i915_gem_execbuffer.c 70.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright © 2008,2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Chris Wilson <chris@chris-wilson.co.uk>
 *
 */

29 30
#include <linux/dma_remapping.h>
#include <linux/reservation.h>
31
#include <linux/sync_file.h>
32 33
#include <linux/uaccess.h>

34
#include <drm/drmP.h>
35
#include <drm/drm_syncobj.h>
36
#include <drm/i915_drm.h>
37

38
#include "i915_drv.h"
39
#include "i915_gem_clflush.h"
40 41
#include "i915_trace.h"
#include "intel_drv.h"
42
#include "intel_frontbuffer.h"
43

44 45 46 47 48 49
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};
50

51 52 53 54 55 56
#define __EXEC_OBJECT_HAS_REF		BIT(31)
#define __EXEC_OBJECT_HAS_PIN		BIT(30)
#define __EXEC_OBJECT_HAS_FENCE		BIT(29)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(28)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(27)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 27) /* all of the above */
57 58 59 60
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)

#define __EXEC_HAS_RELOC	BIT(31)
#define __EXEC_VALIDATED	BIT(30)
61
#define __EXEC_INTERNAL_FLAGS	(~0u << 30)
62
#define UPDATE			PIN_OFFSET_FIXED
63 64

#define BATCH_OFFSET_BIAS (256*1024)
65

66
#define __I915_EXEC_ILLEGAL_FLAGS \
67 68 69
	(__I915_EXEC_UNKNOWN_FLAGS | \
	 I915_EXEC_CONSTANTS_MASK  | \
	 I915_EXEC_RESOURCE_STREAMER)
70

71 72 73 74 75 76 77 78 79
/* Catch emission of unexpected errors for CI! */
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
#undef EINVAL
#define EINVAL ({ \
	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
	22; \
})
#endif

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
 * At the level of talking to the hardware, submitting a batchbuffer for the
 * GPU to execute is to add content to a buffer from which the HW
 * command streamer is reading.
 *
 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 *    Execlists, this command is not placed on the same buffer as the
 *    remaining items.
 *
 * 2. Add a command to invalidate caches to the buffer.
 *
 * 3. Add a batchbuffer start command to the buffer; the start command is
 *    essentially a token together with the GPU address of the batchbuffer
 *    to be executed.
 *
 * 4. Add a pipeline flush to the buffer.
 *
 * 5. Add a memory write command to the buffer to record when the GPU
 *    is done executing the batchbuffer. The memory write writes the
 *    global sequence number of the request, ``i915_request::global_seqno``;
 *    the i915 driver uses the current value in the register to determine
 *    if the GPU has completed the batchbuffer.
 *
 * 6. Add a user interrupt command to the buffer. This command instructs
 *    the GPU to issue an interrupt when the command, pipeline flush and
 *    memory write are completed.
 *
 * 7. Inform the hardware of the additional commands added to the buffer
 *    (by updating the tail pointer).
 *
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

231
struct i915_execbuffer {
232 233 234 235
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
236 237
	struct i915_vma **vma;
	unsigned int *flags;
238 239 240 241 242

	struct intel_engine_cs *engine; /** engine to queue the request to */
	struct i915_gem_context *ctx; /** context for building the request */
	struct i915_address_space *vm; /** GTT and vma for the request */

243
	struct i915_request *request; /** our request to build */
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
	struct i915_vma *batch; /** identity of the batch obj/vma */

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
260
	struct reloc_cache {
261 262 263
		struct drm_mm_node node; /** temporary GTT binding */
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
264
		unsigned int gen; /** Cached value of INTEL_GEN */
265
		bool use_64bit_reloc : 1;
266 267 268
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
269

270
		struct i915_request *rq;
271 272
		u32 *rq_cmd;
		unsigned int rq_size;
273
	} reloc_cache;
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
289 290
};

291
#define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
292

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
/*
 * Used to convert any address to canonical form.
 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
 * addresses to be in a canonical form:
 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
 * canonical form [63:48] == [47]."
 */
#define GEN8_HIGH_ADDRESS_BIT 47
static inline u64 gen8_canonical_addr(u64 address)
{
	return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
}

static inline u64 gen8_noncanonical_addr(u64 address)
{
	return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
}

312 313
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
314
	return intel_engine_needs_cmd_parser(eb->engine) && eb->batch_len;
315 316
}

317
static int eb_create(struct i915_execbuffer *eb)
318
{
319 320
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
321

322 323 324 325 326 327 328 329 330 331 332
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
333
		do {
334
			gfp_t flags;
335 336 337 338 339 340 341

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
342
			flags = GFP_KERNEL;
343 344 345
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

346
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
347
					      flags);
348 349 350 351
			if (eb->buckets)
				break;
		} while (--size);

352 353
		if (unlikely(!size))
			return -ENOMEM;
354

355
		eb->lut_size = size;
356
	} else {
357
		eb->lut_size = -eb->buffer_count;
358
	}
359

360
	return 0;
361 362
}

363 364
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
365 366
		 const struct i915_vma *vma,
		 unsigned int flags)
367 368 369 370 371 372 373
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

374
	if (flags & EXEC_OBJECT_PINNED &&
375 376 377
	    vma->node.start != entry->offset)
		return true;

378
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
379 380 381
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

382
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
383 384 385
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

386 387 388 389
	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
	    !i915_vma_is_map_and_fenceable(vma))
		return true;

390 391 392
	return false;
}

393
static inline bool
394
eb_pin_vma(struct i915_execbuffer *eb,
395
	   const struct drm_i915_gem_exec_object2 *entry,
396 397
	   struct i915_vma *vma)
{
398 399
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
400

401
	if (vma->node.size)
402
		pin_flags = vma->node.start;
403
	else
404
		pin_flags = entry->offset & PIN_OFFSET_MASK;
405

406 407 408
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
		pin_flags |= PIN_GLOBAL;
409

410 411
	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
		return false;
412

413
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
414
		if (unlikely(i915_vma_pin_fence(vma))) {
415
			i915_vma_unpin(vma);
416
			return false;
417 418
		}

419
		if (vma->fence)
420
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
421 422
	}

423 424
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	return !eb_vma_misplaced(entry, vma, exec_flags);
425 426
}

427
static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
428
{
429
	GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
430

431
	if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
432
		__i915_vma_unpin_fence(vma);
433

434
	__i915_vma_unpin(vma);
435 436
}

437
static inline void
438
eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
439
{
440
	if (!(*flags & __EXEC_OBJECT_HAS_PIN))
441
		return;
442

443 444
	__eb_unreserve_vma(vma, *flags);
	*flags &= ~__EXEC_OBJECT_RESERVED;
445 446
}

447 448 449 450
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
451
{
452 453
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
454

455 456 457 458 459 460 461 462
	if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
463
		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
464 465 466 467 468 469 470 471
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
472 473
	}

474
	if (unlikely(vma->exec_flags)) {
475 476 477 478 479 480 481 482 483 484 485 486
		DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
			  entry->handle, (int)(entry - eb->exec));
		return -EINVAL;
	}

	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

487 488 489 490 491 492 493 494 495 496 497 498
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

499
	return 0;
500 501
}

502
static int
503 504 505
eb_add_vma(struct i915_execbuffer *eb,
	   unsigned int i, unsigned batch_idx,
	   struct i915_vma *vma)
506
{
507
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
508 509 510 511 512 513 514 515
	int err;

	GEM_BUG_ON(i915_vma_is_closed(vma));

	if (!(eb->args->flags & __EXEC_VALIDATED)) {
		err = eb_validate_vma(eb, entry, vma);
		if (unlikely(err))
			return err;
516 517
	}

518
	if (eb->lut_size > 0) {
519
		vma->exec_handle = entry->handle;
520
		hlist_add_head(&vma->exec_node,
521 522
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
523
	}
524

525 526 527 528 529 530 531 532 533
	if (entry->relocation_count)
		list_add_tail(&vma->reloc_link, &eb->relocs);

	/*
	 * Stash a pointer from the vma to execobj, so we can query its flags,
	 * size, alignment etc as provided by the user. Also we stash a pointer
	 * to the vma inside the execobj so that we can use a direct lookup
	 * to find the right target VMA when doing relocations.
	 */
534
	eb->vma[i] = vma;
535
	eb->flags[i] = entry->flags;
536
	vma->exec_flags = &eb->flags[i];
537

538 539 540 541 542 543 544 545 546 547
	/*
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
	 */
	if (i == batch_idx) {
548 549
		if (entry->relocation_count &&
		    !(eb->flags[i] & EXEC_OBJECT_PINNED))
550 551 552 553 554 555 556
			eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
		if (eb->reloc_cache.has_fence)
			eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;

		eb->batch = vma;
	}

557
	err = 0;
558
	if (eb_pin_vma(eb, entry, vma)) {
559 560 561 562
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
563 564 565 566 567 568
	} else {
		eb_unreserve_vma(vma, vma->exec_flags);

		list_add_tail(&vma->exec_link, &eb->unbound);
		if (drm_mm_node_allocated(&vma->node))
			err = i915_vma_unbind(vma);
569 570
		if (unlikely(err))
			vma->exec_flags = NULL;
571 572 573 574 575 576 577 578 579 580
	}
	return err;
}

static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

581 582 583 584 585
	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;
586 587 588 589 590 591 592 593 594

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
			  struct i915_vma *vma)
{
595 596 597
	struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
598 599
	int err;

600 601 602
	pin_flags = PIN_USER | PIN_NONBLOCK;
	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;
603 604 605 606 607

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
608 609
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;
610

611 612
	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;
613

614 615 616 617 618
	if (exec_flags & EXEC_OBJECT_PINNED) {
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
		pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
	} else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
619 620
	}

621 622 623
	err = i915_vma_pin(vma,
			   entry->pad_to_size, entry->alignment,
			   pin_flags);
624 625 626 627 628 629 630 631
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

632
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
633
		err = i915_vma_pin_fence(vma);
634 635 636 637 638
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

639
		if (vma->fence)
640
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
641 642
	}

643 644
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
645

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	struct list_head last;
	struct i915_vma *vma;
	unsigned int i, pass;
	int err;

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

	pass = 0;
	err = 0;
	do {
		list_for_each_entry(vma, &eb->unbound, exec_link) {
			err = eb_reserve_vma(eb, vma);
			if (err)
				break;
		}
		if (err != -ENOSPC)
			return err;

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
686 687
			unsigned int flags = eb->flags[i];
			struct i915_vma *vma = eb->vma[i];
688

689 690
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
691 692
				continue;

693
			eb_unreserve_vma(vma, &eb->flags[i]);
694

695
			if (flags & EXEC_OBJECT_PINNED)
696
				/* Pinned must have their slot */
697
				list_add(&vma->exec_link, &eb->unbound);
698
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
699
				/* Map require the lowest 256MiB (aperture) */
700
				list_add_tail(&vma->exec_link, &eb->unbound);
701 702 703
			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
				/* Prioritise 4GiB region for restricted bo */
				list_add(&vma->exec_link, &last);
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
			else
				list_add_tail(&vma->exec_link, &last);
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
			err = i915_gem_evict_vm(eb->vm);
			if (err)
				return err;
			break;

		default:
			return -ENOSPC;
		}
	} while (1);
724
}
725

726 727
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
728 729 730 731
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
732 733 734 735 736 737 738
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
739 740
	if (unlikely(!ctx))
		return -ENOENT;
741

742
	eb->ctx = ctx;
743 744 745 746 747 748
	if (ctx->ppgtt) {
		eb->vm = &ctx->ppgtt->vm;
		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
	} else {
		eb->vm = &eb->i915->ggtt.vm;
	}
749 750

	eb->context_flags = 0;
751
	if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
752 753 754 755 756 757
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

static int eb_lookup_vmas(struct i915_execbuffer *eb)
758
{
759
	struct radix_tree_root *handles_vma = &eb->ctx->handles_vma;
760
	struct drm_i915_gem_object *obj;
761
	unsigned int i, batch;
762
	int err;
763

764 765 766 767 768 769
	if (unlikely(i915_gem_context_is_closed(eb->ctx)))
		return -ENOENT;

	if (unlikely(i915_gem_context_is_banned(eb->ctx)))
		return -EIO;

770 771
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);
772

773 774
	batch = eb_batch_index(eb);

775 776
	for (i = 0; i < eb->buffer_count; i++) {
		u32 handle = eb->exec[i].handle;
777
		struct i915_lut_handle *lut;
778
		struct i915_vma *vma;
779

780 781
		vma = radix_tree_lookup(handles_vma, handle);
		if (likely(vma))
782
			goto add_vma;
783

784
		obj = i915_gem_object_lookup(eb->file, handle);
785
		if (unlikely(!obj)) {
786
			err = -ENOENT;
787
			goto err_vma;
788 789
		}

790
		vma = i915_vma_instance(obj, eb->vm, NULL);
C
Chris Wilson 已提交
791
		if (unlikely(IS_ERR(vma))) {
792
			err = PTR_ERR(vma);
793
			goto err_obj;
794 795
		}

796 797 798 799 800 801 802 803
		lut = kmem_cache_alloc(eb->i915->luts, GFP_KERNEL);
		if (unlikely(!lut)) {
			err = -ENOMEM;
			goto err_obj;
		}

		err = radix_tree_insert(handles_vma, handle, vma);
		if (unlikely(err)) {
804
			kmem_cache_free(eb->i915->luts, lut);
805
			goto err_obj;
806
		}
807

808
		/* transfer ref to ctx */
809 810
		if (!vma->open_count++)
			i915_vma_reopen(vma);
811 812 813 814 815
		list_add(&lut->obj_link, &obj->lut_list);
		list_add(&lut->ctx_link, &eb->ctx->handles_list);
		lut->ctx = eb->ctx;
		lut->handle = handle;

816
add_vma:
817
		err = eb_add_vma(eb, i, batch, vma);
818
		if (unlikely(err))
819
			goto err_vma;
820

821 822
		GEM_BUG_ON(vma != eb->vma[i]);
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
823 824
		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
			   eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i]));
825 826
	}

827 828 829
	eb->args->flags |= __EXEC_VALIDATED;
	return eb_reserve(eb);

830
err_obj:
831
	i915_gem_object_put(obj);
832 833
err_vma:
	eb->vma[i] = NULL;
834
	return err;
835 836
}

837
static struct i915_vma *
838
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
839
{
840 841
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
842
			return NULL;
843
		return eb->vma[handle];
844 845
	} else {
		struct hlist_head *head;
846
		struct i915_vma *vma;
847

848
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
849
		hlist_for_each_entry(vma, head, exec_node) {
850 851
			if (vma->exec_handle == handle)
				return vma;
852 853 854
		}
		return NULL;
	}
855 856
}

857
static void eb_release_vmas(const struct i915_execbuffer *eb)
858
{
859 860 861 862
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
863 864
		struct i915_vma *vma = eb->vma[i];
		unsigned int flags = eb->flags[i];
865

866
		if (!vma)
867
			break;
868

869 870 871
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
		vma->exec_flags = NULL;
		eb->vma[i] = NULL;
872

873 874
		if (flags & __EXEC_OBJECT_HAS_PIN)
			__eb_unreserve_vma(vma, flags);
875

876
		if (flags & __EXEC_OBJECT_HAS_REF)
877
			i915_vma_put(vma);
878
	}
879 880
}

881
static void eb_reset_vmas(const struct i915_execbuffer *eb)
882
{
883
	eb_release_vmas(eb);
884
	if (eb->lut_size > 0)
885 886
		memset(eb->buckets, 0,
		       sizeof(struct hlist_head) << eb->lut_size);
887 888
}

889
static void eb_destroy(const struct i915_execbuffer *eb)
890
{
891 892
	GEM_BUG_ON(eb->reloc_cache.rq);

893
	if (eb->lut_size > 0)
894
		kfree(eb->buckets);
895 896
}

897
static inline u64
898
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
899
		  const struct i915_vma *target)
900
{
901
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
902 903
}

904 905
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
906
{
907
	cache->page = -1;
908
	cache->vaddr = 0;
909
	/* Must be a variable in the struct to allow GCC to unroll. */
910
	cache->gen = INTEL_GEN(i915);
911
	cache->has_llc = HAS_LLC(i915);
912
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
913 914
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
915
	cache->node.allocated = false;
916 917
	cache->rq = NULL;
	cache->rq_size = 0;
918
}
919

920 921 922 923 924 925 926 927
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
928 929
}

930 931
#define KMAP 0x4 /* after CLFLUSH_FLAGS */

932 933 934 935 936 937 938
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

939 940 941 942 943 944 945
static void reloc_gpu_flush(struct reloc_cache *cache)
{
	GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
	i915_gem_object_unpin_map(cache->rq->batch->obj);
	i915_gem_chipset_flush(cache->rq->i915);

946
	i915_request_add(cache->rq);
947 948 949
	cache->rq = NULL;
}

950
static void reloc_cache_reset(struct reloc_cache *cache)
951
{
952
	void *vaddr;
953

954 955 956
	if (cache->rq)
		reloc_gpu_flush(cache);

957 958
	if (!cache->vaddr)
		return;
959

960 961 962 963
	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();
964

965 966 967
		kunmap_atomic(vaddr);
		i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
	} else {
968
		wmb();
969
		io_mapping_unmap_atomic((void __iomem *)vaddr);
970
		if (cache->node.allocated) {
971
			struct i915_ggtt *ggtt = cache_to_ggtt(cache);
972

973 974 975
			ggtt->vm.clear_range(&ggtt->vm,
					     cache->node.start,
					     cache->node.size);
976 977 978
			drm_mm_remove_node(&cache->node);
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
979
		}
980
	}
981 982 983

	cache->vaddr = 0;
	cache->page = -1;
984 985 986 987
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
988
			unsigned long page)
989
{
990 991 992 993 994 995
	void *vaddr;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
996
		int err;
997

998 999 1000
		err = i915_gem_obj_prepare_shmem_write(obj, &flushes);
		if (err)
			return ERR_PTR(err);
1001 1002 1003

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1004

1005 1006 1007 1008
		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
1009 1010
	}

1011 1012
	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1013
	cache->page = page;
1014

1015
	return vaddr;
1016 1017
}

1018 1019
static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1020
			 unsigned long page)
1021
{
1022
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1023
	unsigned long offset;
1024
	void *vaddr;
1025

1026
	if (cache->vaddr) {
1027
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1028 1029
	} else {
		struct i915_vma *vma;
1030
		int err;
1031

1032
		if (use_cpu_reloc(cache, obj))
1033
			return NULL;
1034

1035 1036 1037
		err = i915_gem_object_set_to_gtt_domain(obj, true);
		if (err)
			return ERR_PTR(err);
1038

1039
		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1040 1041 1042
					       PIN_MAPPABLE |
					       PIN_NONBLOCK |
					       PIN_NONFAULT);
1043 1044
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
1045
			err = drm_mm_insert_node_in_range
1046
				(&ggtt->vm.mm, &cache->node,
1047
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1048
				 0, ggtt->mappable_end,
1049
				 DRM_MM_INSERT_LOW);
1050
			if (err) /* no inactive aperture space, use cpu reloc */
1051
				return NULL;
1052
		} else {
1053 1054
			err = i915_vma_put_fence(vma);
			if (err) {
1055
				i915_vma_unpin(vma);
1056
				return ERR_PTR(err);
1057
			}
1058

1059 1060
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
1061
		}
1062
	}
1063

1064 1065
	offset = cache->node.start;
	if (cache->node.allocated) {
1066
		wmb();
1067 1068 1069
		ggtt->vm.insert_page(&ggtt->vm,
				     i915_gem_object_get_dma_address(obj, page),
				     offset, I915_CACHE_NONE, 0);
1070 1071
	} else {
		offset += page << PAGE_SHIFT;
1072 1073
	}

1074
	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1075
							 offset);
1076 1077
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;
1078

1079
	return vaddr;
1080 1081
}

1082 1083
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1084
			 unsigned long page)
1085
{
1086
	void *vaddr;
1087

1088 1089 1090 1091 1092 1093 1094 1095
	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
1096 1097
	}

1098
	return vaddr;
1099 1100
}

1101
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1102
{
1103 1104 1105 1106 1107
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}
1108

1109
		*addr = value;
1110

1111 1112
		/*
		 * Writes to the same cacheline are serialised by the CPU
1113 1114 1115 1116 1117 1118 1119 1120 1121
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
1122 1123
}

1124 1125 1126 1127 1128 1129
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
			     struct i915_vma *vma,
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	struct drm_i915_gem_object *obj;
1130
	struct i915_request *rq;
1131 1132 1133 1134
	struct i915_vma *batch;
	u32 *cmd;
	int err;

1135 1136 1137 1138 1139 1140 1141
	if (DBG_FORCE_RELOC == FORCE_GPU_RELOC) {
		obj = vma->obj;
		if (obj->cache_dirty & ~obj->cache_coherent)
			i915_gem_clflush_object(obj, 0);
		obj->write_domain = 0;
	}

1142
	GEM_BUG_ON(vma->obj->write_domain & I915_GEM_DOMAIN_CPU);
1143 1144 1145 1146 1147 1148

	obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, PAGE_SIZE);
	if (IS_ERR(obj))
		return PTR_ERR(obj);

	cmd = i915_gem_object_pin_map(obj,
1149 1150 1151
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
	i915_gem_object_unpin_pages(obj);
	if (IS_ERR(cmd))
		return PTR_ERR(cmd);

	err = i915_gem_object_set_to_wc_domain(obj, false);
	if (err)
		goto err_unmap;

	batch = i915_vma_instance(obj, vma->vm, NULL);
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

1170
	rq = i915_request_alloc(eb->engine, eb->ctx);
1171 1172 1173 1174 1175
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

1176
	err = i915_request_await_object(rq, vma->obj, true);
1177 1178 1179 1180 1181 1182 1183 1184 1185
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
		goto err_request;

1186
	GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch->resv, true));
1187 1188 1189
	err = i915_vma_move_to_active(batch, rq, 0);
	if (err)
		goto skip_request;
1190

1191 1192 1193
	err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
	if (err)
		goto skip_request;
1194 1195

	rq->batch = batch;
1196
	i915_vma_unpin(batch);
1197 1198 1199 1200 1201 1202 1203 1204

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;

	/* Return with batch mapping (cmd) still pinned */
	return 0;

1205 1206
skip_request:
	i915_request_skip(rq, err);
1207
err_request:
1208
	i915_request_add(rq);
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
	i915_gem_object_unpin_map(obj);
	return err;
}

static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
		reloc_gpu_flush(cache);

	if (unlikely(!cache->rq)) {
		int err;

1229 1230 1231 1232
		/* If we need to copy for the cmdparser, we will stall anyway */
		if (eb_use_cmdparser(eb))
			return ERR_PTR(-EWOULDBLOCK);

1233 1234 1235
		if (!intel_engine_can_store_dword(eb->engine))
			return ERR_PTR(-ENODEV);

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
		err = __reloc_gpu_alloc(eb, vma, len);
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1247 1248
static u64
relocate_entry(struct i915_vma *vma,
1249
	       const struct drm_i915_gem_relocation_entry *reloc,
1250 1251
	       struct i915_execbuffer *eb,
	       const struct i915_vma *target)
1252
{
1253
	u64 offset = reloc->offset;
1254 1255
	u64 target_offset = relocation_target(reloc, target);
	bool wide = eb->reloc_cache.use_64bit_reloc;
1256
	void *vaddr;
1257

1258 1259
	if (!eb->reloc_cache.vaddr &&
	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1260
	     !reservation_object_test_signaled_rcu(vma->resv, true))) {
1261 1262 1263 1264 1265 1266 1267 1268 1269
		const unsigned int gen = eb->reloc_cache.gen;
		unsigned int len;
		u32 *batch;
		u64 addr;

		if (wide)
			len = offset & 7 ? 8 : 5;
		else if (gen >= 4)
			len = 4;
1270
		else
1271
			len = 6;
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311

		batch = reloc_gpu(eb, vma, len);
		if (IS_ERR(batch))
			goto repeat;

		addr = gen8_canonical_addr(vma->node.start + offset);
		if (wide) {
			if (offset & 7) {
				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);

				addr = gen8_canonical_addr(addr + 4);

				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = upper_32_bits(target_offset);
			} else {
				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);
				*batch++ = upper_32_bits(target_offset);
			}
		} else if (gen >= 6) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else if (gen >= 4) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else {
			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
			*batch++ = addr;
			*batch++ = target_offset;
1312 1313 1314 1315 1316

			/* And again for good measure (blb/pnv) */
			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
			*batch++ = addr;
			*batch++ = target_offset;
1317 1318 1319 1320 1321
		}

		goto out;
	}

1322
repeat:
1323
	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1324 1325 1326 1327 1328
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_offset),
1329
			eb->reloc_cache.vaddr);
1330 1331 1332 1333 1334 1335

	if (wide) {
		offset += sizeof(u32);
		target_offset >>= 32;
		wide = false;
		goto repeat;
1336 1337
	}

1338
out:
1339
	return target->node.start | UPDATE;
1340 1341
}

1342 1343 1344 1345
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
		  struct i915_vma *vma,
		  const struct drm_i915_gem_relocation_entry *reloc)
1346
{
1347
	struct i915_vma *target;
1348
	int err;
1349

1350
	/* we've already hold a reference to all valid objects */
1351 1352
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1353
		return -ENOENT;
1354

1355
	/* Validate that the target is in a valid r/w GPU domain */
1356
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1357
		DRM_DEBUG("reloc with multiple write domains: "
1358
			  "target %d offset %d "
1359
			  "read %08x write %08x",
1360
			  reloc->target_handle,
1361 1362 1363
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1364
		return -EINVAL;
1365
	}
1366 1367
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1368
		DRM_DEBUG("reloc with read/write non-GPU domains: "
1369
			  "target %d offset %d "
1370
			  "read %08x write %08x",
1371
			  reloc->target_handle,
1372 1373 1374
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1375
		return -EINVAL;
1376 1377
	}

1378
	if (reloc->write_domain) {
1379
		*target->exec_flags |= EXEC_OBJECT_WRITE;
1380

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
		    IS_GEN6(eb->i915)) {
			err = i915_vma_bind(target, target->obj->cache_level,
					    PIN_GLOBAL);
			if (WARN_ONCE(err,
				      "Unexpected failure to bind target VMA!"))
				return err;
		}
1395
	}
1396

1397 1398
	/*
	 * If the relocation already has the right value in it, no
1399 1400
	 * more work needs to be done.
	 */
1401 1402
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1403
		return 0;
1404 1405

	/* Check that the relocation address is valid... */
1406
	if (unlikely(reloc->offset >
1407
		     vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1408
		DRM_DEBUG("Relocation beyond object bounds: "
1409 1410 1411 1412
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
			  (int)vma->size);
1413
		return -EINVAL;
1414
	}
1415
	if (unlikely(reloc->offset & 3)) {
1416
		DRM_DEBUG("Relocation not 4-byte aligned: "
1417 1418 1419
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1420
		return -EINVAL;
1421 1422
	}

1423 1424 1425 1426 1427 1428
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1429
	 * out of our synchronisation.
1430
	 */
1431
	*vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1432

1433
	/* and update the user's relocation entry */
1434
	return relocate_entry(vma, reloc, eb, target);
1435 1436
}

1437
static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1438
{
1439
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1440 1441
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
	struct drm_i915_gem_relocation_entry __user *urelocs;
1442
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1443
	unsigned int remain;
1444

1445
	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1446
	remain = entry->relocation_count;
1447 1448
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
		return -EINVAL;
1449

1450 1451 1452 1453 1454
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1455
	if (unlikely(!access_ok(VERIFY_READ, urelocs, remain*sizeof(*urelocs))))
1456 1457 1458 1459 1460 1461 1462
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
			min_t(unsigned int, remain, ARRAY_SIZE(stack));
		unsigned int copied;
1463

1464 1465
		/*
		 * This is the fast path and we cannot handle a pagefault
1466 1467 1468 1469 1470 1471 1472
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
		pagefault_disable();
1473
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1474
		pagefault_enable();
1475 1476
		if (unlikely(copied)) {
			remain = -EFAULT;
1477 1478
			goto out;
		}
1479

1480
		remain -= count;
1481
		do {
1482
			u64 offset = eb_relocate_entry(eb, vma, r);
1483

1484 1485 1486
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
				remain = (int)offset;
1487
				goto out;
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
1511 1512 1513 1514
				if (unlikely(__put_user(offset, &urelocs[r-stack].presumed_offset))) {
					remain = -EFAULT;
					goto out;
				}
1515
			}
1516 1517 1518
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1519
out:
1520
	reloc_cache_reset(&eb->reloc_cache);
1521
	return remain;
1522 1523 1524
}

static int
1525
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1526
{
1527
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1528 1529 1530 1531
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
	int err;
1532 1533

	for (i = 0; i < entry->relocation_count; i++) {
1534
		u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1535

1536 1537 1538 1539
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1540
	}
1541 1542 1543 1544
	err = 0;
err:
	reloc_cache_reset(&eb->reloc_cache);
	return err;
1545 1546
}

1547
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1548
{
1549 1550 1551
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1552

1553 1554 1555
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1556

1557 1558
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1559

1560 1561 1562 1563
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
	if (!access_ok(VERIFY_READ, addr, size))
		return -EFAULT;
1564

1565 1566 1567 1568 1569
	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
1570
	}
1571
	return __get_user(c, end - 1);
1572
}
1573

1574
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1575
{
1576 1577 1578
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1579

1580 1581 1582 1583 1584 1585
	for (i = 0; i < count; i++) {
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		struct drm_i915_gem_relocation_entry *relocs;
		unsigned long size;
		unsigned long copied;
1586

1587 1588
		if (nreloc == 0)
			continue;
1589

1590 1591 1592
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1593

1594 1595
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1596

1597
		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1598 1599 1600 1601
		if (!relocs) {
			err = -ENOMEM;
			goto err;
		}
1602

1603 1604 1605 1606 1607 1608 1609
		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
1610
					     (char __user *)urelocs + copied,
1611
					     len)) {
1612
end_user:
1613 1614 1615 1616
				kvfree(relocs);
				err = -EFAULT;
				goto err;
			}
1617

1618 1619
			copied += len;
		} while (copied < size);
1620

1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
		user_access_begin();
		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
		user_access_end();
1637

1638 1639
		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}
1640

1641
	return 0;
1642

1643 1644 1645 1646 1647 1648 1649 1650
err:
	while (i--) {
		struct drm_i915_gem_relocation_entry *relocs =
			u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
1651 1652
}

1653
static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1654
{
1655 1656
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1657

1658
	if (unlikely(i915_modparams.prefault_disable))
1659
		return 0;
1660

1661 1662
	for (i = 0; i < count; i++) {
		int err;
1663

1664 1665 1666 1667
		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}
1668

1669
	return 0;
1670 1671
}

1672
static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1673
{
1674
	struct drm_device *dev = &eb->i915->drm;
1675
	bool have_copy = false;
1676
	struct i915_vma *vma;
1677 1678 1679 1680 1681 1682 1683
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
	}
1684

1685
	/* We may process another execbuffer during the unlock... */
1686
	eb_reset_vmas(eb);
1687 1688
	mutex_unlock(&dev->struct_mutex);

1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
1710
	}
1711 1712 1713
	if (err) {
		mutex_lock(&dev->struct_mutex);
		goto out;
1714 1715
	}

1716 1717 1718
	/* A frequent cause for EAGAIN are currently unavailable client pages */
	flush_workqueue(eb->i915->mm.userptr_wq);

1719 1720
	err = i915_mutex_lock_interruptible(dev);
	if (err) {
1721
		mutex_lock(&dev->struct_mutex);
1722
		goto out;
1723 1724
	}

1725
	/* reacquire the objects */
1726 1727
	err = eb_lookup_vmas(eb);
	if (err)
1728
		goto err;
1729

1730 1731
	GEM_BUG_ON(!eb->batch);

1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
	list_for_each_entry(vma, &eb->relocs, reloc_link) {
		if (!have_copy) {
			pagefault_disable();
			err = eb_relocate_vma(eb, vma);
			pagefault_enable();
			if (err)
				goto repeat;
		} else {
			err = eb_relocate_vma_slow(eb, vma);
			if (err)
				goto err;
		}
1744 1745
	}

1746 1747
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
1748 1749 1750 1751 1752 1753
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

1775
	return err;
1776 1777
}

1778
static int eb_relocate(struct i915_execbuffer *eb)
1779
{
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
	if (eb_lookup_vmas(eb))
		goto slow;

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
		struct i915_vma *vma;

		list_for_each_entry(vma, &eb->relocs, reloc_link) {
			if (eb_relocate_vma(eb, vma))
				goto slow;
		}
	}

	return 0;

slow:
	return eb_relocate_slow(eb);
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1804

1805
	for (i = 0; i < count; i++) {
1806 1807
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];
1808
		struct drm_i915_gem_object *obj = vma->obj;
1809

1810
		if (flags & EXEC_OBJECT_CAPTURE) {
1811
			struct i915_capture_list *capture;
1812 1813 1814 1815 1816

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
			if (unlikely(!capture))
				return -ENOMEM;

1817
			capture->next = eb->request->capture_list;
1818
			capture->vma = eb->vma[i];
1819
			eb->request->capture_list = capture;
1820 1821
		}

1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1835
			if (i915_gem_clflush_object(obj, 0))
1836
				flags &= ~EXEC_OBJECT_ASYNC;
1837 1838
		}

1839 1840
		if (flags & EXEC_OBJECT_ASYNC)
			continue;
1841

1842
		err = i915_request_await_object
1843
			(eb->request, obj, flags & EXEC_OBJECT_WRITE);
1844 1845 1846 1847 1848
		if (err)
			return err;
	}

	for (i = 0; i < count; i++) {
1849 1850 1851
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];

1852 1853 1854 1855 1856
		err = i915_vma_move_to_active(vma, eb->request, flags);
		if (unlikely(err)) {
			i915_request_skip(eb->request, err);
			return err;
		}
1857

1858 1859 1860 1861
		__eb_unreserve_vma(vma, flags);
		vma->exec_flags = NULL;

		if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1862
			i915_vma_put(vma);
1863
	}
1864
	eb->exec = NULL;
1865

1866
	/* Unconditionally flush any chipset caches (for streaming writes). */
1867
	i915_gem_chipset_flush(eb->i915);
1868

1869
	return 0;
1870 1871
}

1872
static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1873
{
1874
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1875 1876
		return false;

C
Chris Wilson 已提交
1877
	/* Kernel clipping was a DRI1 misfeature */
1878 1879 1880 1881
	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
		if (exec->num_cliprects || exec->cliprects_ptr)
			return false;
	}
C
Chris Wilson 已提交
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
		return false;

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
		return false;

	return true;
1894 1895
}

1896
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1897
{
1898 1899
	u32 *cs;
	int i;
1900

1901
	if (!IS_GEN7(rq->i915) || rq->engine->id != RCS) {
1902 1903 1904
		DRM_DEBUG("sol reset is gen7/rcs only\n");
		return -EINVAL;
	}
1905

1906
	cs = intel_ring_begin(rq, 4 * 2 + 2);
1907 1908
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1909

1910
	*cs++ = MI_LOAD_REGISTER_IMM(4);
1911
	for (i = 0; i < 4; i++) {
1912 1913
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
1914
	}
1915
	*cs++ = MI_NOOP;
1916
	intel_ring_advance(rq, cs);
1917 1918 1919 1920

	return 0;
}

1921
static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
1922 1923
{
	struct drm_i915_gem_object *shadow_batch_obj;
1924
	struct i915_vma *vma;
1925
	int err;
1926

1927 1928
	shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool,
						   PAGE_ALIGN(eb->batch_len));
1929
	if (IS_ERR(shadow_batch_obj))
1930
		return ERR_CAST(shadow_batch_obj);
1931

1932
	err = intel_engine_cmd_parser(eb->engine,
1933
				      eb->batch->obj,
1934
				      shadow_batch_obj,
1935 1936
				      eb->batch_start_offset,
				      eb->batch_len,
1937
				      is_master);
1938 1939
	if (err) {
		if (err == -EACCES) /* unhandled chained batch */
C
Chris Wilson 已提交
1940 1941
			vma = NULL;
		else
1942
			vma = ERR_PTR(err);
C
Chris Wilson 已提交
1943 1944
		goto out;
	}
1945

C
Chris Wilson 已提交
1946 1947 1948
	vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
	if (IS_ERR(vma))
		goto out;
C
Chris Wilson 已提交
1949

1950 1951 1952 1953 1954
	eb->vma[eb->buffer_count] = i915_vma_get(vma);
	eb->flags[eb->buffer_count] =
		__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
	vma->exec_flags = &eb->flags[eb->buffer_count];
	eb->buffer_count++;
1955

C
Chris Wilson 已提交
1956
out:
C
Chris Wilson 已提交
1957
	i915_gem_object_unpin_pages(shadow_batch_obj);
C
Chris Wilson 已提交
1958
	return vma;
1959
}
1960

1961
static void
1962
add_to_client(struct i915_request *rq, struct drm_file *file)
1963
{
1964 1965
	rq->file_priv = file->driver_priv;
	list_add_tail(&rq->client_link, &rq->file_priv->mm.request_list);
1966 1967
}

1968
static int eb_submit(struct i915_execbuffer *eb)
1969
{
1970
	int err;
1971

1972 1973 1974
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
1975

1976
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
1977 1978 1979
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
1980 1981
	}

1982
	err = eb->engine->emit_bb_start(eb->request,
1983 1984 1985
					eb->batch->node.start +
					eb->batch_start_offset,
					eb->batch_len,
1986 1987 1988
					eb->batch_flags);
	if (err)
		return err;
1989

C
Chris Wilson 已提交
1990
	return 0;
1991 1992
}

1993
/*
1994
 * Find one BSD ring to dispatch the corresponding BSD command.
1995
 * The engine index is returned.
1996
 */
1997
static unsigned int
1998 1999
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
2000 2001 2002
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

2003
	/* Check whether the file_priv has already selected one ring. */
2004 2005 2006
	if ((int)file_priv->bsd_engine < 0)
		file_priv->bsd_engine = atomic_fetch_xor(1,
			 &dev_priv->mm.bsd_engine_dispatch_index);
2007

2008
	return file_priv->bsd_engine;
2009 2010
}

2011 2012
#define I915_USER_RINGS (4)

2013
static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
2014 2015 2016 2017 2018 2019 2020
	[I915_EXEC_DEFAULT]	= RCS,
	[I915_EXEC_RENDER]	= RCS,
	[I915_EXEC_BLT]		= BCS,
	[I915_EXEC_BSD]		= VCS,
	[I915_EXEC_VEBOX]	= VECS
};

2021 2022 2023 2024
static struct intel_engine_cs *
eb_select_engine(struct drm_i915_private *dev_priv,
		 struct drm_file *file,
		 struct drm_i915_gem_execbuffer2 *args)
2025 2026
{
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2027
	struct intel_engine_cs *engine;
2028 2029 2030

	if (user_ring_id > I915_USER_RINGS) {
		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
2031
		return NULL;
2032 2033 2034 2035 2036 2037
	}

	if ((user_ring_id != I915_EXEC_BSD) &&
	    ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
		DRM_DEBUG("execbuf with non bsd ring but with invalid "
			  "bsd dispatch flags: %d\n", (int)(args->flags));
2038
		return NULL;
2039 2040 2041 2042 2043 2044
	}

	if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2045
			bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
2046 2047
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2048
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2049 2050 2051 2052
			bsd_idx--;
		} else {
			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
				  bsd_idx);
2053
			return NULL;
2054 2055
		}

2056
		engine = dev_priv->engine[_VCS(bsd_idx)];
2057
	} else {
2058
		engine = dev_priv->engine[user_ring_map[user_ring_id]];
2059 2060
	}

2061
	if (!engine) {
2062
		DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
2063
		return NULL;
2064 2065
	}

2066
	return engine;
2067 2068
}

2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
static void
__free_fence_array(struct drm_syncobj **fences, unsigned int n)
{
	while (n--)
		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
	kvfree(fences);
}

static struct drm_syncobj **
get_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_file *file)
{
2081
	const unsigned long nfences = args->num_cliprects;
2082 2083
	struct drm_i915_gem_exec_fence __user *user;
	struct drm_syncobj **fences;
2084
	unsigned long n;
2085 2086 2087 2088 2089
	int err;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return NULL;

2090 2091 2092 2093 2094
	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (nfences > min_t(unsigned long,
			    ULONG_MAX / sizeof(*user),
			    SIZE_MAX / sizeof(*fences)))
2095 2096 2097
		return ERR_PTR(-EINVAL);

	user = u64_to_user_ptr(args->cliprects_ptr);
2098
	if (!access_ok(VERIFY_READ, user, nfences * sizeof(*user)))
2099 2100
		return ERR_PTR(-EFAULT);

2101
	fences = kvmalloc_array(nfences, sizeof(*fences),
2102
				__GFP_NOWARN | GFP_KERNEL);
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
	if (!fences)
		return ERR_PTR(-ENOMEM);

	for (n = 0; n < nfences; n++) {
		struct drm_i915_gem_exec_fence fence;
		struct drm_syncobj *syncobj;

		if (__copy_from_user(&fence, user++, sizeof(fence))) {
			err = -EFAULT;
			goto err;
		}

2115 2116 2117 2118 2119
		if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
			err = -EINVAL;
			goto err;
		}

2120 2121 2122 2123 2124 2125 2126
		syncobj = drm_syncobj_find(file, fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			err = -ENOENT;
			goto err;
		}

2127 2128 2129
		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
	}

	return fences;

err:
	__free_fence_array(fences, n);
	return ERR_PTR(err);
}

static void
put_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_syncobj **fences)
{
	if (fences)
		__free_fence_array(fences, args->num_cliprects);
}

static int
await_fence_array(struct i915_execbuffer *eb,
		  struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	unsigned int n;
	int err;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		struct dma_fence *fence;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_WAIT))
			continue;

2165
		drm_syncobj_search_fence(syncobj, 0, 0, &fence);
2166 2167 2168
		if (!fence)
			return -EINVAL;

2169
		err = i915_request_await_dma_fence(eb->request, fence);
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
		dma_fence_put(fence);
		if (err < 0)
			return err;
	}

	return 0;
}

static void
signal_fence_array(struct i915_execbuffer *eb,
		   struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

2194
		drm_syncobj_replace_fence(syncobj, 0, fence);
2195 2196 2197
	}
}

2198
static int
2199
i915_gem_do_execbuffer(struct drm_device *dev,
2200 2201
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2202 2203
		       struct drm_i915_gem_exec_object2 *exec,
		       struct drm_syncobj **fences)
2204
{
2205
	struct i915_execbuffer eb;
2206 2207 2208
	struct dma_fence *in_fence = NULL;
	struct sync_file *out_fence = NULL;
	int out_fence_fd = -1;
2209
	int err;
2210

2211
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2212 2213
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2214

2215 2216 2217
	eb.i915 = to_i915(dev);
	eb.file = file;
	eb.args = args;
2218
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2219
		args->flags |= __EXEC_HAS_RELOC;
2220

2221
	eb.exec = exec;
2222 2223
	eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
	eb.vma[0] = NULL;
2224 2225
	eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);

2226
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2227 2228
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2229
	eb.buffer_count = args->buffer_count;
2230 2231 2232
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;

2233
	eb.batch_flags = 0;
2234
	if (args->flags & I915_EXEC_SECURE) {
2235
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2236 2237
		    return -EPERM;

2238
		eb.batch_flags |= I915_DISPATCH_SECURE;
2239
	}
2240
	if (args->flags & I915_EXEC_IS_PINNED)
2241
		eb.batch_flags |= I915_DISPATCH_PINNED;
2242

2243 2244
	eb.engine = eb_select_engine(eb.i915, file, args);
	if (!eb.engine)
2245 2246
		return -EINVAL;

2247 2248
	if (args->flags & I915_EXEC_FENCE_IN) {
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2249 2250
		if (!in_fence)
			return -EINVAL;
2251 2252 2253 2254 2255
	}

	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
2256
			err = out_fence_fd;
2257
			goto err_in_fence;
2258 2259 2260
		}
	}

2261 2262 2263 2264 2265
	err = eb_create(&eb);
	if (err)
		goto err_out_fence;

	GEM_BUG_ON(!eb.lut_size);
2266

2267 2268 2269 2270
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

2271 2272
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
2273 2274 2275 2276 2277
	 * we expect to access the hardware fairly frequently in the
	 * process. Upon first dispatch, we acquire another prolonged
	 * wakeref that we hold until the GPU has been idle for at least
	 * 100ms.
	 */
2278
	intel_runtime_pm_get(eb.i915);
2279

2280 2281 2282
	err = i915_mutex_lock_interruptible(dev);
	if (err)
		goto err_rpm;
2283

2284
	err = eb_relocate(&eb);
2285
	if (err) {
2286 2287 2288 2289 2290 2291 2292 2293 2294
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
2295
	}
2296

2297
	if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2298
		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2299 2300
		err = -EINVAL;
		goto err_vma;
2301
	}
2302 2303
	if (eb.batch_start_offset > eb.batch->size ||
	    eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2304
		DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2305 2306
		err = -EINVAL;
		goto err_vma;
2307
	}
2308

2309
	if (eb_use_cmdparser(&eb)) {
2310 2311
		struct i915_vma *vma;

2312
		vma = eb_parse(&eb, drm_is_current_master(file));
2313
		if (IS_ERR(vma)) {
2314 2315
			err = PTR_ERR(vma);
			goto err_vma;
2316
		}
2317

2318
		if (vma) {
2319 2320 2321 2322 2323 2324 2325 2326 2327
			/*
			 * Batch parsed and accepted:
			 *
			 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
			 * bit from MI_BATCH_BUFFER_START commands issued in
			 * the dispatch_execbuffer implementations. We
			 * specifically don't want that set on batches the
			 * command parser has accepted.
			 */
2328
			eb.batch_flags |= I915_DISPATCH_SECURE;
2329 2330
			eb.batch_start_offset = 0;
			eb.batch = vma;
2331
		}
2332 2333
	}

2334 2335
	if (eb.batch_len == 0)
		eb.batch_len = eb.batch->size - eb.batch_start_offset;
2336

2337 2338
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2339
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2340
	 * hsw should have this fixed, but bdw mucks it up again. */
2341
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2342
		struct i915_vma *vma;
2343

2344 2345 2346 2347 2348 2349
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2350
		 *   so we don't really have issues with multiple objects not
2351 2352 2353
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2354
		vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2355
		if (IS_ERR(vma)) {
2356 2357
			err = PTR_ERR(vma);
			goto err_vma;
C
Chris Wilson 已提交
2358
		}
2359

2360
		eb.batch = vma;
2361
	}
2362

2363 2364 2365
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

2366
	/* Allocate a request for this batch buffer nice and early. */
2367
	eb.request = i915_request_alloc(eb.engine, eb.ctx);
2368
	if (IS_ERR(eb.request)) {
2369
		err = PTR_ERR(eb.request);
2370
		goto err_batch_unpin;
2371
	}
2372

2373
	if (in_fence) {
2374
		err = i915_request_await_dma_fence(eb.request, in_fence);
2375
		if (err < 0)
2376 2377 2378
			goto err_request;
	}

2379 2380 2381 2382 2383 2384
	if (fences) {
		err = await_fence_array(&eb, fences);
		if (err)
			goto err_request;
	}

2385
	if (out_fence_fd != -1) {
2386
		out_fence = sync_file_create(&eb.request->fence);
2387
		if (!out_fence) {
2388
			err = -ENOMEM;
2389 2390 2391 2392
			goto err_request;
		}
	}

2393 2394
	/*
	 * Whilst this request exists, batch_obj will be on the
2395 2396 2397 2398 2399
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2400
	eb.request->batch = eb.batch;
2401

2402
	trace_i915_request_queue(eb.request, eb.batch_flags);
2403
	err = eb_submit(&eb);
2404
err_request:
2405
	i915_request_add(eb.request);
2406
	add_to_client(eb.request, file);
2407

2408 2409 2410
	if (fences)
		signal_fence_array(&eb, fences);

2411
	if (out_fence) {
2412
		if (err == 0) {
2413
			fd_install(out_fence_fd, out_fence->file);
2414
			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2415 2416 2417 2418 2419 2420
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2421

2422
err_batch_unpin:
2423
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2424
		i915_vma_unpin(eb.batch);
2425 2426 2427
err_vma:
	if (eb.exec)
		eb_release_vmas(&eb);
2428
	mutex_unlock(&dev->struct_mutex);
2429
err_rpm:
2430
	intel_runtime_pm_put(eb.i915);
2431 2432
	i915_gem_context_put(eb.ctx);
err_destroy:
2433
	eb_destroy(&eb);
2434
err_out_fence:
2435 2436
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2437
err_in_fence:
2438
	dma_fence_put(in_fence);
2439
	return err;
2440 2441
}

2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
static size_t eb_element_size(void)
{
	return (sizeof(struct drm_i915_gem_exec_object2) +
		sizeof(struct i915_vma *) +
		sizeof(unsigned int));
}

static bool check_buffer_count(size_t count)
{
	const size_t sz = eb_element_size();

	/*
	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
	 * array size (see eb_create()). Otherwise, we can accept an array as
	 * large as can be addressed (though use large arrays at your peril)!
	 */

	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}

2462 2463 2464 2465 2466
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
2467 2468
i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file)
2469 2470 2471 2472 2473
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2474
	const size_t count = args->buffer_count;
2475 2476
	unsigned int i;
	int err;
2477

2478 2479
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2480 2481 2482
		return -EINVAL;
	}

2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

	if (!i915_gem_check_execbuffer(&exec2))
		return -EINVAL;

2497
	/* Copy in the exec list from userland */
2498
	exec_list = kvmalloc_array(count, sizeof(*exec_list),
2499
				   __GFP_NOWARN | GFP_KERNEL);
2500
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2501
				    __GFP_NOWARN | GFP_KERNEL);
2502
	if (exec_list == NULL || exec2_list == NULL) {
2503
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2504
			  args->buffer_count);
M
Michal Hocko 已提交
2505 2506
		kvfree(exec_list);
		kvfree(exec2_list);
2507 2508
		return -ENOMEM;
	}
2509
	err = copy_from_user(exec_list,
2510
			     u64_to_user_ptr(args->buffers_ptr),
2511
			     sizeof(*exec_list) * count);
2512
	if (err) {
2513
		DRM_DEBUG("copy %d exec entries failed %d\n",
2514
			  args->buffer_count, err);
M
Michal Hocko 已提交
2515 2516
		kvfree(exec_list);
		kvfree(exec2_list);
2517 2518 2519 2520 2521 2522 2523 2524 2525
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2526
		if (INTEL_GEN(to_i915(dev)) < 4)
2527 2528 2529 2530 2531
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2532
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2533
	if (exec2.flags & __EXEC_HAS_RELOC) {
2534
		struct drm_i915_gem_exec_object __user *user_exec_list =
2535
			u64_to_user_ptr(args->buffers_ptr);
2536

2537
		/* Copy the new buffer offsets back to the user's exec list. */
2538
		for (i = 0; i < args->buffer_count; i++) {
2539 2540 2541
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2542
			exec2_list[i].offset =
2543 2544 2545 2546 2547
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2548
				break;
2549 2550 2551
		}
	}

M
Michal Hocko 已提交
2552 2553
	kvfree(exec_list);
	kvfree(exec2_list);
2554
	return err;
2555 2556 2557
}

int
2558 2559
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
2560 2561
{
	struct drm_i915_gem_execbuffer2 *args = data;
2562
	struct drm_i915_gem_exec_object2 *exec2_list;
2563
	struct drm_syncobj **fences = NULL;
2564
	const size_t count = args->buffer_count;
2565
	int err;
2566

2567 2568
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2569 2570 2571
		return -EINVAL;
	}

2572 2573 2574 2575
	if (!i915_gem_check_execbuffer(args))
		return -EINVAL;

	/* Allocate an extra slot for use by the command parser */
2576
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2577
				    __GFP_NOWARN | GFP_KERNEL);
2578
	if (exec2_list == NULL) {
2579 2580
		DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
			  count);
2581 2582
		return -ENOMEM;
	}
2583 2584
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
2585 2586
			   sizeof(*exec2_list) * count)) {
		DRM_DEBUG("copy %zd exec entries failed\n", count);
M
Michal Hocko 已提交
2587
		kvfree(exec2_list);
2588 2589 2590
		return -EFAULT;
	}

2591 2592 2593 2594 2595 2596 2597 2598 2599
	if (args->flags & I915_EXEC_FENCE_ARRAY) {
		fences = get_fence_array(args, file);
		if (IS_ERR(fences)) {
			kvfree(exec2_list);
			return PTR_ERR(fences);
		}
	}

	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2600 2601 2602 2603 2604 2605 2606 2607

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
2608
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2609 2610
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
2611

2612 2613
		/* Copy the new buffer offsets back to the user's exec list. */
		user_access_begin();
2614
		for (i = 0; i < args->buffer_count; i++) {
2615 2616 2617
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2618
			exec2_list[i].offset =
2619 2620 2621 2622
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
2623
		}
2624 2625
end_user:
		user_access_end();
2626 2627
	}

2628
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2629
	put_fence_array(args, fences);
M
Michal Hocko 已提交
2630
	kvfree(exec2_list);
2631
	return err;
2632
}