btrfs_compress_is_valid_type(const char *str, size_t len)
{
	int i;

	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
		size_t comp_len = strlen(btrfs_compress_types[i]);

		if (len < comp_len)
			continue;

		if (!strncmp(btrfs_compress_types[i], str, comp_len))
			return true;
	}
	return false;
}

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
static int compression_compress_pages(int type, struct list_head *ws,
               struct address_space *mapping, u64 start, struct page **pages,
               unsigned long *out_pages, unsigned long *total_in,
               unsigned long *total_out)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
		return zlib_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_LZO:
		return lzo_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_ZSTD:
		return zstd_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
85 86 87 88 89 90 91
		 * This can happen when compression races with remount setting
		 * it to 'no compress', while caller doesn't call
		 * inode_need_compress() to check if we really need to
		 * compress.
		 *
		 * Not a big deal, just need to inform caller that we
		 * haven't allocated any pages yet.
92
		 */
93
		*out_pages = 0;
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
		return -E2BIG;
	}
}

static int compression_decompress_bio(int type, struct list_head *ws,
		struct compressed_bio *cb)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

static int compression_decompress(int type, struct list_head *ws,
               unsigned char *data_in, struct page *dest_page,
               unsigned long start_byte, size_t srclen, size_t destlen)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

136
static int btrfs_decompress_bio(struct compressed_bio *cb);
137

138
static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
139 140 141
				      unsigned long disk_size)
{
	return sizeof(struct compressed_bio) +
142
		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size;
143 144
}

145
static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
146 147
				 u64 disk_start)
{
148
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
149
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
150
	const u32 csum_size = fs_info->csum_size;
151
	const u32 sectorsize = fs_info->sectorsize;
152
	struct page *page;
153
	unsigned int i;
154
	char *kaddr;
155
	u8 csum[BTRFS_CSUM_SIZE];
156
	struct compressed_bio *cb = bio->bi_private;
157
	u8 *cb_sum = cb->sums;
158

159
	if (!fs_info->csum_root || (inode->flags & BTRFS_INODE_NODATASUM))
160 161
		return 0;

162 163
	shash->tfm = fs_info->csum_shash;

164
	for (i = 0; i < cb->nr_pages; i++) {
165 166
		u32 pg_offset;
		u32 bytes_left = PAGE_SIZE;
167 168
		page = cb->compressed_pages[i];

169 170 171 172 173 174 175
		/* Determine the remaining bytes inside the page first */
		if (i == cb->nr_pages - 1)
			bytes_left = cb->compressed_len - i * PAGE_SIZE;

		/* Hash through the page sector by sector */
		for (pg_offset = 0; pg_offset < bytes_left;
		     pg_offset += sectorsize) {
176
			kaddr = page_address(page);
177 178 179 180 181 182
			crypto_shash_digest(shash, kaddr + pg_offset,
					    sectorsize, csum);

			if (memcmp(&csum, cb_sum, csum_size) != 0) {
				btrfs_print_data_csum_error(inode, disk_start,
						csum, cb_sum, cb->mirror_num);
183
				if (btrfs_bio(bio)->device)
184
					btrfs_dev_stat_inc_and_print(
185
						btrfs_bio(bio)->device,
186 187 188 189 190
						BTRFS_DEV_STAT_CORRUPTION_ERRS);
				return -EIO;
			}
			cb_sum += csum_size;
			disk_start += sectorsize;
191 192
		}
	}
193
	return 0;
194 195
}

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
/*
 * Reduce bio and io accounting for a compressed_bio with its corresponding bio.
 *
 * Return true if there is no pending bio nor io.
 * Return false otherwise.
 */
static bool dec_and_test_compressed_bio(struct compressed_bio *cb, struct bio *bio)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
	unsigned int bi_size = 0;
	bool last_io = false;
	struct bio_vec *bvec;
	struct bvec_iter_all iter_all;

	/*
	 * At endio time, bi_iter.bi_size doesn't represent the real bio size.
	 * Thus here we have to iterate through all segments to grab correct
	 * bio size.
	 */
	bio_for_each_segment_all(bvec, bio, iter_all)
		bi_size += bvec->bv_len;

	if (bio->bi_status)
		cb->errors = 1;

	ASSERT(bi_size && bi_size <= cb->compressed_len);
	last_io = refcount_sub_and_test(bi_size >> fs_info->sectorsize_bits,
					&cb->pending_sectors);
	atomic_dec(&cb->pending_bios);
225 226 227 228 229 230 231
	/*
	 * Here we must wake up the possible error handler after all other
	 * operations on @cb finished, or we can race with
	 * finish_compressed_bio_*() which may free @cb.
	 */
	wake_up_var(cb);

232 233 234
	return last_io;
}

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
static void finish_compressed_bio_read(struct compressed_bio *cb, struct bio *bio)
{
	unsigned int index;
	struct page *page;

	/* Release the compressed pages */
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
		put_page(page);
	}

	/* Do io completion on the original bio */
	if (cb->errors) {
		bio_io_error(cb->orig_bio);
	} else {
		struct bio_vec *bvec;
		struct bvec_iter_all iter_all;

		ASSERT(bio);
		ASSERT(!bio->bi_status);
		/*
		 * We have verified the checksum already, set page checked so
		 * the end_io handlers know about it
		 */
		ASSERT(!bio_flagged(bio, BIO_CLONED));
		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all) {
			u64 bvec_start = page_offset(bvec->bv_page) +
					 bvec->bv_offset;

			btrfs_page_set_checked(btrfs_sb(cb->inode->i_sb),
					bvec->bv_page, bvec_start,
					bvec->bv_len);
		}

		bio_endio(cb->orig_bio);
	}

	/* Finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
}

C
Chris Mason 已提交
278 279 280 281 282 283 284 285 286 287
/* when we finish reading compressed pages from the disk, we
 * decompress them and then run the bio end_io routines on the
 * decompressed pages (in the inode address space).
 *
 * This allows the checksumming and other IO error handling routines
 * to work normally
 *
 * The compressed pages are freed here, and it must be run
 * in process context
 */
288
static void end_compressed_bio_read(struct bio *bio)
C
Chris Mason 已提交
289 290 291
{
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
292
	unsigned int mirror = btrfs_bio(bio)->mirror_num;
293
	int ret = 0;
C
Chris Mason 已提交
294

295
	if (!dec_and_test_compressed_bio(cb, bio))
C
Chris Mason 已提交
296 297
		goto out;

298 299 300 301
	/*
	 * Record the correct mirror_num in cb->orig_bio so that
	 * read-repair can work properly.
	 */
302
	btrfs_bio(cb->orig_bio)->mirror_num = mirror;
303 304
	cb->mirror_num = mirror;

305 306 307 308 309 310 311
	/*
	 * Some IO in this cb have failed, just skip checksum as there
	 * is no way it could be correct.
	 */
	if (cb->errors == 1)
		goto csum_failed;

312
	inode = cb->inode;
313
	ret = check_compressed_csum(BTRFS_I(inode), bio,
D
David Sterba 已提交
314
				    bio->bi_iter.bi_sector << 9);
315 316 317
	if (ret)
		goto csum_failed;

C
Chris Mason 已提交
318 319 320
	/* ok, we're the last bio for this extent, lets start
	 * the decompression.
	 */
321 322
	ret = btrfs_decompress_bio(cb);

323
csum_failed:
C
Chris Mason 已提交
324 325
	if (ret)
		cb->errors = 1;
326
	finish_compressed_bio_read(cb, bio);
C
Chris Mason 已提交
327 328 329 330 331 332 333 334
out:
	bio_put(bio);
}

/*
 * Clear the writeback bits on all of the file
 * pages for a compressed write
 */
335 336
static noinline void end_compressed_writeback(struct inode *inode,
					      const struct compressed_bio *cb)
C
Chris Mason 已提交
337
{
338 339
	unsigned long index = cb->start >> PAGE_SHIFT;
	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
C
Chris Mason 已提交
340 341 342 343 344
	struct page *pages[16];
	unsigned long nr_pages = end_index - index + 1;
	int i;
	int ret;

345 346 347
	if (cb->errors)
		mapping_set_error(inode->i_mapping, -EIO);

C
Chris Mason 已提交
348
	while (nr_pages > 0) {
C
Chris Mason 已提交
349
		ret = find_get_pages_contig(inode->i_mapping, index,
350 351
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
C
Chris Mason 已提交
352 353 354 355 356 357
		if (ret == 0) {
			nr_pages -= 1;
			index += 1;
			continue;
		}
		for (i = 0; i < ret; i++) {
358 359
			if (cb->errors)
				SetPageError(pages[i]);
C
Chris Mason 已提交
360
			end_page_writeback(pages[i]);
361
			put_page(pages[i]);
C
Chris Mason 已提交
362 363 364 365 366 367 368
		}
		nr_pages -= ret;
		index += ret;
	}
	/* the inode may be gone now */
}

369
static void finish_compressed_bio_write(struct compressed_bio *cb)
C
Chris Mason 已提交
370
{
371
	struct inode *inode = cb->inode;
372
	unsigned int index;
C
Chris Mason 已提交
373

374 375 376
	/*
	 * Ok, we're the last bio for this extent, step one is to call back
	 * into the FS and do all the end_io operations.
C
Chris Mason 已提交
377
	 */
378
	btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL,
379
			cb->start, cb->start + cb->len - 1,
380
			!cb->errors);
C
Chris Mason 已提交
381

382
	end_compressed_writeback(inode, cb);
383
	/* Note, our inode could be gone now */
C
Chris Mason 已提交
384 385

	/*
386
	 * Release the compressed pages, these came from alloc_page and
C
Chris Mason 已提交
387 388 389
	 * are not attached to the inode at all
	 */
	for (index = 0; index < cb->nr_pages; index++) {
390 391
		struct page *page = cb->compressed_pages[index];

C
Chris Mason 已提交
392
		page->mapping = NULL;
393
		put_page(page);
C
Chris Mason 已提交
394 395
	}

396
	/* Finally free the cb struct */
C
Chris Mason 已提交
397 398
	kfree(cb->compressed_pages);
	kfree(cb);
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
}

/*
 * Do the cleanup once all the compressed pages hit the disk.  This will clear
 * writeback on the file pages and free the compressed pages.
 *
 * This also calls the writeback end hooks for the file pages so that metadata
 * and checksums can be updated in the file.
 */
static void end_compressed_bio_write(struct bio *bio)
{
	struct compressed_bio *cb = bio->bi_private;

	if (!dec_and_test_compressed_bio(cb, bio))
		goto out;

	btrfs_record_physical_zoned(cb->inode, cb->start, bio);

	finish_compressed_bio_write(cb);
C
Chris Mason 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430
out:
	bio_put(bio);
}

/*
 * worker function to build and submit bios for previously compressed pages.
 * The corresponding pages in the inode should be marked for writeback
 * and the compressed pages should have a reference on them for dropping
 * when the IO is complete.
 *
 * This also checksums the file bytes and gets things ready for
 * the end io hooks.
 */
431
blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
432 433
				 unsigned int len, u64 disk_start,
				 unsigned int compressed_len,
C
Chris Mason 已提交
434
				 struct page **compressed_pages,
435
				 unsigned int nr_pages,
436 437
				 unsigned int write_flags,
				 struct cgroup_subsys_state *blkcg_css)
C
Chris Mason 已提交
438
{
439
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
C
Chris Mason 已提交
440 441 442
	struct bio *bio = NULL;
	struct compressed_bio *cb;
	unsigned long bytes_left;
443
	int pg_index = 0;
C
Chris Mason 已提交
444 445
	struct page *page;
	u64 first_byte = disk_start;
446
	blk_status_t ret;
447
	int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
448 449
	const bool use_append = btrfs_use_zone_append(inode, disk_start);
	const unsigned int bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE;
C
Chris Mason 已提交
450

451
	WARN_ON(!PAGE_ALIGNED(start));
452
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
453
	if (!cb)
454
		return BLK_STS_RESOURCE;
455 456
	atomic_set(&cb->pending_bios, 0);
	refcount_set(&cb->pending_sectors, compressed_len >> fs_info->sectorsize_bits);
C
Chris Mason 已提交
457
	cb->errors = 0;
458
	cb->inode = &inode->vfs_inode;
C
Chris Mason 已提交
459 460
	cb->start = start;
	cb->len = len;
461
	cb->mirror_num = 0;
C
Chris Mason 已提交
462 463 464 465 466
	cb->compressed_pages = compressed_pages;
	cb->compressed_len = compressed_len;
	cb->orig_bio = NULL;
	cb->nr_pages = nr_pages;

467
	bio = btrfs_bio_alloc(BIO_MAX_VECS);
Q
Qu Wenruo 已提交
468
	bio->bi_iter.bi_sector = first_byte >> SECTOR_SHIFT;
469
	bio->bi_opf = bio_op | write_flags;
C
Chris Mason 已提交
470 471
	bio->bi_private = cb;
	bio->bi_end_io = end_compressed_bio_write;
472

473
	if (use_append) {
474
		struct btrfs_device *device;
475

476 477
		device = btrfs_zoned_get_device(fs_info, disk_start, PAGE_SIZE);
		if (IS_ERR(device)) {
478 479 480 481 482
			kfree(cb);
			bio_put(bio);
			return BLK_STS_NOTSUPP;
		}

483
		bio_set_dev(bio, device->bdev);
484 485
	}

486 487
	if (blkcg_css) {
		bio->bi_opf |= REQ_CGROUP_PUNT;
488
		kthread_associate_blkcg(blkcg_css);
489
	}
C
Chris Mason 已提交
490 491 492

	/* create and submit bios for the compressed pages */
	bytes_left = compressed_len;
493
	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
494
		int submit = 0;
495
		int len = 0;
496

497
		page = compressed_pages[pg_index];
498
		page->mapping = inode->vfs_inode.i_mapping;
499
		if (bio->bi_iter.bi_size)
500 501
			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
							  0);
C
Chris Mason 已提交
502

503 504 505 506 507 508 509 510 511 512 513
		/*
		 * Page can only be added to bio if the current bio fits in
		 * stripe.
		 */
		if (!submit) {
			if (pg_index == 0 && use_append)
				len = bio_add_zone_append_page(bio, page,
							       PAGE_SIZE, 0);
			else
				len = bio_add_page(bio, page, PAGE_SIZE, 0);
		}
514

C
Chris Mason 已提交
515
		page->mapping = NULL;
516
		if (submit || len < PAGE_SIZE) {
517
			atomic_inc(&cb->pending_bios);
518 519
			ret = btrfs_bio_wq_end_io(fs_info, bio,
						  BTRFS_WQ_ENDIO_DATA);
520 521
			if (ret)
				goto finish_cb;
C
Chris Mason 已提交
522

523
			if (!skip_sum) {
524
				ret = btrfs_csum_one_bio(inode, bio, start, 1);
525 526
				if (ret)
					goto finish_cb;
527
			}
528

529
			ret = btrfs_map_bio(fs_info, bio, 0);
530 531
			if (ret)
				goto finish_cb;
C
Chris Mason 已提交
532

533
			bio = btrfs_bio_alloc(BIO_MAX_VECS);
Q
Qu Wenruo 已提交
534
			bio->bi_iter.bi_sector = first_byte >> SECTOR_SHIFT;
535
			bio->bi_opf = bio_op | write_flags;
C
Chris Mason 已提交
536 537
			bio->bi_private = cb;
			bio->bi_end_io = end_compressed_bio_write;
538
			if (blkcg_css)
539
				bio->bi_opf |= REQ_CGROUP_PUNT;
540 541 542 543
			/*
			 * Use bio_add_page() to ensure the bio has at least one
			 * page.
			 */
544
			bio_add_page(bio, page, PAGE_SIZE, 0);
C
Chris Mason 已提交
545
		}
546
		if (bytes_left < PAGE_SIZE) {
547
			btrfs_info(fs_info,
548
					"bytes left %lu compress len %u nr %u",
549 550
			       bytes_left, cb->compressed_len, cb->nr_pages);
		}
551 552
		bytes_left -= PAGE_SIZE;
		first_byte += PAGE_SIZE;
553
		cond_resched();
C
Chris Mason 已提交
554 555
	}

556
	atomic_inc(&cb->pending_bios);
557
	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
558 559
	if (ret)
		goto last_bio;
C
Chris Mason 已提交
560

561
	if (!skip_sum) {
562
		ret = btrfs_csum_one_bio(inode, bio, start, 1);
563 564
		if (ret)
			goto last_bio;
565
	}
566

567
	ret = btrfs_map_bio(fs_info, bio, 0);
568 569
	if (ret)
		goto last_bio;
C
Chris Mason 已提交
570

571 572 573
	if (blkcg_css)
		kthread_associate_blkcg(NULL);

C
Chris Mason 已提交
574
	return 0;
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
last_bio:
	bio->bi_status = ret;
	/* One of the bios' endio function will free @cb. */
	bio_endio(bio);
	return ret;

finish_cb:
	if (bio) {
		bio->bi_status = ret;
		bio_endio(bio);
	}

	wait_var_event(cb, atomic_read(&cb->pending_bios) == 0);
	/*
	 * Even with previous bio ended, we should still have io not yet
	 * submitted, thus need to finish manually.
	 */
	ASSERT(refcount_read(&cb->pending_sectors));
	/* Now we are the only one referring @cb, can finish it safely. */
	finish_compressed_bio_write(cb);
	return ret;
C
Chris Mason 已提交
596 597
}

598 599
static u64 bio_end_offset(struct bio *bio)
{
M
Ming Lei 已提交
600
	struct bio_vec *last = bio_last_bvec_all(bio);
601 602 603 604

	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
}

605 606 607 608 609 610 611 612 613 614 615
/*
 * Add extra pages in the same compressed file extent so that we don't need to
 * re-read the same extent again and again.
 *
 * NOTE: this won't work well for subpage, as for subpage read, we lock the
 * full page then submit bio for each compressed/regular extents.
 *
 * This means, if we have several sectors in the same page points to the same
 * on-disk compressed data, we will re-read the same extent many times and
 * this function can only help for the next page.
 */
616 617 618 619
static noinline int add_ra_bio_pages(struct inode *inode,
				     u64 compressed_end,
				     struct compressed_bio *cb)
{
620
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
621
	unsigned long end_index;
622
	u64 cur = bio_end_offset(cb->orig_bio);
623 624 625 626 627 628 629
	u64 isize = i_size_read(inode);
	int ret;
	struct page *page;
	struct extent_map *em;
	struct address_space *mapping = inode->i_mapping;
	struct extent_map_tree *em_tree;
	struct extent_io_tree *tree;
630
	int sectors_missed = 0;
631 632 633 634 635 636 637

	em_tree = &BTRFS_I(inode)->extent_tree;
	tree = &BTRFS_I(inode)->io_tree;

	if (isize == 0)
		return 0;

638 639 640 641 642 643 644 645 646 647
	/*
	 * For current subpage support, we only support 64K page size,
	 * which means maximum compressed extent size (128K) is just 2x page
	 * size.
	 * This makes readahead less effective, so here disable readahead for
	 * subpage for now, until full compressed write is supported.
	 */
	if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE)
		return 0;

648
	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
649

650 651 652 653
	while (cur < compressed_end) {
		u64 page_end;
		u64 pg_index = cur >> PAGE_SHIFT;
		u32 add_size;
654

655
		if (pg_index > end_index)
656 657
			break;

658
		page = xa_load(&mapping->i_pages, pg_index);
659
		if (page && !xa_is_value(page)) {
660 661 662 663 664
			sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >>
					  fs_info->sectorsize_bits;

			/* Beyond threshold, no need to continue */
			if (sectors_missed > 4)
665
				break;
666 667 668 669 670 671 672

			/*
			 * Jump to next page start as we already have page for
			 * current offset.
			 */
			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
			continue;
673 674
		}

675 676
		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
								 ~__GFP_FS));
677 678 679
		if (!page)
			break;

680
		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
681
			put_page(page);
682 683 684
			/* There is already a page, skip to page end */
			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
			continue;
685 686
		}

687 688 689 690 691 692 693
		ret = set_page_extent_mapped(page);
		if (ret < 0) {
			unlock_page(page);
			put_page(page);
			break;
		}

694 695
		page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1;
		lock_extent(tree, cur, page_end);
696
		read_lock(&em_tree->lock);
697
		em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
698
		read_unlock(&em_tree->lock);
699

700 701 702 703 704 705 706
		/*
		 * At this point, we have a locked page in the page cache for
		 * these bytes in the file.  But, we have to make sure they map
		 * to this compressed extent on disk.
		 */
		if (!em || cur < em->start ||
		    (cur + fs_info->sectorsize > extent_map_end(em)) ||
707
		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
708
			free_extent_map(em);
709
			unlock_extent(tree, cur, page_end);
710
			unlock_page(page);
711
			put_page(page);
712 713 714 715 716
			break;
		}
		free_extent_map(em);

		if (page->index == end_index) {
717
			size_t zero_offset = offset_in_page(isize);
718 719 720

			if (zero_offset) {
				int zeros;
721
				zeros = PAGE_SIZE - zero_offset;
722
				memzero_page(page, zero_offset, zeros);
723 724 725 726
				flush_dcache_page(page);
			}
		}

727 728 729 730
		add_size = min(em->start + em->len, page_end + 1) - cur;
		ret = bio_add_page(cb->orig_bio, page, add_size, offset_in_page(cur));
		if (ret != add_size) {
			unlock_extent(tree, cur, page_end);
731
			unlock_page(page);
732
			put_page(page);
733 734
			break;
		}
735 736 737 738 739 740 741 742 743
		/*
		 * If it's subpage, we also need to increase its
		 * subpage::readers number, as at endio we will decrease
		 * subpage::readers and to unlock the page.
		 */
		if (fs_info->sectorsize < PAGE_SIZE)
			btrfs_subpage_start_reader(fs_info, page, cur, add_size);
		put_page(page);
		cur += add_size;
744 745 746 747
	}
	return 0;
}

C
Chris Mason 已提交
748 749 750 751 752
/*
 * for a compressed read, the bio we get passed has all the inode pages
 * in it.  We don't actually do IO on those pages but allocate new ones
 * to hold the compressed pages on disk.
 *
753
 * bio->bi_iter.bi_sector points to the compressed extent on disk
C
Chris Mason 已提交
754 755 756 757 758
 * bio->bi_io_vec points to all of the inode pages
 *
 * After the compressed pages are read, we copy the bytes into the
 * bio we were passed and then call the bio end_io calls
 */
759
blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
C
Chris Mason 已提交
760 761
				 int mirror_num, unsigned long bio_flags)
{
762
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
C
Chris Mason 已提交
763 764
	struct extent_map_tree *em_tree;
	struct compressed_bio *cb;
765 766 767
	unsigned int compressed_len;
	unsigned int nr_pages;
	unsigned int pg_index;
C
Chris Mason 已提交
768 769
	struct page *page;
	struct bio *comp_bio;
D
David Sterba 已提交
770
	u64 cur_disk_byte = bio->bi_iter.bi_sector << 9;
771
	u64 file_offset;
772 773
	u64 em_len;
	u64 em_start;
C
Chris Mason 已提交
774
	struct extent_map *em;
775
	blk_status_t ret = BLK_STS_RESOURCE;
776
	int faili = 0;
777
	u8 *sums;
C
Chris Mason 已提交
778 779 780

	em_tree = &BTRFS_I(inode)->extent_tree;

781 782 783
	file_offset = bio_first_bvec_all(bio)->bv_offset +
		      page_offset(bio_first_page_all(bio));

C
Chris Mason 已提交
784
	/* we need the actual starting offset of this extent in the file */
785
	read_lock(&em_tree->lock);
786
	em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
787
	read_unlock(&em_tree->lock);
788
	if (!em)
789
		return BLK_STS_IOERR;
C
Chris Mason 已提交
790

791
	ASSERT(em->compress_type != BTRFS_COMPRESS_NONE);
792
	compressed_len = em->block_len;
793
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
794 795 796
	if (!cb)
		goto out;

797 798
	atomic_set(&cb->pending_bios, 0);
	refcount_set(&cb->pending_sectors, compressed_len >> fs_info->sectorsize_bits);
C
Chris Mason 已提交
799 800
	cb->errors = 0;
	cb->inode = inode;
801
	cb->mirror_num = mirror_num;
802
	sums = cb->sums;
C
Chris Mason 已提交
803

804
	cb->start = em->orig_start;
805 806
	em_len = em->len;
	em_start = em->start;
807

C
Chris Mason 已提交
808
	free_extent_map(em);
809
	em = NULL;
C
Chris Mason 已提交
810

C
Christoph Hellwig 已提交
811
	cb->len = bio->bi_iter.bi_size;
C
Chris Mason 已提交
812
	cb->compressed_len = compressed_len;
813
	cb->compress_type = extent_compress_type(bio_flags);
C
Chris Mason 已提交
814 815
	cb->orig_bio = bio;

816
	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
817
	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
C
Chris Mason 已提交
818
				       GFP_NOFS);
819 820 821
	if (!cb->compressed_pages)
		goto fail1;

822
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
823
		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS);
824 825
		if (!cb->compressed_pages[pg_index]) {
			faili = pg_index - 1;
D
Dan Carpenter 已提交
826
			ret = BLK_STS_RESOURCE;
827
			goto fail2;
828
		}
C
Chris Mason 已提交
829
	}
830
	faili = nr_pages - 1;
C
Chris Mason 已提交
831 832
	cb->nr_pages = nr_pages;

833
	add_ra_bio_pages(inode, em_start + em_len, cb);
834 835

	/* include any pages we added in add_ra-bio_pages */
C
Christoph Hellwig 已提交
836
	cb->len = bio->bi_iter.bi_size;
837

838
	comp_bio = btrfs_bio_alloc(BIO_MAX_VECS);
Q
Qu Wenruo 已提交
839
	comp_bio->bi_iter.bi_sector = cur_disk_byte >> SECTOR_SHIFT;
D
David Sterba 已提交
840
	comp_bio->bi_opf = REQ_OP_READ;
C
Chris Mason 已提交
841 842 843
	comp_bio->bi_private = cb;
	comp_bio->bi_end_io = end_compressed_bio_read;

844
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
845
		u32 pg_len = PAGE_SIZE;
846 847
		int submit = 0;

848 849 850 851 852 853 854 855 856 857 858
		/*
		 * To handle subpage case, we need to make sure the bio only
		 * covers the range we need.
		 *
		 * If we're at the last page, truncate the length to only cover
		 * the remaining part.
		 */
		if (pg_index == nr_pages - 1)
			pg_len = min_t(u32, PAGE_SIZE,
					compressed_len - pg_index * PAGE_SIZE);

859
		page = cb->compressed_pages[pg_index];
C
Chris Mason 已提交
860
		page->mapping = inode->i_mapping;
861
		page->index = em_start >> PAGE_SHIFT;
862

863
		if (comp_bio->bi_iter.bi_size)
864
			submit = btrfs_bio_fits_in_stripe(page, pg_len,
865
							  comp_bio, 0);
C
Chris Mason 已提交
866

C
Chris Mason 已提交
867
		page->mapping = NULL;
868
		if (submit || bio_add_page(comp_bio, page, pg_len, 0) < pg_len) {
869 870
			unsigned int nr_sectors;

871
			atomic_inc(&cb->pending_bios);
872 873
			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
						  BTRFS_WQ_ENDIO_DATA);
874 875
			if (ret)
				goto finish_cb;
C
Chris Mason 已提交
876

877
			ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
878 879
			if (ret)
				goto finish_cb;
880 881 882

			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
						  fs_info->sectorsize);
883
			sums += fs_info->csum_size * nr_sectors;
884

885
			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
886 887
			if (ret)
				goto finish_cb;
C
Chris Mason 已提交
888

889
			comp_bio = btrfs_bio_alloc(BIO_MAX_VECS);
Q
Qu Wenruo 已提交
890
			comp_bio->bi_iter.bi_sector = cur_disk_byte >> SECTOR_SHIFT;
D
David Sterba 已提交
891
			comp_bio->bi_opf = REQ_OP_READ;
892 893 894
			comp_bio->bi_private = cb;
			comp_bio->bi_end_io = end_compressed_bio_read;

895
			bio_add_page(comp_bio, page, pg_len, 0);
C
Chris Mason 已提交
896
		}
897
		cur_disk_byte += pg_len;
C
Chris Mason 已提交
898 899
	}

900
	atomic_inc(&cb->pending_bios);
901
	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
902 903
	if (ret)
		goto last_bio;
C
Chris Mason 已提交
904

905
	ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
906 907
	if (ret)
		goto last_bio;
908

909
	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
910 911
	if (ret)
		goto last_bio;
C
Chris Mason 已提交
912 913

	return 0;
914 915

fail2:
916 917 918 919
	while (faili >= 0) {
		__free_page(cb->compressed_pages[faili]);
		faili--;
	}
920 921 922 923 924 925 926

	kfree(cb->compressed_pages);
fail1:
	kfree(cb);
out:
	free_extent_map(em);
	return ret;
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
last_bio:
	comp_bio->bi_status = ret;
	/* This is the last bio, endio functions will free @cb */
	bio_endio(comp_bio);
	return ret;

finish_cb:
	if (comp_bio) {
		comp_bio->bi_status = ret;
		bio_endio(comp_bio);
	}
	wait_var_event(cb, atomic_read(&cb->pending_bios) == 0);
	/*
	 * Even with previous bio ended, we should still have io not yet
	 * submitted, thus need to finish @cb manually.
	 */
	ASSERT(refcount_read(&cb->pending_sectors));
	/* Now we are the only one referring @cb, can finish it safely. */
	finish_compressed_bio_read(cb, NULL);
	return ret;
C
Chris Mason 已提交
947
}
948

949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
/*
 * Heuristic uses systematic sampling to collect data from the input data
 * range, the logic can be tuned by the following constants:
 *
 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 */
#define SAMPLING_READ_SIZE	(16)
#define SAMPLING_INTERVAL	(256)

/*
 * For statistical analysis of the input data we consider bytes that form a
 * Galois Field of 256 objects. Each object has an attribute count, ie. how
 * many times the object appeared in the sample.
 */
#define BUCKET_SIZE		(256)

/*
 * The size of the sample is based on a statistical sampling rule of thumb.
 * The common way is to perform sampling tests as long as the number of
 * elements in each cell is at least 5.
 *
 * Instead of 5, we choose 32 to obtain more accurate results.
 * If the data contain the maximum number of symbols, which is 256, we obtain a
 * sample size bound by 8192.
 *
 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 * from up to 512 locations.
 */
#define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)

struct bucket_item {
	u32 count;
};
984 985

struct heuristic_ws {
986 987
	/* Partial copy of input data */
	u8 *sample;
988
	u32 sample_size;
989 990
	/* Buckets store counters for each byte value */
	struct bucket_item *bucket;
991 992
	/* Sorting buffer */
	struct bucket_item *bucket_b;
993 994 995
	struct list_head list;
};

996 997
static struct workspace_manager heuristic_wsm;

998 999 1000 1001 1002 1003
static void free_heuristic_ws(struct list_head *ws)
{
	struct heuristic_ws *workspace;

	workspace = list_entry(ws, struct heuristic_ws, list);

1004 1005
	kvfree(workspace->sample);
	kfree(workspace->bucket);
1006
	kfree(workspace->bucket_b);
1007 1008 1009
	kfree(workspace);
}

1010
static struct list_head *alloc_heuristic_ws(unsigned int level)
1011 1012 1013 1014 1015 1016 1017
{
	struct heuristic_ws *ws;

	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
	if (!ws)
		return ERR_PTR(-ENOMEM);

1018 1019 1020 1021 1022 1023 1024
	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
	if (!ws->sample)
		goto fail;

	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
	if (!ws->bucket)
		goto fail;
1025

1026 1027 1028 1029
	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
	if (!ws->bucket_b)
		goto fail;

1030
	INIT_LIST_HEAD(&ws->list);
1031
	return &ws->list;
1032 1033 1034
fail:
	free_heuristic_ws(&ws->list);
	return ERR_PTR(-ENOMEM);
1035 1036
}

1037
const struct btrfs_compress_op btrfs_heuristic_compress = {
1038
	.workspace_manager = &heuristic_wsm,
1039 1040
};

1041
static const struct btrfs_compress_op * const btrfs_compress_op[] = {
1042 1043
	/* The heuristic is represented as compression type 0 */
	&btrfs_heuristic_compress,
1044
	&btrfs_zlib_compress,
L
Li Zefan 已提交
1045
	&btrfs_lzo_compress,
N
Nick Terrell 已提交
1046
	&btrfs_zstd_compress,
1047 1048
};

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
static struct list_head *alloc_workspace(int type, unsigned int level)
{
	switch (type) {
	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
static void free_workspace(int type, struct list_head *ws)
{
	switch (type) {
	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

1081
static void btrfs_init_workspace_manager(int type)
1082
{
1083
	struct workspace_manager *wsm;
1084
	struct list_head *workspace;
1085

1086
	wsm = btrfs_compress_op[type]->workspace_manager;
1087 1088 1089 1090
	INIT_LIST_HEAD(&wsm->idle_ws);
	spin_lock_init(&wsm->ws_lock);
	atomic_set(&wsm->total_ws, 0);
	init_waitqueue_head(&wsm->ws_wait);
1091

1092 1093 1094 1095
	/*
	 * Preallocate one workspace for each compression type so we can
	 * guarantee forward progress in the worst case
	 */
1096
	workspace = alloc_workspace(type, 0);
1097 1098 1099 1100
	if (IS_ERR(workspace)) {
		pr_warn(
	"BTRFS: cannot preallocate compression workspace, will try later\n");
	} else {
1101 1102 1103
		atomic_set(&wsm->total_ws, 1);
		wsm->free_ws = 1;
		list_add(workspace, &wsm->idle_ws);
1104 1105 1106
	}
}

1107
static void btrfs_cleanup_workspace_manager(int type)
1108
{
1109
	struct workspace_manager *wsman;
1110 1111
	struct list_head *ws;

1112
	wsman = btrfs_compress_op[type]->workspace_manager;
1113 1114 1115
	while (!list_empty(&wsman->idle_ws)) {
		ws = wsman->idle_ws.next;
		list_del(ws);
1116
		free_workspace(type, ws);
1117
		atomic_dec(&wsman->total_ws);
1118 1119 1120 1121
	}
}

/*
1122 1123 1124 1125
 * This finds an available workspace or allocates a new one.
 * If it's not possible to allocate a new one, waits until there's one.
 * Preallocation makes a forward progress guarantees and we do not return
 * errors.
1126
 */
1127
struct list_head *btrfs_get_workspace(int type, unsigned int level)
1128
{
1129
	struct workspace_manager *wsm;
1130 1131
	struct list_head *workspace;
	int cpus = num_online_cpus();
1132
	unsigned nofs_flag;
1133 1134 1135 1136 1137 1138
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

1139
	wsm = btrfs_compress_op[type]->workspace_manager;
1140 1141 1142 1143 1144
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
1145 1146

again:
1147 1148 1149
	spin_lock(ws_lock);
	if (!list_empty(idle_ws)) {
		workspace = idle_ws->next;
1150
		list_del(workspace);
1151
		(*free_ws)--;
1152
		spin_unlock(ws_lock);
1153 1154 1155
		return workspace;

	}
1156
	if (atomic_read(total_ws) > cpus) {
1157 1158
		DEFINE_WAIT(wait);

1159 1160
		spin_unlock(ws_lock);
		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1161
		if (atomic_read(total_ws) > cpus && !*free_ws)
1162
			schedule();
1163
		finish_wait(ws_wait, &wait);
1164 1165
		goto again;
	}
1166
	atomic_inc(total_ws);
1167
	spin_unlock(ws_lock);
1168

1169 1170 1171 1172 1173 1174
	/*
	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
	 * to turn it off here because we might get called from the restricted
	 * context of btrfs_compress_bio/btrfs_compress_pages
	 */
	nofs_flag = memalloc_nofs_save();
1175
	workspace = alloc_workspace(type, level);
1176 1177
	memalloc_nofs_restore(nofs_flag);

1178
	if (IS_ERR(workspace)) {
1179
		atomic_dec(total_ws);
1180
		wake_up(ws_wait);
1181 1182 1183 1184 1185 1186

		/*
		 * Do not return the error but go back to waiting. There's a
		 * workspace preallocated for each type and the compression
		 * time is bounded so we get to a workspace eventually. This
		 * makes our caller's life easier.
1187 1188 1189 1190
		 *
		 * To prevent silent and low-probability deadlocks (when the
		 * initial preallocation fails), check if there are any
		 * workspaces at all.
1191
		 */
1192 1193 1194 1195 1196 1197
		if (atomic_read(total_ws) == 0) {
			static DEFINE_RATELIMIT_STATE(_rs,
					/* once per minute */ 60 * HZ,
					/* no burst */ 1);

			if (__ratelimit(&_rs)) {
1198
				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1199 1200
			}
		}
1201
		goto again;
1202 1203 1204 1205
	}
	return workspace;
}

1206
static struct list_head *get_workspace(int type, int level)
1207
{
1208
	switch (type) {
1209
	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1210
	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1211
	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1212 1213 1214 1215 1216 1217 1218 1219
	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
1220 1221
}

1222 1223 1224 1225
/*
 * put a workspace struct back on the list or free it if we have enough
 * idle ones sitting around
 */
1226
void btrfs_put_workspace(int type, struct list_head *ws)
1227
{
1228
	struct workspace_manager *wsm;
1229 1230 1231 1232 1233 1234
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

1235
	wsm = btrfs_compress_op[type]->workspace_manager;
1236 1237 1238 1239 1240
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
1241 1242

	spin_lock(ws_lock);
1243
	if (*free_ws <= num_online_cpus()) {
1244
		list_add(ws, idle_ws);
1245
		(*free_ws)++;
1246
		spin_unlock(ws_lock);
1247 1248
		goto wake;
	}
1249
	spin_unlock(ws_lock);
1250

1251
	free_workspace(type, ws);
1252
	atomic_dec(total_ws);
1253
wake:
1254
	cond_wake_up(ws_wait);
1255 1256
}

1257 1258
static void put_workspace(int type, struct list_head *ws)
{
1259
	switch (type) {
1260 1261 1262
	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1263 1264 1265 1266 1267 1268 1269 1270
	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
1271 1272
}

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
/*
 * Adjust @level according to the limits of the compression algorithm or
 * fallback to default
 */
static unsigned int btrfs_compress_set_level(int type, unsigned level)
{
	const struct btrfs_compress_op *ops = btrfs_compress_op[type];

	if (level == 0)
		level = ops->default_level;
	else
		level = min(level, ops->max_level);

	return level;
}

1289
/*
1290 1291
 * Given an address space and start and length, compress the bytes into @pages
 * that are allocated on demand.
1292
 *
1293 1294 1295 1296 1297
 * @type_level is encoded algorithm and level, where level 0 means whatever
 * default the algorithm chooses and is opaque here;
 * - compression algo are 0-3
 * - the level are bits 4-7
 *
1298 1299
 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
 * and returns number of actually allocated pages
1300
 *
1301 1302
 * @total_in is used to return the number of bytes actually read.  It
 * may be smaller than the input length if we had to exit early because we
1303 1304 1305
 * ran out of room in the pages array or because we cross the
 * max_out threshold.
 *
1306 1307
 * @total_out is an in/out parameter, must be set to the input length and will
 * be also used to return the total number of compressed bytes
1308
 */
1309
int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1310
			 u64 start, struct page **pages,
1311 1312
			 unsigned long *out_pages,
			 unsigned long *total_in,
1313
			 unsigned long *total_out)
1314
{
1315
	int type = btrfs_compress_type(type_level);
1316
	int level = btrfs_compress_level(type_level);
1317 1318 1319
	struct list_head *workspace;
	int ret;

1320
	level = btrfs_compress_set_level(type, level);
1321
	workspace = get_workspace(type, level);
1322 1323
	ret = compression_compress_pages(type, workspace, mapping, start, pages,
					 out_pages, total_in, total_out);
1324
	put_workspace(type, workspace);
1325 1326 1327
	return ret;
}

1328
static int btrfs_decompress_bio(struct compressed_bio *cb)
1329 1330 1331
{
	struct list_head *workspace;
	int ret;
1332
	int type = cb->compress_type;
1333

1334
	workspace = get_workspace(type, 0);
1335
	ret = compression_decompress_bio(type, workspace, cb);
1336
	put_workspace(type, workspace);
1337

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
	return ret;
}

/*
 * a less complex decompression routine.  Our compressed data fits in a
 * single page, and we want to read a single page out of it.
 * start_byte tells us the offset into the compressed data we're interested in
 */
int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
		     unsigned long start_byte, size_t srclen, size_t destlen)
{
	struct list_head *workspace;
	int ret;

1352
	workspace = get_workspace(type, 0);
1353 1354
	ret = compression_decompress(type, workspace, data_in, dest_page,
				     start_byte, srclen, destlen);
1355
	put_workspace(type, workspace);
1356

1357 1358 1359
	return ret;
}

1360 1361
void __init btrfs_init_compress(void)
{
1362 1363 1364 1365
	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
	zstd_init_workspace_manager();
1366 1367
}

1368
void __cold btrfs_exit_compress(void)
1369
{
1370 1371 1372 1373
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
	zstd_cleanup_workspace_manager();
1374
}
1375 1376

/*
1377
 * Copy decompressed data from working buffer to pages.
1378
 *
1379 1380 1381 1382 1383 1384
 * @buf:		The decompressed data buffer
 * @buf_len:		The decompressed data length
 * @decompressed:	Number of bytes that are already decompressed inside the
 * 			compressed extent
 * @cb:			The compressed extent descriptor
 * @orig_bio:		The original bio that the caller wants to read for
1385
 *
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
 * An easier to understand graph is like below:
 *
 * 		|<- orig_bio ->|     |<- orig_bio->|
 * 	|<-------      full decompressed extent      ----->|
 * 	|<-----------    @cb range   ---->|
 * 	|			|<-- @buf_len -->|
 * 	|<--- @decompressed --->|
 *
 * Note that, @cb can be a subpage of the full decompressed extent, but
 * @cb->start always has the same as the orig_file_offset value of the full
 * decompressed extent.
 *
 * When reading compressed extent, we have to read the full compressed extent,
 * while @orig_bio may only want part of the range.
 * Thus this function will ensure only data covered by @orig_bio will be copied
 * to.
 *
 * Return 0 if we have copied all needed contents for @orig_bio.
 * Return >0 if we need continue decompress.
1405
 */
1406 1407
int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
			      struct compressed_bio *cb, u32 decompressed)
1408
{
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
	struct bio *orig_bio = cb->orig_bio;
	/* Offset inside the full decompressed extent */
	u32 cur_offset;

	cur_offset = decompressed;
	/* The main loop to do the copy */
	while (cur_offset < decompressed + buf_len) {
		struct bio_vec bvec;
		size_t copy_len;
		u32 copy_start;
		/* Offset inside the full decompressed extent */
		u32 bvec_offset;

		bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
		/*
		 * cb->start may underflow, but subtracting that value can still
		 * give us correct offset inside the full decompressed extent.
		 */
		bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1428

1429 1430 1431
		/* Haven't reached the bvec range, exit */
		if (decompressed + buf_len <= bvec_offset)
			return 1;
1432

1433 1434 1435 1436
		copy_start = max(cur_offset, bvec_offset);
		copy_len = min(bvec_offset + bvec.bv_len,
			       decompressed + buf_len) - copy_start;
		ASSERT(copy_len);
1437

1438
		/*
1439 1440
		 * Extra range check to ensure we didn't go beyond
		 * @buf + @buf_len.
1441
		 */
1442 1443 1444 1445 1446
		ASSERT(copy_start - decompressed < buf_len);
		memcpy_to_page(bvec.bv_page, bvec.bv_offset,
			       buf + copy_start - decompressed, copy_len);
		flush_dcache_page(bvec.bv_page);
		cur_offset += copy_len;
1447

1448 1449 1450 1451
		bio_advance(orig_bio, copy_len);
		/* Finished the bio */
		if (!orig_bio->bi_iter.bi_size)
			return 0;
1452 1453 1454
	}
	return 1;
}
1455

1456 1457 1458
/*
 * Shannon Entropy calculation
 *
1459
 * Pure byte distribution analysis fails to determine compressibility of data.
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
 * Try calculating entropy to estimate the average minimum number of bits
 * needed to encode the sampled data.
 *
 * For convenience, return the percentage of needed bits, instead of amount of
 * bits directly.
 *
 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
 *			    and can be compressible with high probability
 *
 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
 *
 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
 */
#define ENTROPY_LVL_ACEPTABLE		(65)
#define ENTROPY_LVL_HIGH		(80)

/*
 * For increasead precision in shannon_entropy calculation,
 * let's do pow(n, M) to save more digits after comma:
 *
 * - maximum int bit length is 64
 * - ilog2(MAX_SAMPLE_SIZE)	-> 13
 * - 13 * 4 = 52 < 64		-> M = 4
 *
 * So use pow(n, 4).
 */
static inline u32 ilog2_w(u64 n)
{
	return ilog2(n * n * n * n);
}

static u32 shannon_entropy(struct heuristic_ws *ws)
{
	const u32 entropy_max = 8 * ilog2_w(2);
	u32 entropy_sum = 0;
	u32 p, p_base, sz_base;
	u32 i;

	sz_base = ilog2_w(ws->sample_size);
	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
		p = ws->bucket[i].count;
		p_base = ilog2_w(p);
		entropy_sum += p * (sz_base - p_base);
	}

	entropy_sum /= ws->sample_size;
	return entropy_sum * 100 / entropy_max;
}

1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
#define RADIX_BASE		4U
#define COUNTERS_SIZE		(1U << RADIX_BASE)

static u8 get4bits(u64 num, int shift) {
	u8 low4bits;

	num >>= shift;
	/* Reverse order */
	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
	return low4bits;
}

/*
 * Use 4 bits as radix base
1523
 * Use 16 u32 counters for calculating new position in buf array
1524 1525 1526 1527 1528 1529
 *
 * @array     - array that will be sorted
 * @array_buf - buffer array to store sorting results
 *              must be equal in size to @array
 * @num       - array size
 */
1530
static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1531
		       int num)
1532
{
1533 1534 1535 1536 1537 1538 1539 1540
	u64 max_num;
	u64 buf_num;
	u32 counters[COUNTERS_SIZE];
	u32 new_addr;
	u32 addr;
	int bitlen;
	int shift;
	int i;
1541

1542 1543 1544 1545
	/*
	 * Try avoid useless loop iterations for small numbers stored in big
	 * counters.  Example: 48 33 4 ... in 64bit array
	 */
1546
	max_num = array[0].count;
1547
	for (i = 1; i < num; i++) {
1548
		buf_num = array[i].count;
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
		if (buf_num > max_num)
			max_num = buf_num;
	}

	buf_num = ilog2(max_num);
	bitlen = ALIGN(buf_num, RADIX_BASE * 2);

	shift = 0;
	while (shift < bitlen) {
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i++) {
1561
			buf_num = array[i].count;
1562 1563 1564 1565 1566 1567 1568 1569
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1570
			buf_num = array[i].count;
1571 1572 1573
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1574
			array_buf[new_addr] = array[i];
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
		}

		shift += RADIX_BASE;

		/*
		 * Normal radix expects to move data from a temporary array, to
		 * the main one.  But that requires some CPU time. Avoid that
		 * by doing another sort iteration to original array instead of
		 * memcpy()
		 */
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i ++) {
1588
			buf_num = array_buf[i].count;
1589 1590 1591 1592 1593 1594 1595 1596
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1597
			buf_num = array_buf[i].count;
1598 1599 1600
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1601
			array[new_addr] = array_buf[i];
1602 1603 1604 1605
		}

		shift += RADIX_BASE;
	}
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
}

/*
 * Size of the core byte set - how many bytes cover 90% of the sample
 *
 * There are several types of structured binary data that use nearly all byte
 * values. The distribution can be uniform and counts in all buckets will be
 * nearly the same (eg. encrypted data). Unlikely to be compressible.
 *
 * Other possibility is normal (Gaussian) distribution, where the data could
 * be potentially compressible, but we have to take a few more steps to decide
 * how much.
 *
 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
 *                       compression algo can easy fix that
 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
 *                       probability is not compressible
 */
#define BYTE_CORE_SET_LOW		(64)
#define BYTE_CORE_SET_HIGH		(200)

static int byte_core_set_size(struct heuristic_ws *ws)
{
	u32 i;
	u32 coreset_sum = 0;
	const u32 core_set_threshold = ws->sample_size * 90 / 100;
	struct bucket_item *bucket = ws->bucket;

	/* Sort in reverse order */
1635
	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651

	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
		coreset_sum += bucket[i].count;

	if (coreset_sum > core_set_threshold)
		return i;

	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
		coreset_sum += bucket[i].count;
		if (coreset_sum > core_set_threshold)
			break;
	}

	return i;
}

1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
/*
 * Count byte values in buckets.
 * This heuristic can detect textual data (configs, xml, json, html, etc).
 * Because in most text-like data byte set is restricted to limited number of
 * possible characters, and that restriction in most cases makes data easy to
 * compress.
 *
 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
 *	less - compressible
 *	more - need additional analysis
 */
#define BYTE_SET_THRESHOLD		(64)

static u32 byte_set_size(const struct heuristic_ws *ws)
{
	u32 i;
	u32 byte_set_size = 0;

	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
		if (ws->bucket[i].count > 0)
			byte_set_size++;
	}

	/*
	 * Continue collecting count of byte values in buckets.  If the byte
	 * set size is bigger then the threshold, it's pointless to continue,
	 * the detection technique would fail for this type of data.
	 */
	for (; i < BUCKET_SIZE; i++) {
		if (ws->bucket[i].count > 0) {
			byte_set_size++;
			if (byte_set_size > BYTE_SET_THRESHOLD)
				return byte_set_size;
		}
	}

	return byte_set_size;
}

1691 1692 1693 1694 1695 1696 1697 1698
static bool sample_repeated_patterns(struct heuristic_ws *ws)
{
	const u32 half_of_sample = ws->sample_size / 2;
	const u8 *data = ws->sample;

	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
}

1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
				     struct heuristic_ws *ws)
{
	struct page *page;
	u64 index, index_end;
	u32 i, curr_sample_pos;
	u8 *in_data;

	/*
	 * Compression handles the input data by chunks of 128KiB
	 * (defined by BTRFS_MAX_UNCOMPRESSED)
	 *
	 * We do the same for the heuristic and loop over the whole range.
	 *
	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
	 */
	if (end - start > BTRFS_MAX_UNCOMPRESSED)
		end = start + BTRFS_MAX_UNCOMPRESSED;

	index = start >> PAGE_SHIFT;
	index_end = end >> PAGE_SHIFT;

	/* Don't miss unaligned end */
	if (!IS_ALIGNED(end, PAGE_SIZE))
		index_end++;

	curr_sample_pos = 0;
	while (index < index_end) {
		page = find_get_page(inode->i_mapping, index);
1729
		in_data = kmap_local_page(page);
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
		/* Handle case where the start is not aligned to PAGE_SIZE */
		i = start % PAGE_SIZE;
		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
			/* Don't sample any garbage from the last page */
			if (start > end - SAMPLING_READ_SIZE)
				break;
			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
					SAMPLING_READ_SIZE);
			i += SAMPLING_INTERVAL;
			start += SAMPLING_INTERVAL;
			curr_sample_pos += SAMPLING_READ_SIZE;
		}
1742
		kunmap_local(in_data);
1743 1744 1745 1746 1747 1748 1749 1750
		put_page(page);

		index++;
	}

	ws->sample_size = curr_sample_pos;
}

1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
/*
 * Compression heuristic.
 *
 * For now is's a naive and optimistic 'return true', we'll extend the logic to
 * quickly (compared to direct compression) detect data characteristics
 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
 * data.
 *
 * The following types of analysis can be performed:
 * - detect mostly zero data
 * - detect data with low "byte set" size (text, etc)
 * - detect data with low/high "core byte" set
 *
 * Return non-zero if the compression should be done, 0 otherwise.
 */
int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
{
1768
	struct list_head *ws_list = get_workspace(0, 0);
1769
	struct heuristic_ws *ws;
1770 1771
	u32 i;
	u8 byte;
1772
	int ret = 0;
1773

1774 1775
	ws = list_entry(ws_list, struct heuristic_ws, list);

1776 1777
	heuristic_collect_sample(inode, start, end, ws);

1778 1779 1780 1781 1782
	if (sample_repeated_patterns(ws)) {
		ret = 1;
		goto out;
	}

1783 1784 1785 1786 1787
	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);

	for (i = 0; i < ws->sample_size; i++) {
		byte = ws->sample[i];
		ws->bucket[byte].count++;
1788 1789
	}

1790 1791 1792 1793 1794 1795
	i = byte_set_size(ws);
	if (i < BYTE_SET_THRESHOLD) {
		ret = 2;
		goto out;
	}

1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
	i = byte_core_set_size(ws);
	if (i <= BYTE_CORE_SET_LOW) {
		ret = 3;
		goto out;
	}

	if (i >= BYTE_CORE_SET_HIGH) {
		ret = 0;
		goto out;
	}

1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
	i = shannon_entropy(ws);
	if (i <= ENTROPY_LVL_ACEPTABLE) {
		ret = 4;
		goto out;
	}

	/*
	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
	 * needed to give green light to compression.
	 *
	 * For now just assume that compression at that level is not worth the
	 * resources because:
	 *
	 * 1. it is possible to defrag the data later
	 *
	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
	 * values, every bucket has counter at level ~54. The heuristic would
	 * be confused. This can happen when data have some internal repeated
	 * patterns like "abbacbbc...". This can be detected by analyzing
	 * pairs of bytes, which is too costly.
	 */
	if (i < ENTROPY_LVL_HIGH) {
		ret = 5;
		goto out;
	} else {
		ret = 0;
		goto out;
	}

1836
out:
1837
	put_workspace(0, ws_list);
1838 1839
	return ret;
}
1840

1841 1842 1843 1844 1845
/*
 * Convert the compression suffix (eg. after "zlib" starting with ":") to
 * level, unrecognized string will set the default level
 */
unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1846
{
1847 1848 1849 1850
	unsigned int level = 0;
	int ret;

	if (!type)
1851 1852
		return 0;

1853 1854 1855 1856 1857 1858
	if (str[0] == ':') {
		ret = kstrtouint(str + 1, 10, &level);
		if (ret)
			level = 0;
	}

1859 1860 1861 1862
	level = btrfs_compress_set_level(type, level);

	return level;
}