i915_gem_execbuffer.c 62.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright © 2008,2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Chris Wilson <chris@chris-wilson.co.uk>
 *
 */

29 30
#include <linux/dma_remapping.h>
#include <linux/reservation.h>
31
#include <linux/sync_file.h>
32 33
#include <linux/uaccess.h>

34 35
#include <drm/drmP.h>
#include <drm/i915_drm.h>
36

37
#include "i915_drv.h"
38
#include "i915_gem_clflush.h"
39 40
#include "i915_trace.h"
#include "intel_drv.h"
41
#include "intel_frontbuffer.h"
42

43 44
#define DBG_USE_CPU_RELOC 0 /* -1 force GTT relocs; 1 force CPU relocs */

45 46 47 48 49 50 51 52 53 54
#define __EXEC_OBJECT_HAS_PIN		BIT(31)
#define __EXEC_OBJECT_HAS_FENCE		BIT(30)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(29)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(28)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 28) /* all of the above */
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)

#define __EXEC_HAS_RELOC	BIT(31)
#define __EXEC_VALIDATED	BIT(30)
#define UPDATE			PIN_OFFSET_FIXED
55 56

#define BATCH_OFFSET_BIAS (256*1024)
57

58 59
#define __I915_EXEC_ILLEGAL_FLAGS \
	(__I915_EXEC_UNKNOWN_FLAGS | I915_EXEC_CONSTANTS_MASK)
60

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

183
struct i915_execbuffer {
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */

	struct intel_engine_cs *engine; /** engine to queue the request to */
	struct i915_gem_context *ctx; /** context for building the request */
	struct i915_address_space *vm; /** GTT and vma for the request */

	struct drm_i915_gem_request *request; /** our request to build */
	struct i915_vma *batch; /** identity of the batch obj/vma */

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
210
	struct reloc_cache {
211 212 213
		struct drm_mm_node node; /** temporary GTT binding */
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
214
		bool use_64bit_reloc : 1;
215 216 217
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
218
	} reloc_cache;
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
234 235
};

236 237 238 239 240 241 242 243
/*
 * As an alternative to creating a hashtable of handle-to-vma for a batch,
 * we used the last available reserved field in the execobject[] and stash
 * a link from the execobj to its vma.
 */
#define __exec_to_vma(ee) (ee)->rsvd2
#define exec_to_vma(ee) u64_to_ptr(struct i915_vma, __exec_to_vma(ee))

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
/*
 * Used to convert any address to canonical form.
 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
 * addresses to be in a canonical form:
 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
 * canonical form [63:48] == [47]."
 */
#define GEN8_HIGH_ADDRESS_BIT 47
static inline u64 gen8_canonical_addr(u64 address)
{
	return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
}

static inline u64 gen8_noncanonical_addr(u64 address)
{
	return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
}

263
static int eb_create(struct i915_execbuffer *eb)
264
{
265 266
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
267

268 269 270 271 272 273 274 275 276 277 278
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
		do {
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
					      GFP_TEMPORARY |
					      __GFP_NORETRY |
					      __GFP_NOWARN);
			if (eb->buckets)
				break;
		} while (--size);

		if (unlikely(!eb->buckets)) {
			eb->buckets = kzalloc(sizeof(struct hlist_head),
					      GFP_TEMPORARY);
			if (unlikely(!eb->buckets))
				return -ENOMEM;
		}
294

295
		eb->lut_size = size;
296
	} else {
297
		eb->lut_size = -eb->buffer_count;
298
	}
299

300
	return 0;
301 302
}

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
		 const struct i915_vma *vma)
{
	if (!(entry->flags & __EXEC_OBJECT_HAS_PIN))
		return true;

	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

	if (entry->flags & EXEC_OBJECT_PINNED &&
	    vma->node.start != entry->offset)
		return true;

	if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS &&
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

	if (!(entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

	return false;
}

static inline void
eb_pin_vma(struct i915_execbuffer *eb,
	   struct drm_i915_gem_exec_object2 *entry,
	   struct i915_vma *vma)
{
	u64 flags;

	flags = vma->node.start;
	flags |= PIN_USER | PIN_NONBLOCK | PIN_OFFSET_FIXED;
	if (unlikely(entry->flags & EXEC_OBJECT_NEEDS_GTT))
		flags |= PIN_GLOBAL;
	if (unlikely(i915_vma_pin(vma, 0, 0, flags)))
		return;

	if (unlikely(entry->flags & EXEC_OBJECT_NEEDS_FENCE)) {
		if (unlikely(i915_vma_get_fence(vma))) {
			i915_vma_unpin(vma);
			return;
		}

		if (i915_vma_pin_fence(vma))
			entry->flags |= __EXEC_OBJECT_HAS_FENCE;
	}

	entry->flags |= __EXEC_OBJECT_HAS_PIN;
}

358 359 360 361
static inline void
__eb_unreserve_vma(struct i915_vma *vma,
		   const struct drm_i915_gem_exec_object2 *entry)
{
362 363
	GEM_BUG_ON(!(entry->flags & __EXEC_OBJECT_HAS_PIN));

364 365 366
	if (unlikely(entry->flags & __EXEC_OBJECT_HAS_FENCE))
		i915_vma_unpin_fence(vma);

367
	__i915_vma_unpin(vma);
368 369
}

370 371 372
static inline void
eb_unreserve_vma(struct i915_vma *vma,
		 struct drm_i915_gem_exec_object2 *entry)
373
{
374 375
	if (!(entry->flags & __EXEC_OBJECT_HAS_PIN))
		return;
376 377

	__eb_unreserve_vma(vma, entry);
378
	entry->flags &= ~__EXEC_OBJECT_RESERVED;
379 380
}

381 382 383 384
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
385
{
386 387
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
388

389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
	if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
		     entry->offset != gen8_canonical_addr(entry->offset & PAGE_MASK)))
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
406 407
	}

408 409 410 411 412 413 414 415 416 417 418 419 420 421
	if (unlikely(vma->exec_entry)) {
		DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
			  entry->handle, (int)(entry - eb->exec));
		return -EINVAL;
	}

	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

	return 0;
422 423
}

424 425 426 427
static int
eb_add_vma(struct i915_execbuffer *eb,
	   struct drm_i915_gem_exec_object2 *entry,
	   struct i915_vma *vma)
428
{
429 430 431 432 433 434 435 436
	int err;

	GEM_BUG_ON(i915_vma_is_closed(vma));

	if (!(eb->args->flags & __EXEC_VALIDATED)) {
		err = eb_validate_vma(eb, entry, vma);
		if (unlikely(err))
			return err;
437 438
	}

439 440
	if (eb->lut_size >= 0) {
		vma->exec_handle = entry->handle;
441
		hlist_add_head(&vma->exec_node,
442 443
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
444
	}
445

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
	if (entry->relocation_count)
		list_add_tail(&vma->reloc_link, &eb->relocs);

	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

	/*
	 * Stash a pointer from the vma to execobj, so we can query its flags,
	 * size, alignment etc as provided by the user. Also we stash a pointer
	 * to the vma inside the execobj so that we can use a direct lookup
	 * to find the right target VMA when doing relocations.
	 */
	vma->exec_entry = entry;
	__exec_to_vma(entry) = (uintptr_t)i915_vma_get(vma);

	err = 0;
	if (vma->node.size)
		eb_pin_vma(eb, entry, vma);
	if (eb_vma_misplaced(entry, vma)) {
		eb_unreserve_vma(vma, entry);

		list_add_tail(&vma->exec_link, &eb->unbound);
		if (drm_mm_node_allocated(&vma->node))
			err = i915_vma_unbind(vma);
	} else {
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
	}
	return err;
}

static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

	if (DBG_USE_CPU_RELOC)
		return DBG_USE_CPU_RELOC > 0;

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
			  struct i915_vma *vma)
{
	struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
	u64 flags;
	int err;

	flags = PIN_USER | PIN_NONBLOCK;
	if (entry->flags & EXEC_OBJECT_NEEDS_GTT)
		flags |= PIN_GLOBAL;

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
	if (!(entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		flags |= PIN_ZONE_4G;

	if (entry->flags & __EXEC_OBJECT_NEEDS_MAP)
		flags |= PIN_MAPPABLE;

	if (entry->flags & EXEC_OBJECT_PINNED) {
		flags |= entry->offset | PIN_OFFSET_FIXED;
		flags &= ~PIN_NONBLOCK; /* force overlapping PINNED checks */
	} else if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS) {
		flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
	}

	err = i915_vma_pin(vma, entry->pad_to_size, entry->alignment, flags);
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

	entry->flags |= __EXEC_OBJECT_HAS_PIN;
	GEM_BUG_ON(eb_vma_misplaced(entry, vma));

	if (unlikely(entry->flags & EXEC_OBJECT_NEEDS_FENCE)) {
		err = i915_vma_get_fence(vma);
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

		if (i915_vma_pin_fence(vma))
			entry->flags |= __EXEC_OBJECT_HAS_FENCE;
	}

	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	struct list_head last;
	struct i915_vma *vma;
	unsigned int i, pass;
	int err;

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

	pass = 0;
	err = 0;
	do {
		list_for_each_entry(vma, &eb->unbound, exec_link) {
			err = eb_reserve_vma(eb, vma);
			if (err)
				break;
		}
		if (err != -ENOSPC)
			return err;

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
			struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];

			if (entry->flags & EXEC_OBJECT_PINNED &&
			    entry->flags & __EXEC_OBJECT_HAS_PIN)
				continue;

			vma = exec_to_vma(entry);
			eb_unreserve_vma(vma, entry);

			if (entry->flags & EXEC_OBJECT_PINNED)
				list_add(&vma->exec_link, &eb->unbound);
			else if (entry->flags & __EXEC_OBJECT_NEEDS_MAP)
				list_add_tail(&vma->exec_link, &eb->unbound);
			else
				list_add_tail(&vma->exec_link, &last);
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
			err = i915_gem_evict_vm(eb->vm);
			if (err)
				return err;
			break;

		default:
			return -ENOSPC;
		}
	} while (1);
626
}
627

628
static inline struct hlist_head *
629
ht_head(const  struct i915_gem_context_vma_lut *lut, u32 handle)
630
{
631
	return &lut->ht[hash_32(handle, lut->ht_bits)];
632 633 634
}

static inline bool
635
ht_needs_resize(const struct i915_gem_context_vma_lut *lut)
636
{
637 638
	return (4*lut->ht_count > 3*lut->ht_size ||
		4*lut->ht_count + 1 < lut->ht_size);
639 640
}

641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
	return eb->buffer_count - 1;
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
	if (unlikely(IS_ERR(ctx)))
		return PTR_ERR(ctx);

	if (unlikely(i915_gem_context_is_banned(ctx))) {
		DRM_DEBUG("Context %u tried to submit while banned\n",
			  ctx->user_handle);
		return -EIO;
	}

	eb->ctx = i915_gem_context_get(ctx);
	eb->vm = ctx->ppgtt ? &ctx->ppgtt->base : &eb->i915->ggtt.base;

	eb->context_flags = 0;
	if (ctx->flags & CONTEXT_NO_ZEROMAP)
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

static int eb_lookup_vmas(struct i915_execbuffer *eb)
671
{
672
#define INTERMEDIATE BIT(0)
673 674
	const unsigned int count = eb->buffer_count;
	struct i915_gem_context_vma_lut *lut = &eb->ctx->vma_lut;
675
	struct i915_vma *vma;
676 677
	struct idr *idr;
	unsigned int i;
678
	int slow_pass = -1;
679
	int err;
680

681 682
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);
683

684 685 686
	if (unlikely(lut->ht_size & I915_CTX_RESIZE_IN_PROGRESS))
		flush_work(&lut->resize);
	GEM_BUG_ON(lut->ht_size & I915_CTX_RESIZE_IN_PROGRESS);
687 688 689 690 691

	for (i = 0; i < count; i++) {
		__exec_to_vma(&eb->exec[i]) = 0;

		hlist_for_each_entry(vma,
692
				     ht_head(lut, eb->exec[i].handle),
693 694 695 696
				     ctx_node) {
			if (vma->ctx_handle != eb->exec[i].handle)
				continue;

697 698 699
			err = eb_add_vma(eb, &eb->exec[i], vma);
			if (unlikely(err))
				return err;
700 701 702 703 704 705 706 707 708 709

			goto next_vma;
		}

		if (slow_pass < 0)
			slow_pass = i;
next_vma: ;
	}

	if (slow_pass < 0)
710
		goto out;
711

712
	spin_lock(&eb->file->table_lock);
713 714 715 716 717
	/*
	 * Grab a reference to the object and release the lock so we can lookup
	 * or create the VMA without using GFP_ATOMIC
	 */
	idr = &eb->file->object_idr;
718 719
	for (i = slow_pass; i < count; i++) {
		struct drm_i915_gem_object *obj;
720

721 722 723
		if (__exec_to_vma(&eb->exec[i]))
			continue;

724
		obj = to_intel_bo(idr_find(idr, eb->exec[i].handle));
725
		if (unlikely(!obj)) {
726
			spin_unlock(&eb->file->table_lock);
727 728
			DRM_DEBUG("Invalid object handle %d at index %d\n",
				  eb->exec[i].handle, i);
729 730
			err = -ENOENT;
			goto err;
731 732
		}

733
		__exec_to_vma(&eb->exec[i]) = INTERMEDIATE | (uintptr_t)obj;
734
	}
735
	spin_unlock(&eb->file->table_lock);
736

737 738
	for (i = slow_pass; i < count; i++) {
		struct drm_i915_gem_object *obj;
739

740
		if (!(__exec_to_vma(&eb->exec[i]) & INTERMEDIATE))
741
			continue;
742

743 744 745 746 747 748 749 750
		/*
		 * NOTE: We can leak any vmas created here when something fails
		 * later on. But that's no issue since vma_unbind can deal with
		 * vmas which are not actually bound. And since only
		 * lookup_or_create exists as an interface to get at the vma
		 * from the (obj, vm) we don't run the risk of creating
		 * duplicated vmas for the same vm.
		 */
751
		obj = u64_to_ptr(typeof(*obj),
752
				 __exec_to_vma(&eb->exec[i]) & ~INTERMEDIATE);
753
		vma = i915_vma_instance(obj, eb->vm, NULL);
C
Chris Wilson 已提交
754
		if (unlikely(IS_ERR(vma))) {
755
			DRM_DEBUG("Failed to lookup VMA\n");
756 757
			err = PTR_ERR(vma);
			goto err;
758 759
		}

760 761 762 763 764
		/* First come, first served */
		if (!vma->ctx) {
			vma->ctx = eb->ctx;
			vma->ctx_handle = eb->exec[i].handle;
			hlist_add_head(&vma->ctx_node,
765 766 767
				       ht_head(lut, eb->exec[i].handle));
			lut->ht_count++;
			lut->ht_size |= I915_CTX_RESIZE_IN_PROGRESS;
768 769 770 771
			if (i915_vma_is_ggtt(vma)) {
				GEM_BUG_ON(obj->vma_hashed);
				obj->vma_hashed = vma;
			}
772
		}
773

774 775 776
		err = eb_add_vma(eb, &eb->exec[i], vma);
		if (unlikely(err))
			goto err;
777 778
	}

779 780 781 782 783
	if (lut->ht_size & I915_CTX_RESIZE_IN_PROGRESS) {
		if (ht_needs_resize(lut))
			queue_work(system_highpri_wq, &lut->resize);
		else
			lut->ht_size &= ~I915_CTX_RESIZE_IN_PROGRESS;
784 785
	}

786 787 788 789
out:
	/* take note of the batch buffer before we might reorder the lists */
	i = eb_batch_index(eb);
	eb->batch = exec_to_vma(&eb->exec[i]);
790

791
	/*
792 793 794 795 796 797 798
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
799
	 */
800 801 802 803
	if (!(eb->exec[i].flags & EXEC_OBJECT_PINNED))
		eb->exec[i].flags |= __EXEC_OBJECT_NEEDS_BIAS;
	if (eb->reloc_cache.has_fence)
		eb->exec[i].flags |= EXEC_OBJECT_NEEDS_FENCE;
804

805 806 807 808 809 810 811 812 813 814 815
	eb->args->flags |= __EXEC_VALIDATED;
	return eb_reserve(eb);

err:
	for (i = slow_pass; i < count; i++) {
		if (__exec_to_vma(&eb->exec[i]) & INTERMEDIATE)
			__exec_to_vma(&eb->exec[i]) = 0;
	}
	lut->ht_size &= ~I915_CTX_RESIZE_IN_PROGRESS;
	return err;
#undef INTERMEDIATE
816 817
}

818
static struct i915_vma *
819
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
820
{
821 822
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
823
			return NULL;
824
		return exec_to_vma(&eb->exec[handle]);
825 826
	} else {
		struct hlist_head *head;
827
		struct i915_vma *vma;
828

829
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
830
		hlist_for_each_entry(vma, head, exec_node) {
831 832
			if (vma->exec_handle == handle)
				return vma;
833 834 835
		}
		return NULL;
	}
836 837
}

838
static void eb_release_vmas(const struct i915_execbuffer *eb)
839
{
840 841 842 843 844 845
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
		struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
		struct i915_vma *vma = exec_to_vma(entry);
846

847
		if (!vma)
848
			continue;
849

850
		GEM_BUG_ON(vma->exec_entry != entry);
851
		vma->exec_entry = NULL;
852

853
		eb_unreserve_vma(vma, entry);
854

855 856
		i915_vma_put(vma);
	}
857 858
}

859
static void eb_reset_vmas(const struct i915_execbuffer *eb)
860
{
861 862 863 864
	eb_release_vmas(eb);
	if (eb->lut_size >= 0)
		memset(eb->buckets, 0,
		       sizeof(struct hlist_head) << eb->lut_size);
865 866
}

867
static void eb_destroy(const struct i915_execbuffer *eb)
868
{
869 870
	if (eb->lut_size >= 0)
		kfree(eb->buckets);
871 872
}

873
static inline u64
874
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
875
		  const struct i915_vma *target)
876
{
877
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
878 879
}

880 881
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
882
{
883
	cache->page = -1;
884
	cache->vaddr = 0;
885
	/* Must be a variable in the struct to allow GCC to unroll. */
886 887 888
	cache->has_llc = HAS_LLC(i915);
	cache->has_fence = INTEL_GEN(i915) < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
889
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
890
	cache->node.allocated = false;
891
}
892

893 894 895 896 897 898 899 900
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
901 902
}

903 904
#define KMAP 0x4 /* after CLFLUSH_FLAGS */

905 906 907 908 909 910 911 912
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

static void reloc_cache_reset(struct reloc_cache *cache)
913
{
914
	void *vaddr;
915

916 917
	if (!cache->vaddr)
		return;
918

919 920 921 922
	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();
923

924 925 926
		kunmap_atomic(vaddr);
		i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
	} else {
927
		wmb();
928
		io_mapping_unmap_atomic((void __iomem *)vaddr);
929
		if (cache->node.allocated) {
930
			struct i915_ggtt *ggtt = cache_to_ggtt(cache);
931 932 933

			ggtt->base.clear_range(&ggtt->base,
					       cache->node.start,
934
					       cache->node.size);
935 936 937
			drm_mm_remove_node(&cache->node);
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
938
		}
939
	}
940 941 942

	cache->vaddr = 0;
	cache->page = -1;
943 944 945 946
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
947
			unsigned long page)
948
{
949 950 951 952 953 954
	void *vaddr;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
955
		int err;
956

957 958 959
		err = i915_gem_obj_prepare_shmem_write(obj, &flushes);
		if (err)
			return ERR_PTR(err);
960 961 962

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
963

964 965 966 967
		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
968 969
	}

970 971
	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
972
	cache->page = page;
973

974
	return vaddr;
975 976
}

977 978
static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
979
			 unsigned long page)
980
{
981
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
982
	unsigned long offset;
983
	void *vaddr;
984

985
	if (cache->vaddr) {
986
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
987 988
	} else {
		struct i915_vma *vma;
989
		int err;
990

991
		if (use_cpu_reloc(cache, obj))
992
			return NULL;
993

994 995 996
		err = i915_gem_object_set_to_gtt_domain(obj, true);
		if (err)
			return ERR_PTR(err);
997

998 999
		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
					       PIN_MAPPABLE | PIN_NONBLOCK);
1000 1001
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
1002
			err = drm_mm_insert_node_in_range
1003
				(&ggtt->base.mm, &cache->node,
1004
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1005
				 0, ggtt->mappable_end,
1006
				 DRM_MM_INSERT_LOW);
1007
			if (err) /* no inactive aperture space, use cpu reloc */
1008
				return NULL;
1009
		} else {
1010 1011
			err = i915_vma_put_fence(vma);
			if (err) {
1012
				i915_vma_unpin(vma);
1013
				return ERR_PTR(err);
1014
			}
1015

1016 1017
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
1018
		}
1019
	}
1020

1021 1022
	offset = cache->node.start;
	if (cache->node.allocated) {
1023
		wmb();
1024 1025 1026 1027 1028
		ggtt->base.insert_page(&ggtt->base,
				       i915_gem_object_get_dma_address(obj, page),
				       offset, I915_CACHE_NONE, 0);
	} else {
		offset += page << PAGE_SHIFT;
1029 1030
	}

1031 1032
	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->mappable,
							 offset);
1033 1034
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;
1035

1036
	return vaddr;
1037 1038
}

1039 1040
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1041
			 unsigned long page)
1042
{
1043
	void *vaddr;
1044

1045 1046 1047 1048 1049 1050 1051 1052
	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
1053 1054
	}

1055
	return vaddr;
1056 1057
}

1058
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1059
{
1060 1061 1062 1063 1064
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}
1065

1066
		*addr = value;
1067

1068 1069
		/*
		 * Writes to the same cacheline are serialised by the CPU
1070 1071 1072 1073 1074 1075 1076 1077 1078
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
1079 1080
}

1081 1082
static u64
relocate_entry(struct i915_vma *vma,
1083
	       const struct drm_i915_gem_relocation_entry *reloc,
1084 1085
	       struct i915_execbuffer *eb,
	       const struct i915_vma *target)
1086
{
1087
	struct drm_i915_gem_object *obj = vma->obj;
1088
	u64 offset = reloc->offset;
1089 1090
	u64 target_offset = relocation_target(reloc, target);
	bool wide = eb->reloc_cache.use_64bit_reloc;
1091
	void *vaddr;
1092

1093
repeat:
1094
	vaddr = reloc_vaddr(obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1095 1096 1097 1098 1099
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_offset),
1100
			eb->reloc_cache.vaddr);
1101 1102 1103 1104 1105 1106

	if (wide) {
		offset += sizeof(u32);
		target_offset >>= 32;
		wide = false;
		goto repeat;
1107 1108
	}

1109
	return target->node.start | UPDATE;
1110 1111
}

1112 1113 1114 1115
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
		  struct i915_vma *vma,
		  const struct drm_i915_gem_relocation_entry *reloc)
1116
{
1117
	struct i915_vma *target;
1118
	int err;
1119

1120
	/* we've already hold a reference to all valid objects */
1121 1122
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1123
		return -ENOENT;
1124

1125
	/* Validate that the target is in a valid r/w GPU domain */
1126
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1127
		DRM_DEBUG("reloc with multiple write domains: "
1128
			  "target %d offset %d "
1129
			  "read %08x write %08x",
1130
			  reloc->target_handle,
1131 1132 1133
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1134
		return -EINVAL;
1135
	}
1136 1137
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1138
		DRM_DEBUG("reloc with read/write non-GPU domains: "
1139
			  "target %d offset %d "
1140
			  "read %08x write %08x",
1141
			  reloc->target_handle,
1142 1143 1144
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1145
		return -EINVAL;
1146 1147
	}

1148
	if (reloc->write_domain) {
1149 1150
		target->exec_entry->flags |= EXEC_OBJECT_WRITE;

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
		    IS_GEN6(eb->i915)) {
			err = i915_vma_bind(target, target->obj->cache_level,
					    PIN_GLOBAL);
			if (WARN_ONCE(err,
				      "Unexpected failure to bind target VMA!"))
				return err;
		}
1165
	}
1166

1167 1168
	/*
	 * If the relocation already has the right value in it, no
1169 1170
	 * more work needs to be done.
	 */
1171
	if (gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1172
		return 0;
1173 1174

	/* Check that the relocation address is valid... */
1175
	if (unlikely(reloc->offset >
1176
		     vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1177
		DRM_DEBUG("Relocation beyond object bounds: "
1178 1179 1180 1181
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
			  (int)vma->size);
1182
		return -EINVAL;
1183
	}
1184
	if (unlikely(reloc->offset & 3)) {
1185
		DRM_DEBUG("Relocation not 4-byte aligned: "
1186 1187 1188
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1189
		return -EINVAL;
1190 1191
	}

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
	 * of our synchronisation.
	 */
	vma->exec_entry->flags &= ~EXEC_OBJECT_ASYNC;

1202
	/* and update the user's relocation entry */
1203
	return relocate_entry(vma, reloc, eb, target);
1204 1205
}

1206
static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1207
{
1208
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1209 1210 1211 1212
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
	struct drm_i915_gem_relocation_entry __user *urelocs;
	const struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
	unsigned int remain;
1213

1214
	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1215
	remain = entry->relocation_count;
1216 1217
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
		return -EINVAL;
1218

1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
	if (unlikely(!access_ok(VERIFY_READ, urelocs, remain*sizeof(urelocs))))
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
			min_t(unsigned int, remain, ARRAY_SIZE(stack));
		unsigned int copied;
1232

1233 1234
		/*
		 * This is the fast path and we cannot handle a pagefault
1235 1236 1237 1238 1239 1240 1241
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
		pagefault_disable();
1242
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1243
		pagefault_enable();
1244 1245
		if (unlikely(copied)) {
			remain = -EFAULT;
1246 1247
			goto out;
		}
1248

1249
		remain -= count;
1250
		do {
1251
			u64 offset = eb_relocate_entry(eb, vma, r);
1252

1253 1254 1255
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
				remain = (int)offset;
1256
				goto out;
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
				__put_user(offset,
					   &urelocs[r-stack].presumed_offset);
1282
			}
1283 1284 1285
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1286
out:
1287
	reloc_cache_reset(&eb->reloc_cache);
1288
	return remain;
1289 1290 1291
}

static int
1292
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1293
{
1294
	const struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
1295 1296 1297 1298
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
	int err;
1299 1300

	for (i = 0; i < entry->relocation_count; i++) {
1301
		u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1302

1303 1304 1305 1306
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1307
	}
1308 1309 1310 1311
	err = 0;
err:
	reloc_cache_reset(&eb->reloc_cache);
	return err;
1312 1313
}

1314
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1315
{
1316 1317 1318
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1319

1320 1321 1322
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1323

1324 1325
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1326

1327 1328 1329 1330
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
	if (!access_ok(VERIFY_READ, addr, size))
		return -EFAULT;
1331

1332 1333 1334 1335 1336
	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
1337
	}
1338
	return __get_user(c, end - 1);
1339
}
1340

1341
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1342
{
1343 1344 1345
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1346

1347 1348 1349 1350 1351 1352
	for (i = 0; i < count; i++) {
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		struct drm_i915_gem_relocation_entry *relocs;
		unsigned long size;
		unsigned long copied;
1353

1354 1355
		if (nreloc == 0)
			continue;
1356

1357 1358 1359
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1360

1361 1362
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1363

1364 1365 1366 1367 1368 1369
		relocs = kvmalloc_array(size, 1, GFP_TEMPORARY);
		if (!relocs) {
			kvfree(relocs);
			err = -ENOMEM;
			goto err;
		}
1370

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
					     (char *)urelocs + copied,
					     len)) {
				kvfree(relocs);
				err = -EFAULT;
				goto err;
			}
1384

1385 1386
			copied += len;
		} while (copied < size);
1387

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
		user_access_begin();
		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
end_user:
		user_access_end();
1405

1406 1407
		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}
1408

1409
	return 0;
1410

1411 1412 1413 1414 1415 1416 1417 1418
err:
	while (i--) {
		struct drm_i915_gem_relocation_entry *relocs =
			u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
1419 1420
}

1421
static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1422
{
1423 1424
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1425

1426 1427
	if (unlikely(i915.prefault_disable))
		return 0;
1428

1429 1430
	for (i = 0; i < count; i++) {
		int err;
1431

1432 1433 1434 1435
		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}
1436

1437
	return 0;
1438 1439
}

1440
static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1441
{
1442
	struct drm_device *dev = &eb->i915->drm;
1443
	bool have_copy = false;
1444
	struct i915_vma *vma;
1445 1446 1447 1448 1449 1450 1451
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
	}
1452

1453
	/* We may process another execbuffer during the unlock... */
1454
	eb_reset_vmas(eb);
1455 1456
	mutex_unlock(&dev->struct_mutex);

1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
1478
	}
1479 1480 1481
	if (err) {
		mutex_lock(&dev->struct_mutex);
		goto out;
1482 1483
	}

1484 1485
	err = i915_mutex_lock_interruptible(dev);
	if (err) {
1486
		mutex_lock(&dev->struct_mutex);
1487
		goto out;
1488 1489
	}

1490
	/* reacquire the objects */
1491 1492
	err = eb_lookup_vmas(eb);
	if (err)
1493
		goto err;
1494

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
	list_for_each_entry(vma, &eb->relocs, reloc_link) {
		if (!have_copy) {
			pagefault_disable();
			err = eb_relocate_vma(eb, vma);
			pagefault_enable();
			if (err)
				goto repeat;
		} else {
			err = eb_relocate_vma_slow(eb, vma);
			if (err)
				goto err;
		}
1507 1508
	}

1509 1510
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
1511 1512 1513 1514 1515 1516
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

	return err ?: have_copy;
1539 1540
}

1541
static int eb_relocate(struct i915_execbuffer *eb)
1542
{
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
	if (eb_lookup_vmas(eb))
		goto slow;

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
		struct i915_vma *vma;

		list_for_each_entry(vma, &eb->relocs, reloc_link) {
			if (eb_relocate_vma(eb, vma))
				goto slow;
		}
	}

	return 0;

slow:
	return eb_relocate_slow(eb);
}

static void eb_export_fence(struct drm_i915_gem_object *obj,
			    struct drm_i915_gem_request *req,
			    unsigned int flags)
{
	struct reservation_object *resv = obj->resv;

	/*
	 * Ignore errors from failing to allocate the new fence, we can't
	 * handle an error right now. Worst case should be missed
	 * synchronisation leading to rendering corruption.
	 */
	reservation_object_lock(resv, NULL);
	if (flags & EXEC_OBJECT_WRITE)
		reservation_object_add_excl_fence(resv, &req->fence);
	else if (reservation_object_reserve_shared(resv) == 0)
		reservation_object_add_shared_fence(resv, &req->fence);
	reservation_object_unlock(resv);
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1586

1587 1588 1589
	for (i = 0; i < count; i++) {
		const struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
		struct i915_vma *vma = exec_to_vma(entry);
1590
		struct drm_i915_gem_object *obj = vma->obj;
1591

1592
		if (entry->flags & EXEC_OBJECT_CAPTURE) {
1593 1594 1595 1596 1597 1598
			struct i915_gem_capture_list *capture;

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
			if (unlikely(!capture))
				return -ENOMEM;

1599
			capture->next = eb->request->capture_list;
1600
			capture->vma = vma;
1601
			eb->request->capture_list = capture;
1602 1603
		}

1604 1605
		if (entry->flags & EXEC_OBJECT_ASYNC)
			goto skip_flushes;
1606

1607
		if (unlikely(obj->cache_dirty && !obj->cache_coherent))
1608 1609
			i915_gem_clflush_object(obj, 0);

1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
		err = i915_gem_request_await_object
			(eb->request, obj, entry->flags & EXEC_OBJECT_WRITE);
		if (err)
			return err;

skip_flushes:
		i915_vma_move_to_active(vma, eb->request, entry->flags);
		__eb_unreserve_vma(vma, entry);
		vma->exec_entry = NULL;
	}

	for (i = 0; i < count; i++) {
		const struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
		struct i915_vma *vma = exec_to_vma(entry);

		eb_export_fence(vma->obj, eb->request, entry->flags);
		i915_vma_put(vma);
1627
	}
1628
	eb->exec = NULL;
1629

1630
	/* Unconditionally flush any chipset caches (for streaming writes). */
1631
	i915_gem_chipset_flush(eb->i915);
1632

1633
	/* Unconditionally invalidate GPU caches and TLBs. */
1634
	return eb->engine->emit_flush(eb->request, EMIT_INVALIDATE);
1635 1636
}

1637
static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1638
{
1639
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1640 1641
		return false;

C
Chris Wilson 已提交
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
	/* Kernel clipping was a DRI1 misfeature */
	if (exec->num_cliprects || exec->cliprects_ptr)
		return false;

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
		return false;

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
		return false;

	return true;
1657 1658
}

1659 1660 1661 1662 1663 1664 1665
void i915_vma_move_to_active(struct i915_vma *vma,
			     struct drm_i915_gem_request *req,
			     unsigned int flags)
{
	struct drm_i915_gem_object *obj = vma->obj;
	const unsigned int idx = req->engine->id;

1666
	lockdep_assert_held(&req->i915->drm.struct_mutex);
1667 1668
	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));

1669 1670
	/*
	 * Add a reference if we're newly entering the active list.
1671 1672 1673 1674 1675 1676
	 * The order in which we add operations to the retirement queue is
	 * vital here: mark_active adds to the start of the callback list,
	 * such that subsequent callbacks are called first. Therefore we
	 * add the active reference first and queue for it to be dropped
	 * *last*.
	 */
1677 1678 1679 1680 1681
	if (!i915_vma_is_active(vma))
		obj->active_count++;
	i915_vma_set_active(vma, idx);
	i915_gem_active_set(&vma->last_read[idx], req);
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
1682

1683
	obj->base.write_domain = 0;
1684
	if (flags & EXEC_OBJECT_WRITE) {
1685 1686
		obj->base.write_domain = I915_GEM_DOMAIN_RENDER;

1687 1688
		if (intel_fb_obj_invalidate(obj, ORIGIN_CS))
			i915_gem_active_set(&obj->frontbuffer_write, req);
1689

1690
		obj->base.read_domains = 0;
1691
	}
1692
	obj->base.read_domains |= I915_GEM_GPU_DOMAINS;
1693

1694 1695
	if (flags & EXEC_OBJECT_NEEDS_FENCE)
		i915_gem_active_set(&vma->last_fence, req);
1696 1697
}

1698
static int i915_reset_gen7_sol_offsets(struct drm_i915_gem_request *req)
1699
{
1700 1701
	u32 *cs;
	int i;
1702

1703
	if (!IS_GEN7(req->i915) || req->engine->id != RCS) {
1704 1705 1706
		DRM_DEBUG("sol reset is gen7/rcs only\n");
		return -EINVAL;
	}
1707

1708
	cs = intel_ring_begin(req, 4 * 2 + 2);
1709 1710
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1711

1712
	*cs++ = MI_LOAD_REGISTER_IMM(4);
1713
	for (i = 0; i < 4; i++) {
1714 1715
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
1716
	}
1717
	*cs++ = MI_NOOP;
1718
	intel_ring_advance(req, cs);
1719 1720 1721 1722

	return 0;
}

1723
static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
1724 1725
{
	struct drm_i915_gem_object *shadow_batch_obj;
1726
	struct i915_vma *vma;
1727
	int err;
1728

1729 1730
	shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool,
						   PAGE_ALIGN(eb->batch_len));
1731
	if (IS_ERR(shadow_batch_obj))
1732
		return ERR_CAST(shadow_batch_obj);
1733

1734
	err = intel_engine_cmd_parser(eb->engine,
1735
				      eb->batch->obj,
1736
				      shadow_batch_obj,
1737 1738
				      eb->batch_start_offset,
				      eb->batch_len,
1739
				      is_master);
1740 1741
	if (err) {
		if (err == -EACCES) /* unhandled chained batch */
C
Chris Wilson 已提交
1742 1743
			vma = NULL;
		else
1744
			vma = ERR_PTR(err);
C
Chris Wilson 已提交
1745 1746
		goto out;
	}
1747

C
Chris Wilson 已提交
1748 1749 1750
	vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
	if (IS_ERR(vma))
		goto out;
C
Chris Wilson 已提交
1751

1752
	vma->exec_entry =
1753 1754
		memset(&eb->exec[eb->buffer_count++],
		       0, sizeof(*vma->exec_entry));
C
Chris Wilson 已提交
1755
	vma->exec_entry->flags = __EXEC_OBJECT_HAS_PIN;
1756
	__exec_to_vma(vma->exec_entry) = (uintptr_t)i915_vma_get(vma);
1757

C
Chris Wilson 已提交
1758
out:
C
Chris Wilson 已提交
1759
	i915_gem_object_unpin_pages(shadow_batch_obj);
C
Chris Wilson 已提交
1760
	return vma;
1761
}
1762

1763
static void
1764
add_to_client(struct drm_i915_gem_request *req, struct drm_file *file)
1765 1766 1767 1768 1769
{
	req->file_priv = file->driver_priv;
	list_add_tail(&req->client_link, &req->file_priv->mm.request_list);
}

1770
static int eb_submit(struct i915_execbuffer *eb)
1771
{
1772
	int err;
1773

1774 1775 1776
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
1777

1778 1779 1780
	err = i915_switch_context(eb->request);
	if (err)
		return err;
1781

1782
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
1783 1784 1785
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
1786 1787
	}

1788
	err = eb->engine->emit_bb_start(eb->request,
1789 1790 1791
					eb->batch->node.start +
					eb->batch_start_offset,
					eb->batch_len,
1792 1793 1794
					eb->batch_flags);
	if (err)
		return err;
1795

C
Chris Wilson 已提交
1796
	return 0;
1797 1798
}

1799 1800
/**
 * Find one BSD ring to dispatch the corresponding BSD command.
1801
 * The engine index is returned.
1802
 */
1803
static unsigned int
1804 1805
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
1806 1807 1808
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

1809
	/* Check whether the file_priv has already selected one ring. */
1810 1811 1812
	if ((int)file_priv->bsd_engine < 0)
		file_priv->bsd_engine = atomic_fetch_xor(1,
			 &dev_priv->mm.bsd_engine_dispatch_index);
1813

1814
	return file_priv->bsd_engine;
1815 1816
}

1817 1818
#define I915_USER_RINGS (4)

1819
static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
1820 1821 1822 1823 1824 1825 1826
	[I915_EXEC_DEFAULT]	= RCS,
	[I915_EXEC_RENDER]	= RCS,
	[I915_EXEC_BLT]		= BCS,
	[I915_EXEC_BSD]		= VCS,
	[I915_EXEC_VEBOX]	= VECS
};

1827 1828 1829 1830
static struct intel_engine_cs *
eb_select_engine(struct drm_i915_private *dev_priv,
		 struct drm_file *file,
		 struct drm_i915_gem_execbuffer2 *args)
1831 1832
{
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
1833
	struct intel_engine_cs *engine;
1834 1835 1836

	if (user_ring_id > I915_USER_RINGS) {
		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
1837
		return NULL;
1838 1839 1840 1841 1842 1843
	}

	if ((user_ring_id != I915_EXEC_BSD) &&
	    ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
		DRM_DEBUG("execbuf with non bsd ring but with invalid "
			  "bsd dispatch flags: %d\n", (int)(args->flags));
1844
		return NULL;
1845 1846 1847 1848 1849 1850
	}

	if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
1851
			bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
1852 1853
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
1854
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
1855 1856 1857 1858
			bsd_idx--;
		} else {
			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
				  bsd_idx);
1859
			return NULL;
1860 1861
		}

1862
		engine = dev_priv->engine[_VCS(bsd_idx)];
1863
	} else {
1864
		engine = dev_priv->engine[user_ring_map[user_ring_id]];
1865 1866
	}

1867
	if (!engine) {
1868
		DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
1869
		return NULL;
1870 1871
	}

1872
	return engine;
1873 1874
}

1875
static int
1876
i915_gem_do_execbuffer(struct drm_device *dev,
1877 1878
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
1879
		       struct drm_i915_gem_exec_object2 *exec)
1880
{
1881
	struct i915_execbuffer eb;
1882 1883 1884
	struct dma_fence *in_fence = NULL;
	struct sync_file *out_fence = NULL;
	int out_fence_fd = -1;
1885
	int err;
1886

1887 1888
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
1889

1890 1891 1892
	eb.i915 = to_i915(dev);
	eb.file = file;
	eb.args = args;
1893 1894
	if (!(args->flags & I915_EXEC_NO_RELOC))
		args->flags |= __EXEC_HAS_RELOC;
1895
	eb.exec = exec;
1896 1897 1898 1899
	eb.ctx = NULL;
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
	if (USES_FULL_PPGTT(eb.i915))
		eb.invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
1900 1901
	reloc_cache_init(&eb.reloc_cache, eb.i915);

1902
	eb.buffer_count = args->buffer_count;
1903 1904 1905
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;

1906
	eb.batch_flags = 0;
1907
	if (args->flags & I915_EXEC_SECURE) {
1908
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
1909 1910
		    return -EPERM;

1911
		eb.batch_flags |= I915_DISPATCH_SECURE;
1912
	}
1913
	if (args->flags & I915_EXEC_IS_PINNED)
1914
		eb.batch_flags |= I915_DISPATCH_PINNED;
1915

1916 1917
	eb.engine = eb_select_engine(eb.i915, file, args);
	if (!eb.engine)
1918 1919
		return -EINVAL;

1920
	if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
1921
		if (!HAS_RESOURCE_STREAMER(eb.i915)) {
1922 1923 1924
			DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
			return -EINVAL;
		}
1925
		if (eb.engine->id != RCS) {
1926
			DRM_DEBUG("RS is not available on %s\n",
1927
				 eb.engine->name);
1928 1929 1930
			return -EINVAL;
		}

1931
		eb.batch_flags |= I915_DISPATCH_RS;
1932 1933
	}

1934 1935
	if (args->flags & I915_EXEC_FENCE_IN) {
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
1936 1937
		if (!in_fence)
			return -EINVAL;
1938 1939 1940 1941 1942
	}

	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
1943
			err = out_fence_fd;
1944
			goto err_in_fence;
1945 1946 1947
		}
	}

1948 1949 1950 1951 1952
	if (eb_create(&eb))
		return -ENOMEM;

	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
1953 1954 1955 1956 1957
	 * we expect to access the hardware fairly frequently in the
	 * process. Upon first dispatch, we acquire another prolonged
	 * wakeref that we hold until the GPU has been idle for at least
	 * 100ms.
	 */
1958
	intel_runtime_pm_get(eb.i915);
1959 1960 1961
	err = i915_mutex_lock_interruptible(dev);
	if (err)
		goto err_rpm;
1962

1963 1964 1965
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_unlock;
1966

1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
	err = eb_relocate(&eb);
	if (err)
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
	if (err < 0)
		goto err_vma;
1979

1980
	if (unlikely(eb.batch->exec_entry->flags & EXEC_OBJECT_WRITE)) {
1981
		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
1982 1983
		err = -EINVAL;
		goto err_vma;
1984
	}
1985 1986
	if (eb.batch_start_offset > eb.batch->size ||
	    eb.batch_len > eb.batch->size - eb.batch_start_offset) {
1987
		DRM_DEBUG("Attempting to use out-of-bounds batch\n");
1988 1989
		err = -EINVAL;
		goto err_vma;
1990
	}
1991

1992
	if (eb.engine->needs_cmd_parser && eb.batch_len) {
1993 1994
		struct i915_vma *vma;

1995
		vma = eb_parse(&eb, drm_is_current_master(file));
1996
		if (IS_ERR(vma)) {
1997 1998
			err = PTR_ERR(vma);
			goto err_vma;
1999
		}
2000

2001
		if (vma) {
2002 2003 2004 2005 2006 2007 2008 2009 2010
			/*
			 * Batch parsed and accepted:
			 *
			 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
			 * bit from MI_BATCH_BUFFER_START commands issued in
			 * the dispatch_execbuffer implementations. We
			 * specifically don't want that set on batches the
			 * command parser has accepted.
			 */
2011
			eb.batch_flags |= I915_DISPATCH_SECURE;
2012 2013
			eb.batch_start_offset = 0;
			eb.batch = vma;
2014
		}
2015 2016
	}

2017 2018
	if (eb.batch_len == 0)
		eb.batch_len = eb.batch->size - eb.batch_start_offset;
2019

2020 2021
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2022
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2023
	 * hsw should have this fixed, but bdw mucks it up again. */
2024
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2025
		struct i915_vma *vma;
2026

2027 2028 2029 2030 2031 2032
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2033
		 *   so we don't really have issues with multiple objects not
2034 2035 2036
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2037
		vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2038
		if (IS_ERR(vma)) {
2039 2040
			err = PTR_ERR(vma);
			goto err_vma;
C
Chris Wilson 已提交
2041
		}
2042

2043
		eb.batch = vma;
2044
	}
2045

2046
	/* Allocate a request for this batch buffer nice and early. */
2047 2048
	eb.request = i915_gem_request_alloc(eb.engine, eb.ctx);
	if (IS_ERR(eb.request)) {
2049
		err = PTR_ERR(eb.request);
2050
		goto err_batch_unpin;
2051
	}
2052

2053
	if (in_fence) {
2054 2055
		err = i915_gem_request_await_dma_fence(eb.request, in_fence);
		if (err < 0)
2056 2057 2058 2059
			goto err_request;
	}

	if (out_fence_fd != -1) {
2060
		out_fence = sync_file_create(&eb.request->fence);
2061
		if (!out_fence) {
2062
			err = -ENOMEM;
2063 2064 2065 2066
			goto err_request;
		}
	}

2067 2068
	/*
	 * Whilst this request exists, batch_obj will be on the
2069 2070 2071 2072 2073
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2074
	eb.request->batch = eb.batch;
2075

2076 2077
	trace_i915_gem_request_queue(eb.request, eb.batch_flags);
	err = eb_submit(&eb);
2078
err_request:
2079
	__i915_add_request(eb.request, err == 0);
2080
	add_to_client(eb.request, file);
2081

2082
	if (out_fence) {
2083
		if (err == 0) {
2084 2085 2086 2087 2088 2089 2090 2091
			fd_install(out_fence_fd, out_fence->file);
			args->rsvd2 &= GENMASK_ULL(0, 31); /* keep in-fence */
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2092

2093
err_batch_unpin:
2094
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2095
		i915_vma_unpin(eb.batch);
2096 2097 2098 2099 2100
err_vma:
	if (eb.exec)
		eb_release_vmas(&eb);
	i915_gem_context_put(eb.ctx);
err_unlock:
2101
	mutex_unlock(&dev->struct_mutex);
2102
err_rpm:
2103
	intel_runtime_pm_put(eb.i915);
2104
	eb_destroy(&eb);
2105 2106
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2107
err_in_fence:
2108
	dma_fence_put(in_fence);
2109
	return err;
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
}

/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file)
{
2120
	const size_t sz = sizeof(struct drm_i915_gem_exec_object2);
2121 2122 2123 2124
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2125 2126
	unsigned int i;
	int err;
2127

2128 2129
	if (args->buffer_count < 1 || args->buffer_count > SIZE_MAX / sz - 1) {
		DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
2130 2131 2132
		return -EINVAL;
	}

2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

	if (!i915_gem_check_execbuffer(&exec2))
		return -EINVAL;

2147
	/* Copy in the exec list from userland */
2148 2149 2150 2151
	exec_list = kvmalloc_array(args->buffer_count, sizeof(*exec_list),
				   __GFP_NOWARN | GFP_TEMPORARY);
	exec2_list = kvmalloc_array(args->buffer_count + 1, sz,
				    __GFP_NOWARN | GFP_TEMPORARY);
2152
	if (exec_list == NULL || exec2_list == NULL) {
2153
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2154
			  args->buffer_count);
M
Michal Hocko 已提交
2155 2156
		kvfree(exec_list);
		kvfree(exec2_list);
2157 2158
		return -ENOMEM;
	}
2159
	err = copy_from_user(exec_list,
2160
			     u64_to_user_ptr(args->buffers_ptr),
2161
			     sizeof(*exec_list) * args->buffer_count);
2162
	if (err) {
2163
		DRM_DEBUG("copy %d exec entries failed %d\n",
2164
			  args->buffer_count, err);
M
Michal Hocko 已提交
2165 2166
		kvfree(exec_list);
		kvfree(exec2_list);
2167 2168 2169 2170 2171 2172 2173 2174 2175
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2176
		if (INTEL_GEN(to_i915(dev)) < 4)
2177 2178 2179 2180 2181
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2182 2183
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list);
	if (exec2.flags & __EXEC_HAS_RELOC) {
2184
		struct drm_i915_gem_exec_object __user *user_exec_list =
2185
			u64_to_user_ptr(args->buffers_ptr);
2186

2187
		/* Copy the new buffer offsets back to the user's exec list. */
2188
		for (i = 0; i < args->buffer_count; i++) {
2189 2190 2191
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2192
			exec2_list[i].offset =
2193 2194 2195 2196 2197
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2198
				break;
2199 2200 2201
		}
	}

M
Michal Hocko 已提交
2202 2203
	kvfree(exec_list);
	kvfree(exec2_list);
2204
	return err;
2205 2206 2207 2208 2209 2210
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file)
{
2211
	const size_t sz = sizeof(struct drm_i915_gem_exec_object2);
2212
	struct drm_i915_gem_execbuffer2 *args = data;
2213 2214
	struct drm_i915_gem_exec_object2 *exec2_list;
	int err;
2215

2216
	if (args->buffer_count < 1 || args->buffer_count > SIZE_MAX / sz - 1) {
2217
		DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
2218 2219 2220
		return -EINVAL;
	}

2221 2222 2223 2224 2225 2226
	if (!i915_gem_check_execbuffer(args))
		return -EINVAL;

	/* Allocate an extra slot for use by the command parser */
	exec2_list = kvmalloc_array(args->buffer_count + 1, sz,
				    __GFP_NOWARN | GFP_TEMPORARY);
2227
	if (exec2_list == NULL) {
2228
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2229 2230 2231
			  args->buffer_count);
		return -ENOMEM;
	}
2232 2233 2234 2235
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
			   sizeof(*exec2_list) * args->buffer_count)) {
		DRM_DEBUG("copy %d exec entries failed\n", args->buffer_count);
M
Michal Hocko 已提交
2236
		kvfree(exec2_list);
2237 2238 2239
		return -EFAULT;
	}

2240 2241 2242 2243 2244 2245 2246 2247 2248
	err = i915_gem_do_execbuffer(dev, file, args, exec2_list);

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
2249
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2250 2251
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
2252

2253 2254
		/* Copy the new buffer offsets back to the user's exec list. */
		user_access_begin();
2255
		for (i = 0; i < args->buffer_count; i++) {
2256 2257 2258
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2259
			exec2_list[i].offset =
2260 2261 2262 2263
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
2264
		}
2265 2266
end_user:
		user_access_end();
2267 2268
	}

2269
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
M
Michal Hocko 已提交
2270
	kvfree(exec2_list);
2271
	return err;
2272
}