compression.c 43.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Copyright (C) 2008 Oracle.  All rights reserved.
 */

#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/backing-dev.h>
#include <linux/writeback.h>
17
#include <linux/slab.h>
18
#include <linux/sched/mm.h>
19
#include <linux/log2.h>
20
#include <crypto/hash.h>
21
#include "misc.h"
C
Chris Mason 已提交
22 23 24 25 26 27 28 29 30 31
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "volumes.h"
#include "ordered-data.h"
#include "compression.h"
#include "extent_io.h"
#include "extent_map.h"

32 33 34 35 36 37 38 39 40 41
static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };

const char* btrfs_compress_type2str(enum btrfs_compression_type type)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
	case BTRFS_COMPRESS_LZO:
	case BTRFS_COMPRESS_ZSTD:
	case BTRFS_COMPRESS_NONE:
		return btrfs_compress_types[type];
42 43
	default:
		break;
44 45 46 47 48
	}

	return NULL;
}

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
bool btrfs_compress_is_valid_type(const char *str, size_t len)
{
	int i;

	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
		size_t comp_len = strlen(btrfs_compress_types[i]);

		if (len < comp_len)
			continue;

		if (!strncmp(btrfs_compress_types[i], str, comp_len))
			return true;
	}
	return false;
}

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
static int compression_compress_pages(int type, struct list_head *ws,
               struct address_space *mapping, u64 start, struct page **pages,
               unsigned long *out_pages, unsigned long *total_in,
               unsigned long *total_out)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
		return zlib_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_LZO:
		return lzo_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_ZSTD:
		return zstd_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here. As a sane fallback, return what the
		 * callers will understand as 'no compression happened'.
		 */
		return -E2BIG;
	}
}

static int compression_decompress_bio(int type, struct list_head *ws,
		struct compressed_bio *cb)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

static int compression_decompress(int type, struct list_head *ws,
               unsigned char *data_in, struct page *dest_page,
               unsigned long start_byte, size_t srclen, size_t destlen)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

129
static int btrfs_decompress_bio(struct compressed_bio *cb);
130

131
static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
132 133 134
				      unsigned long disk_size)
{
	return sizeof(struct compressed_bio) +
135
		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size;
136 137
}

138
static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
139 140
				 u64 disk_start)
{
141
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
142
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
143
	const u32 csum_size = fs_info->csum_size;
144 145 146
	struct page *page;
	unsigned long i;
	char *kaddr;
147
	u8 csum[BTRFS_CSUM_SIZE];
148
	struct compressed_bio *cb = bio->bi_private;
149
	u8 *cb_sum = cb->sums;
150

151
	if (!fs_info->csum_root || (inode->flags & BTRFS_INODE_NODATASUM))
152 153
		return 0;

154 155
	shash->tfm = fs_info->csum_shash;

156 157 158
	for (i = 0; i < cb->nr_pages; i++) {
		page = cb->compressed_pages[i];

159
		kaddr = kmap_atomic(page);
160
		crypto_shash_digest(shash, kaddr, PAGE_SIZE, csum);
161
		kunmap_atomic(kaddr);
162

163
		if (memcmp(&csum, cb_sum, csum_size)) {
164
			btrfs_print_data_csum_error(inode, disk_start,
165
					csum, cb_sum, cb->mirror_num);
166 167 168 169
			if (btrfs_io_bio(bio)->device)
				btrfs_dev_stat_inc_and_print(
					btrfs_io_bio(bio)->device,
					BTRFS_DEV_STAT_CORRUPTION_ERRS);
170
			return -EIO;
171
		}
172
		cb_sum += csum_size;
173
	}
174
	return 0;
175 176
}

C
Chris Mason 已提交
177 178 179 180 181 182 183 184 185 186
/* when we finish reading compressed pages from the disk, we
 * decompress them and then run the bio end_io routines on the
 * decompressed pages (in the inode address space).
 *
 * This allows the checksumming and other IO error handling routines
 * to work normally
 *
 * The compressed pages are freed here, and it must be run
 * in process context
 */
187
static void end_compressed_bio_read(struct bio *bio)
C
Chris Mason 已提交
188 189 190 191 192
{
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
	struct page *page;
	unsigned long index;
193
	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
194
	int ret = 0;
C
Chris Mason 已提交
195

196
	if (bio->bi_status)
C
Chris Mason 已提交
197 198 199 200 201
		cb->errors = 1;

	/* if there are more bios still pending for this compressed
	 * extent, just exit
	 */
202
	if (!refcount_dec_and_test(&cb->pending_bios))
C
Chris Mason 已提交
203 204
		goto out;

205 206 207 208 209 210 211
	/*
	 * Record the correct mirror_num in cb->orig_bio so that
	 * read-repair can work properly.
	 */
	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
	cb->mirror_num = mirror;

212 213 214 215 216 217 218
	/*
	 * Some IO in this cb have failed, just skip checksum as there
	 * is no way it could be correct.
	 */
	if (cb->errors == 1)
		goto csum_failed;

219
	inode = cb->inode;
220
	ret = check_compressed_csum(BTRFS_I(inode), bio,
D
David Sterba 已提交
221
				    bio->bi_iter.bi_sector << 9);
222 223 224
	if (ret)
		goto csum_failed;

C
Chris Mason 已提交
225 226 227
	/* ok, we're the last bio for this extent, lets start
	 * the decompression.
	 */
228 229
	ret = btrfs_decompress_bio(cb);

230
csum_failed:
C
Chris Mason 已提交
231 232 233 234 235 236 237 238
	if (ret)
		cb->errors = 1;

	/* release the compressed pages */
	index = 0;
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
239
		put_page(page);
C
Chris Mason 已提交
240 241 242
	}

	/* do io completion on the original bio */
243
	if (cb->errors) {
C
Chris Mason 已提交
244
		bio_io_error(cb->orig_bio);
245
	} else {
246
		struct bio_vec *bvec;
247
		struct bvec_iter_all iter_all;
248 249 250 251 252

		/*
		 * we have verified the checksum already, set page
		 * checked so the end_io handlers know about it
		 */
253
		ASSERT(!bio_flagged(bio, BIO_CLONED));
254
		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
255
			SetPageChecked(bvec->bv_page);
256

257
		bio_endio(cb->orig_bio);
258
	}
C
Chris Mason 已提交
259 260 261 262 263 264 265 266 267 268 269 270

	/* finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
out:
	bio_put(bio);
}

/*
 * Clear the writeback bits on all of the file
 * pages for a compressed write
 */
271 272
static noinline void end_compressed_writeback(struct inode *inode,
					      const struct compressed_bio *cb)
C
Chris Mason 已提交
273
{
274 275
	unsigned long index = cb->start >> PAGE_SHIFT;
	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
C
Chris Mason 已提交
276 277 278 279 280
	struct page *pages[16];
	unsigned long nr_pages = end_index - index + 1;
	int i;
	int ret;

281 282 283
	if (cb->errors)
		mapping_set_error(inode->i_mapping, -EIO);

C
Chris Mason 已提交
284
	while (nr_pages > 0) {
C
Chris Mason 已提交
285
		ret = find_get_pages_contig(inode->i_mapping, index,
286 287
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
C
Chris Mason 已提交
288 289 290 291 292 293
		if (ret == 0) {
			nr_pages -= 1;
			index += 1;
			continue;
		}
		for (i = 0; i < ret; i++) {
294 295
			if (cb->errors)
				SetPageError(pages[i]);
C
Chris Mason 已提交
296
			end_page_writeback(pages[i]);
297
			put_page(pages[i]);
C
Chris Mason 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
		}
		nr_pages -= ret;
		index += ret;
	}
	/* the inode may be gone now */
}

/*
 * do the cleanup once all the compressed pages hit the disk.
 * This will clear writeback on the file pages and free the compressed
 * pages.
 *
 * This also calls the writeback end hooks for the file pages so that
 * metadata and checksums can be updated in the file.
 */
313
static void end_compressed_bio_write(struct bio *bio)
C
Chris Mason 已提交
314 315 316 317 318 319
{
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
	struct page *page;
	unsigned long index;

320
	if (bio->bi_status)
C
Chris Mason 已提交
321 322 323 324 325
		cb->errors = 1;

	/* if there are more bios still pending for this compressed
	 * extent, just exit
	 */
326
	if (!refcount_dec_and_test(&cb->pending_bios))
C
Chris Mason 已提交
327 328 329 330 331 332
		goto out;

	/* ok, we're the last bio for this extent, step one is to
	 * call back into the FS and do all the end_io operations
	 */
	inode = cb->inode;
C
Chris Mason 已提交
333
	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
334
	btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
335
			cb->start, cb->start + cb->len - 1,
336
			bio->bi_status == BLK_STS_OK);
C
Chris Mason 已提交
337
	cb->compressed_pages[0]->mapping = NULL;
C
Chris Mason 已提交
338

339
	end_compressed_writeback(inode, cb);
C
Chris Mason 已提交
340 341 342 343 344 345 346 347 348 349
	/* note, our inode could be gone now */

	/*
	 * release the compressed pages, these came from alloc_page and
	 * are not attached to the inode at all
	 */
	index = 0;
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
350
		put_page(page);
C
Chris Mason 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
	}

	/* finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
out:
	bio_put(bio);
}

/*
 * worker function to build and submit bios for previously compressed pages.
 * The corresponding pages in the inode should be marked for writeback
 * and the compressed pages should have a reference on them for dropping
 * when the IO is complete.
 *
 * This also checksums the file bytes and gets things ready for
 * the end io hooks.
 */
369
blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
C
Chris Mason 已提交
370 371 372
				 unsigned long len, u64 disk_start,
				 unsigned long compressed_len,
				 struct page **compressed_pages,
373
				 unsigned long nr_pages,
374 375
				 unsigned int write_flags,
				 struct cgroup_subsys_state *blkcg_css)
C
Chris Mason 已提交
376
{
377
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
C
Chris Mason 已提交
378 379 380
	struct bio *bio = NULL;
	struct compressed_bio *cb;
	unsigned long bytes_left;
381
	int pg_index = 0;
C
Chris Mason 已提交
382 383
	struct page *page;
	u64 first_byte = disk_start;
384
	blk_status_t ret;
385
	int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
C
Chris Mason 已提交
386

387
	WARN_ON(!PAGE_ALIGNED(start));
388
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
389
	if (!cb)
390
		return BLK_STS_RESOURCE;
391
	refcount_set(&cb->pending_bios, 0);
C
Chris Mason 已提交
392
	cb->errors = 0;
393
	cb->inode = &inode->vfs_inode;
C
Chris Mason 已提交
394 395
	cb->start = start;
	cb->len = len;
396
	cb->mirror_num = 0;
C
Chris Mason 已提交
397 398 399 400 401
	cb->compressed_pages = compressed_pages;
	cb->compressed_len = compressed_len;
	cb->orig_bio = NULL;
	cb->nr_pages = nr_pages;

402
	bio = btrfs_bio_alloc(first_byte);
403
	bio->bi_opf = REQ_OP_WRITE | write_flags;
C
Chris Mason 已提交
404 405
	bio->bi_private = cb;
	bio->bi_end_io = end_compressed_bio_write;
406 407 408

	if (blkcg_css) {
		bio->bi_opf |= REQ_CGROUP_PUNT;
409
		kthread_associate_blkcg(blkcg_css);
410
	}
411
	refcount_set(&cb->pending_bios, 1);
C
Chris Mason 已提交
412 413 414

	/* create and submit bios for the compressed pages */
	bytes_left = compressed_len;
415
	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
416 417
		int submit = 0;

418
		page = compressed_pages[pg_index];
419
		page->mapping = inode->vfs_inode.i_mapping;
420
		if (bio->bi_iter.bi_size)
421 422
			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
							  0);
C
Chris Mason 已提交
423

C
Chris Mason 已提交
424
		page->mapping = NULL;
425
		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
426
		    PAGE_SIZE) {
427 428 429 430 431 432
			/*
			 * inc the count before we submit the bio so
			 * we know the end IO handler won't happen before
			 * we inc the count.  Otherwise, the cb might get
			 * freed before we're done setting it up
			 */
433
			refcount_inc(&cb->pending_bios);
434 435
			ret = btrfs_bio_wq_end_io(fs_info, bio,
						  BTRFS_WQ_ENDIO_DATA);
436
			BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
437

438
			if (!skip_sum) {
439
				ret = btrfs_csum_one_bio(inode, bio, start, 1);
440
				BUG_ON(ret); /* -ENOMEM */
441
			}
442

443
			ret = btrfs_map_bio(fs_info, bio, 0);
444
			if (ret) {
445
				bio->bi_status = ret;
446 447
				bio_endio(bio);
			}
C
Chris Mason 已提交
448

449
			bio = btrfs_bio_alloc(first_byte);
450
			bio->bi_opf = REQ_OP_WRITE | write_flags;
C
Chris Mason 已提交
451 452
			bio->bi_private = cb;
			bio->bi_end_io = end_compressed_bio_write;
453
			if (blkcg_css)
454
				bio->bi_opf |= REQ_CGROUP_PUNT;
455
			bio_add_page(bio, page, PAGE_SIZE, 0);
C
Chris Mason 已提交
456
		}
457
		if (bytes_left < PAGE_SIZE) {
458
			btrfs_info(fs_info,
459
					"bytes left %lu compress len %lu nr %lu",
460 461
			       bytes_left, cb->compressed_len, cb->nr_pages);
		}
462 463
		bytes_left -= PAGE_SIZE;
		first_byte += PAGE_SIZE;
464
		cond_resched();
C
Chris Mason 已提交
465 466
	}

467
	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
468
	BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
469

470
	if (!skip_sum) {
471
		ret = btrfs_csum_one_bio(inode, bio, start, 1);
472
		BUG_ON(ret); /* -ENOMEM */
473
	}
474

475
	ret = btrfs_map_bio(fs_info, bio, 0);
476
	if (ret) {
477
		bio->bi_status = ret;
478 479
		bio_endio(bio);
	}
C
Chris Mason 已提交
480

481 482 483
	if (blkcg_css)
		kthread_associate_blkcg(NULL);

C
Chris Mason 已提交
484 485 486
	return 0;
}

487 488
static u64 bio_end_offset(struct bio *bio)
{
M
Ming Lei 已提交
489
	struct bio_vec *last = bio_last_bvec_all(bio);
490 491 492 493

	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
}

494 495 496 497 498
static noinline int add_ra_bio_pages(struct inode *inode,
				     u64 compressed_end,
				     struct compressed_bio *cb)
{
	unsigned long end_index;
499
	unsigned long pg_index;
500 501 502 503 504 505 506 507 508 509 510 511
	u64 last_offset;
	u64 isize = i_size_read(inode);
	int ret;
	struct page *page;
	unsigned long nr_pages = 0;
	struct extent_map *em;
	struct address_space *mapping = inode->i_mapping;
	struct extent_map_tree *em_tree;
	struct extent_io_tree *tree;
	u64 end;
	int misses = 0;

512
	last_offset = bio_end_offset(cb->orig_bio);
513 514 515 516 517 518
	em_tree = &BTRFS_I(inode)->extent_tree;
	tree = &BTRFS_I(inode)->io_tree;

	if (isize == 0)
		return 0;

519
	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
520

C
Chris Mason 已提交
521
	while (last_offset < compressed_end) {
522
		pg_index = last_offset >> PAGE_SHIFT;
523

524
		if (pg_index > end_index)
525 526
			break;

527
		page = xa_load(&mapping->i_pages, pg_index);
528
		if (page && !xa_is_value(page)) {
529 530 531 532 533 534
			misses++;
			if (misses > 4)
				break;
			goto next;
		}

535 536
		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
								 ~__GFP_FS));
537 538 539
		if (!page)
			break;

540
		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
541
			put_page(page);
542 543 544
			goto next;
		}

545
		end = last_offset + PAGE_SIZE - 1;
546 547 548 549 550 551
		/*
		 * at this point, we have a locked page in the page cache
		 * for these bytes in the file.  But, we have to make
		 * sure they map to this compressed extent on disk.
		 */
		set_page_extent_mapped(page);
552
		lock_extent(tree, last_offset, end);
553
		read_lock(&em_tree->lock);
554
		em = lookup_extent_mapping(em_tree, last_offset,
555
					   PAGE_SIZE);
556
		read_unlock(&em_tree->lock);
557 558

		if (!em || last_offset < em->start ||
559
		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
560
		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
561
			free_extent_map(em);
562
			unlock_extent(tree, last_offset, end);
563
			unlock_page(page);
564
			put_page(page);
565 566 567 568 569 570
			break;
		}
		free_extent_map(em);

		if (page->index == end_index) {
			char *userpage;
571
			size_t zero_offset = offset_in_page(isize);
572 573 574

			if (zero_offset) {
				int zeros;
575
				zeros = PAGE_SIZE - zero_offset;
576
				userpage = kmap_atomic(page);
577 578
				memset(userpage + zero_offset, 0, zeros);
				flush_dcache_page(page);
579
				kunmap_atomic(userpage);
580 581 582 583
			}
		}

		ret = bio_add_page(cb->orig_bio, page,
584
				   PAGE_SIZE, 0);
585

586
		if (ret == PAGE_SIZE) {
587
			nr_pages++;
588
			put_page(page);
589
		} else {
590
			unlock_extent(tree, last_offset, end);
591
			unlock_page(page);
592
			put_page(page);
593 594 595
			break;
		}
next:
596
		last_offset += PAGE_SIZE;
597 598 599 600
	}
	return 0;
}

C
Chris Mason 已提交
601 602 603 604 605
/*
 * for a compressed read, the bio we get passed has all the inode pages
 * in it.  We don't actually do IO on those pages but allocate new ones
 * to hold the compressed pages on disk.
 *
606
 * bio->bi_iter.bi_sector points to the compressed extent on disk
C
Chris Mason 已提交
607 608 609 610 611
 * bio->bi_io_vec points to all of the inode pages
 *
 * After the compressed pages are read, we copy the bytes into the
 * bio we were passed and then call the bio end_io calls
 */
612
blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
C
Chris Mason 已提交
613 614
				 int mirror_num, unsigned long bio_flags)
{
615
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
C
Chris Mason 已提交
616 617 618 619
	struct extent_map_tree *em_tree;
	struct compressed_bio *cb;
	unsigned long compressed_len;
	unsigned long nr_pages;
620
	unsigned long pg_index;
C
Chris Mason 已提交
621 622
	struct page *page;
	struct bio *comp_bio;
D
David Sterba 已提交
623
	u64 cur_disk_byte = bio->bi_iter.bi_sector << 9;
624 625
	u64 em_len;
	u64 em_start;
C
Chris Mason 已提交
626
	struct extent_map *em;
627
	blk_status_t ret = BLK_STS_RESOURCE;
628
	int faili = 0;
629
	u8 *sums;
C
Chris Mason 已提交
630 631 632 633

	em_tree = &BTRFS_I(inode)->extent_tree;

	/* we need the actual starting offset of this extent in the file */
634
	read_lock(&em_tree->lock);
C
Chris Mason 已提交
635
	em = lookup_extent_mapping(em_tree,
636
				   page_offset(bio_first_page_all(bio)),
637
				   PAGE_SIZE);
638
	read_unlock(&em_tree->lock);
639
	if (!em)
640
		return BLK_STS_IOERR;
C
Chris Mason 已提交
641

642
	compressed_len = em->block_len;
643
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
644 645 646
	if (!cb)
		goto out;

647
	refcount_set(&cb->pending_bios, 0);
C
Chris Mason 已提交
648 649
	cb->errors = 0;
	cb->inode = inode;
650
	cb->mirror_num = mirror_num;
651
	sums = cb->sums;
C
Chris Mason 已提交
652

653
	cb->start = em->orig_start;
654 655
	em_len = em->len;
	em_start = em->start;
656

C
Chris Mason 已提交
657
	free_extent_map(em);
658
	em = NULL;
C
Chris Mason 已提交
659

C
Christoph Hellwig 已提交
660
	cb->len = bio->bi_iter.bi_size;
C
Chris Mason 已提交
661
	cb->compressed_len = compressed_len;
662
	cb->compress_type = extent_compress_type(bio_flags);
C
Chris Mason 已提交
663 664
	cb->orig_bio = bio;

665
	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
666
	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
C
Chris Mason 已提交
667
				       GFP_NOFS);
668 669 670
	if (!cb->compressed_pages)
		goto fail1;

671 672
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
C
Chris Mason 已提交
673
							      __GFP_HIGHMEM);
674 675
		if (!cb->compressed_pages[pg_index]) {
			faili = pg_index - 1;
D
Dan Carpenter 已提交
676
			ret = BLK_STS_RESOURCE;
677
			goto fail2;
678
		}
C
Chris Mason 已提交
679
	}
680
	faili = nr_pages - 1;
C
Chris Mason 已提交
681 682
	cb->nr_pages = nr_pages;

683
	add_ra_bio_pages(inode, em_start + em_len, cb);
684 685

	/* include any pages we added in add_ra-bio_pages */
C
Christoph Hellwig 已提交
686
	cb->len = bio->bi_iter.bi_size;
687

688
	comp_bio = btrfs_bio_alloc(cur_disk_byte);
D
David Sterba 已提交
689
	comp_bio->bi_opf = REQ_OP_READ;
C
Chris Mason 已提交
690 691
	comp_bio->bi_private = cb;
	comp_bio->bi_end_io = end_compressed_bio_read;
692
	refcount_set(&cb->pending_bios, 1);
C
Chris Mason 已提交
693

694
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
695 696
		int submit = 0;

697
		page = cb->compressed_pages[pg_index];
C
Chris Mason 已提交
698
		page->mapping = inode->i_mapping;
699
		page->index = em_start >> PAGE_SHIFT;
700

701
		if (comp_bio->bi_iter.bi_size)
702 703
			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE,
							  comp_bio, 0);
C
Chris Mason 已提交
704

C
Chris Mason 已提交
705
		page->mapping = NULL;
706
		if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
707
		    PAGE_SIZE) {
708 709
			unsigned int nr_sectors;

710 711
			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
						  BTRFS_WQ_ENDIO_DATA);
712
			BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
713

714 715 716 717 718 719
			/*
			 * inc the count before we submit the bio so
			 * we know the end IO handler won't happen before
			 * we inc the count.  Otherwise, the cb might get
			 * freed before we're done setting it up
			 */
720
			refcount_inc(&cb->pending_bios);
721

722 723 724
			ret = btrfs_lookup_bio_sums(inode, comp_bio, (u64)-1,
						    sums);
			BUG_ON(ret); /* -ENOMEM */
725 726 727

			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
						  fs_info->sectorsize);
728
			sums += fs_info->csum_size * nr_sectors;
729

730
			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
731
			if (ret) {
732
				comp_bio->bi_status = ret;
733 734
				bio_endio(comp_bio);
			}
C
Chris Mason 已提交
735

736
			comp_bio = btrfs_bio_alloc(cur_disk_byte);
D
David Sterba 已提交
737
			comp_bio->bi_opf = REQ_OP_READ;
738 739 740
			comp_bio->bi_private = cb;
			comp_bio->bi_end_io = end_compressed_bio_read;

741
			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
C
Chris Mason 已提交
742
		}
743
		cur_disk_byte += PAGE_SIZE;
C
Chris Mason 已提交
744 745
	}

746
	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
747
	BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
748

749 750
	ret = btrfs_lookup_bio_sums(inode, comp_bio, (u64)-1, sums);
	BUG_ON(ret); /* -ENOMEM */
751

752
	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
753
	if (ret) {
754
		comp_bio->bi_status = ret;
755 756
		bio_endio(comp_bio);
	}
C
Chris Mason 已提交
757 758

	return 0;
759 760

fail2:
761 762 763 764
	while (faili >= 0) {
		__free_page(cb->compressed_pages[faili]);
		faili--;
	}
765 766 767 768 769 770 771

	kfree(cb->compressed_pages);
fail1:
	kfree(cb);
out:
	free_extent_map(em);
	return ret;
C
Chris Mason 已提交
772
}
773

774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
/*
 * Heuristic uses systematic sampling to collect data from the input data
 * range, the logic can be tuned by the following constants:
 *
 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 */
#define SAMPLING_READ_SIZE	(16)
#define SAMPLING_INTERVAL	(256)

/*
 * For statistical analysis of the input data we consider bytes that form a
 * Galois Field of 256 objects. Each object has an attribute count, ie. how
 * many times the object appeared in the sample.
 */
#define BUCKET_SIZE		(256)

/*
 * The size of the sample is based on a statistical sampling rule of thumb.
 * The common way is to perform sampling tests as long as the number of
 * elements in each cell is at least 5.
 *
 * Instead of 5, we choose 32 to obtain more accurate results.
 * If the data contain the maximum number of symbols, which is 256, we obtain a
 * sample size bound by 8192.
 *
 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 * from up to 512 locations.
 */
#define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)

struct bucket_item {
	u32 count;
};
809 810

struct heuristic_ws {
811 812
	/* Partial copy of input data */
	u8 *sample;
813
	u32 sample_size;
814 815
	/* Buckets store counters for each byte value */
	struct bucket_item *bucket;
816 817
	/* Sorting buffer */
	struct bucket_item *bucket_b;
818 819 820
	struct list_head list;
};

821 822
static struct workspace_manager heuristic_wsm;

823 824 825 826 827 828
static void free_heuristic_ws(struct list_head *ws)
{
	struct heuristic_ws *workspace;

	workspace = list_entry(ws, struct heuristic_ws, list);

829 830
	kvfree(workspace->sample);
	kfree(workspace->bucket);
831
	kfree(workspace->bucket_b);
832 833 834
	kfree(workspace);
}

835
static struct list_head *alloc_heuristic_ws(unsigned int level)
836 837 838 839 840 841 842
{
	struct heuristic_ws *ws;

	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
	if (!ws)
		return ERR_PTR(-ENOMEM);

843 844 845 846 847 848 849
	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
	if (!ws->sample)
		goto fail;

	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
	if (!ws->bucket)
		goto fail;
850

851 852 853 854
	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
	if (!ws->bucket_b)
		goto fail;

855
	INIT_LIST_HEAD(&ws->list);
856
	return &ws->list;
857 858 859
fail:
	free_heuristic_ws(&ws->list);
	return ERR_PTR(-ENOMEM);
860 861
}

862
const struct btrfs_compress_op btrfs_heuristic_compress = {
863
	.workspace_manager = &heuristic_wsm,
864 865
};

866
static const struct btrfs_compress_op * const btrfs_compress_op[] = {
867 868
	/* The heuristic is represented as compression type 0 */
	&btrfs_heuristic_compress,
869
	&btrfs_zlib_compress,
L
Li Zefan 已提交
870
	&btrfs_lzo_compress,
N
Nick Terrell 已提交
871
	&btrfs_zstd_compress,
872 873
};

874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
static struct list_head *alloc_workspace(int type, unsigned int level)
{
	switch (type) {
	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
static void free_workspace(int type, struct list_head *ws)
{
	switch (type) {
	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

906
static void btrfs_init_workspace_manager(int type)
907
{
908
	struct workspace_manager *wsm;
909
	struct list_head *workspace;
910

911
	wsm = btrfs_compress_op[type]->workspace_manager;
912 913 914 915
	INIT_LIST_HEAD(&wsm->idle_ws);
	spin_lock_init(&wsm->ws_lock);
	atomic_set(&wsm->total_ws, 0);
	init_waitqueue_head(&wsm->ws_wait);
916

917 918 919 920
	/*
	 * Preallocate one workspace for each compression type so we can
	 * guarantee forward progress in the worst case
	 */
921
	workspace = alloc_workspace(type, 0);
922 923 924 925
	if (IS_ERR(workspace)) {
		pr_warn(
	"BTRFS: cannot preallocate compression workspace, will try later\n");
	} else {
926 927 928
		atomic_set(&wsm->total_ws, 1);
		wsm->free_ws = 1;
		list_add(workspace, &wsm->idle_ws);
929 930 931
	}
}

932
static void btrfs_cleanup_workspace_manager(int type)
933
{
934
	struct workspace_manager *wsman;
935 936
	struct list_head *ws;

937
	wsman = btrfs_compress_op[type]->workspace_manager;
938 939 940
	while (!list_empty(&wsman->idle_ws)) {
		ws = wsman->idle_ws.next;
		list_del(ws);
941
		free_workspace(type, ws);
942
		atomic_dec(&wsman->total_ws);
943 944 945 946
	}
}

/*
947 948 949 950
 * This finds an available workspace or allocates a new one.
 * If it's not possible to allocate a new one, waits until there's one.
 * Preallocation makes a forward progress guarantees and we do not return
 * errors.
951
 */
952
struct list_head *btrfs_get_workspace(int type, unsigned int level)
953
{
954
	struct workspace_manager *wsm;
955 956
	struct list_head *workspace;
	int cpus = num_online_cpus();
957
	unsigned nofs_flag;
958 959 960 961 962 963
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

964
	wsm = btrfs_compress_op[type]->workspace_manager;
965 966 967 968 969
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
970 971

again:
972 973 974
	spin_lock(ws_lock);
	if (!list_empty(idle_ws)) {
		workspace = idle_ws->next;
975
		list_del(workspace);
976
		(*free_ws)--;
977
		spin_unlock(ws_lock);
978 979 980
		return workspace;

	}
981
	if (atomic_read(total_ws) > cpus) {
982 983
		DEFINE_WAIT(wait);

984 985
		spin_unlock(ws_lock);
		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
986
		if (atomic_read(total_ws) > cpus && !*free_ws)
987
			schedule();
988
		finish_wait(ws_wait, &wait);
989 990
		goto again;
	}
991
	atomic_inc(total_ws);
992
	spin_unlock(ws_lock);
993

994 995 996 997 998 999
	/*
	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
	 * to turn it off here because we might get called from the restricted
	 * context of btrfs_compress_bio/btrfs_compress_pages
	 */
	nofs_flag = memalloc_nofs_save();
1000
	workspace = alloc_workspace(type, level);
1001 1002
	memalloc_nofs_restore(nofs_flag);

1003
	if (IS_ERR(workspace)) {
1004
		atomic_dec(total_ws);
1005
		wake_up(ws_wait);
1006 1007 1008 1009 1010 1011

		/*
		 * Do not return the error but go back to waiting. There's a
		 * workspace preallocated for each type and the compression
		 * time is bounded so we get to a workspace eventually. This
		 * makes our caller's life easier.
1012 1013 1014 1015
		 *
		 * To prevent silent and low-probability deadlocks (when the
		 * initial preallocation fails), check if there are any
		 * workspaces at all.
1016
		 */
1017 1018 1019 1020 1021 1022
		if (atomic_read(total_ws) == 0) {
			static DEFINE_RATELIMIT_STATE(_rs,
					/* once per minute */ 60 * HZ,
					/* no burst */ 1);

			if (__ratelimit(&_rs)) {
1023
				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1024 1025
			}
		}
1026
		goto again;
1027 1028 1029 1030
	}
	return workspace;
}

1031
static struct list_head *get_workspace(int type, int level)
1032
{
1033
	switch (type) {
1034
	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1035
	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1036
	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1037 1038 1039 1040 1041 1042 1043 1044
	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
1045 1046
}

1047 1048 1049 1050
/*
 * put a workspace struct back on the list or free it if we have enough
 * idle ones sitting around
 */
1051
void btrfs_put_workspace(int type, struct list_head *ws)
1052
{
1053
	struct workspace_manager *wsm;
1054 1055 1056 1057 1058 1059
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

1060
	wsm = btrfs_compress_op[type]->workspace_manager;
1061 1062 1063 1064 1065
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
1066 1067

	spin_lock(ws_lock);
1068
	if (*free_ws <= num_online_cpus()) {
1069
		list_add(ws, idle_ws);
1070
		(*free_ws)++;
1071
		spin_unlock(ws_lock);
1072 1073
		goto wake;
	}
1074
	spin_unlock(ws_lock);
1075

1076
	free_workspace(type, ws);
1077
	atomic_dec(total_ws);
1078
wake:
1079
	cond_wake_up(ws_wait);
1080 1081
}

1082 1083
static void put_workspace(int type, struct list_head *ws)
{
1084
	switch (type) {
1085 1086 1087
	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1088 1089 1090 1091 1092 1093 1094 1095
	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
1096 1097
}

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
/*
 * Adjust @level according to the limits of the compression algorithm or
 * fallback to default
 */
static unsigned int btrfs_compress_set_level(int type, unsigned level)
{
	const struct btrfs_compress_op *ops = btrfs_compress_op[type];

	if (level == 0)
		level = ops->default_level;
	else
		level = min(level, ops->max_level);

	return level;
}

1114
/*
1115 1116
 * Given an address space and start and length, compress the bytes into @pages
 * that are allocated on demand.
1117
 *
1118 1119 1120 1121 1122
 * @type_level is encoded algorithm and level, where level 0 means whatever
 * default the algorithm chooses and is opaque here;
 * - compression algo are 0-3
 * - the level are bits 4-7
 *
1123 1124
 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
 * and returns number of actually allocated pages
1125
 *
1126 1127
 * @total_in is used to return the number of bytes actually read.  It
 * may be smaller than the input length if we had to exit early because we
1128 1129 1130
 * ran out of room in the pages array or because we cross the
 * max_out threshold.
 *
1131 1132
 * @total_out is an in/out parameter, must be set to the input length and will
 * be also used to return the total number of compressed bytes
1133
 *
1134
 * @max_out tells us the max number of bytes that we're allowed to
1135 1136
 * stuff into pages
 */
1137
int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1138
			 u64 start, struct page **pages,
1139 1140
			 unsigned long *out_pages,
			 unsigned long *total_in,
1141
			 unsigned long *total_out)
1142
{
1143
	int type = btrfs_compress_type(type_level);
1144
	int level = btrfs_compress_level(type_level);
1145 1146 1147
	struct list_head *workspace;
	int ret;

1148
	level = btrfs_compress_set_level(type, level);
1149
	workspace = get_workspace(type, level);
1150 1151
	ret = compression_compress_pages(type, workspace, mapping, start, pages,
					 out_pages, total_in, total_out);
1152
	put_workspace(type, workspace);
1153 1154 1155 1156 1157 1158 1159 1160
	return ret;
}

/*
 * pages_in is an array of pages with compressed data.
 *
 * disk_start is the starting logical offset of this array in the file
 *
1161
 * orig_bio contains the pages from the file that we want to decompress into
1162 1163 1164 1165 1166 1167 1168 1169
 *
 * srclen is the number of bytes in pages_in
 *
 * The basic idea is that we have a bio that was created by readpages.
 * The pages in the bio are for the uncompressed data, and they may not
 * be contiguous.  They all correspond to the range of bytes covered by
 * the compressed extent.
 */
1170
static int btrfs_decompress_bio(struct compressed_bio *cb)
1171 1172 1173
{
	struct list_head *workspace;
	int ret;
1174
	int type = cb->compress_type;
1175

1176
	workspace = get_workspace(type, 0);
1177
	ret = compression_decompress_bio(type, workspace, cb);
1178
	put_workspace(type, workspace);
1179

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
	return ret;
}

/*
 * a less complex decompression routine.  Our compressed data fits in a
 * single page, and we want to read a single page out of it.
 * start_byte tells us the offset into the compressed data we're interested in
 */
int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
		     unsigned long start_byte, size_t srclen, size_t destlen)
{
	struct list_head *workspace;
	int ret;

1194
	workspace = get_workspace(type, 0);
1195 1196
	ret = compression_decompress(type, workspace, data_in, dest_page,
				     start_byte, srclen, destlen);
1197
	put_workspace(type, workspace);
1198

1199 1200 1201
	return ret;
}

1202 1203
void __init btrfs_init_compress(void)
{
1204 1205 1206 1207
	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
	zstd_init_workspace_manager();
1208 1209
}

1210
void __cold btrfs_exit_compress(void)
1211
{
1212 1213 1214 1215
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
	zstd_cleanup_workspace_manager();
1216
}
1217 1218 1219 1220 1221 1222 1223 1224

/*
 * Copy uncompressed data from working buffer to pages.
 *
 * buf_start is the byte offset we're of the start of our workspace buffer.
 *
 * total_out is the last byte of the buffer
 */
1225
int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1226
			      unsigned long total_out, u64 disk_start,
1227
			      struct bio *bio)
1228 1229 1230 1231
{
	unsigned long buf_offset;
	unsigned long current_buf_start;
	unsigned long start_byte;
1232
	unsigned long prev_start_byte;
1233 1234 1235
	unsigned long working_bytes = total_out - buf_start;
	unsigned long bytes;
	char *kaddr;
1236
	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1237 1238 1239 1240 1241

	/*
	 * start byte is the first byte of the page we're currently
	 * copying into relative to the start of the compressed data.
	 */
1242
	start_byte = page_offset(bvec.bv_page) - disk_start;
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261

	/* we haven't yet hit data corresponding to this page */
	if (total_out <= start_byte)
		return 1;

	/*
	 * the start of the data we care about is offset into
	 * the middle of our working buffer
	 */
	if (total_out > start_byte && buf_start < start_byte) {
		buf_offset = start_byte - buf_start;
		working_bytes -= buf_offset;
	} else {
		buf_offset = 0;
	}
	current_buf_start = buf_start;

	/* copy bytes from the working buffer into the pages */
	while (working_bytes > 0) {
1262
		bytes = min_t(unsigned long, bvec.bv_len,
1263
				PAGE_SIZE - (buf_offset % PAGE_SIZE));
1264
		bytes = min(bytes, working_bytes);
1265 1266 1267

		kaddr = kmap_atomic(bvec.bv_page);
		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1268
		kunmap_atomic(kaddr);
1269
		flush_dcache_page(bvec.bv_page);
1270 1271 1272 1273 1274 1275

		buf_offset += bytes;
		working_bytes -= bytes;
		current_buf_start += bytes;

		/* check if we need to pick another page */
1276 1277 1278 1279
		bio_advance(bio, bytes);
		if (!bio->bi_iter.bi_size)
			return 0;
		bvec = bio_iter_iovec(bio, bio->bi_iter);
1280
		prev_start_byte = start_byte;
1281
		start_byte = page_offset(bvec.bv_page) - disk_start;
1282

1283
		/*
1284 1285 1286 1287
		 * We need to make sure we're only adjusting
		 * our offset into compression working buffer when
		 * we're switching pages.  Otherwise we can incorrectly
		 * keep copying when we were actually done.
1288
		 */
1289 1290 1291 1292 1293 1294 1295
		if (start_byte != prev_start_byte) {
			/*
			 * make sure our new page is covered by this
			 * working buffer
			 */
			if (total_out <= start_byte)
				return 1;
1296

1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
			/*
			 * the next page in the biovec might not be adjacent
			 * to the last page, but it might still be found
			 * inside this working buffer. bump our offset pointer
			 */
			if (total_out > start_byte &&
			    current_buf_start < start_byte) {
				buf_offset = start_byte - buf_start;
				working_bytes = total_out - start_byte;
				current_buf_start = buf_start + buf_offset;
			}
1308 1309 1310 1311 1312
		}
	}

	return 1;
}
1313

1314 1315 1316
/*
 * Shannon Entropy calculation
 *
1317
 * Pure byte distribution analysis fails to determine compressibility of data.
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
 * Try calculating entropy to estimate the average minimum number of bits
 * needed to encode the sampled data.
 *
 * For convenience, return the percentage of needed bits, instead of amount of
 * bits directly.
 *
 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
 *			    and can be compressible with high probability
 *
 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
 *
 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
 */
#define ENTROPY_LVL_ACEPTABLE		(65)
#define ENTROPY_LVL_HIGH		(80)

/*
 * For increasead precision in shannon_entropy calculation,
 * let's do pow(n, M) to save more digits after comma:
 *
 * - maximum int bit length is 64
 * - ilog2(MAX_SAMPLE_SIZE)	-> 13
 * - 13 * 4 = 52 < 64		-> M = 4
 *
 * So use pow(n, 4).
 */
static inline u32 ilog2_w(u64 n)
{
	return ilog2(n * n * n * n);
}

static u32 shannon_entropy(struct heuristic_ws *ws)
{
	const u32 entropy_max = 8 * ilog2_w(2);
	u32 entropy_sum = 0;
	u32 p, p_base, sz_base;
	u32 i;

	sz_base = ilog2_w(ws->sample_size);
	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
		p = ws->bucket[i].count;
		p_base = ilog2_w(p);
		entropy_sum += p * (sz_base - p_base);
	}

	entropy_sum /= ws->sample_size;
	return entropy_sum * 100 / entropy_max;
}

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
#define RADIX_BASE		4U
#define COUNTERS_SIZE		(1U << RADIX_BASE)

static u8 get4bits(u64 num, int shift) {
	u8 low4bits;

	num >>= shift;
	/* Reverse order */
	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
	return low4bits;
}

/*
 * Use 4 bits as radix base
1381
 * Use 16 u32 counters for calculating new position in buf array
1382 1383 1384 1385 1386 1387
 *
 * @array     - array that will be sorted
 * @array_buf - buffer array to store sorting results
 *              must be equal in size to @array
 * @num       - array size
 */
1388
static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1389
		       int num)
1390
{
1391 1392 1393 1394 1395 1396 1397 1398
	u64 max_num;
	u64 buf_num;
	u32 counters[COUNTERS_SIZE];
	u32 new_addr;
	u32 addr;
	int bitlen;
	int shift;
	int i;
1399

1400 1401 1402 1403
	/*
	 * Try avoid useless loop iterations for small numbers stored in big
	 * counters.  Example: 48 33 4 ... in 64bit array
	 */
1404
	max_num = array[0].count;
1405
	for (i = 1; i < num; i++) {
1406
		buf_num = array[i].count;
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
		if (buf_num > max_num)
			max_num = buf_num;
	}

	buf_num = ilog2(max_num);
	bitlen = ALIGN(buf_num, RADIX_BASE * 2);

	shift = 0;
	while (shift < bitlen) {
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i++) {
1419
			buf_num = array[i].count;
1420 1421 1422 1423 1424 1425 1426 1427
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1428
			buf_num = array[i].count;
1429 1430 1431
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1432
			array_buf[new_addr] = array[i];
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
		}

		shift += RADIX_BASE;

		/*
		 * Normal radix expects to move data from a temporary array, to
		 * the main one.  But that requires some CPU time. Avoid that
		 * by doing another sort iteration to original array instead of
		 * memcpy()
		 */
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i ++) {
1446
			buf_num = array_buf[i].count;
1447 1448 1449 1450 1451 1452 1453 1454
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1455
			buf_num = array_buf[i].count;
1456 1457 1458
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1459
			array[new_addr] = array_buf[i];
1460 1461 1462 1463
		}

		shift += RADIX_BASE;
	}
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
}

/*
 * Size of the core byte set - how many bytes cover 90% of the sample
 *
 * There are several types of structured binary data that use nearly all byte
 * values. The distribution can be uniform and counts in all buckets will be
 * nearly the same (eg. encrypted data). Unlikely to be compressible.
 *
 * Other possibility is normal (Gaussian) distribution, where the data could
 * be potentially compressible, but we have to take a few more steps to decide
 * how much.
 *
 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
 *                       compression algo can easy fix that
 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
 *                       probability is not compressible
 */
#define BYTE_CORE_SET_LOW		(64)
#define BYTE_CORE_SET_HIGH		(200)

static int byte_core_set_size(struct heuristic_ws *ws)
{
	u32 i;
	u32 coreset_sum = 0;
	const u32 core_set_threshold = ws->sample_size * 90 / 100;
	struct bucket_item *bucket = ws->bucket;

	/* Sort in reverse order */
1493
	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509

	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
		coreset_sum += bucket[i].count;

	if (coreset_sum > core_set_threshold)
		return i;

	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
		coreset_sum += bucket[i].count;
		if (coreset_sum > core_set_threshold)
			break;
	}

	return i;
}

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
/*
 * Count byte values in buckets.
 * This heuristic can detect textual data (configs, xml, json, html, etc).
 * Because in most text-like data byte set is restricted to limited number of
 * possible characters, and that restriction in most cases makes data easy to
 * compress.
 *
 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
 *	less - compressible
 *	more - need additional analysis
 */
#define BYTE_SET_THRESHOLD		(64)

static u32 byte_set_size(const struct heuristic_ws *ws)
{
	u32 i;
	u32 byte_set_size = 0;

	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
		if (ws->bucket[i].count > 0)
			byte_set_size++;
	}

	/*
	 * Continue collecting count of byte values in buckets.  If the byte
	 * set size is bigger then the threshold, it's pointless to continue,
	 * the detection technique would fail for this type of data.
	 */
	for (; i < BUCKET_SIZE; i++) {
		if (ws->bucket[i].count > 0) {
			byte_set_size++;
			if (byte_set_size > BYTE_SET_THRESHOLD)
				return byte_set_size;
		}
	}

	return byte_set_size;
}

1549 1550 1551 1552 1553 1554 1555 1556
static bool sample_repeated_patterns(struct heuristic_ws *ws)
{
	const u32 half_of_sample = ws->sample_size / 2;
	const u8 *data = ws->sample;

	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
}

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
				     struct heuristic_ws *ws)
{
	struct page *page;
	u64 index, index_end;
	u32 i, curr_sample_pos;
	u8 *in_data;

	/*
	 * Compression handles the input data by chunks of 128KiB
	 * (defined by BTRFS_MAX_UNCOMPRESSED)
	 *
	 * We do the same for the heuristic and loop over the whole range.
	 *
	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
	 */
	if (end - start > BTRFS_MAX_UNCOMPRESSED)
		end = start + BTRFS_MAX_UNCOMPRESSED;

	index = start >> PAGE_SHIFT;
	index_end = end >> PAGE_SHIFT;

	/* Don't miss unaligned end */
	if (!IS_ALIGNED(end, PAGE_SIZE))
		index_end++;

	curr_sample_pos = 0;
	while (index < index_end) {
		page = find_get_page(inode->i_mapping, index);
		in_data = kmap(page);
		/* Handle case where the start is not aligned to PAGE_SIZE */
		i = start % PAGE_SIZE;
		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
			/* Don't sample any garbage from the last page */
			if (start > end - SAMPLING_READ_SIZE)
				break;
			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
					SAMPLING_READ_SIZE);
			i += SAMPLING_INTERVAL;
			start += SAMPLING_INTERVAL;
			curr_sample_pos += SAMPLING_READ_SIZE;
		}
		kunmap(page);
		put_page(page);

		index++;
	}

	ws->sample_size = curr_sample_pos;
}

1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
/*
 * Compression heuristic.
 *
 * For now is's a naive and optimistic 'return true', we'll extend the logic to
 * quickly (compared to direct compression) detect data characteristics
 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
 * data.
 *
 * The following types of analysis can be performed:
 * - detect mostly zero data
 * - detect data with low "byte set" size (text, etc)
 * - detect data with low/high "core byte" set
 *
 * Return non-zero if the compression should be done, 0 otherwise.
 */
int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
{
1626
	struct list_head *ws_list = get_workspace(0, 0);
1627
	struct heuristic_ws *ws;
1628 1629
	u32 i;
	u8 byte;
1630
	int ret = 0;
1631

1632 1633
	ws = list_entry(ws_list, struct heuristic_ws, list);

1634 1635
	heuristic_collect_sample(inode, start, end, ws);

1636 1637 1638 1639 1640
	if (sample_repeated_patterns(ws)) {
		ret = 1;
		goto out;
	}

1641 1642 1643 1644 1645
	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);

	for (i = 0; i < ws->sample_size; i++) {
		byte = ws->sample[i];
		ws->bucket[byte].count++;
1646 1647
	}

1648 1649 1650 1651 1652 1653
	i = byte_set_size(ws);
	if (i < BYTE_SET_THRESHOLD) {
		ret = 2;
		goto out;
	}

1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
	i = byte_core_set_size(ws);
	if (i <= BYTE_CORE_SET_LOW) {
		ret = 3;
		goto out;
	}

	if (i >= BYTE_CORE_SET_HIGH) {
		ret = 0;
		goto out;
	}

1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
	i = shannon_entropy(ws);
	if (i <= ENTROPY_LVL_ACEPTABLE) {
		ret = 4;
		goto out;
	}

	/*
	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
	 * needed to give green light to compression.
	 *
	 * For now just assume that compression at that level is not worth the
	 * resources because:
	 *
	 * 1. it is possible to defrag the data later
	 *
	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
	 * values, every bucket has counter at level ~54. The heuristic would
	 * be confused. This can happen when data have some internal repeated
	 * patterns like "abbacbbc...". This can be detected by analyzing
	 * pairs of bytes, which is too costly.
	 */
	if (i < ENTROPY_LVL_HIGH) {
		ret = 5;
		goto out;
	} else {
		ret = 0;
		goto out;
	}

1694
out:
1695
	put_workspace(0, ws_list);
1696 1697
	return ret;
}
1698

1699 1700 1701 1702 1703
/*
 * Convert the compression suffix (eg. after "zlib" starting with ":") to
 * level, unrecognized string will set the default level
 */
unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1704
{
1705 1706 1707 1708
	unsigned int level = 0;
	int ret;

	if (!type)
1709 1710
		return 0;

1711 1712 1713 1714 1715 1716
	if (str[0] == ':') {
		ret = kstrtouint(str + 1, 10, &level);
		if (ret)
			level = 0;
	}

1717 1718 1719 1720
	level = btrfs_compress_set_level(type, level);

	return level;
}