i915_gem_execbuffer.c 70.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright © 2008,2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Chris Wilson <chris@chris-wilson.co.uk>
 *
 */

29 30
#include <linux/dma_remapping.h>
#include <linux/reservation.h>
31
#include <linux/sync_file.h>
32 33
#include <linux/uaccess.h>

34
#include <drm/drmP.h>
35
#include <drm/drm_syncobj.h>
36
#include <drm/i915_drm.h>
37

38
#include "i915_drv.h"
39
#include "i915_gem_clflush.h"
40 41
#include "i915_trace.h"
#include "intel_drv.h"
42
#include "intel_frontbuffer.h"
43

44 45 46 47 48 49
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};
50

51 52 53 54 55 56
#define __EXEC_OBJECT_HAS_REF		BIT(31)
#define __EXEC_OBJECT_HAS_PIN		BIT(30)
#define __EXEC_OBJECT_HAS_FENCE		BIT(29)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(28)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(27)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 27) /* all of the above */
57 58 59 60
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)

#define __EXEC_HAS_RELOC	BIT(31)
#define __EXEC_VALIDATED	BIT(30)
61
#define __EXEC_INTERNAL_FLAGS	(~0u << 30)
62
#define UPDATE			PIN_OFFSET_FIXED
63 64

#define BATCH_OFFSET_BIAS (256*1024)
65

66 67
#define __I915_EXEC_ILLEGAL_FLAGS \
	(__I915_EXEC_UNKNOWN_FLAGS | I915_EXEC_CONSTANTS_MASK)
68

69 70 71 72 73 74 75 76 77
/* Catch emission of unexpected errors for CI! */
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
#undef EINVAL
#define EINVAL ({ \
	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
	22; \
})
#endif

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
 * At the level of talking to the hardware, submitting a batchbuffer for the
 * GPU to execute is to add content to a buffer from which the HW
 * command streamer is reading.
 *
 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 *    Execlists, this command is not placed on the same buffer as the
 *    remaining items.
 *
 * 2. Add a command to invalidate caches to the buffer.
 *
 * 3. Add a batchbuffer start command to the buffer; the start command is
 *    essentially a token together with the GPU address of the batchbuffer
 *    to be executed.
 *
 * 4. Add a pipeline flush to the buffer.
 *
 * 5. Add a memory write command to the buffer to record when the GPU
 *    is done executing the batchbuffer. The memory write writes the
 *    global sequence number of the request, ``i915_request::global_seqno``;
 *    the i915 driver uses the current value in the register to determine
 *    if the GPU has completed the batchbuffer.
 *
 * 6. Add a user interrupt command to the buffer. This command instructs
 *    the GPU to issue an interrupt when the command, pipeline flush and
 *    memory write are completed.
 *
 * 7. Inform the hardware of the additional commands added to the buffer
 *    (by updating the tail pointer).
 *
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

229
struct i915_execbuffer {
230 231 232 233
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
234 235
	struct i915_vma **vma;
	unsigned int *flags;
236 237 238 239 240

	struct intel_engine_cs *engine; /** engine to queue the request to */
	struct i915_gem_context *ctx; /** context for building the request */
	struct i915_address_space *vm; /** GTT and vma for the request */

241
	struct i915_request *request; /** our request to build */
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
	struct i915_vma *batch; /** identity of the batch obj/vma */

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
258
	struct reloc_cache {
259 260 261
		struct drm_mm_node node; /** temporary GTT binding */
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
262
		unsigned int gen; /** Cached value of INTEL_GEN */
263
		bool use_64bit_reloc : 1;
264 265 266
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
267

268
		struct i915_request *rq;
269 270
		u32 *rq_cmd;
		unsigned int rq_size;
271
	} reloc_cache;
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
287 288
};

289
#define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
290

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
/*
 * Used to convert any address to canonical form.
 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
 * addresses to be in a canonical form:
 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
 * canonical form [63:48] == [47]."
 */
#define GEN8_HIGH_ADDRESS_BIT 47
static inline u64 gen8_canonical_addr(u64 address)
{
	return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
}

static inline u64 gen8_noncanonical_addr(u64 address)
{
	return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
}

310 311
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
312
	return intel_engine_needs_cmd_parser(eb->engine) && eb->batch_len;
313 314
}

315
static int eb_create(struct i915_execbuffer *eb)
316
{
317 318
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
319

320 321 322 323 324 325 326 327 328 329 330
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
331
		do {
332
			gfp_t flags;
333 334 335 336 337 338 339

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
340
			flags = GFP_KERNEL;
341 342 343
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

344
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
345
					      flags);
346 347 348 349
			if (eb->buckets)
				break;
		} while (--size);

350 351
		if (unlikely(!size))
			return -ENOMEM;
352

353
		eb->lut_size = size;
354
	} else {
355
		eb->lut_size = -eb->buffer_count;
356
	}
357

358
	return 0;
359 360
}

361 362
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
363 364
		 const struct i915_vma *vma,
		 unsigned int flags)
365 366 367 368 369 370 371
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

372
	if (flags & EXEC_OBJECT_PINNED &&
373 374 375
	    vma->node.start != entry->offset)
		return true;

376
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
377 378 379
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

380
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
381 382 383
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

384 385 386 387
	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
	    !i915_vma_is_map_and_fenceable(vma))
		return true;

388 389 390
	return false;
}

391
static inline bool
392
eb_pin_vma(struct i915_execbuffer *eb,
393
	   const struct drm_i915_gem_exec_object2 *entry,
394 395
	   struct i915_vma *vma)
{
396 397
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
398

399
	if (vma->node.size)
400
		pin_flags = vma->node.start;
401
	else
402
		pin_flags = entry->offset & PIN_OFFSET_MASK;
403

404 405 406
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
		pin_flags |= PIN_GLOBAL;
407

408 409
	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
		return false;
410

411
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
412
		if (unlikely(i915_vma_pin_fence(vma))) {
413
			i915_vma_unpin(vma);
414
			return false;
415 416
		}

417
		if (vma->fence)
418
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
419 420
	}

421 422
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	return !eb_vma_misplaced(entry, vma, exec_flags);
423 424
}

425
static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
426
{
427
	GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
428

429
	if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
430
		__i915_vma_unpin_fence(vma);
431

432
	__i915_vma_unpin(vma);
433 434
}

435
static inline void
436
eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
437
{
438
	if (!(*flags & __EXEC_OBJECT_HAS_PIN))
439
		return;
440

441 442
	__eb_unreserve_vma(vma, *flags);
	*flags &= ~__EXEC_OBJECT_RESERVED;
443 444
}

445 446 447 448
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
449
{
450 451
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
452

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
	if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
		     entry->offset != gen8_canonical_addr(entry->offset & PAGE_MASK)))
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
470 471
	}

472
	if (unlikely(vma->exec_flags)) {
473 474 475 476 477 478 479 480 481 482 483 484
		DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
			  entry->handle, (int)(entry - eb->exec));
		return -EINVAL;
	}

	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

485 486 487 488 489 490 491 492 493 494 495 496
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

497
	return 0;
498 499
}

500
static int
501 502 503
eb_add_vma(struct i915_execbuffer *eb,
	   unsigned int i, unsigned batch_idx,
	   struct i915_vma *vma)
504
{
505
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
506 507 508 509 510 511 512 513
	int err;

	GEM_BUG_ON(i915_vma_is_closed(vma));

	if (!(eb->args->flags & __EXEC_VALIDATED)) {
		err = eb_validate_vma(eb, entry, vma);
		if (unlikely(err))
			return err;
514 515
	}

516
	if (eb->lut_size > 0) {
517
		vma->exec_handle = entry->handle;
518
		hlist_add_head(&vma->exec_node,
519 520
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
521
	}
522

523 524 525 526 527 528 529 530 531
	if (entry->relocation_count)
		list_add_tail(&vma->reloc_link, &eb->relocs);

	/*
	 * Stash a pointer from the vma to execobj, so we can query its flags,
	 * size, alignment etc as provided by the user. Also we stash a pointer
	 * to the vma inside the execobj so that we can use a direct lookup
	 * to find the right target VMA when doing relocations.
	 */
532
	eb->vma[i] = vma;
533
	eb->flags[i] = entry->flags;
534
	vma->exec_flags = &eb->flags[i];
535

536 537 538 539 540 541 542 543 544 545
	/*
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
	 */
	if (i == batch_idx) {
546 547
		if (entry->relocation_count &&
		    !(eb->flags[i] & EXEC_OBJECT_PINNED))
548 549 550 551 552 553 554
			eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
		if (eb->reloc_cache.has_fence)
			eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;

		eb->batch = vma;
	}

555
	err = 0;
556
	if (eb_pin_vma(eb, entry, vma)) {
557 558 559 560
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
561 562 563 564 565 566
	} else {
		eb_unreserve_vma(vma, vma->exec_flags);

		list_add_tail(&vma->exec_link, &eb->unbound);
		if (drm_mm_node_allocated(&vma->node))
			err = i915_vma_unbind(vma);
567 568
		if (unlikely(err))
			vma->exec_flags = NULL;
569 570 571 572 573 574 575 576 577 578
	}
	return err;
}

static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

579 580 581 582 583
	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;
584 585 586 587 588 589 590 591 592

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
			  struct i915_vma *vma)
{
593 594 595
	struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
596 597
	int err;

598 599 600
	pin_flags = PIN_USER | PIN_NONBLOCK;
	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;
601 602 603 604 605

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
606 607
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;
608

609 610
	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;
611

612 613 614 615 616
	if (exec_flags & EXEC_OBJECT_PINNED) {
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
		pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
	} else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
617 618
	}

619 620 621
	err = i915_vma_pin(vma,
			   entry->pad_to_size, entry->alignment,
			   pin_flags);
622 623 624 625 626 627 628 629
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

630
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
631
		err = i915_vma_pin_fence(vma);
632 633 634 635 636
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

637
		if (vma->fence)
638
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
639 640
	}

641 642
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
643

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	struct list_head last;
	struct i915_vma *vma;
	unsigned int i, pass;
	int err;

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

	pass = 0;
	err = 0;
	do {
		list_for_each_entry(vma, &eb->unbound, exec_link) {
			err = eb_reserve_vma(eb, vma);
			if (err)
				break;
		}
		if (err != -ENOSPC)
			return err;

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
684 685
			unsigned int flags = eb->flags[i];
			struct i915_vma *vma = eb->vma[i];
686

687 688
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
689 690
				continue;

691
			eb_unreserve_vma(vma, &eb->flags[i]);
692

693
			if (flags & EXEC_OBJECT_PINNED)
694
				list_add(&vma->exec_link, &eb->unbound);
695
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
				list_add_tail(&vma->exec_link, &eb->unbound);
			else
				list_add_tail(&vma->exec_link, &last);
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
			err = i915_gem_evict_vm(eb->vm);
			if (err)
				return err;
			break;

		default:
			return -ENOSPC;
		}
	} while (1);
717
}
718

719 720
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
721 722 723 724
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
725 726 727 728 729 730 731
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
732 733
	if (unlikely(!ctx))
		return -ENOENT;
734

735
	eb->ctx = ctx;
736
	eb->vm = ctx->ppgtt ? &ctx->ppgtt->vm : &eb->i915->ggtt.vm;
737 738 739 740 741 742 743 744 745

	eb->context_flags = 0;
	if (ctx->flags & CONTEXT_NO_ZEROMAP)
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

static int eb_lookup_vmas(struct i915_execbuffer *eb)
746
{
747
	struct radix_tree_root *handles_vma = &eb->ctx->handles_vma;
748
	struct drm_i915_gem_object *obj;
749
	unsigned int i, batch;
750
	int err;
751

752 753 754 755 756 757
	if (unlikely(i915_gem_context_is_closed(eb->ctx)))
		return -ENOENT;

	if (unlikely(i915_gem_context_is_banned(eb->ctx)))
		return -EIO;

758 759
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);
760

761 762
	batch = eb_batch_index(eb);

763 764
	for (i = 0; i < eb->buffer_count; i++) {
		u32 handle = eb->exec[i].handle;
765
		struct i915_lut_handle *lut;
766
		struct i915_vma *vma;
767

768 769
		vma = radix_tree_lookup(handles_vma, handle);
		if (likely(vma))
770
			goto add_vma;
771

772
		obj = i915_gem_object_lookup(eb->file, handle);
773
		if (unlikely(!obj)) {
774
			err = -ENOENT;
775
			goto err_vma;
776 777
		}

778
		vma = i915_vma_instance(obj, eb->vm, NULL);
C
Chris Wilson 已提交
779
		if (unlikely(IS_ERR(vma))) {
780
			err = PTR_ERR(vma);
781
			goto err_obj;
782 783
		}

784 785 786 787 788 789 790 791
		lut = kmem_cache_alloc(eb->i915->luts, GFP_KERNEL);
		if (unlikely(!lut)) {
			err = -ENOMEM;
			goto err_obj;
		}

		err = radix_tree_insert(handles_vma, handle, vma);
		if (unlikely(err)) {
792
			kmem_cache_free(eb->i915->luts, lut);
793
			goto err_obj;
794
		}
795

796
		/* transfer ref to ctx */
797 798
		if (!vma->open_count++)
			i915_vma_reopen(vma);
799 800 801 802 803
		list_add(&lut->obj_link, &obj->lut_list);
		list_add(&lut->ctx_link, &eb->ctx->handles_list);
		lut->ctx = eb->ctx;
		lut->handle = handle;

804
add_vma:
805
		err = eb_add_vma(eb, i, batch, vma);
806
		if (unlikely(err))
807
			goto err_vma;
808

809 810
		GEM_BUG_ON(vma != eb->vma[i]);
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
811 812
		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
			   eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i]));
813 814
	}

815 816 817
	eb->args->flags |= __EXEC_VALIDATED;
	return eb_reserve(eb);

818
err_obj:
819
	i915_gem_object_put(obj);
820 821
err_vma:
	eb->vma[i] = NULL;
822
	return err;
823 824
}

825
static struct i915_vma *
826
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
827
{
828 829
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
830
			return NULL;
831
		return eb->vma[handle];
832 833
	} else {
		struct hlist_head *head;
834
		struct i915_vma *vma;
835

836
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
837
		hlist_for_each_entry(vma, head, exec_node) {
838 839
			if (vma->exec_handle == handle)
				return vma;
840 841 842
		}
		return NULL;
	}
843 844
}

845
static void eb_release_vmas(const struct i915_execbuffer *eb)
846
{
847 848 849 850
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
851 852
		struct i915_vma *vma = eb->vma[i];
		unsigned int flags = eb->flags[i];
853

854
		if (!vma)
855
			break;
856

857 858 859
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
		vma->exec_flags = NULL;
		eb->vma[i] = NULL;
860

861 862
		if (flags & __EXEC_OBJECT_HAS_PIN)
			__eb_unreserve_vma(vma, flags);
863

864
		if (flags & __EXEC_OBJECT_HAS_REF)
865
			i915_vma_put(vma);
866
	}
867 868
}

869
static void eb_reset_vmas(const struct i915_execbuffer *eb)
870
{
871
	eb_release_vmas(eb);
872
	if (eb->lut_size > 0)
873 874
		memset(eb->buckets, 0,
		       sizeof(struct hlist_head) << eb->lut_size);
875 876
}

877
static void eb_destroy(const struct i915_execbuffer *eb)
878
{
879 880
	GEM_BUG_ON(eb->reloc_cache.rq);

881
	if (eb->lut_size > 0)
882
		kfree(eb->buckets);
883 884
}

885
static inline u64
886
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
887
		  const struct i915_vma *target)
888
{
889
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
890 891
}

892 893
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
894
{
895
	cache->page = -1;
896
	cache->vaddr = 0;
897
	/* Must be a variable in the struct to allow GCC to unroll. */
898
	cache->gen = INTEL_GEN(i915);
899
	cache->has_llc = HAS_LLC(i915);
900
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
901 902
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
903
	cache->node.allocated = false;
904 905
	cache->rq = NULL;
	cache->rq_size = 0;
906
}
907

908 909 910 911 912 913 914 915
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
916 917
}

918 919
#define KMAP 0x4 /* after CLFLUSH_FLAGS */

920 921 922 923 924 925 926
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

927 928 929 930 931 932 933
static void reloc_gpu_flush(struct reloc_cache *cache)
{
	GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
	i915_gem_object_unpin_map(cache->rq->batch->obj);
	i915_gem_chipset_flush(cache->rq->i915);

934
	i915_request_add(cache->rq);
935 936 937
	cache->rq = NULL;
}

938
static void reloc_cache_reset(struct reloc_cache *cache)
939
{
940
	void *vaddr;
941

942 943 944
	if (cache->rq)
		reloc_gpu_flush(cache);

945 946
	if (!cache->vaddr)
		return;
947

948 949 950 951
	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();
952

953 954 955
		kunmap_atomic(vaddr);
		i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
	} else {
956
		wmb();
957
		io_mapping_unmap_atomic((void __iomem *)vaddr);
958
		if (cache->node.allocated) {
959
			struct i915_ggtt *ggtt = cache_to_ggtt(cache);
960

961 962 963
			ggtt->vm.clear_range(&ggtt->vm,
					     cache->node.start,
					     cache->node.size);
964 965 966
			drm_mm_remove_node(&cache->node);
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
967
		}
968
	}
969 970 971

	cache->vaddr = 0;
	cache->page = -1;
972 973 974 975
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
976
			unsigned long page)
977
{
978 979 980 981 982 983
	void *vaddr;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
984
		int err;
985

986 987 988
		err = i915_gem_obj_prepare_shmem_write(obj, &flushes);
		if (err)
			return ERR_PTR(err);
989 990 991

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
992

993 994 995 996
		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
997 998
	}

999 1000
	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1001
	cache->page = page;
1002

1003
	return vaddr;
1004 1005
}

1006 1007
static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1008
			 unsigned long page)
1009
{
1010
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1011
	unsigned long offset;
1012
	void *vaddr;
1013

1014
	if (cache->vaddr) {
1015
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1016 1017
	} else {
		struct i915_vma *vma;
1018
		int err;
1019

1020
		if (use_cpu_reloc(cache, obj))
1021
			return NULL;
1022

1023 1024 1025
		err = i915_gem_object_set_to_gtt_domain(obj, true);
		if (err)
			return ERR_PTR(err);
1026

1027
		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1028 1029 1030
					       PIN_MAPPABLE |
					       PIN_NONBLOCK |
					       PIN_NONFAULT);
1031 1032
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
1033
			err = drm_mm_insert_node_in_range
1034
				(&ggtt->vm.mm, &cache->node,
1035
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1036
				 0, ggtt->mappable_end,
1037
				 DRM_MM_INSERT_LOW);
1038
			if (err) /* no inactive aperture space, use cpu reloc */
1039
				return NULL;
1040
		} else {
1041 1042
			err = i915_vma_put_fence(vma);
			if (err) {
1043
				i915_vma_unpin(vma);
1044
				return ERR_PTR(err);
1045
			}
1046

1047 1048
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
1049
		}
1050
	}
1051

1052 1053
	offset = cache->node.start;
	if (cache->node.allocated) {
1054
		wmb();
1055 1056 1057
		ggtt->vm.insert_page(&ggtt->vm,
				     i915_gem_object_get_dma_address(obj, page),
				     offset, I915_CACHE_NONE, 0);
1058 1059
	} else {
		offset += page << PAGE_SHIFT;
1060 1061
	}

1062
	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1063
							 offset);
1064 1065
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;
1066

1067
	return vaddr;
1068 1069
}

1070 1071
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1072
			 unsigned long page)
1073
{
1074
	void *vaddr;
1075

1076 1077 1078 1079 1080 1081 1082 1083
	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
1084 1085
	}

1086
	return vaddr;
1087 1088
}

1089
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1090
{
1091 1092 1093 1094 1095
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}
1096

1097
		*addr = value;
1098

1099 1100
		/*
		 * Writes to the same cacheline are serialised by the CPU
1101 1102 1103 1104 1105 1106 1107 1108 1109
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
1110 1111
}

1112 1113 1114 1115 1116 1117
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
			     struct i915_vma *vma,
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	struct drm_i915_gem_object *obj;
1118
	struct i915_request *rq;
1119 1120 1121 1122
	struct i915_vma *batch;
	u32 *cmd;
	int err;

1123
	GEM_BUG_ON(vma->obj->write_domain & I915_GEM_DOMAIN_CPU);
1124 1125 1126 1127 1128 1129

	obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, PAGE_SIZE);
	if (IS_ERR(obj))
		return PTR_ERR(obj);

	cmd = i915_gem_object_pin_map(obj,
1130 1131 1132
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
	i915_gem_object_unpin_pages(obj);
	if (IS_ERR(cmd))
		return PTR_ERR(cmd);

	err = i915_gem_object_set_to_wc_domain(obj, false);
	if (err)
		goto err_unmap;

	batch = i915_vma_instance(obj, vma->vm, NULL);
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

1151
	rq = i915_request_alloc(eb->engine, eb->ctx);
1152 1153 1154 1155 1156
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

1157
	err = i915_request_await_object(rq, vma->obj, true);
1158 1159 1160 1161 1162 1163 1164 1165 1166
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
		goto err_request;

1167
	GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch->resv, true));
1168 1169 1170
	err = i915_vma_move_to_active(batch, rq, 0);
	if (err)
		goto skip_request;
1171

1172 1173 1174
	err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
	if (err)
		goto skip_request;
1175 1176

	rq->batch = batch;
1177
	i915_vma_unpin(batch);
1178 1179 1180 1181 1182 1183 1184 1185

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;

	/* Return with batch mapping (cmd) still pinned */
	return 0;

1186 1187
skip_request:
	i915_request_skip(rq, err);
1188
err_request:
1189
	i915_request_add(rq);
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
	i915_gem_object_unpin_map(obj);
	return err;
}

static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
		reloc_gpu_flush(cache);

	if (unlikely(!cache->rq)) {
		int err;

1210 1211 1212 1213
		/* If we need to copy for the cmdparser, we will stall anyway */
		if (eb_use_cmdparser(eb))
			return ERR_PTR(-EWOULDBLOCK);

1214 1215 1216
		if (!intel_engine_can_store_dword(eb->engine))
			return ERR_PTR(-ENODEV);

1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
		err = __reloc_gpu_alloc(eb, vma, len);
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1228 1229
static u64
relocate_entry(struct i915_vma *vma,
1230
	       const struct drm_i915_gem_relocation_entry *reloc,
1231 1232
	       struct i915_execbuffer *eb,
	       const struct i915_vma *target)
1233
{
1234
	u64 offset = reloc->offset;
1235 1236
	u64 target_offset = relocation_target(reloc, target);
	bool wide = eb->reloc_cache.use_64bit_reloc;
1237
	void *vaddr;
1238

1239 1240
	if (!eb->reloc_cache.vaddr &&
	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1241
	     !reservation_object_test_signaled_rcu(vma->resv, true))) {
1242 1243 1244 1245 1246 1247 1248 1249 1250
		const unsigned int gen = eb->reloc_cache.gen;
		unsigned int len;
		u32 *batch;
		u64 addr;

		if (wide)
			len = offset & 7 ? 8 : 5;
		else if (gen >= 4)
			len = 4;
1251
		else
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
			len = 3;

		batch = reloc_gpu(eb, vma, len);
		if (IS_ERR(batch))
			goto repeat;

		addr = gen8_canonical_addr(vma->node.start + offset);
		if (wide) {
			if (offset & 7) {
				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);

				addr = gen8_canonical_addr(addr + 4);

				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = upper_32_bits(target_offset);
			} else {
				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);
				*batch++ = upper_32_bits(target_offset);
			}
		} else if (gen >= 6) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else if (gen >= 4) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else {
			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
			*batch++ = addr;
			*batch++ = target_offset;
		}

		goto out;
	}

1298
repeat:
1299
	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1300 1301 1302 1303 1304
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_offset),
1305
			eb->reloc_cache.vaddr);
1306 1307 1308 1309 1310 1311

	if (wide) {
		offset += sizeof(u32);
		target_offset >>= 32;
		wide = false;
		goto repeat;
1312 1313
	}

1314
out:
1315
	return target->node.start | UPDATE;
1316 1317
}

1318 1319 1320 1321
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
		  struct i915_vma *vma,
		  const struct drm_i915_gem_relocation_entry *reloc)
1322
{
1323
	struct i915_vma *target;
1324
	int err;
1325

1326
	/* we've already hold a reference to all valid objects */
1327 1328
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1329
		return -ENOENT;
1330

1331
	/* Validate that the target is in a valid r/w GPU domain */
1332
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1333
		DRM_DEBUG("reloc with multiple write domains: "
1334
			  "target %d offset %d "
1335
			  "read %08x write %08x",
1336
			  reloc->target_handle,
1337 1338 1339
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1340
		return -EINVAL;
1341
	}
1342 1343
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1344
		DRM_DEBUG("reloc with read/write non-GPU domains: "
1345
			  "target %d offset %d "
1346
			  "read %08x write %08x",
1347
			  reloc->target_handle,
1348 1349 1350
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1351
		return -EINVAL;
1352 1353
	}

1354
	if (reloc->write_domain) {
1355
		*target->exec_flags |= EXEC_OBJECT_WRITE;
1356

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
		    IS_GEN6(eb->i915)) {
			err = i915_vma_bind(target, target->obj->cache_level,
					    PIN_GLOBAL);
			if (WARN_ONCE(err,
				      "Unexpected failure to bind target VMA!"))
				return err;
		}
1371
	}
1372

1373 1374
	/*
	 * If the relocation already has the right value in it, no
1375 1376
	 * more work needs to be done.
	 */
1377 1378
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1379
		return 0;
1380 1381

	/* Check that the relocation address is valid... */
1382
	if (unlikely(reloc->offset >
1383
		     vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1384
		DRM_DEBUG("Relocation beyond object bounds: "
1385 1386 1387 1388
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
			  (int)vma->size);
1389
		return -EINVAL;
1390
	}
1391
	if (unlikely(reloc->offset & 3)) {
1392
		DRM_DEBUG("Relocation not 4-byte aligned: "
1393 1394 1395
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1396
		return -EINVAL;
1397 1398
	}

1399 1400 1401 1402 1403 1404
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1405
	 * out of our synchronisation.
1406
	 */
1407
	*vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1408

1409
	/* and update the user's relocation entry */
1410
	return relocate_entry(vma, reloc, eb, target);
1411 1412
}

1413
static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1414
{
1415
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1416 1417
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
	struct drm_i915_gem_relocation_entry __user *urelocs;
1418
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1419
	unsigned int remain;
1420

1421
	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1422
	remain = entry->relocation_count;
1423 1424
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
		return -EINVAL;
1425

1426 1427 1428 1429 1430
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1431
	if (unlikely(!access_ok(VERIFY_READ, urelocs, remain*sizeof(*urelocs))))
1432 1433 1434 1435 1436 1437 1438
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
			min_t(unsigned int, remain, ARRAY_SIZE(stack));
		unsigned int copied;
1439

1440 1441
		/*
		 * This is the fast path and we cannot handle a pagefault
1442 1443 1444 1445 1446 1447 1448
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
		pagefault_disable();
1449
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1450
		pagefault_enable();
1451 1452
		if (unlikely(copied)) {
			remain = -EFAULT;
1453 1454
			goto out;
		}
1455

1456
		remain -= count;
1457
		do {
1458
			u64 offset = eb_relocate_entry(eb, vma, r);
1459

1460 1461 1462
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
				remain = (int)offset;
1463
				goto out;
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
				__put_user(offset,
					   &urelocs[r-stack].presumed_offset);
1489
			}
1490 1491 1492
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1493
out:
1494
	reloc_cache_reset(&eb->reloc_cache);
1495
	return remain;
1496 1497 1498
}

static int
1499
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1500
{
1501
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1502 1503 1504 1505
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
	int err;
1506 1507

	for (i = 0; i < entry->relocation_count; i++) {
1508
		u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1509

1510 1511 1512 1513
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1514
	}
1515 1516 1517 1518
	err = 0;
err:
	reloc_cache_reset(&eb->reloc_cache);
	return err;
1519 1520
}

1521
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1522
{
1523 1524 1525
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1526

1527 1528 1529
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1530

1531 1532
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1533

1534 1535 1536 1537
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
	if (!access_ok(VERIFY_READ, addr, size))
		return -EFAULT;
1538

1539 1540 1541 1542 1543
	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
1544
	}
1545
	return __get_user(c, end - 1);
1546
}
1547

1548
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1549
{
1550 1551 1552
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1553

1554 1555 1556 1557 1558 1559
	for (i = 0; i < count; i++) {
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		struct drm_i915_gem_relocation_entry *relocs;
		unsigned long size;
		unsigned long copied;
1560

1561 1562
		if (nreloc == 0)
			continue;
1563

1564 1565 1566
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1567

1568 1569
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1570

1571
		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1572 1573 1574 1575 1576
		if (!relocs) {
			kvfree(relocs);
			err = -ENOMEM;
			goto err;
		}
1577

1578 1579 1580 1581 1582 1583 1584
		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
1585
					     (char __user *)urelocs + copied,
1586 1587 1588 1589 1590
					     len)) {
				kvfree(relocs);
				err = -EFAULT;
				goto err;
			}
1591

1592 1593
			copied += len;
		} while (copied < size);
1594

1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
		user_access_begin();
		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
end_user:
		user_access_end();
1612

1613 1614
		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}
1615

1616
	return 0;
1617

1618 1619 1620 1621 1622 1623 1624 1625
err:
	while (i--) {
		struct drm_i915_gem_relocation_entry *relocs =
			u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
1626 1627
}

1628
static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1629
{
1630 1631
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1632

1633
	if (unlikely(i915_modparams.prefault_disable))
1634
		return 0;
1635

1636 1637
	for (i = 0; i < count; i++) {
		int err;
1638

1639 1640 1641 1642
		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}
1643

1644
	return 0;
1645 1646
}

1647
static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1648
{
1649
	struct drm_device *dev = &eb->i915->drm;
1650
	bool have_copy = false;
1651
	struct i915_vma *vma;
1652 1653 1654 1655 1656 1657 1658
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
	}
1659

1660
	/* We may process another execbuffer during the unlock... */
1661
	eb_reset_vmas(eb);
1662 1663
	mutex_unlock(&dev->struct_mutex);

1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
1685
	}
1686 1687 1688
	if (err) {
		mutex_lock(&dev->struct_mutex);
		goto out;
1689 1690
	}

1691 1692 1693
	/* A frequent cause for EAGAIN are currently unavailable client pages */
	flush_workqueue(eb->i915->mm.userptr_wq);

1694 1695
	err = i915_mutex_lock_interruptible(dev);
	if (err) {
1696
		mutex_lock(&dev->struct_mutex);
1697
		goto out;
1698 1699
	}

1700
	/* reacquire the objects */
1701 1702
	err = eb_lookup_vmas(eb);
	if (err)
1703
		goto err;
1704

1705 1706
	GEM_BUG_ON(!eb->batch);

1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
	list_for_each_entry(vma, &eb->relocs, reloc_link) {
		if (!have_copy) {
			pagefault_disable();
			err = eb_relocate_vma(eb, vma);
			pagefault_enable();
			if (err)
				goto repeat;
		} else {
			err = eb_relocate_vma_slow(eb, vma);
			if (err)
				goto err;
		}
1719 1720
	}

1721 1722
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
1723 1724 1725 1726 1727 1728
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

1750
	return err;
1751 1752
}

1753
static int eb_relocate(struct i915_execbuffer *eb)
1754
{
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
	if (eb_lookup_vmas(eb))
		goto slow;

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
		struct i915_vma *vma;

		list_for_each_entry(vma, &eb->relocs, reloc_link) {
			if (eb_relocate_vma(eb, vma))
				goto slow;
		}
	}

	return 0;

slow:
	return eb_relocate_slow(eb);
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1779

1780
	for (i = 0; i < count; i++) {
1781 1782
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];
1783
		struct drm_i915_gem_object *obj = vma->obj;
1784

1785
		if (flags & EXEC_OBJECT_CAPTURE) {
1786
			struct i915_capture_list *capture;
1787 1788 1789 1790 1791

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
			if (unlikely(!capture))
				return -ENOMEM;

1792
			capture->next = eb->request->capture_list;
1793
			capture->vma = eb->vma[i];
1794
			eb->request->capture_list = capture;
1795 1796
		}

1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1810
			if (i915_gem_clflush_object(obj, 0))
1811
				flags &= ~EXEC_OBJECT_ASYNC;
1812 1813
		}

1814 1815
		if (flags & EXEC_OBJECT_ASYNC)
			continue;
1816

1817
		err = i915_request_await_object
1818
			(eb->request, obj, flags & EXEC_OBJECT_WRITE);
1819 1820 1821 1822 1823
		if (err)
			return err;
	}

	for (i = 0; i < count; i++) {
1824 1825 1826
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];

1827 1828 1829 1830 1831
		err = i915_vma_move_to_active(vma, eb->request, flags);
		if (unlikely(err)) {
			i915_request_skip(eb->request, err);
			return err;
		}
1832

1833 1834 1835 1836
		__eb_unreserve_vma(vma, flags);
		vma->exec_flags = NULL;

		if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1837
			i915_vma_put(vma);
1838
	}
1839
	eb->exec = NULL;
1840

1841
	/* Unconditionally flush any chipset caches (for streaming writes). */
1842
	i915_gem_chipset_flush(eb->i915);
1843

1844
	return 0;
1845 1846
}

1847
static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1848
{
1849
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1850 1851
		return false;

C
Chris Wilson 已提交
1852
	/* Kernel clipping was a DRI1 misfeature */
1853 1854 1855 1856
	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
		if (exec->num_cliprects || exec->cliprects_ptr)
			return false;
	}
C
Chris Wilson 已提交
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
		return false;

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
		return false;

	return true;
1869 1870
}

1871
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1872
{
1873 1874
	u32 *cs;
	int i;
1875

1876
	if (!IS_GEN7(rq->i915) || rq->engine->id != RCS) {
1877 1878 1879
		DRM_DEBUG("sol reset is gen7/rcs only\n");
		return -EINVAL;
	}
1880

1881
	cs = intel_ring_begin(rq, 4 * 2 + 2);
1882 1883
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1884

1885
	*cs++ = MI_LOAD_REGISTER_IMM(4);
1886
	for (i = 0; i < 4; i++) {
1887 1888
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
1889
	}
1890
	*cs++ = MI_NOOP;
1891
	intel_ring_advance(rq, cs);
1892 1893 1894 1895

	return 0;
}

1896
static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
1897 1898
{
	struct drm_i915_gem_object *shadow_batch_obj;
1899
	struct i915_vma *vma;
1900
	int err;
1901

1902 1903
	shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool,
						   PAGE_ALIGN(eb->batch_len));
1904
	if (IS_ERR(shadow_batch_obj))
1905
		return ERR_CAST(shadow_batch_obj);
1906

1907
	err = intel_engine_cmd_parser(eb->engine,
1908
				      eb->batch->obj,
1909
				      shadow_batch_obj,
1910 1911
				      eb->batch_start_offset,
				      eb->batch_len,
1912
				      is_master);
1913 1914
	if (err) {
		if (err == -EACCES) /* unhandled chained batch */
C
Chris Wilson 已提交
1915 1916
			vma = NULL;
		else
1917
			vma = ERR_PTR(err);
C
Chris Wilson 已提交
1918 1919
		goto out;
	}
1920

C
Chris Wilson 已提交
1921 1922 1923
	vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
	if (IS_ERR(vma))
		goto out;
C
Chris Wilson 已提交
1924

1925 1926 1927 1928 1929
	eb->vma[eb->buffer_count] = i915_vma_get(vma);
	eb->flags[eb->buffer_count] =
		__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
	vma->exec_flags = &eb->flags[eb->buffer_count];
	eb->buffer_count++;
1930

C
Chris Wilson 已提交
1931
out:
C
Chris Wilson 已提交
1932
	i915_gem_object_unpin_pages(shadow_batch_obj);
C
Chris Wilson 已提交
1933
	return vma;
1934
}
1935

1936
static void
1937
add_to_client(struct i915_request *rq, struct drm_file *file)
1938
{
1939 1940
	rq->file_priv = file->driver_priv;
	list_add_tail(&rq->client_link, &rq->file_priv->mm.request_list);
1941 1942
}

1943
static int eb_submit(struct i915_execbuffer *eb)
1944
{
1945
	int err;
1946

1947 1948 1949
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
1950

1951
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
1952 1953 1954
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
1955 1956
	}

1957
	err = eb->engine->emit_bb_start(eb->request,
1958 1959 1960
					eb->batch->node.start +
					eb->batch_start_offset,
					eb->batch_len,
1961 1962 1963
					eb->batch_flags);
	if (err)
		return err;
1964

C
Chris Wilson 已提交
1965
	return 0;
1966 1967
}

1968
/*
1969
 * Find one BSD ring to dispatch the corresponding BSD command.
1970
 * The engine index is returned.
1971
 */
1972
static unsigned int
1973 1974
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
1975 1976 1977
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

1978
	/* Check whether the file_priv has already selected one ring. */
1979 1980 1981
	if ((int)file_priv->bsd_engine < 0)
		file_priv->bsd_engine = atomic_fetch_xor(1,
			 &dev_priv->mm.bsd_engine_dispatch_index);
1982

1983
	return file_priv->bsd_engine;
1984 1985
}

1986 1987
#define I915_USER_RINGS (4)

1988
static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
1989 1990 1991 1992 1993 1994 1995
	[I915_EXEC_DEFAULT]	= RCS,
	[I915_EXEC_RENDER]	= RCS,
	[I915_EXEC_BLT]		= BCS,
	[I915_EXEC_BSD]		= VCS,
	[I915_EXEC_VEBOX]	= VECS
};

1996 1997 1998 1999
static struct intel_engine_cs *
eb_select_engine(struct drm_i915_private *dev_priv,
		 struct drm_file *file,
		 struct drm_i915_gem_execbuffer2 *args)
2000 2001
{
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2002
	struct intel_engine_cs *engine;
2003 2004 2005

	if (user_ring_id > I915_USER_RINGS) {
		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
2006
		return NULL;
2007 2008 2009 2010 2011 2012
	}

	if ((user_ring_id != I915_EXEC_BSD) &&
	    ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
		DRM_DEBUG("execbuf with non bsd ring but with invalid "
			  "bsd dispatch flags: %d\n", (int)(args->flags));
2013
		return NULL;
2014 2015 2016 2017 2018 2019
	}

	if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2020
			bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
2021 2022
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2023
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2024 2025 2026 2027
			bsd_idx--;
		} else {
			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
				  bsd_idx);
2028
			return NULL;
2029 2030
		}

2031
		engine = dev_priv->engine[_VCS(bsd_idx)];
2032
	} else {
2033
		engine = dev_priv->engine[user_ring_map[user_ring_id]];
2034 2035
	}

2036
	if (!engine) {
2037
		DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
2038
		return NULL;
2039 2040
	}

2041
	return engine;
2042 2043
}

2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
static void
__free_fence_array(struct drm_syncobj **fences, unsigned int n)
{
	while (n--)
		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
	kvfree(fences);
}

static struct drm_syncobj **
get_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_file *file)
{
2056
	const unsigned long nfences = args->num_cliprects;
2057 2058
	struct drm_i915_gem_exec_fence __user *user;
	struct drm_syncobj **fences;
2059
	unsigned long n;
2060 2061 2062 2063 2064
	int err;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return NULL;

2065 2066 2067 2068 2069
	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (nfences > min_t(unsigned long,
			    ULONG_MAX / sizeof(*user),
			    SIZE_MAX / sizeof(*fences)))
2070 2071 2072
		return ERR_PTR(-EINVAL);

	user = u64_to_user_ptr(args->cliprects_ptr);
2073
	if (!access_ok(VERIFY_READ, user, nfences * sizeof(*user)))
2074 2075
		return ERR_PTR(-EFAULT);

2076
	fences = kvmalloc_array(nfences, sizeof(*fences),
2077
				__GFP_NOWARN | GFP_KERNEL);
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
	if (!fences)
		return ERR_PTR(-ENOMEM);

	for (n = 0; n < nfences; n++) {
		struct drm_i915_gem_exec_fence fence;
		struct drm_syncobj *syncobj;

		if (__copy_from_user(&fence, user++, sizeof(fence))) {
			err = -EFAULT;
			goto err;
		}

2090 2091 2092 2093 2094
		if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
			err = -EINVAL;
			goto err;
		}

2095 2096 2097 2098 2099 2100 2101
		syncobj = drm_syncobj_find(file, fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			err = -ENOENT;
			goto err;
		}

2102 2103 2104
		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
	}

	return fences;

err:
	__free_fence_array(fences, n);
	return ERR_PTR(err);
}

static void
put_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_syncobj **fences)
{
	if (fences)
		__free_fence_array(fences, args->num_cliprects);
}

static int
await_fence_array(struct i915_execbuffer *eb,
		  struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	unsigned int n;
	int err;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		struct dma_fence *fence;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_WAIT))
			continue;

J
Jason Ekstrand 已提交
2140
		fence = drm_syncobj_fence_get(syncobj);
2141 2142 2143
		if (!fence)
			return -EINVAL;

2144
		err = i915_request_await_dma_fence(eb->request, fence);
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
		dma_fence_put(fence);
		if (err < 0)
			return err;
	}

	return 0;
}

static void
signal_fence_array(struct i915_execbuffer *eb,
		   struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

		drm_syncobj_replace_fence(syncobj, fence);
	}
}

2173
static int
2174
i915_gem_do_execbuffer(struct drm_device *dev,
2175 2176
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2177 2178
		       struct drm_i915_gem_exec_object2 *exec,
		       struct drm_syncobj **fences)
2179
{
2180
	struct i915_execbuffer eb;
2181 2182 2183
	struct dma_fence *in_fence = NULL;
	struct sync_file *out_fence = NULL;
	int out_fence_fd = -1;
2184
	int err;
2185

2186
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2187 2188
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2189

2190 2191 2192
	eb.i915 = to_i915(dev);
	eb.file = file;
	eb.args = args;
2193
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2194
		args->flags |= __EXEC_HAS_RELOC;
2195

2196
	eb.exec = exec;
2197 2198
	eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
	eb.vma[0] = NULL;
2199 2200
	eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);

2201 2202 2203
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
	if (USES_FULL_PPGTT(eb.i915))
		eb.invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
2204 2205
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2206
	eb.buffer_count = args->buffer_count;
2207 2208 2209
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;

2210
	eb.batch_flags = 0;
2211
	if (args->flags & I915_EXEC_SECURE) {
2212
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2213 2214
		    return -EPERM;

2215
		eb.batch_flags |= I915_DISPATCH_SECURE;
2216
	}
2217
	if (args->flags & I915_EXEC_IS_PINNED)
2218
		eb.batch_flags |= I915_DISPATCH_PINNED;
2219

2220 2221
	eb.engine = eb_select_engine(eb.i915, file, args);
	if (!eb.engine)
2222 2223
		return -EINVAL;

2224
	if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
2225
		if (!HAS_RESOURCE_STREAMER(eb.i915)) {
2226 2227 2228
			DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
			return -EINVAL;
		}
2229
		if (eb.engine->id != RCS) {
2230
			DRM_DEBUG("RS is not available on %s\n",
2231
				 eb.engine->name);
2232 2233 2234
			return -EINVAL;
		}

2235
		eb.batch_flags |= I915_DISPATCH_RS;
2236 2237
	}

2238 2239
	if (args->flags & I915_EXEC_FENCE_IN) {
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2240 2241
		if (!in_fence)
			return -EINVAL;
2242 2243 2244 2245 2246
	}

	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
2247
			err = out_fence_fd;
2248
			goto err_in_fence;
2249 2250 2251
		}
	}

2252 2253 2254 2255 2256
	err = eb_create(&eb);
	if (err)
		goto err_out_fence;

	GEM_BUG_ON(!eb.lut_size);
2257

2258 2259 2260 2261
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

2262 2263
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
2264 2265 2266 2267 2268
	 * we expect to access the hardware fairly frequently in the
	 * process. Upon first dispatch, we acquire another prolonged
	 * wakeref that we hold until the GPU has been idle for at least
	 * 100ms.
	 */
2269
	intel_runtime_pm_get(eb.i915);
2270

2271 2272 2273
	err = i915_mutex_lock_interruptible(dev);
	if (err)
		goto err_rpm;
2274

2275
	err = eb_relocate(&eb);
2276
	if (err) {
2277 2278 2279 2280 2281 2282 2283 2284 2285
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
2286
	}
2287

2288
	if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2289
		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2290 2291
		err = -EINVAL;
		goto err_vma;
2292
	}
2293 2294
	if (eb.batch_start_offset > eb.batch->size ||
	    eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2295
		DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2296 2297
		err = -EINVAL;
		goto err_vma;
2298
	}
2299

2300
	if (eb_use_cmdparser(&eb)) {
2301 2302
		struct i915_vma *vma;

2303
		vma = eb_parse(&eb, drm_is_current_master(file));
2304
		if (IS_ERR(vma)) {
2305 2306
			err = PTR_ERR(vma);
			goto err_vma;
2307
		}
2308

2309
		if (vma) {
2310 2311 2312 2313 2314 2315 2316 2317 2318
			/*
			 * Batch parsed and accepted:
			 *
			 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
			 * bit from MI_BATCH_BUFFER_START commands issued in
			 * the dispatch_execbuffer implementations. We
			 * specifically don't want that set on batches the
			 * command parser has accepted.
			 */
2319
			eb.batch_flags |= I915_DISPATCH_SECURE;
2320 2321
			eb.batch_start_offset = 0;
			eb.batch = vma;
2322
		}
2323 2324
	}

2325 2326
	if (eb.batch_len == 0)
		eb.batch_len = eb.batch->size - eb.batch_start_offset;
2327

2328 2329
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2330
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2331
	 * hsw should have this fixed, but bdw mucks it up again. */
2332
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2333
		struct i915_vma *vma;
2334

2335 2336 2337 2338 2339 2340
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2341
		 *   so we don't really have issues with multiple objects not
2342 2343 2344
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2345
		vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2346
		if (IS_ERR(vma)) {
2347 2348
			err = PTR_ERR(vma);
			goto err_vma;
C
Chris Wilson 已提交
2349
		}
2350

2351
		eb.batch = vma;
2352
	}
2353

2354 2355 2356
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

2357
	/* Allocate a request for this batch buffer nice and early. */
2358
	eb.request = i915_request_alloc(eb.engine, eb.ctx);
2359
	if (IS_ERR(eb.request)) {
2360
		err = PTR_ERR(eb.request);
2361
		goto err_batch_unpin;
2362
	}
2363

2364
	if (in_fence) {
2365
		err = i915_request_await_dma_fence(eb.request, in_fence);
2366
		if (err < 0)
2367 2368 2369
			goto err_request;
	}

2370 2371 2372 2373 2374 2375
	if (fences) {
		err = await_fence_array(&eb, fences);
		if (err)
			goto err_request;
	}

2376
	if (out_fence_fd != -1) {
2377
		out_fence = sync_file_create(&eb.request->fence);
2378
		if (!out_fence) {
2379
			err = -ENOMEM;
2380 2381 2382 2383
			goto err_request;
		}
	}

2384 2385
	/*
	 * Whilst this request exists, batch_obj will be on the
2386 2387 2388 2389 2390
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2391
	eb.request->batch = eb.batch;
2392

2393
	trace_i915_request_queue(eb.request, eb.batch_flags);
2394
	err = eb_submit(&eb);
2395
err_request:
2396
	i915_request_add(eb.request);
2397
	add_to_client(eb.request, file);
2398

2399 2400 2401
	if (fences)
		signal_fence_array(&eb, fences);

2402
	if (out_fence) {
2403
		if (err == 0) {
2404
			fd_install(out_fence_fd, out_fence->file);
2405
			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2406 2407 2408 2409 2410 2411
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2412

2413
err_batch_unpin:
2414
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2415
		i915_vma_unpin(eb.batch);
2416 2417 2418
err_vma:
	if (eb.exec)
		eb_release_vmas(&eb);
2419
	mutex_unlock(&dev->struct_mutex);
2420
err_rpm:
2421
	intel_runtime_pm_put(eb.i915);
2422 2423
	i915_gem_context_put(eb.ctx);
err_destroy:
2424
	eb_destroy(&eb);
2425
err_out_fence:
2426 2427
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2428
err_in_fence:
2429
	dma_fence_put(in_fence);
2430
	return err;
2431 2432
}

2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
static size_t eb_element_size(void)
{
	return (sizeof(struct drm_i915_gem_exec_object2) +
		sizeof(struct i915_vma *) +
		sizeof(unsigned int));
}

static bool check_buffer_count(size_t count)
{
	const size_t sz = eb_element_size();

	/*
	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
	 * array size (see eb_create()). Otherwise, we can accept an array as
	 * large as can be addressed (though use large arrays at your peril)!
	 */

	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}

2453 2454 2455 2456 2457
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
2458 2459
i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file)
2460 2461 2462 2463 2464
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2465
	const size_t count = args->buffer_count;
2466 2467
	unsigned int i;
	int err;
2468

2469 2470
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2471 2472 2473
		return -EINVAL;
	}

2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

	if (!i915_gem_check_execbuffer(&exec2))
		return -EINVAL;

2488
	/* Copy in the exec list from userland */
2489
	exec_list = kvmalloc_array(count, sizeof(*exec_list),
2490
				   __GFP_NOWARN | GFP_KERNEL);
2491
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2492
				    __GFP_NOWARN | GFP_KERNEL);
2493
	if (exec_list == NULL || exec2_list == NULL) {
2494
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2495
			  args->buffer_count);
M
Michal Hocko 已提交
2496 2497
		kvfree(exec_list);
		kvfree(exec2_list);
2498 2499
		return -ENOMEM;
	}
2500
	err = copy_from_user(exec_list,
2501
			     u64_to_user_ptr(args->buffers_ptr),
2502
			     sizeof(*exec_list) * count);
2503
	if (err) {
2504
		DRM_DEBUG("copy %d exec entries failed %d\n",
2505
			  args->buffer_count, err);
M
Michal Hocko 已提交
2506 2507
		kvfree(exec_list);
		kvfree(exec2_list);
2508 2509 2510 2511 2512 2513 2514 2515 2516
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2517
		if (INTEL_GEN(to_i915(dev)) < 4)
2518 2519 2520 2521 2522
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2523
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2524
	if (exec2.flags & __EXEC_HAS_RELOC) {
2525
		struct drm_i915_gem_exec_object __user *user_exec_list =
2526
			u64_to_user_ptr(args->buffers_ptr);
2527

2528
		/* Copy the new buffer offsets back to the user's exec list. */
2529
		for (i = 0; i < args->buffer_count; i++) {
2530 2531 2532
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2533
			exec2_list[i].offset =
2534 2535 2536 2537 2538
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2539
				break;
2540 2541 2542
		}
	}

M
Michal Hocko 已提交
2543 2544
	kvfree(exec_list);
	kvfree(exec2_list);
2545
	return err;
2546 2547 2548
}

int
2549 2550
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
2551 2552
{
	struct drm_i915_gem_execbuffer2 *args = data;
2553
	struct drm_i915_gem_exec_object2 *exec2_list;
2554
	struct drm_syncobj **fences = NULL;
2555
	const size_t count = args->buffer_count;
2556
	int err;
2557

2558 2559
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2560 2561 2562
		return -EINVAL;
	}

2563 2564 2565 2566
	if (!i915_gem_check_execbuffer(args))
		return -EINVAL;

	/* Allocate an extra slot for use by the command parser */
2567
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2568
				    __GFP_NOWARN | GFP_KERNEL);
2569
	if (exec2_list == NULL) {
2570 2571
		DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
			  count);
2572 2573
		return -ENOMEM;
	}
2574 2575
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
2576 2577
			   sizeof(*exec2_list) * count)) {
		DRM_DEBUG("copy %zd exec entries failed\n", count);
M
Michal Hocko 已提交
2578
		kvfree(exec2_list);
2579 2580 2581
		return -EFAULT;
	}

2582 2583 2584 2585 2586 2587 2588 2589 2590
	if (args->flags & I915_EXEC_FENCE_ARRAY) {
		fences = get_fence_array(args, file);
		if (IS_ERR(fences)) {
			kvfree(exec2_list);
			return PTR_ERR(fences);
		}
	}

	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2591 2592 2593 2594 2595 2596 2597 2598

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
2599
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2600 2601
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
2602

2603 2604
		/* Copy the new buffer offsets back to the user's exec list. */
		user_access_begin();
2605
		for (i = 0; i < args->buffer_count; i++) {
2606 2607 2608
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2609
			exec2_list[i].offset =
2610 2611 2612 2613
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
2614
		}
2615 2616
end_user:
		user_access_end();
2617 2618
	}

2619
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2620
	put_fence_array(args, fences);
M
Michal Hocko 已提交
2621
	kvfree(exec2_list);
2622
	return err;
2623
}