i915_gem_execbuffer.c 71.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright © 2008,2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Chris Wilson <chris@chris-wilson.co.uk>
 *
 */

29 30
#include <linux/dma_remapping.h>
#include <linux/reservation.h>
31
#include <linux/sync_file.h>
32 33
#include <linux/uaccess.h>

34
#include <drm/drmP.h>
35
#include <drm/drm_syncobj.h>
36
#include <drm/i915_drm.h>
37

38
#include "i915_drv.h"
39
#include "i915_gem_clflush.h"
40 41
#include "i915_trace.h"
#include "intel_drv.h"
42
#include "intel_frontbuffer.h"
43

44 45 46 47 48 49
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};
50

51 52 53 54 55 56
#define __EXEC_OBJECT_HAS_REF		BIT(31)
#define __EXEC_OBJECT_HAS_PIN		BIT(30)
#define __EXEC_OBJECT_HAS_FENCE		BIT(29)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(28)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(27)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 27) /* all of the above */
57 58 59 60
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)

#define __EXEC_HAS_RELOC	BIT(31)
#define __EXEC_VALIDATED	BIT(30)
61
#define __EXEC_INTERNAL_FLAGS	(~0u << 30)
62
#define UPDATE			PIN_OFFSET_FIXED
63 64

#define BATCH_OFFSET_BIAS (256*1024)
65

66 67
#define __I915_EXEC_ILLEGAL_FLAGS \
	(__I915_EXEC_UNKNOWN_FLAGS | I915_EXEC_CONSTANTS_MASK)
68

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
 * At the level of talking to the hardware, submitting a batchbuffer for the
 * GPU to execute is to add content to a buffer from which the HW
 * command streamer is reading.
 *
 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 *    Execlists, this command is not placed on the same buffer as the
 *    remaining items.
 *
 * 2. Add a command to invalidate caches to the buffer.
 *
 * 3. Add a batchbuffer start command to the buffer; the start command is
 *    essentially a token together with the GPU address of the batchbuffer
 *    to be executed.
 *
 * 4. Add a pipeline flush to the buffer.
 *
 * 5. Add a memory write command to the buffer to record when the GPU
 *    is done executing the batchbuffer. The memory write writes the
 *    global sequence number of the request, ``i915_request::global_seqno``;
 *    the i915 driver uses the current value in the register to determine
 *    if the GPU has completed the batchbuffer.
 *
 * 6. Add a user interrupt command to the buffer. This command instructs
 *    the GPU to issue an interrupt when the command, pipeline flush and
 *    memory write are completed.
 *
 * 7. Inform the hardware of the additional commands added to the buffer
 *    (by updating the tail pointer).
 *
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

220
struct i915_execbuffer {
221 222 223 224
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
225 226
	struct i915_vma **vma;
	unsigned int *flags;
227 228 229 230 231

	struct intel_engine_cs *engine; /** engine to queue the request to */
	struct i915_gem_context *ctx; /** context for building the request */
	struct i915_address_space *vm; /** GTT and vma for the request */

232
	struct i915_request *request; /** our request to build */
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
	struct i915_vma *batch; /** identity of the batch obj/vma */

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
249
	struct reloc_cache {
250 251 252
		struct drm_mm_node node; /** temporary GTT binding */
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
253
		unsigned int gen; /** Cached value of INTEL_GEN */
254
		bool use_64bit_reloc : 1;
255 256 257
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
258

259
		struct i915_request *rq;
260 261
		u32 *rq_cmd;
		unsigned int rq_size;
262
	} reloc_cache;
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
278 279
};

280
#define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
281

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
/*
 * Used to convert any address to canonical form.
 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
 * addresses to be in a canonical form:
 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
 * canonical form [63:48] == [47]."
 */
#define GEN8_HIGH_ADDRESS_BIT 47
static inline u64 gen8_canonical_addr(u64 address)
{
	return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
}

static inline u64 gen8_noncanonical_addr(u64 address)
{
	return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
}

301 302
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
303
	return intel_engine_needs_cmd_parser(eb->engine) && eb->batch_len;
304 305
}

306
static int eb_create(struct i915_execbuffer *eb)
307
{
308 309
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
310

311 312 313 314 315 316 317 318 319 320 321
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
322
		do {
323
			gfp_t flags;
324 325 326 327 328 329 330

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
331
			flags = GFP_KERNEL;
332 333 334
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

335
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
336
					      flags);
337 338 339 340
			if (eb->buckets)
				break;
		} while (--size);

341 342
		if (unlikely(!size))
			return -ENOMEM;
343

344
		eb->lut_size = size;
345
	} else {
346
		eb->lut_size = -eb->buffer_count;
347
	}
348

349
	return 0;
350 351
}

352 353
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
354 355
		 const struct i915_vma *vma,
		 unsigned int flags)
356 357 358 359 360 361 362
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

363
	if (flags & EXEC_OBJECT_PINNED &&
364 365 366
	    vma->node.start != entry->offset)
		return true;

367
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
368 369 370
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

371
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
372 373 374
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

375 376 377 378
	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
	    !i915_vma_is_map_and_fenceable(vma))
		return true;

379 380 381
	return false;
}

382
static inline bool
383
eb_pin_vma(struct i915_execbuffer *eb,
384
	   const struct drm_i915_gem_exec_object2 *entry,
385 386
	   struct i915_vma *vma)
{
387 388
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
389

390
	if (vma->node.size)
391
		pin_flags = vma->node.start;
392
	else
393
		pin_flags = entry->offset & PIN_OFFSET_MASK;
394

395 396 397
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
		pin_flags |= PIN_GLOBAL;
398

399 400
	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
		return false;
401

402
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
403
		if (unlikely(i915_vma_pin_fence(vma))) {
404
			i915_vma_unpin(vma);
405
			return false;
406 407
		}

408
		if (vma->fence)
409
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
410 411
	}

412 413
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	return !eb_vma_misplaced(entry, vma, exec_flags);
414 415
}

416
static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
417
{
418
	GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
419

420
	if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
421
		__i915_vma_unpin_fence(vma);
422

423
	__i915_vma_unpin(vma);
424 425
}

426
static inline void
427
eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
428
{
429
	if (!(*flags & __EXEC_OBJECT_HAS_PIN))
430
		return;
431

432 433
	__eb_unreserve_vma(vma, *flags);
	*flags &= ~__EXEC_OBJECT_RESERVED;
434 435
}

436 437 438 439
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
440
{
441 442
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
443

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
	if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
		     entry->offset != gen8_canonical_addr(entry->offset & PAGE_MASK)))
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
461 462
	}

463
	if (unlikely(vma->exec_flags)) {
464 465 466 467 468 469 470 471 472 473 474 475
		DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
			  entry->handle, (int)(entry - eb->exec));
		return -EINVAL;
	}

	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

476 477 478 479 480 481 482 483 484 485 486 487
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

488
	return 0;
489 490
}

491
static int
492
eb_add_vma(struct i915_execbuffer *eb, unsigned int i, struct i915_vma *vma)
493
{
494
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
495 496 497 498 499 500 501 502
	int err;

	GEM_BUG_ON(i915_vma_is_closed(vma));

	if (!(eb->args->flags & __EXEC_VALIDATED)) {
		err = eb_validate_vma(eb, entry, vma);
		if (unlikely(err))
			return err;
503 504
	}

505
	if (eb->lut_size > 0) {
506
		vma->exec_handle = entry->handle;
507
		hlist_add_head(&vma->exec_node,
508 509
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
510
	}
511

512 513 514 515 516 517 518 519 520
	if (entry->relocation_count)
		list_add_tail(&vma->reloc_link, &eb->relocs);

	/*
	 * Stash a pointer from the vma to execobj, so we can query its flags,
	 * size, alignment etc as provided by the user. Also we stash a pointer
	 * to the vma inside the execobj so that we can use a direct lookup
	 * to find the right target VMA when doing relocations.
	 */
521
	eb->vma[i] = vma;
522
	eb->flags[i] = entry->flags;
523
	vma->exec_flags = &eb->flags[i];
524 525

	err = 0;
526
	if (eb_pin_vma(eb, entry, vma)) {
527 528 529 530
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
531 532 533 534 535 536
	} else {
		eb_unreserve_vma(vma, vma->exec_flags);

		list_add_tail(&vma->exec_link, &eb->unbound);
		if (drm_mm_node_allocated(&vma->node))
			err = i915_vma_unbind(vma);
537 538
		if (unlikely(err))
			vma->exec_flags = NULL;
539 540 541 542 543 544 545 546 547 548
	}
	return err;
}

static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

549 550 551 552 553
	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;
554 555 556 557 558 559 560 561 562

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
			  struct i915_vma *vma)
{
563 564 565
	struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
566 567
	int err;

568 569 570
	pin_flags = PIN_USER | PIN_NONBLOCK;
	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;
571 572 573 574 575

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
576 577
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;
578

579 580
	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;
581

582 583 584 585 586
	if (exec_flags & EXEC_OBJECT_PINNED) {
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
		pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
	} else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
587 588
	}

589 590 591
	err = i915_vma_pin(vma,
			   entry->pad_to_size, entry->alignment,
			   pin_flags);
592 593 594 595 596 597 598 599
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

600
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
601
		err = i915_vma_pin_fence(vma);
602 603 604 605 606
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

607
		if (vma->fence)
608
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
609 610
	}

611 612
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
613

614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	struct list_head last;
	struct i915_vma *vma;
	unsigned int i, pass;
	int err;

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

	pass = 0;
	err = 0;
	do {
		list_for_each_entry(vma, &eb->unbound, exec_link) {
			err = eb_reserve_vma(eb, vma);
			if (err)
				break;
		}
		if (err != -ENOSPC)
			return err;

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
654 655
			unsigned int flags = eb->flags[i];
			struct i915_vma *vma = eb->vma[i];
656

657 658
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
659 660
				continue;

661
			eb_unreserve_vma(vma, &eb->flags[i]);
662

663
			if (flags & EXEC_OBJECT_PINNED)
664
				list_add(&vma->exec_link, &eb->unbound);
665
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
				list_add_tail(&vma->exec_link, &eb->unbound);
			else
				list_add_tail(&vma->exec_link, &last);
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
			err = i915_gem_evict_vm(eb->vm);
			if (err)
				return err;
			break;

		default:
			return -ENOSPC;
		}
	} while (1);
687
}
688

689 690
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
691 692 693 694
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
695 696 697 698 699 700 701
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
702 703
	if (unlikely(!ctx))
		return -ENOENT;
704

705
	eb->ctx = ctx;
706
	eb->vm = ctx->ppgtt ? &ctx->ppgtt->vm : &eb->i915->ggtt.vm;
707 708 709 710 711 712 713 714 715

	eb->context_flags = 0;
	if (ctx->flags & CONTEXT_NO_ZEROMAP)
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

static int eb_lookup_vmas(struct i915_execbuffer *eb)
716
{
717
	struct radix_tree_root *handles_vma = &eb->ctx->handles_vma;
718
	struct drm_i915_gem_object *obj;
719 720
	unsigned int i;
	int err;
721

722 723 724 725 726 727
	if (unlikely(i915_gem_context_is_closed(eb->ctx)))
		return -ENOENT;

	if (unlikely(i915_gem_context_is_banned(eb->ctx)))
		return -EIO;

728 729
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);
730

731 732
	for (i = 0; i < eb->buffer_count; i++) {
		u32 handle = eb->exec[i].handle;
733
		struct i915_lut_handle *lut;
734
		struct i915_vma *vma;
735

736 737
		vma = radix_tree_lookup(handles_vma, handle);
		if (likely(vma))
738
			goto add_vma;
739

740
		obj = i915_gem_object_lookup(eb->file, handle);
741
		if (unlikely(!obj)) {
742
			err = -ENOENT;
743
			goto err_vma;
744 745
		}

746
		vma = i915_vma_instance(obj, eb->vm, NULL);
C
Chris Wilson 已提交
747
		if (unlikely(IS_ERR(vma))) {
748
			err = PTR_ERR(vma);
749
			goto err_obj;
750 751
		}

752 753 754 755 756 757 758 759
		lut = kmem_cache_alloc(eb->i915->luts, GFP_KERNEL);
		if (unlikely(!lut)) {
			err = -ENOMEM;
			goto err_obj;
		}

		err = radix_tree_insert(handles_vma, handle, vma);
		if (unlikely(err)) {
760
			kmem_cache_free(eb->i915->luts, lut);
761
			goto err_obj;
762
		}
763

764
		/* transfer ref to ctx */
765 766
		if (!vma->open_count++)
			i915_vma_reopen(vma);
767 768 769 770 771
		list_add(&lut->obj_link, &obj->lut_list);
		list_add(&lut->ctx_link, &eb->ctx->handles_list);
		lut->ctx = eb->ctx;
		lut->handle = handle;

772
add_vma:
773
		err = eb_add_vma(eb, i, vma);
774
		if (unlikely(err))
775
			goto err_vma;
776

777 778
		GEM_BUG_ON(vma != eb->vma[i]);
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
779 780
	}

781 782
	/* take note of the batch buffer before we might reorder the lists */
	i = eb_batch_index(eb);
783 784
	eb->batch = eb->vma[i];
	GEM_BUG_ON(eb->batch->exec_flags != &eb->flags[i]);
785

786
	/*
787 788 789 790 791 792 793
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
794
	 */
795 796
	if (!(eb->flags[i] & EXEC_OBJECT_PINNED))
		eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
797
	if (eb->reloc_cache.has_fence)
798
		eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;
799

800 801 802
	eb->args->flags |= __EXEC_VALIDATED;
	return eb_reserve(eb);

803
err_obj:
804
	i915_gem_object_put(obj);
805 806
err_vma:
	eb->vma[i] = NULL;
807
	return err;
808 809
}

810
static struct i915_vma *
811
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
812
{
813 814
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
815
			return NULL;
816
		return eb->vma[handle];
817 818
	} else {
		struct hlist_head *head;
819
		struct i915_vma *vma;
820

821
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
822
		hlist_for_each_entry(vma, head, exec_node) {
823 824
			if (vma->exec_handle == handle)
				return vma;
825 826 827
		}
		return NULL;
	}
828 829
}

830
static void eb_release_vmas(const struct i915_execbuffer *eb)
831
{
832 833 834 835
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
836 837
		struct i915_vma *vma = eb->vma[i];
		unsigned int flags = eb->flags[i];
838

839
		if (!vma)
840
			break;
841

842 843 844
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
		vma->exec_flags = NULL;
		eb->vma[i] = NULL;
845

846 847
		if (flags & __EXEC_OBJECT_HAS_PIN)
			__eb_unreserve_vma(vma, flags);
848

849
		if (flags & __EXEC_OBJECT_HAS_REF)
850
			i915_vma_put(vma);
851
	}
852 853
}

854
static void eb_reset_vmas(const struct i915_execbuffer *eb)
855
{
856
	eb_release_vmas(eb);
857
	if (eb->lut_size > 0)
858 859
		memset(eb->buckets, 0,
		       sizeof(struct hlist_head) << eb->lut_size);
860 861
}

862
static void eb_destroy(const struct i915_execbuffer *eb)
863
{
864 865
	GEM_BUG_ON(eb->reloc_cache.rq);

866
	if (eb->lut_size > 0)
867
		kfree(eb->buckets);
868 869
}

870
static inline u64
871
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
872
		  const struct i915_vma *target)
873
{
874
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
875 876
}

877 878
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
879
{
880
	cache->page = -1;
881
	cache->vaddr = 0;
882
	/* Must be a variable in the struct to allow GCC to unroll. */
883
	cache->gen = INTEL_GEN(i915);
884
	cache->has_llc = HAS_LLC(i915);
885
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
886 887
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
888
	cache->node.allocated = false;
889 890
	cache->rq = NULL;
	cache->rq_size = 0;
891
}
892

893 894 895 896 897 898 899 900
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
901 902
}

903 904
#define KMAP 0x4 /* after CLFLUSH_FLAGS */

905 906 907 908 909 910 911
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

912 913 914 915 916 917 918
static void reloc_gpu_flush(struct reloc_cache *cache)
{
	GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
	i915_gem_object_unpin_map(cache->rq->batch->obj);
	i915_gem_chipset_flush(cache->rq->i915);

919
	__i915_request_add(cache->rq, true);
920 921 922
	cache->rq = NULL;
}

923
static void reloc_cache_reset(struct reloc_cache *cache)
924
{
925
	void *vaddr;
926

927 928 929
	if (cache->rq)
		reloc_gpu_flush(cache);

930 931
	if (!cache->vaddr)
		return;
932

933 934 935 936
	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();
937

938 939 940
		kunmap_atomic(vaddr);
		i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
	} else {
941
		wmb();
942
		io_mapping_unmap_atomic((void __iomem *)vaddr);
943
		if (cache->node.allocated) {
944
			struct i915_ggtt *ggtt = cache_to_ggtt(cache);
945

946 947 948
			ggtt->vm.clear_range(&ggtt->vm,
					     cache->node.start,
					     cache->node.size);
949 950 951
			drm_mm_remove_node(&cache->node);
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
952
		}
953
	}
954 955 956

	cache->vaddr = 0;
	cache->page = -1;
957 958 959 960
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
961
			unsigned long page)
962
{
963 964 965 966 967 968
	void *vaddr;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
969
		int err;
970

971 972 973
		err = i915_gem_obj_prepare_shmem_write(obj, &flushes);
		if (err)
			return ERR_PTR(err);
974 975 976

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
977

978 979 980 981
		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
982 983
	}

984 985
	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
986
	cache->page = page;
987

988
	return vaddr;
989 990
}

991 992
static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
993
			 unsigned long page)
994
{
995
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
996
	unsigned long offset;
997
	void *vaddr;
998

999
	if (cache->vaddr) {
1000
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1001 1002
	} else {
		struct i915_vma *vma;
1003
		int err;
1004

1005
		if (use_cpu_reloc(cache, obj))
1006
			return NULL;
1007

1008 1009 1010
		err = i915_gem_object_set_to_gtt_domain(obj, true);
		if (err)
			return ERR_PTR(err);
1011

1012
		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1013 1014 1015
					       PIN_MAPPABLE |
					       PIN_NONBLOCK |
					       PIN_NONFAULT);
1016 1017
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
1018
			err = drm_mm_insert_node_in_range
1019
				(&ggtt->vm.mm, &cache->node,
1020
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1021
				 0, ggtt->mappable_end,
1022
				 DRM_MM_INSERT_LOW);
1023
			if (err) /* no inactive aperture space, use cpu reloc */
1024
				return NULL;
1025
		} else {
1026 1027
			err = i915_vma_put_fence(vma);
			if (err) {
1028
				i915_vma_unpin(vma);
1029
				return ERR_PTR(err);
1030
			}
1031

1032 1033
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
1034
		}
1035
	}
1036

1037 1038
	offset = cache->node.start;
	if (cache->node.allocated) {
1039
		wmb();
1040 1041 1042
		ggtt->vm.insert_page(&ggtt->vm,
				     i915_gem_object_get_dma_address(obj, page),
				     offset, I915_CACHE_NONE, 0);
1043 1044
	} else {
		offset += page << PAGE_SHIFT;
1045 1046
	}

1047
	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1048
							 offset);
1049 1050
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;
1051

1052
	return vaddr;
1053 1054
}

1055 1056
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1057
			 unsigned long page)
1058
{
1059
	void *vaddr;
1060

1061 1062 1063 1064 1065 1066 1067 1068
	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
1069 1070
	}

1071
	return vaddr;
1072 1073
}

1074
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1075
{
1076 1077 1078 1079 1080
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}
1081

1082
		*addr = value;
1083

1084 1085
		/*
		 * Writes to the same cacheline are serialised by the CPU
1086 1087 1088 1089 1090 1091 1092 1093 1094
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
1095 1096
}

1097 1098 1099 1100 1101 1102
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
			     struct i915_vma *vma,
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	struct drm_i915_gem_object *obj;
1103
	struct i915_request *rq;
1104 1105 1106 1107
	struct i915_vma *batch;
	u32 *cmd;
	int err;

1108
	GEM_BUG_ON(vma->obj->write_domain & I915_GEM_DOMAIN_CPU);
1109 1110 1111 1112 1113 1114

	obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, PAGE_SIZE);
	if (IS_ERR(obj))
		return PTR_ERR(obj);

	cmd = i915_gem_object_pin_map(obj,
1115 1116 1117
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
	i915_gem_object_unpin_pages(obj);
	if (IS_ERR(cmd))
		return PTR_ERR(cmd);

	err = i915_gem_object_set_to_wc_domain(obj, false);
	if (err)
		goto err_unmap;

	batch = i915_vma_instance(obj, vma->vm, NULL);
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

1136
	rq = i915_request_alloc(eb->engine, eb->ctx);
1137 1138 1139 1140 1141
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

1142
	err = i915_request_await_object(rq, vma->obj, true);
1143 1144 1145 1146 1147 1148 1149 1150 1151
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
		goto err_request;

1152
	GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch->resv, true));
1153
	i915_vma_move_to_active(batch, rq, 0);
1154 1155 1156
	reservation_object_lock(batch->resv, NULL);
	reservation_object_add_excl_fence(batch->resv, &rq->fence);
	reservation_object_unlock(batch->resv);
1157 1158
	i915_vma_unpin(batch);

1159
	i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1160 1161 1162
	reservation_object_lock(vma->resv, NULL);
	reservation_object_add_excl_fence(vma->resv, &rq->fence);
	reservation_object_unlock(vma->resv);
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173

	rq->batch = batch;

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;

	/* Return with batch mapping (cmd) still pinned */
	return 0;

err_request:
1174
	i915_request_add(rq);
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
	i915_gem_object_unpin_map(obj);
	return err;
}

static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
		reloc_gpu_flush(cache);

	if (unlikely(!cache->rq)) {
		int err;

1195 1196 1197 1198
		/* If we need to copy for the cmdparser, we will stall anyway */
		if (eb_use_cmdparser(eb))
			return ERR_PTR(-EWOULDBLOCK);

1199 1200 1201
		if (!intel_engine_can_store_dword(eb->engine))
			return ERR_PTR(-ENODEV);

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
		err = __reloc_gpu_alloc(eb, vma, len);
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1213 1214
static u64
relocate_entry(struct i915_vma *vma,
1215
	       const struct drm_i915_gem_relocation_entry *reloc,
1216 1217
	       struct i915_execbuffer *eb,
	       const struct i915_vma *target)
1218
{
1219
	u64 offset = reloc->offset;
1220 1221
	u64 target_offset = relocation_target(reloc, target);
	bool wide = eb->reloc_cache.use_64bit_reloc;
1222
	void *vaddr;
1223

1224 1225
	if (!eb->reloc_cache.vaddr &&
	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1226
	     !reservation_object_test_signaled_rcu(vma->resv, true))) {
1227 1228 1229 1230 1231 1232 1233 1234 1235
		const unsigned int gen = eb->reloc_cache.gen;
		unsigned int len;
		u32 *batch;
		u64 addr;

		if (wide)
			len = offset & 7 ? 8 : 5;
		else if (gen >= 4)
			len = 4;
1236
		else
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
			len = 3;

		batch = reloc_gpu(eb, vma, len);
		if (IS_ERR(batch))
			goto repeat;

		addr = gen8_canonical_addr(vma->node.start + offset);
		if (wide) {
			if (offset & 7) {
				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);

				addr = gen8_canonical_addr(addr + 4);

				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = upper_32_bits(target_offset);
			} else {
				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);
				*batch++ = upper_32_bits(target_offset);
			}
		} else if (gen >= 6) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else if (gen >= 4) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else {
			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
			*batch++ = addr;
			*batch++ = target_offset;
		}

		goto out;
	}

1283
repeat:
1284
	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1285 1286 1287 1288 1289
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_offset),
1290
			eb->reloc_cache.vaddr);
1291 1292 1293 1294 1295 1296

	if (wide) {
		offset += sizeof(u32);
		target_offset >>= 32;
		wide = false;
		goto repeat;
1297 1298
	}

1299
out:
1300
	return target->node.start | UPDATE;
1301 1302
}

1303 1304 1305 1306
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
		  struct i915_vma *vma,
		  const struct drm_i915_gem_relocation_entry *reloc)
1307
{
1308
	struct i915_vma *target;
1309
	int err;
1310

1311
	/* we've already hold a reference to all valid objects */
1312 1313
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1314
		return -ENOENT;
1315

1316
	/* Validate that the target is in a valid r/w GPU domain */
1317
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1318
		DRM_DEBUG("reloc with multiple write domains: "
1319
			  "target %d offset %d "
1320
			  "read %08x write %08x",
1321
			  reloc->target_handle,
1322 1323 1324
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1325
		return -EINVAL;
1326
	}
1327 1328
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1329
		DRM_DEBUG("reloc with read/write non-GPU domains: "
1330
			  "target %d offset %d "
1331
			  "read %08x write %08x",
1332
			  reloc->target_handle,
1333 1334 1335
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1336
		return -EINVAL;
1337 1338
	}

1339
	if (reloc->write_domain) {
1340
		*target->exec_flags |= EXEC_OBJECT_WRITE;
1341

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
		    IS_GEN6(eb->i915)) {
			err = i915_vma_bind(target, target->obj->cache_level,
					    PIN_GLOBAL);
			if (WARN_ONCE(err,
				      "Unexpected failure to bind target VMA!"))
				return err;
		}
1356
	}
1357

1358 1359
	/*
	 * If the relocation already has the right value in it, no
1360 1361
	 * more work needs to be done.
	 */
1362 1363
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1364
		return 0;
1365 1366

	/* Check that the relocation address is valid... */
1367
	if (unlikely(reloc->offset >
1368
		     vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1369
		DRM_DEBUG("Relocation beyond object bounds: "
1370 1371 1372 1373
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
			  (int)vma->size);
1374
		return -EINVAL;
1375
	}
1376
	if (unlikely(reloc->offset & 3)) {
1377
		DRM_DEBUG("Relocation not 4-byte aligned: "
1378 1379 1380
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1381
		return -EINVAL;
1382 1383
	}

1384 1385 1386 1387 1388 1389
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1390
	 * out of our synchronisation.
1391
	 */
1392
	*vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1393

1394
	/* and update the user's relocation entry */
1395
	return relocate_entry(vma, reloc, eb, target);
1396 1397
}

1398
static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1399
{
1400
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1401 1402
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
	struct drm_i915_gem_relocation_entry __user *urelocs;
1403
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1404
	unsigned int remain;
1405

1406
	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1407
	remain = entry->relocation_count;
1408 1409
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
		return -EINVAL;
1410

1411 1412 1413 1414 1415
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1416
	if (unlikely(!access_ok(VERIFY_READ, urelocs, remain*sizeof(*urelocs))))
1417 1418 1419 1420 1421 1422 1423
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
			min_t(unsigned int, remain, ARRAY_SIZE(stack));
		unsigned int copied;
1424

1425 1426
		/*
		 * This is the fast path and we cannot handle a pagefault
1427 1428 1429 1430 1431 1432 1433
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
		pagefault_disable();
1434
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1435
		pagefault_enable();
1436 1437
		if (unlikely(copied)) {
			remain = -EFAULT;
1438 1439
			goto out;
		}
1440

1441
		remain -= count;
1442
		do {
1443
			u64 offset = eb_relocate_entry(eb, vma, r);
1444

1445 1446 1447
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
				remain = (int)offset;
1448
				goto out;
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
				__put_user(offset,
					   &urelocs[r-stack].presumed_offset);
1474
			}
1475 1476 1477
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1478
out:
1479
	reloc_cache_reset(&eb->reloc_cache);
1480
	return remain;
1481 1482 1483
}

static int
1484
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1485
{
1486
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1487 1488 1489 1490
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
	int err;
1491 1492

	for (i = 0; i < entry->relocation_count; i++) {
1493
		u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1494

1495 1496 1497 1498
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1499
	}
1500 1501 1502 1503
	err = 0;
err:
	reloc_cache_reset(&eb->reloc_cache);
	return err;
1504 1505
}

1506
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1507
{
1508 1509 1510
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1511

1512 1513 1514
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1515

1516 1517
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1518

1519 1520 1521 1522
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
	if (!access_ok(VERIFY_READ, addr, size))
		return -EFAULT;
1523

1524 1525 1526 1527 1528
	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
1529
	}
1530
	return __get_user(c, end - 1);
1531
}
1532

1533
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1534
{
1535 1536 1537
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1538

1539 1540 1541 1542 1543 1544
	for (i = 0; i < count; i++) {
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		struct drm_i915_gem_relocation_entry *relocs;
		unsigned long size;
		unsigned long copied;
1545

1546 1547
		if (nreloc == 0)
			continue;
1548

1549 1550 1551
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1552

1553 1554
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1555

1556
		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1557 1558 1559 1560 1561
		if (!relocs) {
			kvfree(relocs);
			err = -ENOMEM;
			goto err;
		}
1562

1563 1564 1565 1566 1567 1568 1569
		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
1570
					     (char __user *)urelocs + copied,
1571 1572 1573 1574 1575
					     len)) {
				kvfree(relocs);
				err = -EFAULT;
				goto err;
			}
1576

1577 1578
			copied += len;
		} while (copied < size);
1579

1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
		user_access_begin();
		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
end_user:
		user_access_end();
1597

1598 1599
		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}
1600

1601
	return 0;
1602

1603 1604 1605 1606 1607 1608 1609 1610
err:
	while (i--) {
		struct drm_i915_gem_relocation_entry *relocs =
			u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
1611 1612
}

1613
static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1614
{
1615 1616
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1617

1618
	if (unlikely(i915_modparams.prefault_disable))
1619
		return 0;
1620

1621 1622
	for (i = 0; i < count; i++) {
		int err;
1623

1624 1625 1626 1627
		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}
1628

1629
	return 0;
1630 1631
}

1632
static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1633
{
1634
	struct drm_device *dev = &eb->i915->drm;
1635
	bool have_copy = false;
1636
	struct i915_vma *vma;
1637 1638 1639 1640 1641 1642 1643
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
	}
1644

1645
	/* We may process another execbuffer during the unlock... */
1646
	eb_reset_vmas(eb);
1647 1648
	mutex_unlock(&dev->struct_mutex);

1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
1670
	}
1671 1672 1673
	if (err) {
		mutex_lock(&dev->struct_mutex);
		goto out;
1674 1675
	}

1676 1677 1678
	/* A frequent cause for EAGAIN are currently unavailable client pages */
	flush_workqueue(eb->i915->mm.userptr_wq);

1679 1680
	err = i915_mutex_lock_interruptible(dev);
	if (err) {
1681
		mutex_lock(&dev->struct_mutex);
1682
		goto out;
1683 1684
	}

1685
	/* reacquire the objects */
1686 1687
	err = eb_lookup_vmas(eb);
	if (err)
1688
		goto err;
1689

1690 1691
	GEM_BUG_ON(!eb->batch);

1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
	list_for_each_entry(vma, &eb->relocs, reloc_link) {
		if (!have_copy) {
			pagefault_disable();
			err = eb_relocate_vma(eb, vma);
			pagefault_enable();
			if (err)
				goto repeat;
		} else {
			err = eb_relocate_vma_slow(eb, vma);
			if (err)
				goto err;
		}
1704 1705
	}

1706 1707
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
1708 1709 1710 1711 1712 1713
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

1735
	return err;
1736 1737
}

1738
static int eb_relocate(struct i915_execbuffer *eb)
1739
{
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
	if (eb_lookup_vmas(eb))
		goto slow;

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
		struct i915_vma *vma;

		list_for_each_entry(vma, &eb->relocs, reloc_link) {
			if (eb_relocate_vma(eb, vma))
				goto slow;
		}
	}

	return 0;

slow:
	return eb_relocate_slow(eb);
}

1759
static void eb_export_fence(struct i915_vma *vma,
1760
			    struct i915_request *rq,
1761 1762
			    unsigned int flags)
{
1763
	struct reservation_object *resv = vma->resv;
1764 1765 1766 1767 1768 1769 1770 1771

	/*
	 * Ignore errors from failing to allocate the new fence, we can't
	 * handle an error right now. Worst case should be missed
	 * synchronisation leading to rendering corruption.
	 */
	reservation_object_lock(resv, NULL);
	if (flags & EXEC_OBJECT_WRITE)
1772
		reservation_object_add_excl_fence(resv, &rq->fence);
1773
	else if (reservation_object_reserve_shared(resv) == 0)
1774
		reservation_object_add_shared_fence(resv, &rq->fence);
1775 1776 1777 1778 1779 1780 1781 1782
	reservation_object_unlock(resv);
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1783

1784
	for (i = 0; i < count; i++) {
1785 1786
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];
1787
		struct drm_i915_gem_object *obj = vma->obj;
1788

1789
		if (flags & EXEC_OBJECT_CAPTURE) {
1790
			struct i915_capture_list *capture;
1791 1792 1793 1794 1795

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
			if (unlikely(!capture))
				return -ENOMEM;

1796
			capture->next = eb->request->capture_list;
1797
			capture->vma = eb->vma[i];
1798
			eb->request->capture_list = capture;
1799 1800
		}

1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1814
			if (i915_gem_clflush_object(obj, 0))
1815
				flags &= ~EXEC_OBJECT_ASYNC;
1816 1817
		}

1818 1819
		if (flags & EXEC_OBJECT_ASYNC)
			continue;
1820

1821
		err = i915_request_await_object
1822
			(eb->request, obj, flags & EXEC_OBJECT_WRITE);
1823 1824 1825 1826 1827
		if (err)
			return err;
	}

	for (i = 0; i < count; i++) {
1828 1829 1830 1831 1832
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];

		i915_vma_move_to_active(vma, eb->request, flags);
		eb_export_fence(vma, eb->request, flags);
1833

1834 1835 1836 1837
		__eb_unreserve_vma(vma, flags);
		vma->exec_flags = NULL;

		if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1838
			i915_vma_put(vma);
1839
	}
1840
	eb->exec = NULL;
1841

1842
	/* Unconditionally flush any chipset caches (for streaming writes). */
1843
	i915_gem_chipset_flush(eb->i915);
1844

1845
	return 0;
1846 1847
}

1848
static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1849
{
1850
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1851 1852
		return false;

C
Chris Wilson 已提交
1853
	/* Kernel clipping was a DRI1 misfeature */
1854 1855 1856 1857
	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
		if (exec->num_cliprects || exec->cliprects_ptr)
			return false;
	}
C
Chris Wilson 已提交
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
		return false;

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
		return false;

	return true;
1870 1871
}

1872
void i915_vma_move_to_active(struct i915_vma *vma,
1873
			     struct i915_request *rq,
1874 1875 1876
			     unsigned int flags)
{
	struct drm_i915_gem_object *obj = vma->obj;
1877
	const unsigned int idx = rq->engine->id;
1878

1879
	lockdep_assert_held(&rq->i915->drm.struct_mutex);
1880 1881
	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));

1882 1883
	/*
	 * Add a reference if we're newly entering the active list.
1884 1885 1886 1887 1888 1889
	 * The order in which we add operations to the retirement queue is
	 * vital here: mark_active adds to the start of the callback list,
	 * such that subsequent callbacks are called first. Therefore we
	 * add the active reference first and queue for it to be dropped
	 * *last*.
	 */
1890 1891 1892
	if (!i915_vma_is_active(vma))
		obj->active_count++;
	i915_vma_set_active(vma, idx);
1893
	i915_gem_active_set(&vma->last_read[idx], rq);
1894
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
1895

1896
	obj->write_domain = 0;
1897
	if (flags & EXEC_OBJECT_WRITE) {
1898
		obj->write_domain = I915_GEM_DOMAIN_RENDER;
1899

1900
		if (intel_fb_obj_invalidate(obj, ORIGIN_CS))
1901
			i915_gem_active_set(&obj->frontbuffer_write, rq);
1902

1903
		obj->read_domains = 0;
1904
	}
1905
	obj->read_domains |= I915_GEM_GPU_DOMAINS;
1906

1907
	if (flags & EXEC_OBJECT_NEEDS_FENCE)
1908
		i915_gem_active_set(&vma->last_fence, rq);
1909 1910
}

1911
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1912
{
1913 1914
	u32 *cs;
	int i;
1915

1916
	if (!IS_GEN7(rq->i915) || rq->engine->id != RCS) {
1917 1918 1919
		DRM_DEBUG("sol reset is gen7/rcs only\n");
		return -EINVAL;
	}
1920

1921
	cs = intel_ring_begin(rq, 4 * 2 + 2);
1922 1923
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1924

1925
	*cs++ = MI_LOAD_REGISTER_IMM(4);
1926
	for (i = 0; i < 4; i++) {
1927 1928
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
1929
	}
1930
	*cs++ = MI_NOOP;
1931
	intel_ring_advance(rq, cs);
1932 1933 1934 1935

	return 0;
}

1936
static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
1937 1938
{
	struct drm_i915_gem_object *shadow_batch_obj;
1939
	struct i915_vma *vma;
1940
	int err;
1941

1942 1943
	shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool,
						   PAGE_ALIGN(eb->batch_len));
1944
	if (IS_ERR(shadow_batch_obj))
1945
		return ERR_CAST(shadow_batch_obj);
1946

1947
	err = intel_engine_cmd_parser(eb->engine,
1948
				      eb->batch->obj,
1949
				      shadow_batch_obj,
1950 1951
				      eb->batch_start_offset,
				      eb->batch_len,
1952
				      is_master);
1953 1954
	if (err) {
		if (err == -EACCES) /* unhandled chained batch */
C
Chris Wilson 已提交
1955 1956
			vma = NULL;
		else
1957
			vma = ERR_PTR(err);
C
Chris Wilson 已提交
1958 1959
		goto out;
	}
1960

C
Chris Wilson 已提交
1961 1962 1963
	vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
	if (IS_ERR(vma))
		goto out;
C
Chris Wilson 已提交
1964

1965 1966 1967 1968 1969
	eb->vma[eb->buffer_count] = i915_vma_get(vma);
	eb->flags[eb->buffer_count] =
		__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
	vma->exec_flags = &eb->flags[eb->buffer_count];
	eb->buffer_count++;
1970

C
Chris Wilson 已提交
1971
out:
C
Chris Wilson 已提交
1972
	i915_gem_object_unpin_pages(shadow_batch_obj);
C
Chris Wilson 已提交
1973
	return vma;
1974
}
1975

1976
static void
1977
add_to_client(struct i915_request *rq, struct drm_file *file)
1978
{
1979 1980
	rq->file_priv = file->driver_priv;
	list_add_tail(&rq->client_link, &rq->file_priv->mm.request_list);
1981 1982
}

1983
static int eb_submit(struct i915_execbuffer *eb)
1984
{
1985
	int err;
1986

1987 1988 1989
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
1990

1991
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
1992 1993 1994
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
1995 1996
	}

1997
	err = eb->engine->emit_bb_start(eb->request,
1998 1999 2000
					eb->batch->node.start +
					eb->batch_start_offset,
					eb->batch_len,
2001 2002 2003
					eb->batch_flags);
	if (err)
		return err;
2004

C
Chris Wilson 已提交
2005
	return 0;
2006 2007
}

2008
/*
2009
 * Find one BSD ring to dispatch the corresponding BSD command.
2010
 * The engine index is returned.
2011
 */
2012
static unsigned int
2013 2014
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
2015 2016 2017
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

2018
	/* Check whether the file_priv has already selected one ring. */
2019 2020 2021
	if ((int)file_priv->bsd_engine < 0)
		file_priv->bsd_engine = atomic_fetch_xor(1,
			 &dev_priv->mm.bsd_engine_dispatch_index);
2022

2023
	return file_priv->bsd_engine;
2024 2025
}

2026 2027
#define I915_USER_RINGS (4)

2028
static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
2029 2030 2031 2032 2033 2034 2035
	[I915_EXEC_DEFAULT]	= RCS,
	[I915_EXEC_RENDER]	= RCS,
	[I915_EXEC_BLT]		= BCS,
	[I915_EXEC_BSD]		= VCS,
	[I915_EXEC_VEBOX]	= VECS
};

2036 2037 2038 2039
static struct intel_engine_cs *
eb_select_engine(struct drm_i915_private *dev_priv,
		 struct drm_file *file,
		 struct drm_i915_gem_execbuffer2 *args)
2040 2041
{
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2042
	struct intel_engine_cs *engine;
2043 2044 2045

	if (user_ring_id > I915_USER_RINGS) {
		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
2046
		return NULL;
2047 2048 2049 2050 2051 2052
	}

	if ((user_ring_id != I915_EXEC_BSD) &&
	    ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
		DRM_DEBUG("execbuf with non bsd ring but with invalid "
			  "bsd dispatch flags: %d\n", (int)(args->flags));
2053
		return NULL;
2054 2055 2056 2057 2058 2059
	}

	if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2060
			bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
2061 2062
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2063
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2064 2065 2066 2067
			bsd_idx--;
		} else {
			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
				  bsd_idx);
2068
			return NULL;
2069 2070
		}

2071
		engine = dev_priv->engine[_VCS(bsd_idx)];
2072
	} else {
2073
		engine = dev_priv->engine[user_ring_map[user_ring_id]];
2074 2075
	}

2076
	if (!engine) {
2077
		DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
2078
		return NULL;
2079 2080
	}

2081
	return engine;
2082 2083
}

2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
static void
__free_fence_array(struct drm_syncobj **fences, unsigned int n)
{
	while (n--)
		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
	kvfree(fences);
}

static struct drm_syncobj **
get_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_file *file)
{
2096
	const unsigned long nfences = args->num_cliprects;
2097 2098
	struct drm_i915_gem_exec_fence __user *user;
	struct drm_syncobj **fences;
2099
	unsigned long n;
2100 2101 2102 2103 2104
	int err;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return NULL;

2105 2106 2107 2108 2109
	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (nfences > min_t(unsigned long,
			    ULONG_MAX / sizeof(*user),
			    SIZE_MAX / sizeof(*fences)))
2110 2111 2112
		return ERR_PTR(-EINVAL);

	user = u64_to_user_ptr(args->cliprects_ptr);
2113
	if (!access_ok(VERIFY_READ, user, nfences * sizeof(*user)))
2114 2115
		return ERR_PTR(-EFAULT);

2116
	fences = kvmalloc_array(nfences, sizeof(*fences),
2117
				__GFP_NOWARN | GFP_KERNEL);
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
	if (!fences)
		return ERR_PTR(-ENOMEM);

	for (n = 0; n < nfences; n++) {
		struct drm_i915_gem_exec_fence fence;
		struct drm_syncobj *syncobj;

		if (__copy_from_user(&fence, user++, sizeof(fence))) {
			err = -EFAULT;
			goto err;
		}

2130 2131 2132 2133 2134
		if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
			err = -EINVAL;
			goto err;
		}

2135 2136 2137 2138 2139 2140 2141
		syncobj = drm_syncobj_find(file, fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			err = -ENOENT;
			goto err;
		}

2142 2143 2144
		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
	}

	return fences;

err:
	__free_fence_array(fences, n);
	return ERR_PTR(err);
}

static void
put_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_syncobj **fences)
{
	if (fences)
		__free_fence_array(fences, args->num_cliprects);
}

static int
await_fence_array(struct i915_execbuffer *eb,
		  struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	unsigned int n;
	int err;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		struct dma_fence *fence;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_WAIT))
			continue;

J
Jason Ekstrand 已提交
2180
		fence = drm_syncobj_fence_get(syncobj);
2181 2182 2183
		if (!fence)
			return -EINVAL;

2184
		err = i915_request_await_dma_fence(eb->request, fence);
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
		dma_fence_put(fence);
		if (err < 0)
			return err;
	}

	return 0;
}

static void
signal_fence_array(struct i915_execbuffer *eb,
		   struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

		drm_syncobj_replace_fence(syncobj, fence);
	}
}

2213
static int
2214
i915_gem_do_execbuffer(struct drm_device *dev,
2215 2216
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2217 2218
		       struct drm_i915_gem_exec_object2 *exec,
		       struct drm_syncobj **fences)
2219
{
2220
	struct i915_execbuffer eb;
2221 2222 2223
	struct dma_fence *in_fence = NULL;
	struct sync_file *out_fence = NULL;
	int out_fence_fd = -1;
2224
	int err;
2225

2226
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2227 2228
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2229

2230 2231 2232
	eb.i915 = to_i915(dev);
	eb.file = file;
	eb.args = args;
2233
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2234
		args->flags |= __EXEC_HAS_RELOC;
2235

2236
	eb.exec = exec;
2237 2238
	eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
	eb.vma[0] = NULL;
2239 2240
	eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);

2241 2242 2243
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
	if (USES_FULL_PPGTT(eb.i915))
		eb.invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
2244 2245
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2246
	eb.buffer_count = args->buffer_count;
2247 2248 2249
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;

2250
	eb.batch_flags = 0;
2251
	if (args->flags & I915_EXEC_SECURE) {
2252
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2253 2254
		    return -EPERM;

2255
		eb.batch_flags |= I915_DISPATCH_SECURE;
2256
	}
2257
	if (args->flags & I915_EXEC_IS_PINNED)
2258
		eb.batch_flags |= I915_DISPATCH_PINNED;
2259

2260 2261
	eb.engine = eb_select_engine(eb.i915, file, args);
	if (!eb.engine)
2262 2263
		return -EINVAL;

2264
	if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
2265
		if (!HAS_RESOURCE_STREAMER(eb.i915)) {
2266 2267 2268
			DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
			return -EINVAL;
		}
2269
		if (eb.engine->id != RCS) {
2270
			DRM_DEBUG("RS is not available on %s\n",
2271
				 eb.engine->name);
2272 2273 2274
			return -EINVAL;
		}

2275
		eb.batch_flags |= I915_DISPATCH_RS;
2276 2277
	}

2278 2279
	if (args->flags & I915_EXEC_FENCE_IN) {
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2280 2281
		if (!in_fence)
			return -EINVAL;
2282 2283 2284 2285 2286
	}

	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
2287
			err = out_fence_fd;
2288
			goto err_in_fence;
2289 2290 2291
		}
	}

2292 2293 2294 2295 2296
	err = eb_create(&eb);
	if (err)
		goto err_out_fence;

	GEM_BUG_ON(!eb.lut_size);
2297

2298 2299 2300 2301
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

2302 2303
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
2304 2305 2306 2307 2308
	 * we expect to access the hardware fairly frequently in the
	 * process. Upon first dispatch, we acquire another prolonged
	 * wakeref that we hold until the GPU has been idle for at least
	 * 100ms.
	 */
2309
	intel_runtime_pm_get(eb.i915);
2310

2311 2312 2313
	err = i915_mutex_lock_interruptible(dev);
	if (err)
		goto err_rpm;
2314

2315
	err = eb_relocate(&eb);
2316
	if (err) {
2317 2318 2319 2320 2321 2322 2323 2324 2325
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
2326
	}
2327

2328
	if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2329
		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2330 2331
		err = -EINVAL;
		goto err_vma;
2332
	}
2333 2334
	if (eb.batch_start_offset > eb.batch->size ||
	    eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2335
		DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2336 2337
		err = -EINVAL;
		goto err_vma;
2338
	}
2339

2340
	if (eb_use_cmdparser(&eb)) {
2341 2342
		struct i915_vma *vma;

2343
		vma = eb_parse(&eb, drm_is_current_master(file));
2344
		if (IS_ERR(vma)) {
2345 2346
			err = PTR_ERR(vma);
			goto err_vma;
2347
		}
2348

2349
		if (vma) {
2350 2351 2352 2353 2354 2355 2356 2357 2358
			/*
			 * Batch parsed and accepted:
			 *
			 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
			 * bit from MI_BATCH_BUFFER_START commands issued in
			 * the dispatch_execbuffer implementations. We
			 * specifically don't want that set on batches the
			 * command parser has accepted.
			 */
2359
			eb.batch_flags |= I915_DISPATCH_SECURE;
2360 2361
			eb.batch_start_offset = 0;
			eb.batch = vma;
2362
		}
2363 2364
	}

2365 2366
	if (eb.batch_len == 0)
		eb.batch_len = eb.batch->size - eb.batch_start_offset;
2367

2368 2369
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2370
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2371
	 * hsw should have this fixed, but bdw mucks it up again. */
2372
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2373
		struct i915_vma *vma;
2374

2375 2376 2377 2378 2379 2380
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2381
		 *   so we don't really have issues with multiple objects not
2382 2383 2384
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2385
		vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2386
		if (IS_ERR(vma)) {
2387 2388
			err = PTR_ERR(vma);
			goto err_vma;
C
Chris Wilson 已提交
2389
		}
2390

2391
		eb.batch = vma;
2392
	}
2393

2394 2395 2396
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

2397
	/* Allocate a request for this batch buffer nice and early. */
2398
	eb.request = i915_request_alloc(eb.engine, eb.ctx);
2399
	if (IS_ERR(eb.request)) {
2400
		err = PTR_ERR(eb.request);
2401
		goto err_batch_unpin;
2402
	}
2403

2404
	if (in_fence) {
2405
		err = i915_request_await_dma_fence(eb.request, in_fence);
2406
		if (err < 0)
2407 2408 2409
			goto err_request;
	}

2410 2411 2412 2413 2414 2415
	if (fences) {
		err = await_fence_array(&eb, fences);
		if (err)
			goto err_request;
	}

2416
	if (out_fence_fd != -1) {
2417
		out_fence = sync_file_create(&eb.request->fence);
2418
		if (!out_fence) {
2419
			err = -ENOMEM;
2420 2421 2422 2423
			goto err_request;
		}
	}

2424 2425
	/*
	 * Whilst this request exists, batch_obj will be on the
2426 2427 2428 2429 2430
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2431
	eb.request->batch = eb.batch;
2432

2433
	trace_i915_request_queue(eb.request, eb.batch_flags);
2434
	err = eb_submit(&eb);
2435
err_request:
2436
	__i915_request_add(eb.request, err == 0);
2437
	add_to_client(eb.request, file);
2438

2439 2440 2441
	if (fences)
		signal_fence_array(&eb, fences);

2442
	if (out_fence) {
2443
		if (err == 0) {
2444
			fd_install(out_fence_fd, out_fence->file);
2445
			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2446 2447 2448 2449 2450 2451
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2452

2453
err_batch_unpin:
2454
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2455
		i915_vma_unpin(eb.batch);
2456 2457 2458
err_vma:
	if (eb.exec)
		eb_release_vmas(&eb);
2459
	mutex_unlock(&dev->struct_mutex);
2460
err_rpm:
2461
	intel_runtime_pm_put(eb.i915);
2462 2463
	i915_gem_context_put(eb.ctx);
err_destroy:
2464
	eb_destroy(&eb);
2465
err_out_fence:
2466 2467
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2468
err_in_fence:
2469
	dma_fence_put(in_fence);
2470
	return err;
2471 2472
}

2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
static size_t eb_element_size(void)
{
	return (sizeof(struct drm_i915_gem_exec_object2) +
		sizeof(struct i915_vma *) +
		sizeof(unsigned int));
}

static bool check_buffer_count(size_t count)
{
	const size_t sz = eb_element_size();

	/*
	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
	 * array size (see eb_create()). Otherwise, we can accept an array as
	 * large as can be addressed (though use large arrays at your peril)!
	 */

	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}

2493 2494 2495 2496 2497
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
2498 2499
i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file)
2500 2501 2502 2503 2504
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2505
	const size_t count = args->buffer_count;
2506 2507
	unsigned int i;
	int err;
2508

2509 2510
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2511 2512 2513
		return -EINVAL;
	}

2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

	if (!i915_gem_check_execbuffer(&exec2))
		return -EINVAL;

2528
	/* Copy in the exec list from userland */
2529
	exec_list = kvmalloc_array(count, sizeof(*exec_list),
2530
				   __GFP_NOWARN | GFP_KERNEL);
2531
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2532
				    __GFP_NOWARN | GFP_KERNEL);
2533
	if (exec_list == NULL || exec2_list == NULL) {
2534
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2535
			  args->buffer_count);
M
Michal Hocko 已提交
2536 2537
		kvfree(exec_list);
		kvfree(exec2_list);
2538 2539
		return -ENOMEM;
	}
2540
	err = copy_from_user(exec_list,
2541
			     u64_to_user_ptr(args->buffers_ptr),
2542
			     sizeof(*exec_list) * count);
2543
	if (err) {
2544
		DRM_DEBUG("copy %d exec entries failed %d\n",
2545
			  args->buffer_count, err);
M
Michal Hocko 已提交
2546 2547
		kvfree(exec_list);
		kvfree(exec2_list);
2548 2549 2550 2551 2552 2553 2554 2555 2556
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2557
		if (INTEL_GEN(to_i915(dev)) < 4)
2558 2559 2560 2561 2562
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2563
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2564
	if (exec2.flags & __EXEC_HAS_RELOC) {
2565
		struct drm_i915_gem_exec_object __user *user_exec_list =
2566
			u64_to_user_ptr(args->buffers_ptr);
2567

2568
		/* Copy the new buffer offsets back to the user's exec list. */
2569
		for (i = 0; i < args->buffer_count; i++) {
2570 2571 2572
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2573
			exec2_list[i].offset =
2574 2575 2576 2577 2578
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2579
				break;
2580 2581 2582
		}
	}

M
Michal Hocko 已提交
2583 2584
	kvfree(exec_list);
	kvfree(exec2_list);
2585
	return err;
2586 2587 2588
}

int
2589 2590
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
2591 2592
{
	struct drm_i915_gem_execbuffer2 *args = data;
2593
	struct drm_i915_gem_exec_object2 *exec2_list;
2594
	struct drm_syncobj **fences = NULL;
2595
	const size_t count = args->buffer_count;
2596
	int err;
2597

2598 2599
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2600 2601 2602
		return -EINVAL;
	}

2603 2604 2605 2606
	if (!i915_gem_check_execbuffer(args))
		return -EINVAL;

	/* Allocate an extra slot for use by the command parser */
2607
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2608
				    __GFP_NOWARN | GFP_KERNEL);
2609
	if (exec2_list == NULL) {
2610 2611
		DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
			  count);
2612 2613
		return -ENOMEM;
	}
2614 2615
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
2616 2617
			   sizeof(*exec2_list) * count)) {
		DRM_DEBUG("copy %zd exec entries failed\n", count);
M
Michal Hocko 已提交
2618
		kvfree(exec2_list);
2619 2620 2621
		return -EFAULT;
	}

2622 2623 2624 2625 2626 2627 2628 2629 2630
	if (args->flags & I915_EXEC_FENCE_ARRAY) {
		fences = get_fence_array(args, file);
		if (IS_ERR(fences)) {
			kvfree(exec2_list);
			return PTR_ERR(fences);
		}
	}

	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2631 2632 2633 2634 2635 2636 2637 2638

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
2639
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2640 2641
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
2642

2643 2644
		/* Copy the new buffer offsets back to the user's exec list. */
		user_access_begin();
2645
		for (i = 0; i < args->buffer_count; i++) {
2646 2647 2648
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2649
			exec2_list[i].offset =
2650 2651 2652 2653
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
2654
		}
2655 2656
end_user:
		user_access_end();
2657 2658
	}

2659
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2660
	put_fence_array(args, fences);
M
Michal Hocko 已提交
2661
	kvfree(exec2_list);
2662
	return err;
2663
}