i915_gem_execbuffer.c 35.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
/*
 * Copyright © 2008,2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Chris Wilson <chris@chris-wilson.co.uk>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
#include "i915_trace.h"
#include "intel_drv.h"

struct change_domains {
	uint32_t invalidate_domains;
	uint32_t flush_domains;
	uint32_t flush_rings;
};

/*
 * Set the next domain for the specified object. This
 * may not actually perform the necessary flushing/invaliding though,
 * as that may want to be batched with other set_domain operations
 *
 * This is (we hope) the only really tricky part of gem. The goal
 * is fairly simple -- track which caches hold bits of the object
 * and make sure they remain coherent. A few concrete examples may
 * help to explain how it works. For shorthand, we use the notation
 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
 * a pair of read and write domain masks.
 *
 * Case 1: the batch buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Mapped to GTT
 *	4. Read by GPU
 *	5. Unmapped from GTT
 *	6. Freed
 *
 *	Let's take these a step at a time
 *
 *	1. Allocated
 *		Pages allocated from the kernel may still have
 *		cache contents, so we set them to (CPU, CPU) always.
 *	2. Written by CPU (using pwrite)
 *		The pwrite function calls set_domain (CPU, CPU) and
 *		this function does nothing (as nothing changes)
 *	3. Mapped by GTT
 *		This function asserts that the object is not
 *		currently in any GPU-based read or write domains
 *	4. Read by GPU
 *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
 *		As write_domain is zero, this function adds in the
 *		current read domains (CPU+COMMAND, 0).
 *		flush_domains is set to CPU.
 *		invalidate_domains is set to COMMAND
 *		clflush is run to get data out of the CPU caches
 *		then i915_dev_set_domain calls i915_gem_flush to
 *		emit an MI_FLUSH and drm_agp_chipset_flush
 *	5. Unmapped from GTT
 *		i915_gem_object_unbind calls set_domain (CPU, CPU)
 *		flush_domains and invalidate_domains end up both zero
 *		so no flushing/invalidating happens
 *	6. Freed
 *		yay, done
 *
 * Case 2: The shared render buffer
 *
 *	1. Allocated
 *	2. Mapped to GTT
 *	3. Read/written by GPU
 *	4. set_domain to (CPU,CPU)
 *	5. Read/written by CPU
 *	6. Read/written by GPU
 *
 *	1. Allocated
 *		Same as last example, (CPU, CPU)
 *	2. Mapped to GTT
 *		Nothing changes (assertions find that it is not in the GPU)
 *	3. Read/written by GPU
 *		execbuffer calls set_domain (RENDER, RENDER)
 *		flush_domains gets CPU
 *		invalidate_domains gets GPU
 *		clflush (obj)
 *		MI_FLUSH and drm_agp_chipset_flush
 *	4. set_domain (CPU, CPU)
 *		flush_domains gets GPU
 *		invalidate_domains gets CPU
 *		wait_rendering (obj) to make sure all drawing is complete.
 *		This will include an MI_FLUSH to get the data from GPU
 *		to memory
 *		clflush (obj) to invalidate the CPU cache
 *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
 *	5. Read/written by CPU
 *		cache lines are loaded and dirtied
 *	6. Read written by GPU
 *		Same as last GPU access
 *
 * Case 3: The constant buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Read by GPU
 *	4. Updated (written) by CPU again
 *	5. Read by GPU
 *
 *	1. Allocated
 *		(CPU, CPU)
 *	2. Written by CPU
 *		(CPU, CPU)
 *	3. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 *	4. Updated (written) by CPU again
 *		(CPU, CPU)
 *		flush_domains = 0 (no previous write domain)
 *		invalidate_domains = 0 (no new read domains)
 *	5. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 */
static void
i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
				  struct intel_ring_buffer *ring,
				  struct change_domains *cd)
{
	uint32_t invalidate_domains = 0, flush_domains = 0;

	/*
	 * If the object isn't moving to a new write domain,
	 * let the object stay in multiple read domains
	 */
	if (obj->base.pending_write_domain == 0)
		obj->base.pending_read_domains |= obj->base.read_domains;

	/*
	 * Flush the current write domain if
	 * the new read domains don't match. Invalidate
	 * any read domains which differ from the old
	 * write domain
	 */
	if (obj->base.write_domain &&
	    (((obj->base.write_domain != obj->base.pending_read_domains ||
	       obj->ring != ring)) ||
	     (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) {
		flush_domains |= obj->base.write_domain;
		invalidate_domains |=
			obj->base.pending_read_domains & ~obj->base.write_domain;
	}
	/*
	 * Invalidate any read caches which may have
	 * stale data. That is, any new read domains.
	 */
	invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
		i915_gem_clflush_object(obj);

	/* blow away mappings if mapped through GTT */
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_GTT)
		i915_gem_release_mmap(obj);

	/* The actual obj->write_domain will be updated with
	 * pending_write_domain after we emit the accumulated flush for all
	 * of our domain changes in execbuffers (which clears objects'
	 * write_domains).  So if we have a current write domain that we
	 * aren't changing, set pending_write_domain to that.
	 */
	if (flush_domains == 0 && obj->base.pending_write_domain == 0)
		obj->base.pending_write_domain = obj->base.write_domain;

	cd->invalidate_domains |= invalidate_domains;
	cd->flush_domains |= flush_domains;
	if (flush_domains & I915_GEM_GPU_DOMAINS)
		cd->flush_rings |= obj->ring->id;
	if (invalidate_domains & I915_GEM_GPU_DOMAINS)
		cd->flush_rings |= ring->id;
}

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
struct eb_objects {
	int and;
	struct hlist_head buckets[0];
};

static struct eb_objects *
eb_create(int size)
{
	struct eb_objects *eb;
	int count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
	while (count > size)
		count >>= 1;
	eb = kzalloc(count*sizeof(struct hlist_head) +
		     sizeof(struct eb_objects),
		     GFP_KERNEL);
	if (eb == NULL)
		return eb;

	eb->and = count - 1;
	return eb;
}

static void
eb_reset(struct eb_objects *eb)
{
	memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
}

static void
eb_add_object(struct eb_objects *eb, struct drm_i915_gem_object *obj)
{
	hlist_add_head(&obj->exec_node,
		       &eb->buckets[obj->exec_handle & eb->and]);
}

static struct drm_i915_gem_object *
eb_get_object(struct eb_objects *eb, unsigned long handle)
{
	struct hlist_head *head;
	struct hlist_node *node;
	struct drm_i915_gem_object *obj;

	head = &eb->buckets[handle & eb->and];
	hlist_for_each(node, head) {
		obj = hlist_entry(node, struct drm_i915_gem_object, exec_node);
		if (obj->exec_handle == handle)
			return obj;
	}

	return NULL;
}

static void
eb_destroy(struct eb_objects *eb)
{
	kfree(eb);
}

268 269
static int
i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
270
				   struct eb_objects *eb,
271 272 273 274 275 276 277
				   struct drm_i915_gem_relocation_entry *reloc)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_gem_object *target_obj;
	uint32_t target_offset;
	int ret = -EINVAL;

278 279 280
	/* we've already hold a reference to all valid objects */
	target_obj = &eb_get_object(eb, reloc->target_handle)->base;
	if (unlikely(target_obj == NULL))
281 282 283 284 285 286 287
		return -ENOENT;

	target_offset = to_intel_bo(target_obj)->gtt_offset;

	/* The target buffer should have appeared before us in the
	 * exec_object list, so it should have a GTT space bound by now.
	 */
288
	if (unlikely(target_offset == 0)) {
289 290
		DRM_ERROR("No GTT space found for object %d\n",
			  reloc->target_handle);
291
		return ret;
292 293 294
	}

	/* Validate that the target is in a valid r/w GPU domain */
295
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
296 297 298 299 300 301 302
		DRM_ERROR("reloc with multiple write domains: "
			  "obj %p target %d offset %d "
			  "read %08x write %08x",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
303
		return ret;
304
	}
305
	if (unlikely((reloc->write_domain | reloc->read_domains) & I915_GEM_DOMAIN_CPU)) {
306 307 308 309 310 311 312
		DRM_ERROR("reloc with read/write CPU domains: "
			  "obj %p target %d offset %d "
			  "read %08x write %08x",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
313
		return ret;
314
	}
315 316
	if (unlikely(reloc->write_domain && target_obj->pending_write_domain &&
		     reloc->write_domain != target_obj->pending_write_domain)) {
317 318 319 320 321 322 323
		DRM_ERROR("Write domain conflict: "
			  "obj %p target %d offset %d "
			  "new %08x old %08x\n",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  reloc->write_domain,
			  target_obj->pending_write_domain);
324
		return ret;
325 326 327 328 329 330 331 332 333
	}

	target_obj->pending_read_domains |= reloc->read_domains;
	target_obj->pending_write_domain |= reloc->write_domain;

	/* If the relocation already has the right value in it, no
	 * more work needs to be done.
	 */
	if (target_offset == reloc->presumed_offset)
334
		return 0;
335 336

	/* Check that the relocation address is valid... */
337
	if (unlikely(reloc->offset > obj->base.size - 4)) {
338 339 340 341 342
		DRM_ERROR("Relocation beyond object bounds: "
			  "obj %p target %d offset %d size %d.\n",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  (int) obj->base.size);
343
		return ret;
344
	}
345
	if (unlikely(reloc->offset & 3)) {
346 347 348 349
		DRM_ERROR("Relocation not 4-byte aligned: "
			  "obj %p target %d offset %d.\n",
			  obj, reloc->target_handle,
			  (int) reloc->offset);
350
		return ret;
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
	}

	reloc->delta += target_offset;
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
		uint32_t page_offset = reloc->offset & ~PAGE_MASK;
		char *vaddr;

		vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
		*(uint32_t *)(vaddr + page_offset) = reloc->delta;
		kunmap_atomic(vaddr);
	} else {
		struct drm_i915_private *dev_priv = dev->dev_private;
		uint32_t __iomem *reloc_entry;
		void __iomem *reloc_page;

		ret = i915_gem_object_set_to_gtt_domain(obj, 1);
		if (ret)
368
			return ret;
369 370 371 372 373 374 375 376 377 378 379 380 381 382

		/* Map the page containing the relocation we're going to perform.  */
		reloc->offset += obj->gtt_offset;
		reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
						      reloc->offset & PAGE_MASK);
		reloc_entry = (uint32_t __iomem *)
			(reloc_page + (reloc->offset & ~PAGE_MASK));
		iowrite32(reloc->delta, reloc_entry);
		io_mapping_unmap_atomic(reloc_page);
	}

	/* and update the user's relocation entry */
	reloc->presumed_offset = target_offset;

383
	return 0;
384 385 386 387
}

static int
i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
388
				    struct eb_objects *eb)
389 390
{
	struct drm_i915_gem_relocation_entry __user *user_relocs;
391
	struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
392 393 394 395 396 397 398 399 400 401 402
	int i, ret;

	user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
	for (i = 0; i < entry->relocation_count; i++) {
		struct drm_i915_gem_relocation_entry reloc;

		if (__copy_from_user_inatomic(&reloc,
					      user_relocs+i,
					      sizeof(reloc)))
			return -EFAULT;

403
		ret = i915_gem_execbuffer_relocate_entry(obj, eb, &reloc);
404 405 406 407 408 409 410 411 412 413 414 415 416 417
		if (ret)
			return ret;

		if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
					    &reloc.presumed_offset,
					    sizeof(reloc.presumed_offset)))
			return -EFAULT;
	}

	return 0;
}

static int
i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
418
					 struct eb_objects *eb,
419 420
					 struct drm_i915_gem_relocation_entry *relocs)
{
421
	const struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
422 423 424
	int i, ret;

	for (i = 0; i < entry->relocation_count; i++) {
425
		ret = i915_gem_execbuffer_relocate_entry(obj, eb, &relocs[i]);
426 427 428 429 430 431 432 433 434
		if (ret)
			return ret;
	}

	return 0;
}

static int
i915_gem_execbuffer_relocate(struct drm_device *dev,
435
			     struct eb_objects *eb,
436
			     struct list_head *objects)
437
{
438 439
	struct drm_i915_gem_object *obj;
	int ret;
440

441
	list_for_each_entry(obj, objects, exec_list) {
442
		ret = i915_gem_execbuffer_relocate_object(obj, eb);
443 444 445 446 447 448 449 450
		if (ret)
			return ret;
	}

	return 0;
}

static int
451
i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring,
452
			    struct drm_file *file,
453
			    struct list_head *objects)
454
{
455 456
	struct drm_i915_gem_object *obj;
	int ret, retry;
457
	bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
	struct list_head ordered_objects;

	INIT_LIST_HEAD(&ordered_objects);
	while (!list_empty(objects)) {
		struct drm_i915_gem_exec_object2 *entry;
		bool need_fence, need_mappable;

		obj = list_first_entry(objects,
				       struct drm_i915_gem_object,
				       exec_list);
		entry = obj->exec_entry;

		need_fence =
			has_fenced_gpu_access &&
			entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
			obj->tiling_mode != I915_TILING_NONE;
		need_mappable =
			entry->relocation_count ? true : need_fence;

		if (need_mappable)
			list_move(&obj->exec_list, &ordered_objects);
		else
			list_move_tail(&obj->exec_list, &ordered_objects);
481 482 483

		obj->base.pending_read_domains = 0;
		obj->base.pending_write_domain = 0;
484 485
	}
	list_splice(&ordered_objects, objects);
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503

	/* Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to makr
	 * room for the earlier objects *unless* we need to defragment.
	 */
	retry = 0;
	do {
		ret = 0;

		/* Unbind any ill-fitting objects or pin. */
504
		list_for_each_entry(obj, objects, exec_list) {
505
			struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
506
			bool need_fence, need_mappable;
507
			if (!obj->gtt_space)
508 509 510
				continue;

			need_fence =
511
				has_fenced_gpu_access &&
512 513 514 515 516 517 518 519 520 521 522 523
				entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
				obj->tiling_mode != I915_TILING_NONE;
			need_mappable =
				entry->relocation_count ? true : need_fence;

			if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) ||
			    (need_mappable && !obj->map_and_fenceable))
				ret = i915_gem_object_unbind(obj);
			else
				ret = i915_gem_object_pin(obj,
							  entry->alignment,
							  need_mappable);
524
			if (ret)
525
				goto err;
526 527

			entry++;
528 529 530
		}

		/* Bind fresh objects */
531
		list_for_each_entry(obj, objects, exec_list) {
532
			struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
533 534 535
			bool need_fence;

			need_fence =
536
				has_fenced_gpu_access &&
537 538 539 540 541 542 543 544 545 546 547 548 549 550
				entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
				obj->tiling_mode != I915_TILING_NONE;

			if (!obj->gtt_space) {
				bool need_mappable =
					entry->relocation_count ? true : need_fence;

				ret = i915_gem_object_pin(obj,
							  entry->alignment,
							  need_mappable);
				if (ret)
					break;
			}

551 552
			if (has_fenced_gpu_access) {
				if (need_fence) {
553
					ret = i915_gem_object_get_fence(obj, ring);
554 555 556 557 558 559 560 561 562 563
					if (ret)
						break;
				} else if (entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
					   obj->tiling_mode == I915_TILING_NONE) {
					/* XXX pipelined! */
					ret = i915_gem_object_put_fence(obj);
					if (ret)
						break;
				}
				obj->pending_fenced_gpu_access = need_fence;
564 565 566 567 568
			}

			entry->offset = obj->gtt_offset;
		}

569 570
		/* Decrement pin count for bound objects */
		list_for_each_entry(obj, objects, exec_list) {
571 572 573 574 575 576 577 578 579 580
			if (obj->gtt_space)
				i915_gem_object_unpin(obj);
		}

		if (ret != -ENOSPC || retry > 1)
			return ret;

		/* First attempt, just clear anything that is purgeable.
		 * Second attempt, clear the entire GTT.
		 */
581
		ret = i915_gem_evict_everything(ring->dev, retry == 0);
582 583 584 585 586
		if (ret)
			return ret;

		retry++;
	} while (1);
587 588

err:
589 590 591
	obj = list_entry(obj->exec_list.prev,
			 struct drm_i915_gem_object,
			 exec_list);
592 593 594 595 596 597 598 599 600 601
	while (objects != &obj->exec_list) {
		if (obj->gtt_space)
			i915_gem_object_unpin(obj);

		obj = list_entry(obj->exec_list.prev,
				 struct drm_i915_gem_object,
				 exec_list);
	}

	return ret;
602 603 604 605 606
}

static int
i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
				  struct drm_file *file,
607
				  struct intel_ring_buffer *ring,
608
				  struct list_head *objects,
609
				  struct eb_objects *eb,
610
				  struct drm_i915_gem_exec_object2 *exec,
611 612 613
				  int count)
{
	struct drm_i915_gem_relocation_entry *reloc;
614
	struct drm_i915_gem_object *obj;
615
	int *reloc_offset;
616 617
	int i, total, ret;

618
	/* We may process another execbuffer during the unlock... */
619
	while (!list_empty(objects)) {
620 621 622 623 624 625 626
		obj = list_first_entry(objects,
				       struct drm_i915_gem_object,
				       exec_list);
		list_del_init(&obj->exec_list);
		drm_gem_object_unreference(&obj->base);
	}

627 628 629 630
	mutex_unlock(&dev->struct_mutex);

	total = 0;
	for (i = 0; i < count; i++)
631
		total += exec[i].relocation_count;
632

633
	reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
634
	reloc = drm_malloc_ab(total, sizeof(*reloc));
635 636 637
	if (reloc == NULL || reloc_offset == NULL) {
		drm_free_large(reloc);
		drm_free_large(reloc_offset);
638 639 640 641 642 643 644 645
		mutex_lock(&dev->struct_mutex);
		return -ENOMEM;
	}

	total = 0;
	for (i = 0; i < count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;

646
		user_relocs = (void __user *)(uintptr_t)exec[i].relocs_ptr;
647 648

		if (copy_from_user(reloc+total, user_relocs,
649
				   exec[i].relocation_count * sizeof(*reloc))) {
650 651 652 653 654
			ret = -EFAULT;
			mutex_lock(&dev->struct_mutex);
			goto err;
		}

655
		reloc_offset[i] = total;
656
		total += exec[i].relocation_count;
657 658 659 660 661 662 663 664
	}

	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		mutex_lock(&dev->struct_mutex);
		goto err;
	}

665 666 667 668 669
	/* reacquire the objects */
	eb_reset(eb);
	for (i = 0; i < count; i++) {
		obj = to_intel_bo(drm_gem_object_lookup(dev, file,
							exec[i].handle));
670
		if (&obj->base == NULL) {
671 672 673 674 675 676 677 678
			DRM_ERROR("Invalid object handle %d at index %d\n",
				   exec[i].handle, i);
			ret = -ENOENT;
			goto err;
		}

		list_add_tail(&obj->exec_list, objects);
		obj->exec_handle = exec[i].handle;
679
		obj->exec_entry = &exec[i];
680 681 682
		eb_add_object(eb, obj);
	}

683
	ret = i915_gem_execbuffer_reserve(ring, file, objects);
684 685 686
	if (ret)
		goto err;

687
	list_for_each_entry(obj, objects, exec_list) {
688
		int offset = obj->exec_entry - exec;
689
		ret = i915_gem_execbuffer_relocate_object_slow(obj, eb,
690
							       reloc + reloc_offset[offset]);
691 692 693 694 695 696 697 698 699 700 701 702
		if (ret)
			goto err;
	}

	/* Leave the user relocations as are, this is the painfully slow path,
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
	drm_free_large(reloc);
703
	drm_free_large(reloc_offset);
704 705 706
	return ret;
}

707
static int
708 709 710 711 712 713
i915_gem_execbuffer_flush(struct drm_device *dev,
			  uint32_t invalidate_domains,
			  uint32_t flush_domains,
			  uint32_t flush_rings)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
714
	int i, ret;
715 716 717 718

	if (flush_domains & I915_GEM_DOMAIN_CPU)
		intel_gtt_chipset_flush();

719 720 721
	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

722
	if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
723
		for (i = 0; i < I915_NUM_RINGS; i++)
724
			if (flush_rings & (1 << i)) {
C
Chris Wilson 已提交
725
				ret = i915_gem_flush_ring(&dev_priv->ring[i],
726 727 728 729 730
							  invalidate_domains,
							  flush_domains);
				if (ret)
					return ret;
			}
731
	}
732 733

	return 0;
734 735
}

736 737 738 739 740 741 742 743 744 745 746
static int
i915_gem_execbuffer_sync_rings(struct drm_i915_gem_object *obj,
			       struct intel_ring_buffer *to)
{
	struct intel_ring_buffer *from = obj->ring;
	u32 seqno;
	int ret, idx;

	if (from == NULL || to == from)
		return 0;

747
	if (INTEL_INFO(obj->base.dev)->gen < 6)
748
		return i915_gem_object_wait_rendering(obj);
749 750 751 752 753 754 755 756 757 758 759 760 761 762

	idx = intel_ring_sync_index(from, to);

	seqno = obj->last_rendering_seqno;
	if (seqno <= from->sync_seqno[idx])
		return 0;

	if (seqno == from->outstanding_lazy_request) {
		struct drm_i915_gem_request *request;

		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
			return -ENOMEM;

C
Chris Wilson 已提交
763
		ret = i915_add_request(from, NULL, request);
764 765 766 767 768 769 770 771 772 773 774
		if (ret) {
			kfree(request);
			return ret;
		}

		seqno = request->seqno;
	}

	from->sync_seqno[idx] = seqno;
	return intel_ring_sync(to, from, seqno - 1);
}
775 776

static int
777 778
i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring,
				struct list_head *objects)
779
{
780
	struct drm_i915_gem_object *obj;
781
	struct change_domains cd;
782
	int ret;
783 784 785 786

	cd.invalidate_domains = 0;
	cd.flush_domains = 0;
	cd.flush_rings = 0;
787 788
	list_for_each_entry(obj, objects, exec_list)
		i915_gem_object_set_to_gpu_domain(obj, ring, &cd);
789 790

	if (cd.invalidate_domains | cd.flush_domains) {
791 792 793 794 795 796
		ret = i915_gem_execbuffer_flush(ring->dev,
						cd.invalidate_domains,
						cd.flush_domains,
						cd.flush_rings);
		if (ret)
			return ret;
797 798
	}

799
	list_for_each_entry(obj, objects, exec_list) {
800 801 802
		ret = i915_gem_execbuffer_sync_rings(obj, ring);
		if (ret)
			return ret;
803 804 805 806 807
	}

	return 0;
}

808 809
static bool
i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
810
{
811
	return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0;
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
}

static int
validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
		   int count)
{
	int i;

	for (i = 0; i < count; i++) {
		char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
		int length; /* limited by fault_in_pages_readable() */

		/* First check for malicious input causing overflow */
		if (exec[i].relocation_count >
		    INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
			return -EINVAL;

		length = exec[i].relocation_count *
			sizeof(struct drm_i915_gem_relocation_entry);
		if (!access_ok(VERIFY_READ, ptr, length))
			return -EFAULT;

		/* we may also need to update the presumed offsets */
		if (!access_ok(VERIFY_WRITE, ptr, length))
			return -EFAULT;

		if (fault_in_pages_readable(ptr, length))
			return -EFAULT;
	}

	return 0;
}

845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
static int
i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *ring,
				   struct list_head *objects)
{
	struct drm_i915_gem_object *obj;
	int flips;

	/* Check for any pending flips. As we only maintain a flip queue depth
	 * of 1, we can simply insert a WAIT for the next display flip prior
	 * to executing the batch and avoid stalling the CPU.
	 */
	flips = 0;
	list_for_each_entry(obj, objects, exec_list) {
		if (obj->base.write_domain)
			flips |= atomic_read(&obj->pending_flip);
	}
	if (flips) {
		int plane, flip_mask, ret;

		for (plane = 0; flips >> plane; plane++) {
			if (((flips >> plane) & 1) == 0)
				continue;

			if (plane)
				flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
			else
				flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;

			ret = intel_ring_begin(ring, 2);
			if (ret)
				return ret;

			intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
			intel_ring_emit(ring, MI_NOOP);
			intel_ring_advance(ring);
		}
	}

	return 0;
}

static void
i915_gem_execbuffer_move_to_active(struct list_head *objects,
888 889
				   struct intel_ring_buffer *ring,
				   u32 seqno)
890 891 892 893
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, objects, exec_list) {
C
Chris Wilson 已提交
894 895 896 897
		  u32 old_read = obj->base.read_domains;
		  u32 old_write = obj->base.write_domain;


898 899 900 901
		obj->base.read_domains = obj->base.pending_read_domains;
		obj->base.write_domain = obj->base.pending_write_domain;
		obj->fenced_gpu_access = obj->pending_fenced_gpu_access;

902
		i915_gem_object_move_to_active(obj, ring, seqno);
903 904
		if (obj->base.write_domain) {
			obj->dirty = 1;
905
			obj->pending_gpu_write = true;
906 907 908 909 910
			list_move_tail(&obj->gpu_write_list,
				       &ring->gpu_write_list);
			intel_mark_busy(ring->dev, obj);
		}

C
Chris Wilson 已提交
911
		trace_i915_gem_object_change_domain(obj, old_read, old_write);
912 913 914
	}
}

915 916
static void
i915_gem_execbuffer_retire_commands(struct drm_device *dev,
917
				    struct drm_file *file,
918 919
				    struct intel_ring_buffer *ring)
{
920
	struct drm_i915_gem_request *request;
921
	u32 invalidate;
922

923 924 925 926 927 928
	/*
	 * Ensure that the commands in the batch buffer are
	 * finished before the interrupt fires.
	 *
	 * The sampler always gets flushed on i965 (sigh).
	 */
929
	invalidate = I915_GEM_DOMAIN_COMMAND;
930
	if (INTEL_INFO(dev)->gen >= 4)
931 932
		invalidate |= I915_GEM_DOMAIN_SAMPLER;
	if (ring->flush(ring, invalidate, 0)) {
C
Chris Wilson 已提交
933
		i915_gem_next_request_seqno(ring);
934 935
		return;
	}
936

937 938
	/* Add a breadcrumb for the completion of the batch buffer */
	request = kzalloc(sizeof(*request), GFP_KERNEL);
C
Chris Wilson 已提交
939 940
	if (request == NULL || i915_add_request(ring, file, request)) {
		i915_gem_next_request_seqno(ring);
941 942 943
		kfree(request);
	}
}
944 945 946 947 948

static int
i915_gem_do_execbuffer(struct drm_device *dev, void *data,
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
949
		       struct drm_i915_gem_exec_object2 *exec)
950 951
{
	drm_i915_private_t *dev_priv = dev->dev_private;
952
	struct list_head objects;
953
	struct eb_objects *eb;
954 955 956
	struct drm_i915_gem_object *batch_obj;
	struct drm_clip_rect *cliprects = NULL;
	struct intel_ring_buffer *ring;
957
	u32 exec_start, exec_len;
958
	u32 seqno;
959
	int ret, mode, i;
960

961 962 963 964 965 966
	if (!i915_gem_check_execbuffer(args)) {
		DRM_ERROR("execbuf with invalid offset/length\n");
		return -EINVAL;
	}

	ret = validate_exec_list(exec, args->buffer_count);
967 968 969 970 971 972
	if (ret)
		return ret;

	switch (args->flags & I915_EXEC_RING_MASK) {
	case I915_EXEC_DEFAULT:
	case I915_EXEC_RENDER:
973
		ring = &dev_priv->ring[RCS];
974 975 976 977 978 979
		break;
	case I915_EXEC_BSD:
		if (!HAS_BSD(dev)) {
			DRM_ERROR("execbuf with invalid ring (BSD)\n");
			return -EINVAL;
		}
980
		ring = &dev_priv->ring[VCS];
981 982 983 984 985 986
		break;
	case I915_EXEC_BLT:
		if (!HAS_BLT(dev)) {
			DRM_ERROR("execbuf with invalid ring (BLT)\n");
			return -EINVAL;
		}
987
		ring = &dev_priv->ring[BCS];
988 989 990 991 992 993 994
		break;
	default:
		DRM_ERROR("execbuf with unknown ring: %d\n",
			  (int)(args->flags & I915_EXEC_RING_MASK));
		return -EINVAL;
	}

995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	switch (mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
		if (ring == &dev_priv->ring[RCS] &&
		    mode != dev_priv->relative_constants_mode) {
			if (INTEL_INFO(dev)->gen < 4)
				return -EINVAL;

			if (INTEL_INFO(dev)->gen > 5 &&
			    mode == I915_EXEC_CONSTANTS_REL_SURFACE)
				return -EINVAL;

			ret = intel_ring_begin(ring, 4);
			if (ret)
				return ret;

			intel_ring_emit(ring, MI_NOOP);
			intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
			intel_ring_emit(ring, INSTPM);
			intel_ring_emit(ring,
					I915_EXEC_CONSTANTS_MASK << 16 | mode);
			intel_ring_advance(ring);

			dev_priv->relative_constants_mode = mode;
		}
		break;
	default:
		DRM_ERROR("execbuf with unknown constants: %d\n", mode);
		return -EINVAL;
	}

1028 1029 1030 1031 1032 1033
	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	if (args->num_cliprects != 0) {
1034
		if (ring != &dev_priv->ring[RCS]) {
1035 1036 1037 1038
			DRM_ERROR("clip rectangles are only valid with the render ring\n");
			return -EINVAL;
		}

1039
		cliprects = kmalloc(args->num_cliprects * sizeof(*cliprects),
1040 1041 1042 1043 1044 1045
				    GFP_KERNEL);
		if (cliprects == NULL) {
			ret = -ENOMEM;
			goto pre_mutex_err;
		}

1046 1047 1048 1049
		if (copy_from_user(cliprects,
				     (struct drm_clip_rect __user *)(uintptr_t)
				     args->cliprects_ptr,
				     sizeof(*cliprects)*args->num_cliprects)) {
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
			ret = -EFAULT;
			goto pre_mutex_err;
		}
	}

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto pre_mutex_err;

	if (dev_priv->mm.suspended) {
		mutex_unlock(&dev->struct_mutex);
		ret = -EBUSY;
		goto pre_mutex_err;
	}

1065 1066 1067 1068 1069 1070 1071
	eb = eb_create(args->buffer_count);
	if (eb == NULL) {
		mutex_unlock(&dev->struct_mutex);
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

1072
	/* Look up object handles */
1073
	INIT_LIST_HEAD(&objects);
1074 1075 1076
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_i915_gem_object *obj;

1077 1078
		obj = to_intel_bo(drm_gem_object_lookup(dev, file,
							exec[i].handle));
1079
		if (&obj->base == NULL) {
1080
			DRM_ERROR("Invalid object handle %d at index %d\n",
1081
				   exec[i].handle, i);
1082 1083 1084 1085 1086
			/* prevent error path from reading uninitialized data */
			ret = -ENOENT;
			goto err;
		}

1087 1088 1089
		if (!list_empty(&obj->exec_list)) {
			DRM_ERROR("Object %p [handle %d, index %d] appears more than once in object list\n",
				   obj, exec[i].handle, i);
1090 1091 1092
			ret = -EINVAL;
			goto err;
		}
1093 1094

		list_add_tail(&obj->exec_list, &objects);
1095
		obj->exec_handle = exec[i].handle;
1096
		obj->exec_entry = &exec[i];
1097
		eb_add_object(eb, obj);
1098 1099
	}

1100 1101 1102 1103 1104
	/* take note of the batch buffer before we might reorder the lists */
	batch_obj = list_entry(objects.prev,
			       struct drm_i915_gem_object,
			       exec_list);

1105
	/* Move the objects en-masse into the GTT, evicting if necessary. */
1106
	ret = i915_gem_execbuffer_reserve(ring, file, &objects);
1107 1108 1109 1110
	if (ret)
		goto err;

	/* The objects are in their final locations, apply the relocations. */
1111
	ret = i915_gem_execbuffer_relocate(dev, eb, &objects);
1112 1113
	if (ret) {
		if (ret == -EFAULT) {
1114
			ret = i915_gem_execbuffer_relocate_slow(dev, file, ring,
1115 1116
								&objects, eb,
								exec,
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
								args->buffer_count);
			BUG_ON(!mutex_is_locked(&dev->struct_mutex));
		}
		if (ret)
			goto err;
	}

	/* Set the pending read domains for the batch buffer to COMMAND */
	if (batch_obj->base.pending_write_domain) {
		DRM_ERROR("Attempting to use self-modifying batch buffer\n");
		ret = -EINVAL;
		goto err;
	}
	batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;

1132 1133
	ret = i915_gem_execbuffer_move_to_gpu(ring, &objects);
	if (ret)
1134 1135
		goto err;

1136
	ret = i915_gem_execbuffer_wait_for_flips(ring, &objects);
1137 1138 1139
	if (ret)
		goto err;

C
Chris Wilson 已提交
1140
	seqno = i915_gem_next_request_seqno(ring);
1141
	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++) {
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
		if (seqno < ring->sync_seqno[i]) {
			/* The GPU can not handle its semaphore value wrapping,
			 * so every billion or so execbuffers, we need to stall
			 * the GPU in order to reset the counters.
			 */
			ret = i915_gpu_idle(dev);
			if (ret)
				goto err;

			BUG_ON(ring->sync_seqno[i]);
		}
	}

C
Chris Wilson 已提交
1155 1156
	trace_i915_gem_ring_dispatch(ring, seqno);

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
	exec_start = batch_obj->gtt_offset + args->batch_start_offset;
	exec_len = args->batch_len;
	if (cliprects) {
		for (i = 0; i < args->num_cliprects; i++) {
			ret = i915_emit_box(dev, &cliprects[i],
					    args->DR1, args->DR4);
			if (ret)
				goto err;

			ret = ring->dispatch_execbuffer(ring,
							exec_start, exec_len);
			if (ret)
				goto err;
		}
	} else {
		ret = ring->dispatch_execbuffer(ring, exec_start, exec_len);
		if (ret)
			goto err;
	}
1176

1177
	i915_gem_execbuffer_move_to_active(&objects, ring, seqno);
1178
	i915_gem_execbuffer_retire_commands(dev, file, ring);
1179 1180

err:
1181
	eb_destroy(eb);
1182 1183 1184 1185 1186 1187 1188 1189
	while (!list_empty(&objects)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&objects,
				       struct drm_i915_gem_object,
				       exec_list);
		list_del_init(&obj->exec_list);
		drm_gem_object_unreference(&obj->base);
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
	}

	mutex_unlock(&dev->struct_mutex);

pre_mutex_err:
	kfree(cliprects);
	return ret;
}

/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file)
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret, i;

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	/* Copy in the exec list from userland */
	exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec_list == NULL || exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -ENOMEM;
	}
	ret = copy_from_user(exec_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
		if (INTEL_INFO(dev)->gen < 4)
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;

	ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		for (i = 0; i < args->buffer_count; i++)
			exec_list[i].offset = exec2_list[i].offset;
		/* ... and back out to userspace */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec_list,
				   sizeof(*exec_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec_list);
	drm_free_large(exec2_list);
	return ret;
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file)
{
	struct drm_i915_gem_execbuffer2 *args = data;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret;

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

1298 1299 1300 1301 1302
	exec2_list = kmalloc(sizeof(*exec2_list)*args->buffer_count,
			     GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
	if (exec2_list == NULL)
		exec2_list = drm_malloc_ab(sizeof(*exec2_list),
					   args->buffer_count);
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
	if (exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		return -ENOMEM;
	}
	ret = copy_from_user(exec2_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec2_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec2_list,
				   sizeof(*exec2_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec2_list);
	return ret;
}