i915_gem_execbuffer.c 70.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright © 2008,2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Chris Wilson <chris@chris-wilson.co.uk>
 *
 */

29 30
#include <linux/dma_remapping.h>
#include <linux/reservation.h>
31
#include <linux/sync_file.h>
32 33
#include <linux/uaccess.h>

34
#include <drm/drmP.h>
35
#include <drm/drm_syncobj.h>
36
#include <drm/i915_drm.h>
37

38
#include "i915_drv.h"
39
#include "i915_gem_clflush.h"
40 41
#include "i915_trace.h"
#include "intel_drv.h"
42
#include "intel_frontbuffer.h"
43

44 45 46 47 48 49
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};
50

51 52 53 54 55 56
#define __EXEC_OBJECT_HAS_REF		BIT(31)
#define __EXEC_OBJECT_HAS_PIN		BIT(30)
#define __EXEC_OBJECT_HAS_FENCE		BIT(29)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(28)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(27)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 27) /* all of the above */
57 58 59 60 61
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)

#define __EXEC_HAS_RELOC	BIT(31)
#define __EXEC_VALIDATED	BIT(30)
#define UPDATE			PIN_OFFSET_FIXED
62 63

#define BATCH_OFFSET_BIAS (256*1024)
64

65 66
#define __I915_EXEC_ILLEGAL_FLAGS \
	(__I915_EXEC_UNKNOWN_FLAGS | I915_EXEC_CONSTANTS_MASK)
67

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

190
struct i915_execbuffer {
191 192 193 194
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
195 196
	struct i915_vma **vma;
	unsigned int *flags;
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

	struct intel_engine_cs *engine; /** engine to queue the request to */
	struct i915_gem_context *ctx; /** context for building the request */
	struct i915_address_space *vm; /** GTT and vma for the request */

	struct drm_i915_gem_request *request; /** our request to build */
	struct i915_vma *batch; /** identity of the batch obj/vma */

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
219
	struct reloc_cache {
220 221 222
		struct drm_mm_node node; /** temporary GTT binding */
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
223
		unsigned int gen; /** Cached value of INTEL_GEN */
224
		bool use_64bit_reloc : 1;
225 226 227
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
228 229 230 231

		struct drm_i915_gem_request *rq;
		u32 *rq_cmd;
		unsigned int rq_size;
232
	} reloc_cache;
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
248 249
};

250
#define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
251

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
/*
 * Used to convert any address to canonical form.
 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
 * addresses to be in a canonical form:
 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
 * canonical form [63:48] == [47]."
 */
#define GEN8_HIGH_ADDRESS_BIT 47
static inline u64 gen8_canonical_addr(u64 address)
{
	return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
}

static inline u64 gen8_noncanonical_addr(u64 address)
{
	return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
}

271 272 273 274 275
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
	return eb->engine->needs_cmd_parser && eb->batch_len;
}

276
static int eb_create(struct i915_execbuffer *eb)
277
{
278 279
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
280

281 282 283 284 285 286 287 288 289 290 291
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
292
		do {
293 294 295 296 297 298 299 300 301 302 303 304
			unsigned int flags;

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
			flags = GFP_TEMPORARY;
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

305
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
306
					      flags);
307 308 309 310
			if (eb->buckets)
				break;
		} while (--size);

311 312
		if (unlikely(!size))
			return -ENOMEM;
313

314
		eb->lut_size = size;
315
	} else {
316
		eb->lut_size = -eb->buffer_count;
317
	}
318

319
	return 0;
320 321
}

322 323
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
324 325
		 const struct i915_vma *vma,
		 unsigned int flags)
326 327 328 329 330 331 332
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

333
	if (flags & EXEC_OBJECT_PINNED &&
334 335 336
	    vma->node.start != entry->offset)
		return true;

337
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
338 339 340
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

341
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
342 343 344 345 346 347
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

	return false;
}

348
static inline bool
349
eb_pin_vma(struct i915_execbuffer *eb,
350
	   const struct drm_i915_gem_exec_object2 *entry,
351 352
	   struct i915_vma *vma)
{
353 354
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
355

356
	if (vma->node.size)
357
		pin_flags = vma->node.start;
358
	else
359
		pin_flags = entry->offset & PIN_OFFSET_MASK;
360

361 362 363
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
		pin_flags |= PIN_GLOBAL;
364

365 366
	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
		return false;
367

368
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
369 370
		if (unlikely(i915_vma_get_fence(vma))) {
			i915_vma_unpin(vma);
371
			return false;
372 373 374
		}

		if (i915_vma_pin_fence(vma))
375
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
376 377
	}

378 379
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	return !eb_vma_misplaced(entry, vma, exec_flags);
380 381
}

382
static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
383
{
384
	GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
385

386
	if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
387 388
		i915_vma_unpin_fence(vma);

389
	__i915_vma_unpin(vma);
390 391
}

392
static inline void
393
eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
394
{
395
	if (!(*flags & __EXEC_OBJECT_HAS_PIN))
396
		return;
397

398 399
	__eb_unreserve_vma(vma, *flags);
	*flags &= ~__EXEC_OBJECT_RESERVED;
400 401
}

402 403 404 405
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
406
{
407 408
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
409

410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
	if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
		     entry->offset != gen8_canonical_addr(entry->offset & PAGE_MASK)))
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
427 428
	}

429
	if (unlikely(vma->exec_flags)) {
430 431 432 433 434 435 436 437 438 439 440 441
		DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
			  entry->handle, (int)(entry - eb->exec));
		return -EINVAL;
	}

	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

442 443 444 445 446 447 448 449 450 451 452 453
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

454
	return 0;
455 456
}

457
static int
458
eb_add_vma(struct i915_execbuffer *eb, unsigned int i, struct i915_vma *vma)
459
{
460
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
461 462 463 464 465 466 467 468
	int err;

	GEM_BUG_ON(i915_vma_is_closed(vma));

	if (!(eb->args->flags & __EXEC_VALIDATED)) {
		err = eb_validate_vma(eb, entry, vma);
		if (unlikely(err))
			return err;
469 470
	}

471
	if (eb->lut_size > 0) {
472
		vma->exec_handle = entry->handle;
473
		hlist_add_head(&vma->exec_node,
474 475
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
476
	}
477

478 479 480 481 482 483 484 485 486
	if (entry->relocation_count)
		list_add_tail(&vma->reloc_link, &eb->relocs);

	/*
	 * Stash a pointer from the vma to execobj, so we can query its flags,
	 * size, alignment etc as provided by the user. Also we stash a pointer
	 * to the vma inside the execobj so that we can use a direct lookup
	 * to find the right target VMA when doing relocations.
	 */
487
	eb->vma[i] = vma;
488
	eb->flags[i] = entry->flags;
489
	vma->exec_flags = &eb->flags[i];
490 491

	err = 0;
492
	if (eb_pin_vma(eb, entry, vma)) {
493 494 495 496
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
497 498 499 500 501 502
	} else {
		eb_unreserve_vma(vma, vma->exec_flags);

		list_add_tail(&vma->exec_link, &eb->unbound);
		if (drm_mm_node_allocated(&vma->node))
			err = i915_vma_unbind(vma);
503 504 505 506 507 508 509 510 511 512
	}
	return err;
}

static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

513 514 515 516 517
	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;
518 519 520 521 522 523 524 525 526

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
			  struct i915_vma *vma)
{
527 528 529
	struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
530 531
	int err;

532 533 534
	pin_flags = PIN_USER | PIN_NONBLOCK;
	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;
535 536 537 538 539

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
540 541
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;
542

543 544
	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;
545

546 547 548 549 550
	if (exec_flags & EXEC_OBJECT_PINNED) {
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
		pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
	} else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
551 552
	}

553 554 555
	err = i915_vma_pin(vma,
			   entry->pad_to_size, entry->alignment,
			   pin_flags);
556 557 558 559 560 561 562 563
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

564
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
565 566 567 568 569 570 571
		err = i915_vma_get_fence(vma);
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

		if (i915_vma_pin_fence(vma))
572
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
573 574
	}

575 576
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
577

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	struct list_head last;
	struct i915_vma *vma;
	unsigned int i, pass;
	int err;

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

	pass = 0;
	err = 0;
	do {
		list_for_each_entry(vma, &eb->unbound, exec_link) {
			err = eb_reserve_vma(eb, vma);
			if (err)
				break;
		}
		if (err != -ENOSPC)
			return err;

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
618 619
			unsigned int flags = eb->flags[i];
			struct i915_vma *vma = eb->vma[i];
620

621 622
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
623 624
				continue;

625
			eb_unreserve_vma(vma, &eb->flags[i]);
626

627
			if (flags & EXEC_OBJECT_PINNED)
628
				list_add(&vma->exec_link, &eb->unbound);
629
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
				list_add_tail(&vma->exec_link, &eb->unbound);
			else
				list_add_tail(&vma->exec_link, &last);
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
			err = i915_gem_evict_vm(eb->vm);
			if (err)
				return err;
			break;

		default:
			return -ENOSPC;
		}
	} while (1);
651
}
652

653 654
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
655 656 657 658
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
659 660 661 662 663 664 665
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
666 667
	if (unlikely(!ctx))
		return -ENOENT;
668

669
	eb->ctx = ctx;
670 671 672 673 674 675 676 677 678 679
	eb->vm = ctx->ppgtt ? &ctx->ppgtt->base : &eb->i915->ggtt.base;

	eb->context_flags = 0;
	if (ctx->flags & CONTEXT_NO_ZEROMAP)
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

static int eb_lookup_vmas(struct i915_execbuffer *eb)
680
{
681
	struct radix_tree_root *handles_vma = &eb->ctx->handles_vma;
682
	struct drm_i915_gem_object *uninitialized_var(obj);
683 684
	unsigned int i;
	int err;
685

686 687 688 689 690 691
	if (unlikely(i915_gem_context_is_closed(eb->ctx)))
		return -ENOENT;

	if (unlikely(i915_gem_context_is_banned(eb->ctx)))
		return -EIO;

692 693
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);
694

695 696
	for (i = 0; i < eb->buffer_count; i++) {
		u32 handle = eb->exec[i].handle;
697
		struct i915_lut_handle *lut;
698
		struct i915_vma *vma;
699

700 701
		vma = radix_tree_lookup(handles_vma, handle);
		if (likely(vma))
702
			goto add_vma;
703

704
		obj = i915_gem_object_lookup(eb->file, handle);
705
		if (unlikely(!obj)) {
706
			err = -ENOENT;
707
			goto err_vma;
708 709
		}

710
		vma = i915_vma_instance(obj, eb->vm, NULL);
C
Chris Wilson 已提交
711
		if (unlikely(IS_ERR(vma))) {
712
			err = PTR_ERR(vma);
713
			goto err_obj;
714 715
		}

716 717 718 719 720 721 722 723 724 725
		lut = kmem_cache_alloc(eb->i915->luts, GFP_KERNEL);
		if (unlikely(!lut)) {
			err = -ENOMEM;
			goto err_obj;
		}

		err = radix_tree_insert(handles_vma, handle, vma);
		if (unlikely(err)) {
			kfree(lut);
			goto err_obj;
726
		}
727

728
		vma->open_count++;
729 730 731 732 733 734 735 736
		list_add(&lut->obj_link, &obj->lut_list);
		list_add(&lut->ctx_link, &eb->ctx->handles_list);
		lut->ctx = eb->ctx;
		lut->handle = handle;

		/* transfer ref to ctx */
		obj = NULL;

737
add_vma:
738
		err = eb_add_vma(eb, i, vma);
739
		if (unlikely(err))
740
			goto err_obj;
741

742 743
		GEM_BUG_ON(vma != eb->vma[i]);
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
744 745
	}

746 747
	/* take note of the batch buffer before we might reorder the lists */
	i = eb_batch_index(eb);
748 749
	eb->batch = eb->vma[i];
	GEM_BUG_ON(eb->batch->exec_flags != &eb->flags[i]);
750

751
	/*
752 753 754 755 756 757 758
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
759
	 */
760 761
	if (!(eb->flags[i] & EXEC_OBJECT_PINNED))
		eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
762
	if (eb->reloc_cache.has_fence)
763
		eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;
764

765 766 767
	eb->args->flags |= __EXEC_VALIDATED;
	return eb_reserve(eb);

768 769 770 771 772
err_obj:
	if (obj)
		i915_gem_object_put(obj);
err_vma:
	eb->vma[i] = NULL;
773
	return err;
774 775
}

776
static struct i915_vma *
777
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
778
{
779 780
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
781
			return NULL;
782
		return eb->vma[handle];
783 784
	} else {
		struct hlist_head *head;
785
		struct i915_vma *vma;
786

787
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
788
		hlist_for_each_entry(vma, head, exec_node) {
789 790
			if (vma->exec_handle == handle)
				return vma;
791 792 793
		}
		return NULL;
	}
794 795
}

796
static void eb_release_vmas(const struct i915_execbuffer *eb)
797
{
798 799 800 801
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
802 803
		struct i915_vma *vma = eb->vma[i];
		unsigned int flags = eb->flags[i];
804

805
		if (!vma)
806
			break;
807

808 809 810
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
		vma->exec_flags = NULL;
		eb->vma[i] = NULL;
811

812 813
		if (flags & __EXEC_OBJECT_HAS_PIN)
			__eb_unreserve_vma(vma, flags);
814

815
		if (flags & __EXEC_OBJECT_HAS_REF)
816
			i915_vma_put(vma);
817
	}
818 819
}

820
static void eb_reset_vmas(const struct i915_execbuffer *eb)
821
{
822
	eb_release_vmas(eb);
823
	if (eb->lut_size > 0)
824 825
		memset(eb->buckets, 0,
		       sizeof(struct hlist_head) << eb->lut_size);
826 827
}

828
static void eb_destroy(const struct i915_execbuffer *eb)
829
{
830 831
	GEM_BUG_ON(eb->reloc_cache.rq);

832
	if (eb->lut_size > 0)
833
		kfree(eb->buckets);
834 835
}

836
static inline u64
837
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
838
		  const struct i915_vma *target)
839
{
840
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
841 842
}

843 844
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
845
{
846
	cache->page = -1;
847
	cache->vaddr = 0;
848
	/* Must be a variable in the struct to allow GCC to unroll. */
849
	cache->gen = INTEL_GEN(i915);
850
	cache->has_llc = HAS_LLC(i915);
851
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
852 853
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
854
	cache->node.allocated = false;
855 856
	cache->rq = NULL;
	cache->rq_size = 0;
857
}
858

859 860 861 862 863 864 865 866
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
867 868
}

869 870
#define KMAP 0x4 /* after CLFLUSH_FLAGS */

871 872 873 874 875 876 877
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

878 879 880 881 882 883 884 885 886 887 888
static void reloc_gpu_flush(struct reloc_cache *cache)
{
	GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
	i915_gem_object_unpin_map(cache->rq->batch->obj);
	i915_gem_chipset_flush(cache->rq->i915);

	__i915_add_request(cache->rq, true);
	cache->rq = NULL;
}

889
static void reloc_cache_reset(struct reloc_cache *cache)
890
{
891
	void *vaddr;
892

893 894 895
	if (cache->rq)
		reloc_gpu_flush(cache);

896 897
	if (!cache->vaddr)
		return;
898

899 900 901 902
	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();
903

904 905 906
		kunmap_atomic(vaddr);
		i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
	} else {
907
		wmb();
908
		io_mapping_unmap_atomic((void __iomem *)vaddr);
909
		if (cache->node.allocated) {
910
			struct i915_ggtt *ggtt = cache_to_ggtt(cache);
911 912 913

			ggtt->base.clear_range(&ggtt->base,
					       cache->node.start,
914
					       cache->node.size);
915 916 917
			drm_mm_remove_node(&cache->node);
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
918
		}
919
	}
920 921 922

	cache->vaddr = 0;
	cache->page = -1;
923 924 925 926
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
927
			unsigned long page)
928
{
929 930 931 932 933 934
	void *vaddr;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
935
		int err;
936

937 938 939
		err = i915_gem_obj_prepare_shmem_write(obj, &flushes);
		if (err)
			return ERR_PTR(err);
940 941 942

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
943

944 945 946 947
		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
948 949
	}

950 951
	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
952
	cache->page = page;
953

954
	return vaddr;
955 956
}

957 958
static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
959
			 unsigned long page)
960
{
961
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
962
	unsigned long offset;
963
	void *vaddr;
964

965
	if (cache->vaddr) {
966
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
967 968
	} else {
		struct i915_vma *vma;
969
		int err;
970

971
		if (use_cpu_reloc(cache, obj))
972
			return NULL;
973

974 975 976
		err = i915_gem_object_set_to_gtt_domain(obj, true);
		if (err)
			return ERR_PTR(err);
977

978 979
		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
					       PIN_MAPPABLE | PIN_NONBLOCK);
980 981
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
982
			err = drm_mm_insert_node_in_range
983
				(&ggtt->base.mm, &cache->node,
984
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
985
				 0, ggtt->mappable_end,
986
				 DRM_MM_INSERT_LOW);
987
			if (err) /* no inactive aperture space, use cpu reloc */
988
				return NULL;
989
		} else {
990 991
			err = i915_vma_put_fence(vma);
			if (err) {
992
				i915_vma_unpin(vma);
993
				return ERR_PTR(err);
994
			}
995

996 997
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
998
		}
999
	}
1000

1001 1002
	offset = cache->node.start;
	if (cache->node.allocated) {
1003
		wmb();
1004 1005 1006 1007 1008
		ggtt->base.insert_page(&ggtt->base,
				       i915_gem_object_get_dma_address(obj, page),
				       offset, I915_CACHE_NONE, 0);
	} else {
		offset += page << PAGE_SHIFT;
1009 1010
	}

1011 1012
	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->mappable,
							 offset);
1013 1014
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;
1015

1016
	return vaddr;
1017 1018
}

1019 1020
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1021
			 unsigned long page)
1022
{
1023
	void *vaddr;
1024

1025 1026 1027 1028 1029 1030 1031 1032
	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
1033 1034
	}

1035
	return vaddr;
1036 1037
}

1038
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1039
{
1040 1041 1042 1043 1044
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}
1045

1046
		*addr = value;
1047

1048 1049
		/*
		 * Writes to the same cacheline are serialised by the CPU
1050 1051 1052 1053 1054 1055 1056 1057 1058
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
1059 1060
}

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
			     struct i915_vma *vma,
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	struct drm_i915_gem_object *obj;
	struct drm_i915_gem_request *rq;
	struct i915_vma *batch;
	u32 *cmd;
	int err;

	GEM_BUG_ON(vma->obj->base.write_domain & I915_GEM_DOMAIN_CPU);

	obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, PAGE_SIZE);
	if (IS_ERR(obj))
		return PTR_ERR(obj);

	cmd = i915_gem_object_pin_map(obj,
1079 1080 1081
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
	i915_gem_object_unpin_pages(obj);
	if (IS_ERR(cmd))
		return PTR_ERR(cmd);

	err = i915_gem_object_set_to_wc_domain(obj, false);
	if (err)
		goto err_unmap;

	batch = i915_vma_instance(obj, vma->vm, NULL);
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

	rq = i915_gem_request_alloc(eb->engine, eb->ctx);
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

	err = i915_gem_request_await_object(rq, vma->obj, true);
	if (err)
		goto err_request;

	err = eb->engine->emit_flush(rq, EMIT_INVALIDATE);
	if (err)
		goto err_request;

	err = i915_switch_context(rq);
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
		goto err_request;

1124
	GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch->resv, true));
1125
	i915_vma_move_to_active(batch, rq, 0);
1126 1127 1128
	reservation_object_lock(batch->resv, NULL);
	reservation_object_add_excl_fence(batch->resv, &rq->fence);
	reservation_object_unlock(batch->resv);
1129 1130
	i915_vma_unpin(batch);

1131
	i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1132 1133 1134
	reservation_object_lock(vma->resv, NULL);
	reservation_object_add_excl_fence(vma->resv, &rq->fence);
	reservation_object_unlock(vma->resv);
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166

	rq->batch = batch;

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;

	/* Return with batch mapping (cmd) still pinned */
	return 0;

err_request:
	i915_add_request(rq);
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
	i915_gem_object_unpin_map(obj);
	return err;
}

static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
		reloc_gpu_flush(cache);

	if (unlikely(!cache->rq)) {
		int err;

1167 1168 1169 1170
		/* If we need to copy for the cmdparser, we will stall anyway */
		if (eb_use_cmdparser(eb))
			return ERR_PTR(-EWOULDBLOCK);

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
		err = __reloc_gpu_alloc(eb, vma, len);
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1182 1183
static u64
relocate_entry(struct i915_vma *vma,
1184
	       const struct drm_i915_gem_relocation_entry *reloc,
1185 1186
	       struct i915_execbuffer *eb,
	       const struct i915_vma *target)
1187
{
1188
	u64 offset = reloc->offset;
1189 1190
	u64 target_offset = relocation_target(reloc, target);
	bool wide = eb->reloc_cache.use_64bit_reloc;
1191
	void *vaddr;
1192

1193 1194
	if (!eb->reloc_cache.vaddr &&
	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1195 1196 1197
	     !reservation_object_test_signaled_rcu(vma->resv, true)) &&
	    __intel_engine_can_store_dword(eb->reloc_cache.gen,
					   eb->engine->class)) {
1198 1199 1200 1201 1202 1203 1204 1205 1206
		const unsigned int gen = eb->reloc_cache.gen;
		unsigned int len;
		u32 *batch;
		u64 addr;

		if (wide)
			len = offset & 7 ? 8 : 5;
		else if (gen >= 4)
			len = 4;
1207
		else
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
			len = 3;

		batch = reloc_gpu(eb, vma, len);
		if (IS_ERR(batch))
			goto repeat;

		addr = gen8_canonical_addr(vma->node.start + offset);
		if (wide) {
			if (offset & 7) {
				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);

				addr = gen8_canonical_addr(addr + 4);

				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = upper_32_bits(target_offset);
			} else {
				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);
				*batch++ = upper_32_bits(target_offset);
			}
		} else if (gen >= 6) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else if (gen >= 4) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else {
			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
			*batch++ = addr;
			*batch++ = target_offset;
		}

		goto out;
	}

1254
repeat:
1255
	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1256 1257 1258 1259 1260
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_offset),
1261
			eb->reloc_cache.vaddr);
1262 1263 1264 1265 1266 1267

	if (wide) {
		offset += sizeof(u32);
		target_offset >>= 32;
		wide = false;
		goto repeat;
1268 1269
	}

1270
out:
1271
	return target->node.start | UPDATE;
1272 1273
}

1274 1275 1276 1277
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
		  struct i915_vma *vma,
		  const struct drm_i915_gem_relocation_entry *reloc)
1278
{
1279
	struct i915_vma *target;
1280
	int err;
1281

1282
	/* we've already hold a reference to all valid objects */
1283 1284
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1285
		return -ENOENT;
1286

1287
	/* Validate that the target is in a valid r/w GPU domain */
1288
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1289
		DRM_DEBUG("reloc with multiple write domains: "
1290
			  "target %d offset %d "
1291
			  "read %08x write %08x",
1292
			  reloc->target_handle,
1293 1294 1295
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1296
		return -EINVAL;
1297
	}
1298 1299
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1300
		DRM_DEBUG("reloc with read/write non-GPU domains: "
1301
			  "target %d offset %d "
1302
			  "read %08x write %08x",
1303
			  reloc->target_handle,
1304 1305 1306
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1307
		return -EINVAL;
1308 1309
	}

1310
	if (reloc->write_domain) {
1311
		*target->exec_flags |= EXEC_OBJECT_WRITE;
1312

1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
		    IS_GEN6(eb->i915)) {
			err = i915_vma_bind(target, target->obj->cache_level,
					    PIN_GLOBAL);
			if (WARN_ONCE(err,
				      "Unexpected failure to bind target VMA!"))
				return err;
		}
1327
	}
1328

1329 1330
	/*
	 * If the relocation already has the right value in it, no
1331 1332
	 * more work needs to be done.
	 */
1333 1334
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1335
		return 0;
1336 1337

	/* Check that the relocation address is valid... */
1338
	if (unlikely(reloc->offset >
1339
		     vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1340
		DRM_DEBUG("Relocation beyond object bounds: "
1341 1342 1343 1344
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
			  (int)vma->size);
1345
		return -EINVAL;
1346
	}
1347
	if (unlikely(reloc->offset & 3)) {
1348
		DRM_DEBUG("Relocation not 4-byte aligned: "
1349 1350 1351
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1352
		return -EINVAL;
1353 1354
	}

1355 1356 1357 1358 1359 1360
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1361
	 * out of our synchronisation.
1362
	 */
1363
	*vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1364

1365
	/* and update the user's relocation entry */
1366
	return relocate_entry(vma, reloc, eb, target);
1367 1368
}

1369
static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1370
{
1371
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1372 1373
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
	struct drm_i915_gem_relocation_entry __user *urelocs;
1374
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1375
	unsigned int remain;
1376

1377
	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1378
	remain = entry->relocation_count;
1379 1380
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
		return -EINVAL;
1381

1382 1383 1384 1385 1386
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1387
	if (unlikely(!access_ok(VERIFY_READ, urelocs, remain*sizeof(*urelocs))))
1388 1389 1390 1391 1392 1393 1394
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
			min_t(unsigned int, remain, ARRAY_SIZE(stack));
		unsigned int copied;
1395

1396 1397
		/*
		 * This is the fast path and we cannot handle a pagefault
1398 1399 1400 1401 1402 1403 1404
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
		pagefault_disable();
1405
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1406
		pagefault_enable();
1407 1408
		if (unlikely(copied)) {
			remain = -EFAULT;
1409 1410
			goto out;
		}
1411

1412
		remain -= count;
1413
		do {
1414
			u64 offset = eb_relocate_entry(eb, vma, r);
1415

1416 1417 1418
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
				remain = (int)offset;
1419
				goto out;
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
				__put_user(offset,
					   &urelocs[r-stack].presumed_offset);
1445
			}
1446 1447 1448
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1449
out:
1450
	reloc_cache_reset(&eb->reloc_cache);
1451
	return remain;
1452 1453 1454
}

static int
1455
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1456
{
1457
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1458 1459 1460 1461
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
	int err;
1462 1463

	for (i = 0; i < entry->relocation_count; i++) {
1464
		u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1465

1466 1467 1468 1469
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1470
	}
1471 1472 1473 1474
	err = 0;
err:
	reloc_cache_reset(&eb->reloc_cache);
	return err;
1475 1476
}

1477
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1478
{
1479 1480 1481
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1482

1483 1484 1485
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1486

1487 1488
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1489

1490 1491 1492 1493
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
	if (!access_ok(VERIFY_READ, addr, size))
		return -EFAULT;
1494

1495 1496 1497 1498 1499
	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
1500
	}
1501
	return __get_user(c, end - 1);
1502
}
1503

1504
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1505
{
1506 1507 1508
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1509

1510 1511 1512 1513 1514 1515
	for (i = 0; i < count; i++) {
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		struct drm_i915_gem_relocation_entry *relocs;
		unsigned long size;
		unsigned long copied;
1516

1517 1518
		if (nreloc == 0)
			continue;
1519

1520 1521 1522
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1523

1524 1525
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1526

1527 1528 1529 1530 1531 1532
		relocs = kvmalloc_array(size, 1, GFP_TEMPORARY);
		if (!relocs) {
			kvfree(relocs);
			err = -ENOMEM;
			goto err;
		}
1533

1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
					     (char *)urelocs + copied,
					     len)) {
				kvfree(relocs);
				err = -EFAULT;
				goto err;
			}
1547

1548 1549
			copied += len;
		} while (copied < size);
1550

1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
		user_access_begin();
		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
end_user:
		user_access_end();
1568

1569 1570
		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}
1571

1572
	return 0;
1573

1574 1575 1576 1577 1578 1579 1580 1581
err:
	while (i--) {
		struct drm_i915_gem_relocation_entry *relocs =
			u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
1582 1583
}

1584
static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1585
{
1586 1587
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1588

1589 1590
	if (unlikely(i915.prefault_disable))
		return 0;
1591

1592 1593
	for (i = 0; i < count; i++) {
		int err;
1594

1595 1596 1597 1598
		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}
1599

1600
	return 0;
1601 1602
}

1603
static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1604
{
1605
	struct drm_device *dev = &eb->i915->drm;
1606
	bool have_copy = false;
1607
	struct i915_vma *vma;
1608 1609 1610 1611 1612 1613 1614
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
	}
1615

1616
	/* We may process another execbuffer during the unlock... */
1617
	eb_reset_vmas(eb);
1618 1619
	mutex_unlock(&dev->struct_mutex);

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
1641
	}
1642 1643 1644
	if (err) {
		mutex_lock(&dev->struct_mutex);
		goto out;
1645 1646
	}

1647 1648 1649
	/* A frequent cause for EAGAIN are currently unavailable client pages */
	flush_workqueue(eb->i915->mm.userptr_wq);

1650 1651
	err = i915_mutex_lock_interruptible(dev);
	if (err) {
1652
		mutex_lock(&dev->struct_mutex);
1653
		goto out;
1654 1655
	}

1656
	/* reacquire the objects */
1657 1658
	err = eb_lookup_vmas(eb);
	if (err)
1659
		goto err;
1660

1661 1662
	GEM_BUG_ON(!eb->batch);

1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
	list_for_each_entry(vma, &eb->relocs, reloc_link) {
		if (!have_copy) {
			pagefault_disable();
			err = eb_relocate_vma(eb, vma);
			pagefault_enable();
			if (err)
				goto repeat;
		} else {
			err = eb_relocate_vma_slow(eb, vma);
			if (err)
				goto err;
		}
1675 1676
	}

1677 1678
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
1679 1680 1681 1682 1683 1684
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

1706
	return err;
1707 1708
}

1709
static int eb_relocate(struct i915_execbuffer *eb)
1710
{
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
	if (eb_lookup_vmas(eb))
		goto slow;

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
		struct i915_vma *vma;

		list_for_each_entry(vma, &eb->relocs, reloc_link) {
			if (eb_relocate_vma(eb, vma))
				goto slow;
		}
	}

	return 0;

slow:
	return eb_relocate_slow(eb);
}

1730
static void eb_export_fence(struct i915_vma *vma,
1731 1732 1733
			    struct drm_i915_gem_request *req,
			    unsigned int flags)
{
1734
	struct reservation_object *resv = vma->resv;
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753

	/*
	 * Ignore errors from failing to allocate the new fence, we can't
	 * handle an error right now. Worst case should be missed
	 * synchronisation leading to rendering corruption.
	 */
	reservation_object_lock(resv, NULL);
	if (flags & EXEC_OBJECT_WRITE)
		reservation_object_add_excl_fence(resv, &req->fence);
	else if (reservation_object_reserve_shared(resv) == 0)
		reservation_object_add_shared_fence(resv, &req->fence);
	reservation_object_unlock(resv);
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1754

1755
	for (i = 0; i < count; i++) {
1756 1757
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];
1758
		struct drm_i915_gem_object *obj = vma->obj;
1759

1760
		if (flags & EXEC_OBJECT_CAPTURE) {
1761 1762 1763 1764 1765 1766
			struct i915_gem_capture_list *capture;

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
			if (unlikely(!capture))
				return -ENOMEM;

1767
			capture->next = eb->request->capture_list;
1768
			capture->vma = eb->vma[i];
1769
			eb->request->capture_list = capture;
1770 1771
		}

1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1785
			if (i915_gem_clflush_object(obj, 0))
1786
				flags &= ~EXEC_OBJECT_ASYNC;
1787 1788
		}

1789 1790
		if (flags & EXEC_OBJECT_ASYNC)
			continue;
1791

1792
		err = i915_gem_request_await_object
1793
			(eb->request, obj, flags & EXEC_OBJECT_WRITE);
1794 1795 1796 1797 1798
		if (err)
			return err;
	}

	for (i = 0; i < count; i++) {
1799 1800 1801 1802 1803
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];

		i915_vma_move_to_active(vma, eb->request, flags);
		eb_export_fence(vma, eb->request, flags);
1804

1805 1806 1807 1808
		__eb_unreserve_vma(vma, flags);
		vma->exec_flags = NULL;

		if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1809
			i915_vma_put(vma);
1810
	}
1811
	eb->exec = NULL;
1812

1813
	/* Unconditionally flush any chipset caches (for streaming writes). */
1814
	i915_gem_chipset_flush(eb->i915);
1815

1816
	/* Unconditionally invalidate GPU caches and TLBs. */
1817
	return eb->engine->emit_flush(eb->request, EMIT_INVALIDATE);
1818 1819
}

1820
static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1821
{
1822
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1823 1824
		return false;

C
Chris Wilson 已提交
1825
	/* Kernel clipping was a DRI1 misfeature */
1826 1827 1828 1829
	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
		if (exec->num_cliprects || exec->cliprects_ptr)
			return false;
	}
C
Chris Wilson 已提交
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
		return false;

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
		return false;

	return true;
1842 1843
}

1844 1845 1846 1847 1848 1849 1850
void i915_vma_move_to_active(struct i915_vma *vma,
			     struct drm_i915_gem_request *req,
			     unsigned int flags)
{
	struct drm_i915_gem_object *obj = vma->obj;
	const unsigned int idx = req->engine->id;

1851
	lockdep_assert_held(&req->i915->drm.struct_mutex);
1852 1853
	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));

1854 1855
	/*
	 * Add a reference if we're newly entering the active list.
1856 1857 1858 1859 1860 1861
	 * The order in which we add operations to the retirement queue is
	 * vital here: mark_active adds to the start of the callback list,
	 * such that subsequent callbacks are called first. Therefore we
	 * add the active reference first and queue for it to be dropped
	 * *last*.
	 */
1862 1863 1864 1865 1866
	if (!i915_vma_is_active(vma))
		obj->active_count++;
	i915_vma_set_active(vma, idx);
	i915_gem_active_set(&vma->last_read[idx], req);
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
1867

1868
	obj->base.write_domain = 0;
1869
	if (flags & EXEC_OBJECT_WRITE) {
1870 1871
		obj->base.write_domain = I915_GEM_DOMAIN_RENDER;

1872 1873
		if (intel_fb_obj_invalidate(obj, ORIGIN_CS))
			i915_gem_active_set(&obj->frontbuffer_write, req);
1874

1875
		obj->base.read_domains = 0;
1876
	}
1877
	obj->base.read_domains |= I915_GEM_GPU_DOMAINS;
1878

1879 1880
	if (flags & EXEC_OBJECT_NEEDS_FENCE)
		i915_gem_active_set(&vma->last_fence, req);
1881 1882
}

1883
static int i915_reset_gen7_sol_offsets(struct drm_i915_gem_request *req)
1884
{
1885 1886
	u32 *cs;
	int i;
1887

1888
	if (!IS_GEN7(req->i915) || req->engine->id != RCS) {
1889 1890 1891
		DRM_DEBUG("sol reset is gen7/rcs only\n");
		return -EINVAL;
	}
1892

1893
	cs = intel_ring_begin(req, 4 * 2 + 2);
1894 1895
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1896

1897
	*cs++ = MI_LOAD_REGISTER_IMM(4);
1898
	for (i = 0; i < 4; i++) {
1899 1900
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
1901
	}
1902
	*cs++ = MI_NOOP;
1903
	intel_ring_advance(req, cs);
1904 1905 1906 1907

	return 0;
}

1908
static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
1909 1910
{
	struct drm_i915_gem_object *shadow_batch_obj;
1911
	struct i915_vma *vma;
1912
	int err;
1913

1914 1915
	shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool,
						   PAGE_ALIGN(eb->batch_len));
1916
	if (IS_ERR(shadow_batch_obj))
1917
		return ERR_CAST(shadow_batch_obj);
1918

1919
	err = intel_engine_cmd_parser(eb->engine,
1920
				      eb->batch->obj,
1921
				      shadow_batch_obj,
1922 1923
				      eb->batch_start_offset,
				      eb->batch_len,
1924
				      is_master);
1925 1926
	if (err) {
		if (err == -EACCES) /* unhandled chained batch */
C
Chris Wilson 已提交
1927 1928
			vma = NULL;
		else
1929
			vma = ERR_PTR(err);
C
Chris Wilson 已提交
1930 1931
		goto out;
	}
1932

C
Chris Wilson 已提交
1933 1934 1935
	vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
	if (IS_ERR(vma))
		goto out;
C
Chris Wilson 已提交
1936

1937 1938 1939 1940 1941
	eb->vma[eb->buffer_count] = i915_vma_get(vma);
	eb->flags[eb->buffer_count] =
		__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
	vma->exec_flags = &eb->flags[eb->buffer_count];
	eb->buffer_count++;
1942

C
Chris Wilson 已提交
1943
out:
C
Chris Wilson 已提交
1944
	i915_gem_object_unpin_pages(shadow_batch_obj);
C
Chris Wilson 已提交
1945
	return vma;
1946
}
1947

1948
static void
1949
add_to_client(struct drm_i915_gem_request *req, struct drm_file *file)
1950 1951 1952 1953 1954
{
	req->file_priv = file->driver_priv;
	list_add_tail(&req->client_link, &req->file_priv->mm.request_list);
}

1955
static int eb_submit(struct i915_execbuffer *eb)
1956
{
1957
	int err;
1958

1959 1960 1961
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
1962

1963 1964 1965
	err = i915_switch_context(eb->request);
	if (err)
		return err;
1966

1967
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
1968 1969 1970
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
1971 1972
	}

1973
	err = eb->engine->emit_bb_start(eb->request,
1974 1975 1976
					eb->batch->node.start +
					eb->batch_start_offset,
					eb->batch_len,
1977 1978 1979
					eb->batch_flags);
	if (err)
		return err;
1980

C
Chris Wilson 已提交
1981
	return 0;
1982 1983
}

1984 1985
/**
 * Find one BSD ring to dispatch the corresponding BSD command.
1986
 * The engine index is returned.
1987
 */
1988
static unsigned int
1989 1990
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
1991 1992 1993
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

1994
	/* Check whether the file_priv has already selected one ring. */
1995 1996 1997
	if ((int)file_priv->bsd_engine < 0)
		file_priv->bsd_engine = atomic_fetch_xor(1,
			 &dev_priv->mm.bsd_engine_dispatch_index);
1998

1999
	return file_priv->bsd_engine;
2000 2001
}

2002 2003
#define I915_USER_RINGS (4)

2004
static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
2005 2006 2007 2008 2009 2010 2011
	[I915_EXEC_DEFAULT]	= RCS,
	[I915_EXEC_RENDER]	= RCS,
	[I915_EXEC_BLT]		= BCS,
	[I915_EXEC_BSD]		= VCS,
	[I915_EXEC_VEBOX]	= VECS
};

2012 2013 2014 2015
static struct intel_engine_cs *
eb_select_engine(struct drm_i915_private *dev_priv,
		 struct drm_file *file,
		 struct drm_i915_gem_execbuffer2 *args)
2016 2017
{
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2018
	struct intel_engine_cs *engine;
2019 2020 2021

	if (user_ring_id > I915_USER_RINGS) {
		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
2022
		return NULL;
2023 2024 2025 2026 2027 2028
	}

	if ((user_ring_id != I915_EXEC_BSD) &&
	    ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
		DRM_DEBUG("execbuf with non bsd ring but with invalid "
			  "bsd dispatch flags: %d\n", (int)(args->flags));
2029
		return NULL;
2030 2031 2032 2033 2034 2035
	}

	if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2036
			bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
2037 2038
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2039
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2040 2041 2042 2043
			bsd_idx--;
		} else {
			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
				  bsd_idx);
2044
			return NULL;
2045 2046
		}

2047
		engine = dev_priv->engine[_VCS(bsd_idx)];
2048
	} else {
2049
		engine = dev_priv->engine[user_ring_map[user_ring_id]];
2050 2051
	}

2052
	if (!engine) {
2053
		DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
2054
		return NULL;
2055 2056
	}

2057
	return engine;
2058 2059
}

2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
static void
__free_fence_array(struct drm_syncobj **fences, unsigned int n)
{
	while (n--)
		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
	kvfree(fences);
}

static struct drm_syncobj **
get_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_file *file)
{
	const unsigned int nfences = args->num_cliprects;
	struct drm_i915_gem_exec_fence __user *user;
	struct drm_syncobj **fences;
	unsigned int n;
	int err;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return NULL;

	if (nfences > SIZE_MAX / sizeof(*fences))
		return ERR_PTR(-EINVAL);

	user = u64_to_user_ptr(args->cliprects_ptr);
	if (!access_ok(VERIFY_READ, user, nfences * 2 * sizeof(u32)))
		return ERR_PTR(-EFAULT);

	fences = kvmalloc_array(args->num_cliprects, sizeof(*fences),
				__GFP_NOWARN | GFP_TEMPORARY);
	if (!fences)
		return ERR_PTR(-ENOMEM);

	for (n = 0; n < nfences; n++) {
		struct drm_i915_gem_exec_fence fence;
		struct drm_syncobj *syncobj;

		if (__copy_from_user(&fence, user++, sizeof(fence))) {
			err = -EFAULT;
			goto err;
		}

		syncobj = drm_syncobj_find(file, fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			err = -ENOENT;
			goto err;
		}

		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
	}

	return fences;

err:
	__free_fence_array(fences, n);
	return ERR_PTR(err);
}

static void
put_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_syncobj **fences)
{
	if (fences)
		__free_fence_array(fences, args->num_cliprects);
}

static int
await_fence_array(struct i915_execbuffer *eb,
		  struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	unsigned int n;
	int err;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		struct dma_fence *fence;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_WAIT))
			continue;

J
Jason Ekstrand 已提交
2144
		fence = drm_syncobj_fence_get(syncobj);
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
		if (!fence)
			return -EINVAL;

		err = i915_gem_request_await_dma_fence(eb->request, fence);
		dma_fence_put(fence);
		if (err < 0)
			return err;
	}

	return 0;
}

static void
signal_fence_array(struct i915_execbuffer *eb,
		   struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

		drm_syncobj_replace_fence(syncobj, fence);
	}
}

2177
static int
2178
i915_gem_do_execbuffer(struct drm_device *dev,
2179 2180
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2181 2182
		       struct drm_i915_gem_exec_object2 *exec,
		       struct drm_syncobj **fences)
2183
{
2184
	struct i915_execbuffer eb;
2185 2186 2187
	struct dma_fence *in_fence = NULL;
	struct sync_file *out_fence = NULL;
	int out_fence_fd = -1;
2188
	int err;
2189

2190 2191
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2192

2193 2194 2195
	eb.i915 = to_i915(dev);
	eb.file = file;
	eb.args = args;
2196
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2197
		args->flags |= __EXEC_HAS_RELOC;
2198

2199
	eb.exec = exec;
2200 2201
	eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
	eb.vma[0] = NULL;
2202 2203
	eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);

2204 2205 2206
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
	if (USES_FULL_PPGTT(eb.i915))
		eb.invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
2207 2208
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2209
	eb.buffer_count = args->buffer_count;
2210 2211 2212
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;

2213
	eb.batch_flags = 0;
2214
	if (args->flags & I915_EXEC_SECURE) {
2215
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2216 2217
		    return -EPERM;

2218
		eb.batch_flags |= I915_DISPATCH_SECURE;
2219
	}
2220
	if (args->flags & I915_EXEC_IS_PINNED)
2221
		eb.batch_flags |= I915_DISPATCH_PINNED;
2222

2223 2224
	eb.engine = eb_select_engine(eb.i915, file, args);
	if (!eb.engine)
2225 2226
		return -EINVAL;

2227
	if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
2228
		if (!HAS_RESOURCE_STREAMER(eb.i915)) {
2229 2230 2231
			DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
			return -EINVAL;
		}
2232
		if (eb.engine->id != RCS) {
2233
			DRM_DEBUG("RS is not available on %s\n",
2234
				 eb.engine->name);
2235 2236 2237
			return -EINVAL;
		}

2238
		eb.batch_flags |= I915_DISPATCH_RS;
2239 2240
	}

2241 2242
	if (args->flags & I915_EXEC_FENCE_IN) {
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2243 2244
		if (!in_fence)
			return -EINVAL;
2245 2246 2247 2248 2249
	}

	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
2250
			err = out_fence_fd;
2251
			goto err_in_fence;
2252 2253 2254
		}
	}

2255 2256 2257 2258 2259
	err = eb_create(&eb);
	if (err)
		goto err_out_fence;

	GEM_BUG_ON(!eb.lut_size);
2260

2261 2262 2263 2264
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

2265 2266
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
2267 2268 2269 2270 2271
	 * we expect to access the hardware fairly frequently in the
	 * process. Upon first dispatch, we acquire another prolonged
	 * wakeref that we hold until the GPU has been idle for at least
	 * 100ms.
	 */
2272
	intel_runtime_pm_get(eb.i915);
2273

2274 2275 2276
	err = i915_mutex_lock_interruptible(dev);
	if (err)
		goto err_rpm;
2277

2278
	err = eb_relocate(&eb);
2279
	if (err) {
2280 2281 2282 2283 2284 2285 2286 2287 2288
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
2289
	}
2290

2291
	if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2292
		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2293 2294
		err = -EINVAL;
		goto err_vma;
2295
	}
2296 2297
	if (eb.batch_start_offset > eb.batch->size ||
	    eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2298
		DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2299 2300
		err = -EINVAL;
		goto err_vma;
2301
	}
2302

2303
	if (eb_use_cmdparser(&eb)) {
2304 2305
		struct i915_vma *vma;

2306
		vma = eb_parse(&eb, drm_is_current_master(file));
2307
		if (IS_ERR(vma)) {
2308 2309
			err = PTR_ERR(vma);
			goto err_vma;
2310
		}
2311

2312
		if (vma) {
2313 2314 2315 2316 2317 2318 2319 2320 2321
			/*
			 * Batch parsed and accepted:
			 *
			 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
			 * bit from MI_BATCH_BUFFER_START commands issued in
			 * the dispatch_execbuffer implementations. We
			 * specifically don't want that set on batches the
			 * command parser has accepted.
			 */
2322
			eb.batch_flags |= I915_DISPATCH_SECURE;
2323 2324
			eb.batch_start_offset = 0;
			eb.batch = vma;
2325
		}
2326 2327
	}

2328 2329
	if (eb.batch_len == 0)
		eb.batch_len = eb.batch->size - eb.batch_start_offset;
2330

2331 2332
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2333
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2334
	 * hsw should have this fixed, but bdw mucks it up again. */
2335
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2336
		struct i915_vma *vma;
2337

2338 2339 2340 2341 2342 2343
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2344
		 *   so we don't really have issues with multiple objects not
2345 2346 2347
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2348
		vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2349
		if (IS_ERR(vma)) {
2350 2351
			err = PTR_ERR(vma);
			goto err_vma;
C
Chris Wilson 已提交
2352
		}
2353

2354
		eb.batch = vma;
2355
	}
2356

2357 2358 2359
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

2360
	/* Allocate a request for this batch buffer nice and early. */
2361 2362
	eb.request = i915_gem_request_alloc(eb.engine, eb.ctx);
	if (IS_ERR(eb.request)) {
2363
		err = PTR_ERR(eb.request);
2364
		goto err_batch_unpin;
2365
	}
2366

2367
	if (in_fence) {
2368 2369
		err = i915_gem_request_await_dma_fence(eb.request, in_fence);
		if (err < 0)
2370 2371 2372
			goto err_request;
	}

2373 2374 2375 2376 2377 2378
	if (fences) {
		err = await_fence_array(&eb, fences);
		if (err)
			goto err_request;
	}

2379
	if (out_fence_fd != -1) {
2380
		out_fence = sync_file_create(&eb.request->fence);
2381
		if (!out_fence) {
2382
			err = -ENOMEM;
2383 2384 2385 2386
			goto err_request;
		}
	}

2387 2388
	/*
	 * Whilst this request exists, batch_obj will be on the
2389 2390 2391 2392 2393
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2394
	eb.request->batch = eb.batch;
2395

2396 2397
	trace_i915_gem_request_queue(eb.request, eb.batch_flags);
	err = eb_submit(&eb);
2398
err_request:
2399
	__i915_add_request(eb.request, err == 0);
2400
	add_to_client(eb.request, file);
2401

2402 2403 2404
	if (fences)
		signal_fence_array(&eb, fences);

2405
	if (out_fence) {
2406
		if (err == 0) {
2407 2408 2409 2410 2411 2412 2413 2414
			fd_install(out_fence_fd, out_fence->file);
			args->rsvd2 &= GENMASK_ULL(0, 31); /* keep in-fence */
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2415

2416
err_batch_unpin:
2417
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2418
		i915_vma_unpin(eb.batch);
2419 2420 2421
err_vma:
	if (eb.exec)
		eb_release_vmas(&eb);
2422
	mutex_unlock(&dev->struct_mutex);
2423
err_rpm:
2424
	intel_runtime_pm_put(eb.i915);
2425 2426
	i915_gem_context_put(eb.ctx);
err_destroy:
2427
	eb_destroy(&eb);
2428
err_out_fence:
2429 2430
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2431
err_in_fence:
2432
	dma_fence_put(in_fence);
2433
	return err;
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
}

/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file)
{
2444 2445 2446
	const size_t sz = (sizeof(struct drm_i915_gem_exec_object2) +
			   sizeof(struct i915_vma *) +
			   sizeof(unsigned int));
2447 2448 2449 2450
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2451 2452
	unsigned int i;
	int err;
2453

2454 2455
	if (args->buffer_count < 1 || args->buffer_count > SIZE_MAX / sz - 1) {
		DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
2456 2457 2458
		return -EINVAL;
	}

2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

	if (!i915_gem_check_execbuffer(&exec2))
		return -EINVAL;

2473
	/* Copy in the exec list from userland */
2474 2475 2476 2477
	exec_list = kvmalloc_array(args->buffer_count, sizeof(*exec_list),
				   __GFP_NOWARN | GFP_TEMPORARY);
	exec2_list = kvmalloc_array(args->buffer_count + 1, sz,
				    __GFP_NOWARN | GFP_TEMPORARY);
2478
	if (exec_list == NULL || exec2_list == NULL) {
2479
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2480
			  args->buffer_count);
M
Michal Hocko 已提交
2481 2482
		kvfree(exec_list);
		kvfree(exec2_list);
2483 2484
		return -ENOMEM;
	}
2485
	err = copy_from_user(exec_list,
2486
			     u64_to_user_ptr(args->buffers_ptr),
2487
			     sizeof(*exec_list) * args->buffer_count);
2488
	if (err) {
2489
		DRM_DEBUG("copy %d exec entries failed %d\n",
2490
			  args->buffer_count, err);
M
Michal Hocko 已提交
2491 2492
		kvfree(exec_list);
		kvfree(exec2_list);
2493 2494 2495 2496 2497 2498 2499 2500 2501
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2502
		if (INTEL_GEN(to_i915(dev)) < 4)
2503 2504 2505 2506 2507
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2508
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2509
	if (exec2.flags & __EXEC_HAS_RELOC) {
2510
		struct drm_i915_gem_exec_object __user *user_exec_list =
2511
			u64_to_user_ptr(args->buffers_ptr);
2512

2513
		/* Copy the new buffer offsets back to the user's exec list. */
2514
		for (i = 0; i < args->buffer_count; i++) {
2515 2516 2517
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2518
			exec2_list[i].offset =
2519 2520 2521 2522 2523
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2524
				break;
2525 2526 2527
		}
	}

M
Michal Hocko 已提交
2528 2529
	kvfree(exec_list);
	kvfree(exec2_list);
2530
	return err;
2531 2532 2533 2534 2535 2536
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file)
{
2537 2538 2539
	const size_t sz = (sizeof(struct drm_i915_gem_exec_object2) +
			   sizeof(struct i915_vma *) +
			   sizeof(unsigned int));
2540
	struct drm_i915_gem_execbuffer2 *args = data;
2541
	struct drm_i915_gem_exec_object2 *exec2_list;
2542
	struct drm_syncobj **fences = NULL;
2543
	int err;
2544

2545
	if (args->buffer_count < 1 || args->buffer_count > SIZE_MAX / sz - 1) {
2546
		DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
2547 2548 2549
		return -EINVAL;
	}

2550 2551 2552 2553 2554 2555
	if (!i915_gem_check_execbuffer(args))
		return -EINVAL;

	/* Allocate an extra slot for use by the command parser */
	exec2_list = kvmalloc_array(args->buffer_count + 1, sz,
				    __GFP_NOWARN | GFP_TEMPORARY);
2556
	if (exec2_list == NULL) {
2557
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2558 2559 2560
			  args->buffer_count);
		return -ENOMEM;
	}
2561 2562 2563 2564
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
			   sizeof(*exec2_list) * args->buffer_count)) {
		DRM_DEBUG("copy %d exec entries failed\n", args->buffer_count);
M
Michal Hocko 已提交
2565
		kvfree(exec2_list);
2566 2567 2568
		return -EFAULT;
	}

2569 2570 2571 2572 2573 2574 2575 2576 2577
	if (args->flags & I915_EXEC_FENCE_ARRAY) {
		fences = get_fence_array(args, file);
		if (IS_ERR(fences)) {
			kvfree(exec2_list);
			return PTR_ERR(fences);
		}
	}

	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2578 2579 2580 2581 2582 2583 2584 2585

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
2586
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2587 2588
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
2589

2590 2591
		/* Copy the new buffer offsets back to the user's exec list. */
		user_access_begin();
2592
		for (i = 0; i < args->buffer_count; i++) {
2593 2594 2595
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2596
			exec2_list[i].offset =
2597 2598 2599 2600
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
2601
		}
2602 2603
end_user:
		user_access_end();
2604 2605
	}

2606
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2607
	put_fence_array(args, fences);
M
Michal Hocko 已提交
2608
	kvfree(exec2_list);
2609
	return err;
2610
}