i915_gem_execbuffer.c 38.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/*
 * Copyright © 2008,2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Chris Wilson <chris@chris-wilson.co.uk>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
#include "i915_trace.h"
#include "intel_drv.h"
35
#include <linux/dma_remapping.h>
36 37 38 39 40

struct change_domains {
	uint32_t invalidate_domains;
	uint32_t flush_domains;
	uint32_t flush_rings;
41
	uint32_t flips;
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
};

/*
 * Set the next domain for the specified object. This
 * may not actually perform the necessary flushing/invaliding though,
 * as that may want to be batched with other set_domain operations
 *
 * This is (we hope) the only really tricky part of gem. The goal
 * is fairly simple -- track which caches hold bits of the object
 * and make sure they remain coherent. A few concrete examples may
 * help to explain how it works. For shorthand, we use the notation
 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
 * a pair of read and write domain masks.
 *
 * Case 1: the batch buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Mapped to GTT
 *	4. Read by GPU
 *	5. Unmapped from GTT
 *	6. Freed
 *
 *	Let's take these a step at a time
 *
 *	1. Allocated
 *		Pages allocated from the kernel may still have
 *		cache contents, so we set them to (CPU, CPU) always.
 *	2. Written by CPU (using pwrite)
 *		The pwrite function calls set_domain (CPU, CPU) and
 *		this function does nothing (as nothing changes)
 *	3. Mapped by GTT
 *		This function asserts that the object is not
 *		currently in any GPU-based read or write domains
 *	4. Read by GPU
 *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
 *		As write_domain is zero, this function adds in the
 *		current read domains (CPU+COMMAND, 0).
 *		flush_domains is set to CPU.
 *		invalidate_domains is set to COMMAND
 *		clflush is run to get data out of the CPU caches
 *		then i915_dev_set_domain calls i915_gem_flush to
 *		emit an MI_FLUSH and drm_agp_chipset_flush
 *	5. Unmapped from GTT
 *		i915_gem_object_unbind calls set_domain (CPU, CPU)
 *		flush_domains and invalidate_domains end up both zero
 *		so no flushing/invalidating happens
 *	6. Freed
 *		yay, done
 *
 * Case 2: The shared render buffer
 *
 *	1. Allocated
 *	2. Mapped to GTT
 *	3. Read/written by GPU
 *	4. set_domain to (CPU,CPU)
 *	5. Read/written by CPU
 *	6. Read/written by GPU
 *
 *	1. Allocated
 *		Same as last example, (CPU, CPU)
 *	2. Mapped to GTT
 *		Nothing changes (assertions find that it is not in the GPU)
 *	3. Read/written by GPU
 *		execbuffer calls set_domain (RENDER, RENDER)
 *		flush_domains gets CPU
 *		invalidate_domains gets GPU
 *		clflush (obj)
 *		MI_FLUSH and drm_agp_chipset_flush
 *	4. set_domain (CPU, CPU)
 *		flush_domains gets GPU
 *		invalidate_domains gets CPU
 *		wait_rendering (obj) to make sure all drawing is complete.
 *		This will include an MI_FLUSH to get the data from GPU
 *		to memory
 *		clflush (obj) to invalidate the CPU cache
 *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
 *	5. Read/written by CPU
 *		cache lines are loaded and dirtied
 *	6. Read written by GPU
 *		Same as last GPU access
 *
 * Case 3: The constant buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Read by GPU
 *	4. Updated (written) by CPU again
 *	5. Read by GPU
 *
 *	1. Allocated
 *		(CPU, CPU)
 *	2. Written by CPU
 *		(CPU, CPU)
 *	3. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 *	4. Updated (written) by CPU again
 *		(CPU, CPU)
 *		flush_domains = 0 (no previous write domain)
 *		invalidate_domains = 0 (no new read domains)
 *	5. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 */
static void
i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
				  struct intel_ring_buffer *ring,
				  struct change_domains *cd)
{
	uint32_t invalidate_domains = 0, flush_domains = 0;

	/*
	 * If the object isn't moving to a new write domain,
	 * let the object stay in multiple read domains
	 */
	if (obj->base.pending_write_domain == 0)
		obj->base.pending_read_domains |= obj->base.read_domains;

	/*
	 * Flush the current write domain if
	 * the new read domains don't match. Invalidate
	 * any read domains which differ from the old
	 * write domain
	 */
	if (obj->base.write_domain &&
	    (((obj->base.write_domain != obj->base.pending_read_domains ||
	       obj->ring != ring)) ||
	     (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) {
		flush_domains |= obj->base.write_domain;
		invalidate_domains |=
			obj->base.pending_read_domains & ~obj->base.write_domain;
	}
	/*
	 * Invalidate any read caches which may have
	 * stale data. That is, any new read domains.
	 */
	invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
		i915_gem_clflush_object(obj);

191 192 193
	if (obj->base.pending_write_domain)
		cd->flips |= atomic_read(&obj->pending_flip);

194 195 196 197 198 199 200 201 202 203 204 205
	/* The actual obj->write_domain will be updated with
	 * pending_write_domain after we emit the accumulated flush for all
	 * of our domain changes in execbuffers (which clears objects'
	 * write_domains).  So if we have a current write domain that we
	 * aren't changing, set pending_write_domain to that.
	 */
	if (flush_domains == 0 && obj->base.pending_write_domain == 0)
		obj->base.pending_write_domain = obj->base.write_domain;

	cd->invalidate_domains |= invalidate_domains;
	cd->flush_domains |= flush_domains;
	if (flush_domains & I915_GEM_GPU_DOMAINS)
206
		cd->flush_rings |= intel_ring_flag(obj->ring);
207
	if (invalidate_domains & I915_GEM_GPU_DOMAINS)
208
		cd->flush_rings |= intel_ring_flag(ring);
209 210
}

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
struct eb_objects {
	int and;
	struct hlist_head buckets[0];
};

static struct eb_objects *
eb_create(int size)
{
	struct eb_objects *eb;
	int count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
	while (count > size)
		count >>= 1;
	eb = kzalloc(count*sizeof(struct hlist_head) +
		     sizeof(struct eb_objects),
		     GFP_KERNEL);
	if (eb == NULL)
		return eb;

	eb->and = count - 1;
	return eb;
}

static void
eb_reset(struct eb_objects *eb)
{
	memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
}

static void
eb_add_object(struct eb_objects *eb, struct drm_i915_gem_object *obj)
{
	hlist_add_head(&obj->exec_node,
		       &eb->buckets[obj->exec_handle & eb->and]);
}

static struct drm_i915_gem_object *
eb_get_object(struct eb_objects *eb, unsigned long handle)
{
	struct hlist_head *head;
	struct hlist_node *node;
	struct drm_i915_gem_object *obj;

	head = &eb->buckets[handle & eb->and];
	hlist_for_each(node, head) {
		obj = hlist_entry(node, struct drm_i915_gem_object, exec_node);
		if (obj->exec_handle == handle)
			return obj;
	}

	return NULL;
}

static void
eb_destroy(struct eb_objects *eb)
{
	kfree(eb);
}

269 270
static int
i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
271
				   struct eb_objects *eb,
272 273 274 275
				   struct drm_i915_gem_relocation_entry *reloc)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_gem_object *target_obj;
276
	struct drm_i915_gem_object *target_i915_obj;
277 278 279
	uint32_t target_offset;
	int ret = -EINVAL;

280 281 282
	/* we've already hold a reference to all valid objects */
	target_obj = &eb_get_object(eb, reloc->target_handle)->base;
	if (unlikely(target_obj == NULL))
283 284
		return -ENOENT;

285 286
	target_i915_obj = to_intel_bo(target_obj);
	target_offset = target_i915_obj->gtt_offset;
287 288 289 290

	/* The target buffer should have appeared before us in the
	 * exec_object list, so it should have a GTT space bound by now.
	 */
291
	if (unlikely(target_offset == 0)) {
292
		DRM_DEBUG("No GTT space found for object %d\n",
293
			  reloc->target_handle);
294
		return ret;
295 296 297
	}

	/* Validate that the target is in a valid r/w GPU domain */
298
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
299
		DRM_DEBUG("reloc with multiple write domains: "
300 301 302 303 304 305
			  "obj %p target %d offset %d "
			  "read %08x write %08x",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
306
		return ret;
307
	}
308 309
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
310
		DRM_DEBUG("reloc with read/write non-GPU domains: "
311 312 313 314 315 316
			  "obj %p target %d offset %d "
			  "read %08x write %08x",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
317
		return ret;
318
	}
319 320
	if (unlikely(reloc->write_domain && target_obj->pending_write_domain &&
		     reloc->write_domain != target_obj->pending_write_domain)) {
321
		DRM_DEBUG("Write domain conflict: "
322 323 324 325 326 327
			  "obj %p target %d offset %d "
			  "new %08x old %08x\n",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  reloc->write_domain,
			  target_obj->pending_write_domain);
328
		return ret;
329 330 331 332 333 334 335 336 337
	}

	target_obj->pending_read_domains |= reloc->read_domains;
	target_obj->pending_write_domain |= reloc->write_domain;

	/* If the relocation already has the right value in it, no
	 * more work needs to be done.
	 */
	if (target_offset == reloc->presumed_offset)
338
		return 0;
339 340

	/* Check that the relocation address is valid... */
341
	if (unlikely(reloc->offset > obj->base.size - 4)) {
342
		DRM_DEBUG("Relocation beyond object bounds: "
343 344 345 346
			  "obj %p target %d offset %d size %d.\n",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  (int) obj->base.size);
347
		return ret;
348
	}
349
	if (unlikely(reloc->offset & 3)) {
350
		DRM_DEBUG("Relocation not 4-byte aligned: "
351 352 353
			  "obj %p target %d offset %d.\n",
			  obj, reloc->target_handle,
			  (int) reloc->offset);
354
		return ret;
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
	}

	reloc->delta += target_offset;
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
		uint32_t page_offset = reloc->offset & ~PAGE_MASK;
		char *vaddr;

		vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
		*(uint32_t *)(vaddr + page_offset) = reloc->delta;
		kunmap_atomic(vaddr);
	} else {
		struct drm_i915_private *dev_priv = dev->dev_private;
		uint32_t __iomem *reloc_entry;
		void __iomem *reloc_page;

370 371 372 373
		/* We can't wait for rendering with pagefaults disabled */
		if (obj->active && in_atomic())
			return -EFAULT;

374 375
		ret = i915_gem_object_set_to_gtt_domain(obj, 1);
		if (ret)
376
			return ret;
377 378 379 380 381 382 383 384 385 386 387

		/* Map the page containing the relocation we're going to perform.  */
		reloc->offset += obj->gtt_offset;
		reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
						      reloc->offset & PAGE_MASK);
		reloc_entry = (uint32_t __iomem *)
			(reloc_page + (reloc->offset & ~PAGE_MASK));
		iowrite32(reloc->delta, reloc_entry);
		io_mapping_unmap_atomic(reloc_page);
	}

388 389 390 391 392 393 394 395 396 397
	/* Sandybridge PPGTT errata: We need a global gtt mapping for MI and
	 * pipe_control writes because the gpu doesn't properly redirect them
	 * through the ppgtt for non_secure batchbuffers. */
	if (unlikely(IS_GEN6(dev) &&
	    reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
	    !target_i915_obj->has_global_gtt_mapping)) {
		i915_gem_gtt_bind_object(target_i915_obj,
					 target_i915_obj->cache_level);
	}

398 399 400
	/* and update the user's relocation entry */
	reloc->presumed_offset = target_offset;

401
	return 0;
402 403 404 405
}

static int
i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
406
				    struct eb_objects *eb)
407 408
{
	struct drm_i915_gem_relocation_entry __user *user_relocs;
409
	struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
410 411 412 413 414 415 416 417 418 419 420
	int i, ret;

	user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
	for (i = 0; i < entry->relocation_count; i++) {
		struct drm_i915_gem_relocation_entry reloc;

		if (__copy_from_user_inatomic(&reloc,
					      user_relocs+i,
					      sizeof(reloc)))
			return -EFAULT;

421
		ret = i915_gem_execbuffer_relocate_entry(obj, eb, &reloc);
422 423 424 425 426 427 428 429 430 431 432 433 434 435
		if (ret)
			return ret;

		if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
					    &reloc.presumed_offset,
					    sizeof(reloc.presumed_offset)))
			return -EFAULT;
	}

	return 0;
}

static int
i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
436
					 struct eb_objects *eb,
437 438
					 struct drm_i915_gem_relocation_entry *relocs)
{
439
	const struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
440 441 442
	int i, ret;

	for (i = 0; i < entry->relocation_count; i++) {
443
		ret = i915_gem_execbuffer_relocate_entry(obj, eb, &relocs[i]);
444 445 446 447 448 449 450 451 452
		if (ret)
			return ret;
	}

	return 0;
}

static int
i915_gem_execbuffer_relocate(struct drm_device *dev,
453
			     struct eb_objects *eb,
454
			     struct list_head *objects)
455
{
456
	struct drm_i915_gem_object *obj;
457 458 459 460 461 462 463 464 465 466
	int ret = 0;

	/* This is the fast path and we cannot handle a pagefault whilst
	 * holding the struct mutex lest the user pass in the relocations
	 * contained within a mmaped bo. For in such a case we, the page
	 * fault handler would call i915_gem_fault() and we would try to
	 * acquire the struct mutex again. Obviously this is bad and so
	 * lockdep complains vehemently.
	 */
	pagefault_disable();
467
	list_for_each_entry(obj, objects, exec_list) {
468
		ret = i915_gem_execbuffer_relocate_object(obj, eb);
469
		if (ret)
470
			break;
471
	}
472
	pagefault_enable();
473

474
	return ret;
475 476
}

477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
#define  __EXEC_OBJECT_HAS_FENCE (1<<31)

static int
pin_and_fence_object(struct drm_i915_gem_object *obj,
		     struct intel_ring_buffer *ring)
{
	struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
	bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
	bool need_fence, need_mappable;
	int ret;

	need_fence =
		has_fenced_gpu_access &&
		entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
		obj->tiling_mode != I915_TILING_NONE;
	need_mappable =
		entry->relocation_count ? true : need_fence;

	ret = i915_gem_object_pin(obj, entry->alignment, need_mappable);
	if (ret)
		return ret;

	if (has_fenced_gpu_access) {
		if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) {
			if (obj->tiling_mode) {
				ret = i915_gem_object_get_fence(obj, ring);
				if (ret)
					goto err_unpin;

				entry->flags |= __EXEC_OBJECT_HAS_FENCE;
				i915_gem_object_pin_fence(obj);
			} else {
				ret = i915_gem_object_put_fence(obj);
				if (ret)
					goto err_unpin;
			}
		}
		obj->pending_fenced_gpu_access = need_fence;
	}

	entry->offset = obj->gtt_offset;
	return 0;

err_unpin:
	i915_gem_object_unpin(obj);
	return ret;
}

525
static int
526
i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring,
527
			    struct drm_file *file,
528
			    struct list_head *objects)
529
{
530
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
531 532
	struct drm_i915_gem_object *obj;
	int ret, retry;
533
	bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
	struct list_head ordered_objects;

	INIT_LIST_HEAD(&ordered_objects);
	while (!list_empty(objects)) {
		struct drm_i915_gem_exec_object2 *entry;
		bool need_fence, need_mappable;

		obj = list_first_entry(objects,
				       struct drm_i915_gem_object,
				       exec_list);
		entry = obj->exec_entry;

		need_fence =
			has_fenced_gpu_access &&
			entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
			obj->tiling_mode != I915_TILING_NONE;
		need_mappable =
			entry->relocation_count ? true : need_fence;

		if (need_mappable)
			list_move(&obj->exec_list, &ordered_objects);
		else
			list_move_tail(&obj->exec_list, &ordered_objects);
557 558 559

		obj->base.pending_read_domains = 0;
		obj->base.pending_write_domain = 0;
560 561
	}
	list_splice(&ordered_objects, objects);
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579

	/* Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to makr
	 * room for the earlier objects *unless* we need to defragment.
	 */
	retry = 0;
	do {
		ret = 0;

		/* Unbind any ill-fitting objects or pin. */
580
		list_for_each_entry(obj, objects, exec_list) {
581
			struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
582
			bool need_fence, need_mappable;
583

584
			if (!obj->gtt_space)
585 586 587
				continue;

			need_fence =
588
				has_fenced_gpu_access &&
589 590 591 592 593 594 595 596 597
				entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
				obj->tiling_mode != I915_TILING_NONE;
			need_mappable =
				entry->relocation_count ? true : need_fence;

			if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) ||
			    (need_mappable && !obj->map_and_fenceable))
				ret = i915_gem_object_unbind(obj);
			else
598
				ret = pin_and_fence_object(obj, ring);
599
			if (ret)
600 601 602 603
				goto err;
		}

		/* Bind fresh objects */
604
		list_for_each_entry(obj, objects, exec_list) {
605 606
			if (obj->gtt_space)
				continue;
607

608 609 610 611 612 613 614 615 616 617 618 619 620 621
			ret = pin_and_fence_object(obj, ring);
			if (ret) {
				int ret_ignore;

				/* This can potentially raise a harmless
				 * -EINVAL if we failed to bind in the above
				 * call. It cannot raise -EINTR since we know
				 * that the bo is freshly bound and so will
				 * not need to be flushed or waited upon.
				 */
				ret_ignore = i915_gem_object_unbind(obj);
				(void)ret_ignore;
				WARN_ON(obj->gtt_space);
				break;
622 623 624
			}
		}

625 626
		/* Decrement pin count for bound objects */
		list_for_each_entry(obj, objects, exec_list) {
627 628 629 630 631 632 633 634 635 636 637 638
			struct drm_i915_gem_exec_object2 *entry;

			if (!obj->gtt_space)
				continue;

			entry = obj->exec_entry;
			if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
				i915_gem_object_unpin_fence(obj);
				entry->flags &= ~__EXEC_OBJECT_HAS_FENCE;
			}

			i915_gem_object_unpin(obj);
639 640 641 642 643 644 645 646

			/* ... and ensure ppgtt mapping exist if needed. */
			if (dev_priv->mm.aliasing_ppgtt && !obj->has_aliasing_ppgtt_mapping) {
				i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
						       obj, obj->cache_level);

				obj->has_aliasing_ppgtt_mapping = 1;
			}
647 648 649 650 651 652 653 654
		}

		if (ret != -ENOSPC || retry > 1)
			return ret;

		/* First attempt, just clear anything that is purgeable.
		 * Second attempt, clear the entire GTT.
		 */
655
		ret = i915_gem_evict_everything(ring->dev, retry == 0);
656 657 658 659 660
		if (ret)
			return ret;

		retry++;
	} while (1);
661 662

err:
663 664 665 666 667 668 669 670 671 672 673
	list_for_each_entry_continue_reverse(obj, objects, exec_list) {
		struct drm_i915_gem_exec_object2 *entry;

		if (!obj->gtt_space)
			continue;

		entry = obj->exec_entry;
		if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
			i915_gem_object_unpin_fence(obj);
			entry->flags &= ~__EXEC_OBJECT_HAS_FENCE;
		}
674

675
		i915_gem_object_unpin(obj);
676 677 678
	}

	return ret;
679 680 681 682 683
}

static int
i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
				  struct drm_file *file,
684
				  struct intel_ring_buffer *ring,
685
				  struct list_head *objects,
686
				  struct eb_objects *eb,
687
				  struct drm_i915_gem_exec_object2 *exec,
688 689 690
				  int count)
{
	struct drm_i915_gem_relocation_entry *reloc;
691
	struct drm_i915_gem_object *obj;
692
	int *reloc_offset;
693 694
	int i, total, ret;

695
	/* We may process another execbuffer during the unlock... */
696
	while (!list_empty(objects)) {
697 698 699 700 701 702 703
		obj = list_first_entry(objects,
				       struct drm_i915_gem_object,
				       exec_list);
		list_del_init(&obj->exec_list);
		drm_gem_object_unreference(&obj->base);
	}

704 705 706 707
	mutex_unlock(&dev->struct_mutex);

	total = 0;
	for (i = 0; i < count; i++)
708
		total += exec[i].relocation_count;
709

710
	reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
711
	reloc = drm_malloc_ab(total, sizeof(*reloc));
712 713 714
	if (reloc == NULL || reloc_offset == NULL) {
		drm_free_large(reloc);
		drm_free_large(reloc_offset);
715 716 717 718 719 720 721 722
		mutex_lock(&dev->struct_mutex);
		return -ENOMEM;
	}

	total = 0;
	for (i = 0; i < count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;

723
		user_relocs = (void __user *)(uintptr_t)exec[i].relocs_ptr;
724 725

		if (copy_from_user(reloc+total, user_relocs,
726
				   exec[i].relocation_count * sizeof(*reloc))) {
727 728 729 730 731
			ret = -EFAULT;
			mutex_lock(&dev->struct_mutex);
			goto err;
		}

732
		reloc_offset[i] = total;
733
		total += exec[i].relocation_count;
734 735 736 737 738 739 740 741
	}

	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		mutex_lock(&dev->struct_mutex);
		goto err;
	}

742 743 744 745 746
	/* reacquire the objects */
	eb_reset(eb);
	for (i = 0; i < count; i++) {
		obj = to_intel_bo(drm_gem_object_lookup(dev, file,
							exec[i].handle));
747
		if (&obj->base == NULL) {
748
			DRM_DEBUG("Invalid object handle %d at index %d\n",
749 750 751 752 753 754 755
				   exec[i].handle, i);
			ret = -ENOENT;
			goto err;
		}

		list_add_tail(&obj->exec_list, objects);
		obj->exec_handle = exec[i].handle;
756
		obj->exec_entry = &exec[i];
757 758 759
		eb_add_object(eb, obj);
	}

760
	ret = i915_gem_execbuffer_reserve(ring, file, objects);
761 762 763
	if (ret)
		goto err;

764
	list_for_each_entry(obj, objects, exec_list) {
765
		int offset = obj->exec_entry - exec;
766
		ret = i915_gem_execbuffer_relocate_object_slow(obj, eb,
767
							       reloc + reloc_offset[offset]);
768 769 770 771 772 773 774 775 776 777 778 779
		if (ret)
			goto err;
	}

	/* Leave the user relocations as are, this is the painfully slow path,
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
	drm_free_large(reloc);
780
	drm_free_large(reloc_offset);
781 782 783
	return ret;
}

784
static int
785 786 787 788 789 790
i915_gem_execbuffer_flush(struct drm_device *dev,
			  uint32_t invalidate_domains,
			  uint32_t flush_domains,
			  uint32_t flush_rings)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
791
	int i, ret;
792 793 794 795

	if (flush_domains & I915_GEM_DOMAIN_CPU)
		intel_gtt_chipset_flush();

796 797 798
	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

799
	if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
800
		for (i = 0; i < I915_NUM_RINGS; i++)
801
			if (flush_rings & (1 << i)) {
C
Chris Wilson 已提交
802
				ret = i915_gem_flush_ring(&dev_priv->ring[i],
803 804 805 806 807
							  invalidate_domains,
							  flush_domains);
				if (ret)
					return ret;
			}
808
	}
809 810

	return 0;
811 812
}

813 814 815 816 817 818 819 820 821
static bool
intel_enable_semaphores(struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen < 6)
		return 0;

	if (i915_semaphores >= 0)
		return i915_semaphores;

822
	/* Disable semaphores on SNB */
823
	if (INTEL_INFO(dev)->gen == 6)
824
		return 0;
825 826 827 828

	return 1;
}

829 830 831 832 833 834 835 836 837 838 839
static int
i915_gem_execbuffer_sync_rings(struct drm_i915_gem_object *obj,
			       struct intel_ring_buffer *to)
{
	struct intel_ring_buffer *from = obj->ring;
	u32 seqno;
	int ret, idx;

	if (from == NULL || to == from)
		return 0;

840
	/* XXX gpu semaphores are implicated in various hard hangs on SNB */
841
	if (!intel_enable_semaphores(obj->base.dev))
842
		return i915_gem_object_wait_rendering(obj);
843 844 845 846 847 848 849 850 851 852 853 854 855 856

	idx = intel_ring_sync_index(from, to);

	seqno = obj->last_rendering_seqno;
	if (seqno <= from->sync_seqno[idx])
		return 0;

	if (seqno == from->outstanding_lazy_request) {
		struct drm_i915_gem_request *request;

		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
			return -ENOMEM;

C
Chris Wilson 已提交
857
		ret = i915_add_request(from, NULL, request);
858 859 860 861 862 863 864 865 866
		if (ret) {
			kfree(request);
			return ret;
		}

		seqno = request->seqno;
	}

	from->sync_seqno[idx] = seqno;
867 868

	return to->sync_to(to, from, seqno - 1);
869
}
870

871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
static int
i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *ring, u32 flips)
{
	u32 plane, flip_mask;
	int ret;

	/* Check for any pending flips. As we only maintain a flip queue depth
	 * of 1, we can simply insert a WAIT for the next display flip prior
	 * to executing the batch and avoid stalling the CPU.
	 */

	for (plane = 0; flips >> plane; plane++) {
		if (((flips >> plane) & 1) == 0)
			continue;

		if (plane)
			flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
		else
			flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;

		ret = intel_ring_begin(ring, 2);
		if (ret)
			return ret;

		intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
		intel_ring_emit(ring, MI_NOOP);
		intel_ring_advance(ring);
	}

	return 0;
}


904
static int
905 906
i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring,
				struct list_head *objects)
907
{
908
	struct drm_i915_gem_object *obj;
909
	struct change_domains cd;
910
	int ret;
911

912
	memset(&cd, 0, sizeof(cd));
913 914
	list_for_each_entry(obj, objects, exec_list)
		i915_gem_object_set_to_gpu_domain(obj, ring, &cd);
915 916

	if (cd.invalidate_domains | cd.flush_domains) {
917 918 919 920 921 922
		ret = i915_gem_execbuffer_flush(ring->dev,
						cd.invalidate_domains,
						cd.flush_domains,
						cd.flush_rings);
		if (ret)
			return ret;
923 924
	}

925 926 927 928 929 930
	if (cd.flips) {
		ret = i915_gem_execbuffer_wait_for_flips(ring, cd.flips);
		if (ret)
			return ret;
	}

931
	list_for_each_entry(obj, objects, exec_list) {
932 933 934
		ret = i915_gem_execbuffer_sync_rings(obj, ring);
		if (ret)
			return ret;
935 936 937 938 939
	}

	return 0;
}

940 941
static bool
i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
942
{
943
	return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0;
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
}

static int
validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
		   int count)
{
	int i;

	for (i = 0; i < count; i++) {
		char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
		int length; /* limited by fault_in_pages_readable() */

		/* First check for malicious input causing overflow */
		if (exec[i].relocation_count >
		    INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
			return -EINVAL;

		length = exec[i].relocation_count *
			sizeof(struct drm_i915_gem_relocation_entry);
		if (!access_ok(VERIFY_READ, ptr, length))
			return -EFAULT;

		/* we may also need to update the presumed offsets */
		if (!access_ok(VERIFY_WRITE, ptr, length))
			return -EFAULT;

		if (fault_in_pages_readable(ptr, length))
			return -EFAULT;
	}

	return 0;
}

977 978
static void
i915_gem_execbuffer_move_to_active(struct list_head *objects,
979 980
				   struct intel_ring_buffer *ring,
				   u32 seqno)
981 982 983 984
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, objects, exec_list) {
C
Chris Wilson 已提交
985 986 987 988
		  u32 old_read = obj->base.read_domains;
		  u32 old_write = obj->base.write_domain;


989 990 991 992
		obj->base.read_domains = obj->base.pending_read_domains;
		obj->base.write_domain = obj->base.pending_write_domain;
		obj->fenced_gpu_access = obj->pending_fenced_gpu_access;

993
		i915_gem_object_move_to_active(obj, ring, seqno);
994 995
		if (obj->base.write_domain) {
			obj->dirty = 1;
996
			obj->pending_gpu_write = true;
997 998 999 1000 1001
			list_move_tail(&obj->gpu_write_list,
				       &ring->gpu_write_list);
			intel_mark_busy(ring->dev, obj);
		}

C
Chris Wilson 已提交
1002
		trace_i915_gem_object_change_domain(obj, old_read, old_write);
1003 1004 1005
	}
}

1006 1007
static void
i915_gem_execbuffer_retire_commands(struct drm_device *dev,
1008
				    struct drm_file *file,
1009 1010
				    struct intel_ring_buffer *ring)
{
1011
	struct drm_i915_gem_request *request;
1012
	u32 invalidate;
1013

1014 1015 1016 1017 1018 1019
	/*
	 * Ensure that the commands in the batch buffer are
	 * finished before the interrupt fires.
	 *
	 * The sampler always gets flushed on i965 (sigh).
	 */
1020
	invalidate = I915_GEM_DOMAIN_COMMAND;
1021
	if (INTEL_INFO(dev)->gen >= 4)
1022 1023
		invalidate |= I915_GEM_DOMAIN_SAMPLER;
	if (ring->flush(ring, invalidate, 0)) {
C
Chris Wilson 已提交
1024
		i915_gem_next_request_seqno(ring);
1025 1026
		return;
	}
1027

1028 1029
	/* Add a breadcrumb for the completion of the batch buffer */
	request = kzalloc(sizeof(*request), GFP_KERNEL);
C
Chris Wilson 已提交
1030 1031
	if (request == NULL || i915_add_request(ring, file, request)) {
		i915_gem_next_request_seqno(ring);
1032 1033 1034
		kfree(request);
	}
}
1035

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
static int
i915_reset_gen7_sol_offsets(struct drm_device *dev,
			    struct intel_ring_buffer *ring)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret, i;

	if (!IS_GEN7(dev) || ring != &dev_priv->ring[RCS])
		return 0;

	ret = intel_ring_begin(ring, 4 * 3);
	if (ret)
		return ret;

	for (i = 0; i < 4; i++) {
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, GEN7_SO_WRITE_OFFSET(i));
		intel_ring_emit(ring, 0);
	}

	intel_ring_advance(ring);

	return 0;
}

1061 1062 1063 1064
static int
i915_gem_do_execbuffer(struct drm_device *dev, void *data,
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
1065
		       struct drm_i915_gem_exec_object2 *exec)
1066 1067
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1068
	struct list_head objects;
1069
	struct eb_objects *eb;
1070 1071 1072
	struct drm_i915_gem_object *batch_obj;
	struct drm_clip_rect *cliprects = NULL;
	struct intel_ring_buffer *ring;
1073
	u32 exec_start, exec_len;
1074
	u32 seqno;
1075
	u32 mask;
1076
	int ret, mode, i;
1077

1078
	if (!i915_gem_check_execbuffer(args)) {
1079
		DRM_DEBUG("execbuf with invalid offset/length\n");
1080 1081 1082 1083
		return -EINVAL;
	}

	ret = validate_exec_list(exec, args->buffer_count);
1084 1085 1086 1087 1088 1089
	if (ret)
		return ret;

	switch (args->flags & I915_EXEC_RING_MASK) {
	case I915_EXEC_DEFAULT:
	case I915_EXEC_RENDER:
1090
		ring = &dev_priv->ring[RCS];
1091 1092 1093
		break;
	case I915_EXEC_BSD:
		if (!HAS_BSD(dev)) {
1094
			DRM_DEBUG("execbuf with invalid ring (BSD)\n");
1095 1096
			return -EINVAL;
		}
1097
		ring = &dev_priv->ring[VCS];
1098 1099 1100
		break;
	case I915_EXEC_BLT:
		if (!HAS_BLT(dev)) {
1101
			DRM_DEBUG("execbuf with invalid ring (BLT)\n");
1102 1103
			return -EINVAL;
		}
1104
		ring = &dev_priv->ring[BCS];
1105 1106
		break;
	default:
1107
		DRM_DEBUG("execbuf with unknown ring: %d\n",
1108 1109 1110 1111
			  (int)(args->flags & I915_EXEC_RING_MASK));
		return -EINVAL;
	}

1112
	mode = args->flags & I915_EXEC_CONSTANTS_MASK;
1113
	mask = I915_EXEC_CONSTANTS_MASK;
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
	switch (mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
		if (ring == &dev_priv->ring[RCS] &&
		    mode != dev_priv->relative_constants_mode) {
			if (INTEL_INFO(dev)->gen < 4)
				return -EINVAL;

			if (INTEL_INFO(dev)->gen > 5 &&
			    mode == I915_EXEC_CONSTANTS_REL_SURFACE)
				return -EINVAL;
1126 1127 1128 1129

			/* The HW changed the meaning on this bit on gen6 */
			if (INTEL_INFO(dev)->gen >= 6)
				mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
1130 1131 1132
		}
		break;
	default:
1133
		DRM_DEBUG("execbuf with unknown constants: %d\n", mode);
1134 1135 1136
		return -EINVAL;
	}

1137
	if (args->buffer_count < 1) {
1138
		DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1139 1140 1141 1142
		return -EINVAL;
	}

	if (args->num_cliprects != 0) {
1143
		if (ring != &dev_priv->ring[RCS]) {
1144
			DRM_DEBUG("clip rectangles are only valid with the render ring\n");
1145 1146 1147
			return -EINVAL;
		}

1148
		cliprects = kmalloc(args->num_cliprects * sizeof(*cliprects),
1149 1150 1151 1152 1153 1154
				    GFP_KERNEL);
		if (cliprects == NULL) {
			ret = -ENOMEM;
			goto pre_mutex_err;
		}

1155 1156 1157 1158
		if (copy_from_user(cliprects,
				     (struct drm_clip_rect __user *)(uintptr_t)
				     args->cliprects_ptr,
				     sizeof(*cliprects)*args->num_cliprects)) {
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
			ret = -EFAULT;
			goto pre_mutex_err;
		}
	}

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto pre_mutex_err;

	if (dev_priv->mm.suspended) {
		mutex_unlock(&dev->struct_mutex);
		ret = -EBUSY;
		goto pre_mutex_err;
	}

1174 1175 1176 1177 1178 1179 1180
	eb = eb_create(args->buffer_count);
	if (eb == NULL) {
		mutex_unlock(&dev->struct_mutex);
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

1181
	/* Look up object handles */
1182
	INIT_LIST_HEAD(&objects);
1183 1184 1185
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_i915_gem_object *obj;

1186 1187
		obj = to_intel_bo(drm_gem_object_lookup(dev, file,
							exec[i].handle));
1188
		if (&obj->base == NULL) {
1189
			DRM_DEBUG("Invalid object handle %d at index %d\n",
1190
				   exec[i].handle, i);
1191 1192 1193 1194 1195
			/* prevent error path from reading uninitialized data */
			ret = -ENOENT;
			goto err;
		}

1196
		if (!list_empty(&obj->exec_list)) {
1197
			DRM_DEBUG("Object %p [handle %d, index %d] appears more than once in object list\n",
1198
				   obj, exec[i].handle, i);
1199 1200 1201
			ret = -EINVAL;
			goto err;
		}
1202 1203

		list_add_tail(&obj->exec_list, &objects);
1204
		obj->exec_handle = exec[i].handle;
1205
		obj->exec_entry = &exec[i];
1206
		eb_add_object(eb, obj);
1207 1208
	}

1209 1210 1211 1212 1213
	/* take note of the batch buffer before we might reorder the lists */
	batch_obj = list_entry(objects.prev,
			       struct drm_i915_gem_object,
			       exec_list);

1214
	/* Move the objects en-masse into the GTT, evicting if necessary. */
1215
	ret = i915_gem_execbuffer_reserve(ring, file, &objects);
1216 1217 1218 1219
	if (ret)
		goto err;

	/* The objects are in their final locations, apply the relocations. */
1220
	ret = i915_gem_execbuffer_relocate(dev, eb, &objects);
1221 1222
	if (ret) {
		if (ret == -EFAULT) {
1223
			ret = i915_gem_execbuffer_relocate_slow(dev, file, ring,
1224 1225
								&objects, eb,
								exec,
1226 1227 1228 1229 1230 1231 1232 1233 1234
								args->buffer_count);
			BUG_ON(!mutex_is_locked(&dev->struct_mutex));
		}
		if (ret)
			goto err;
	}

	/* Set the pending read domains for the batch buffer to COMMAND */
	if (batch_obj->base.pending_write_domain) {
1235
		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
1236 1237 1238 1239 1240
		ret = -EINVAL;
		goto err;
	}
	batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;

1241 1242
	ret = i915_gem_execbuffer_move_to_gpu(ring, &objects);
	if (ret)
1243 1244
		goto err;

C
Chris Wilson 已提交
1245
	seqno = i915_gem_next_request_seqno(ring);
1246
	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++) {
1247 1248 1249 1250 1251
		if (seqno < ring->sync_seqno[i]) {
			/* The GPU can not handle its semaphore value wrapping,
			 * so every billion or so execbuffers, we need to stall
			 * the GPU in order to reset the counters.
			 */
1252
			ret = i915_gpu_idle(dev, true);
1253 1254 1255 1256 1257 1258 1259
			if (ret)
				goto err;

			BUG_ON(ring->sync_seqno[i]);
		}
	}

1260 1261 1262 1263 1264 1265 1266 1267 1268
	if (ring == &dev_priv->ring[RCS] &&
	    mode != dev_priv->relative_constants_mode) {
		ret = intel_ring_begin(ring, 4);
		if (ret)
				goto err;

		intel_ring_emit(ring, MI_NOOP);
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, INSTPM);
1269
		intel_ring_emit(ring, mask << 16 | mode);
1270 1271 1272 1273 1274
		intel_ring_advance(ring);

		dev_priv->relative_constants_mode = mode;
	}

1275 1276 1277 1278 1279 1280
	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		ret = i915_reset_gen7_sol_offsets(dev, ring);
		if (ret)
			goto err;
	}

C
Chris Wilson 已提交
1281 1282
	trace_i915_gem_ring_dispatch(ring, seqno);

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
	exec_start = batch_obj->gtt_offset + args->batch_start_offset;
	exec_len = args->batch_len;
	if (cliprects) {
		for (i = 0; i < args->num_cliprects; i++) {
			ret = i915_emit_box(dev, &cliprects[i],
					    args->DR1, args->DR4);
			if (ret)
				goto err;

			ret = ring->dispatch_execbuffer(ring,
							exec_start, exec_len);
			if (ret)
				goto err;
		}
	} else {
		ret = ring->dispatch_execbuffer(ring, exec_start, exec_len);
		if (ret)
			goto err;
	}
1302

1303
	i915_gem_execbuffer_move_to_active(&objects, ring, seqno);
1304
	i915_gem_execbuffer_retire_commands(dev, file, ring);
1305 1306

err:
1307
	eb_destroy(eb);
1308 1309 1310 1311 1312 1313 1314 1315
	while (!list_empty(&objects)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&objects,
				       struct drm_i915_gem_object,
				       exec_list);
		list_del_init(&obj->exec_list);
		drm_gem_object_unreference(&obj->base);
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
	}

	mutex_unlock(&dev->struct_mutex);

pre_mutex_err:
	kfree(cliprects);
	return ret;
}

/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file)
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret, i;

	if (args->buffer_count < 1) {
1340
		DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1341 1342 1343 1344 1345 1346 1347
		return -EINVAL;
	}

	/* Copy in the exec list from userland */
	exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec_list == NULL || exec2_list == NULL) {
1348
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
			  args->buffer_count);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -ENOMEM;
	}
	ret = copy_from_user(exec_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec_list) * args->buffer_count);
	if (ret != 0) {
1359
		DRM_DEBUG("copy %d exec entries failed %d\n",
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
			  args->buffer_count, ret);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
		if (INTEL_INFO(dev)->gen < 4)
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;

	ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		for (i = 0; i < args->buffer_count; i++)
			exec_list[i].offset = exec2_list[i].offset;
		/* ... and back out to userspace */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec_list,
				   sizeof(*exec_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
1400
			DRM_DEBUG("failed to copy %d exec entries "
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec_list);
	drm_free_large(exec2_list);
	return ret;
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file)
{
	struct drm_i915_gem_execbuffer2 *args = data;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret;

	if (args->buffer_count < 1) {
1420
		DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
1421 1422 1423
		return -EINVAL;
	}

1424 1425 1426 1427 1428
	exec2_list = kmalloc(sizeof(*exec2_list)*args->buffer_count,
			     GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
	if (exec2_list == NULL)
		exec2_list = drm_malloc_ab(sizeof(*exec2_list),
					   args->buffer_count);
1429
	if (exec2_list == NULL) {
1430
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1431 1432 1433 1434 1435 1436 1437 1438
			  args->buffer_count);
		return -ENOMEM;
	}
	ret = copy_from_user(exec2_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec2_list) * args->buffer_count);
	if (ret != 0) {
1439
		DRM_DEBUG("copy %d exec entries failed %d\n",
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
			  args->buffer_count, ret);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec2_list,
				   sizeof(*exec2_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
1454
			DRM_DEBUG("failed to copy %d exec entries "
1455 1456 1457 1458 1459 1460 1461 1462
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec2_list);
	return ret;
}