i915_gem_execbuffer.c 70.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright © 2008,2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Chris Wilson <chris@chris-wilson.co.uk>
 *
 */

29 30
#include <linux/dma_remapping.h>
#include <linux/reservation.h>
31
#include <linux/sync_file.h>
32 33
#include <linux/uaccess.h>

34
#include <drm/drmP.h>
35
#include <drm/drm_syncobj.h>
36
#include <drm/i915_drm.h>
37

38
#include "i915_drv.h"
39
#include "i915_gem_clflush.h"
40 41
#include "i915_trace.h"
#include "intel_drv.h"
42
#include "intel_frontbuffer.h"
43

44 45 46 47 48 49
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};
50

51 52 53 54 55 56
#define __EXEC_OBJECT_HAS_REF		BIT(31)
#define __EXEC_OBJECT_HAS_PIN		BIT(30)
#define __EXEC_OBJECT_HAS_FENCE		BIT(29)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(28)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(27)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 27) /* all of the above */
57 58 59 60
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)

#define __EXEC_HAS_RELOC	BIT(31)
#define __EXEC_VALIDATED	BIT(30)
61
#define __EXEC_INTERNAL_FLAGS	(~0u << 30)
62
#define UPDATE			PIN_OFFSET_FIXED
63 64

#define BATCH_OFFSET_BIAS (256*1024)
65

66
#define __I915_EXEC_ILLEGAL_FLAGS \
67 68 69
	(__I915_EXEC_UNKNOWN_FLAGS | \
	 I915_EXEC_CONSTANTS_MASK  | \
	 I915_EXEC_RESOURCE_STREAMER)
70

71 72 73 74 75 76 77 78 79
/* Catch emission of unexpected errors for CI! */
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
#undef EINVAL
#define EINVAL ({ \
	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
	22; \
})
#endif

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
 * At the level of talking to the hardware, submitting a batchbuffer for the
 * GPU to execute is to add content to a buffer from which the HW
 * command streamer is reading.
 *
 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 *    Execlists, this command is not placed on the same buffer as the
 *    remaining items.
 *
 * 2. Add a command to invalidate caches to the buffer.
 *
 * 3. Add a batchbuffer start command to the buffer; the start command is
 *    essentially a token together with the GPU address of the batchbuffer
 *    to be executed.
 *
 * 4. Add a pipeline flush to the buffer.
 *
 * 5. Add a memory write command to the buffer to record when the GPU
 *    is done executing the batchbuffer. The memory write writes the
 *    global sequence number of the request, ``i915_request::global_seqno``;
 *    the i915 driver uses the current value in the register to determine
 *    if the GPU has completed the batchbuffer.
 *
 * 6. Add a user interrupt command to the buffer. This command instructs
 *    the GPU to issue an interrupt when the command, pipeline flush and
 *    memory write are completed.
 *
 * 7. Inform the hardware of the additional commands added to the buffer
 *    (by updating the tail pointer).
 *
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

231
struct i915_execbuffer {
232 233 234 235
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
236 237
	struct i915_vma **vma;
	unsigned int *flags;
238 239 240 241 242

	struct intel_engine_cs *engine; /** engine to queue the request to */
	struct i915_gem_context *ctx; /** context for building the request */
	struct i915_address_space *vm; /** GTT and vma for the request */

243
	struct i915_request *request; /** our request to build */
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
	struct i915_vma *batch; /** identity of the batch obj/vma */

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
260
	struct reloc_cache {
261 262 263
		struct drm_mm_node node; /** temporary GTT binding */
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
264
		unsigned int gen; /** Cached value of INTEL_GEN */
265
		bool use_64bit_reloc : 1;
266 267 268
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
269

270
		struct i915_request *rq;
271 272
		u32 *rq_cmd;
		unsigned int rq_size;
273
	} reloc_cache;
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
289 290
};

291
#define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
292

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
/*
 * Used to convert any address to canonical form.
 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
 * addresses to be in a canonical form:
 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
 * canonical form [63:48] == [47]."
 */
#define GEN8_HIGH_ADDRESS_BIT 47
static inline u64 gen8_canonical_addr(u64 address)
{
	return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
}

static inline u64 gen8_noncanonical_addr(u64 address)
{
	return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
}

312 313
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
314
	return intel_engine_needs_cmd_parser(eb->engine) && eb->batch_len;
315 316
}

317
static int eb_create(struct i915_execbuffer *eb)
318
{
319 320
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
321

322 323 324 325 326 327 328 329 330 331 332
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
333
		do {
334
			gfp_t flags;
335 336 337 338 339 340 341

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
342
			flags = GFP_KERNEL;
343 344 345
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

346
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
347
					      flags);
348 349 350 351
			if (eb->buckets)
				break;
		} while (--size);

352 353
		if (unlikely(!size))
			return -ENOMEM;
354

355
		eb->lut_size = size;
356
	} else {
357
		eb->lut_size = -eb->buffer_count;
358
	}
359

360
	return 0;
361 362
}

363 364
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
365 366
		 const struct i915_vma *vma,
		 unsigned int flags)
367 368 369 370 371 372 373
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

374
	if (flags & EXEC_OBJECT_PINNED &&
375 376 377
	    vma->node.start != entry->offset)
		return true;

378
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
379 380 381
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

382
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
383 384 385
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

386 387 388 389
	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
	    !i915_vma_is_map_and_fenceable(vma))
		return true;

390 391 392
	return false;
}

393
static inline bool
394
eb_pin_vma(struct i915_execbuffer *eb,
395
	   const struct drm_i915_gem_exec_object2 *entry,
396 397
	   struct i915_vma *vma)
{
398 399
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
400

401
	if (vma->node.size)
402
		pin_flags = vma->node.start;
403
	else
404
		pin_flags = entry->offset & PIN_OFFSET_MASK;
405

406 407 408
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
		pin_flags |= PIN_GLOBAL;
409

410 411
	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
		return false;
412

413
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
414
		if (unlikely(i915_vma_pin_fence(vma))) {
415
			i915_vma_unpin(vma);
416
			return false;
417 418
		}

419
		if (vma->fence)
420
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
421 422
	}

423 424
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	return !eb_vma_misplaced(entry, vma, exec_flags);
425 426
}

427
static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
428
{
429
	GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
430

431
	if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
432
		__i915_vma_unpin_fence(vma);
433

434
	__i915_vma_unpin(vma);
435 436
}

437
static inline void
438
eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
439
{
440
	if (!(*flags & __EXEC_OBJECT_HAS_PIN))
441
		return;
442

443 444
	__eb_unreserve_vma(vma, *flags);
	*flags &= ~__EXEC_OBJECT_RESERVED;
445 446
}

447 448 449 450
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
451
{
452 453
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
454

455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
	if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
		     entry->offset != gen8_canonical_addr(entry->offset & PAGE_MASK)))
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
472 473
	}

474
	if (unlikely(vma->exec_flags)) {
475 476 477 478 479 480 481 482 483 484 485 486
		DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
			  entry->handle, (int)(entry - eb->exec));
		return -EINVAL;
	}

	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

487 488 489 490 491 492 493 494 495 496 497 498
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

499
	return 0;
500 501
}

502
static int
503 504 505
eb_add_vma(struct i915_execbuffer *eb,
	   unsigned int i, unsigned batch_idx,
	   struct i915_vma *vma)
506
{
507
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
508 509 510 511 512 513 514 515
	int err;

	GEM_BUG_ON(i915_vma_is_closed(vma));

	if (!(eb->args->flags & __EXEC_VALIDATED)) {
		err = eb_validate_vma(eb, entry, vma);
		if (unlikely(err))
			return err;
516 517
	}

518
	if (eb->lut_size > 0) {
519
		vma->exec_handle = entry->handle;
520
		hlist_add_head(&vma->exec_node,
521 522
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
523
	}
524

525 526 527 528 529 530 531 532 533
	if (entry->relocation_count)
		list_add_tail(&vma->reloc_link, &eb->relocs);

	/*
	 * Stash a pointer from the vma to execobj, so we can query its flags,
	 * size, alignment etc as provided by the user. Also we stash a pointer
	 * to the vma inside the execobj so that we can use a direct lookup
	 * to find the right target VMA when doing relocations.
	 */
534
	eb->vma[i] = vma;
535
	eb->flags[i] = entry->flags;
536
	vma->exec_flags = &eb->flags[i];
537

538 539 540 541 542 543 544 545 546 547
	/*
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
	 */
	if (i == batch_idx) {
548 549
		if (entry->relocation_count &&
		    !(eb->flags[i] & EXEC_OBJECT_PINNED))
550 551 552 553 554 555 556
			eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
		if (eb->reloc_cache.has_fence)
			eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;

		eb->batch = vma;
	}

557
	err = 0;
558
	if (eb_pin_vma(eb, entry, vma)) {
559 560 561 562
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
563 564 565 566 567 568
	} else {
		eb_unreserve_vma(vma, vma->exec_flags);

		list_add_tail(&vma->exec_link, &eb->unbound);
		if (drm_mm_node_allocated(&vma->node))
			err = i915_vma_unbind(vma);
569 570
		if (unlikely(err))
			vma->exec_flags = NULL;
571 572 573 574 575 576 577 578 579 580
	}
	return err;
}

static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

581 582 583 584 585
	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;
586 587 588 589 590 591 592 593 594

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
			  struct i915_vma *vma)
{
595 596 597
	struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
598 599
	int err;

600 601 602
	pin_flags = PIN_USER | PIN_NONBLOCK;
	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;
603 604 605 606 607

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
608 609
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;
610

611 612
	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;
613

614 615 616 617 618
	if (exec_flags & EXEC_OBJECT_PINNED) {
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
		pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
	} else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
619 620
	}

621 622 623
	err = i915_vma_pin(vma,
			   entry->pad_to_size, entry->alignment,
			   pin_flags);
624 625 626 627 628 629 630 631
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

632
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
633
		err = i915_vma_pin_fence(vma);
634 635 636 637 638
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

639
		if (vma->fence)
640
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
641 642
	}

643 644
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
645

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	struct list_head last;
	struct i915_vma *vma;
	unsigned int i, pass;
	int err;

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

	pass = 0;
	err = 0;
	do {
		list_for_each_entry(vma, &eb->unbound, exec_link) {
			err = eb_reserve_vma(eb, vma);
			if (err)
				break;
		}
		if (err != -ENOSPC)
			return err;

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
686 687
			unsigned int flags = eb->flags[i];
			struct i915_vma *vma = eb->vma[i];
688

689 690
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
691 692
				continue;

693
			eb_unreserve_vma(vma, &eb->flags[i]);
694

695
			if (flags & EXEC_OBJECT_PINNED)
696
				list_add(&vma->exec_link, &eb->unbound);
697
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
				list_add_tail(&vma->exec_link, &eb->unbound);
			else
				list_add_tail(&vma->exec_link, &last);
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
			err = i915_gem_evict_vm(eb->vm);
			if (err)
				return err;
			break;

		default:
			return -ENOSPC;
		}
	} while (1);
719
}
720

721 722
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
723 724 725 726
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
727 728 729 730 731 732 733
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
734 735
	if (unlikely(!ctx))
		return -ENOENT;
736

737
	eb->ctx = ctx;
738 739 740 741 742 743
	if (ctx->ppgtt) {
		eb->vm = &ctx->ppgtt->vm;
		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
	} else {
		eb->vm = &eb->i915->ggtt.vm;
	}
744 745 746 747 748 749 750 751 752

	eb->context_flags = 0;
	if (ctx->flags & CONTEXT_NO_ZEROMAP)
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

static int eb_lookup_vmas(struct i915_execbuffer *eb)
753
{
754
	struct radix_tree_root *handles_vma = &eb->ctx->handles_vma;
755
	struct drm_i915_gem_object *obj;
756
	unsigned int i, batch;
757
	int err;
758

759 760 761 762 763 764
	if (unlikely(i915_gem_context_is_closed(eb->ctx)))
		return -ENOENT;

	if (unlikely(i915_gem_context_is_banned(eb->ctx)))
		return -EIO;

765 766
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);
767

768 769
	batch = eb_batch_index(eb);

770 771
	for (i = 0; i < eb->buffer_count; i++) {
		u32 handle = eb->exec[i].handle;
772
		struct i915_lut_handle *lut;
773
		struct i915_vma *vma;
774

775 776
		vma = radix_tree_lookup(handles_vma, handle);
		if (likely(vma))
777
			goto add_vma;
778

779
		obj = i915_gem_object_lookup(eb->file, handle);
780
		if (unlikely(!obj)) {
781
			err = -ENOENT;
782
			goto err_vma;
783 784
		}

785
		vma = i915_vma_instance(obj, eb->vm, NULL);
C
Chris Wilson 已提交
786
		if (unlikely(IS_ERR(vma))) {
787
			err = PTR_ERR(vma);
788
			goto err_obj;
789 790
		}

791 792 793 794 795 796 797 798
		lut = kmem_cache_alloc(eb->i915->luts, GFP_KERNEL);
		if (unlikely(!lut)) {
			err = -ENOMEM;
			goto err_obj;
		}

		err = radix_tree_insert(handles_vma, handle, vma);
		if (unlikely(err)) {
799
			kmem_cache_free(eb->i915->luts, lut);
800
			goto err_obj;
801
		}
802

803
		/* transfer ref to ctx */
804 805
		if (!vma->open_count++)
			i915_vma_reopen(vma);
806 807 808 809 810
		list_add(&lut->obj_link, &obj->lut_list);
		list_add(&lut->ctx_link, &eb->ctx->handles_list);
		lut->ctx = eb->ctx;
		lut->handle = handle;

811
add_vma:
812
		err = eb_add_vma(eb, i, batch, vma);
813
		if (unlikely(err))
814
			goto err_vma;
815

816 817
		GEM_BUG_ON(vma != eb->vma[i]);
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
818 819
		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
			   eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i]));
820 821
	}

822 823 824
	eb->args->flags |= __EXEC_VALIDATED;
	return eb_reserve(eb);

825
err_obj:
826
	i915_gem_object_put(obj);
827 828
err_vma:
	eb->vma[i] = NULL;
829
	return err;
830 831
}

832
static struct i915_vma *
833
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
834
{
835 836
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
837
			return NULL;
838
		return eb->vma[handle];
839 840
	} else {
		struct hlist_head *head;
841
		struct i915_vma *vma;
842

843
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
844
		hlist_for_each_entry(vma, head, exec_node) {
845 846
			if (vma->exec_handle == handle)
				return vma;
847 848 849
		}
		return NULL;
	}
850 851
}

852
static void eb_release_vmas(const struct i915_execbuffer *eb)
853
{
854 855 856 857
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
858 859
		struct i915_vma *vma = eb->vma[i];
		unsigned int flags = eb->flags[i];
860

861
		if (!vma)
862
			break;
863

864 865 866
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
		vma->exec_flags = NULL;
		eb->vma[i] = NULL;
867

868 869
		if (flags & __EXEC_OBJECT_HAS_PIN)
			__eb_unreserve_vma(vma, flags);
870

871
		if (flags & __EXEC_OBJECT_HAS_REF)
872
			i915_vma_put(vma);
873
	}
874 875
}

876
static void eb_reset_vmas(const struct i915_execbuffer *eb)
877
{
878
	eb_release_vmas(eb);
879
	if (eb->lut_size > 0)
880 881
		memset(eb->buckets, 0,
		       sizeof(struct hlist_head) << eb->lut_size);
882 883
}

884
static void eb_destroy(const struct i915_execbuffer *eb)
885
{
886 887
	GEM_BUG_ON(eb->reloc_cache.rq);

888
	if (eb->lut_size > 0)
889
		kfree(eb->buckets);
890 891
}

892
static inline u64
893
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
894
		  const struct i915_vma *target)
895
{
896
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
897 898
}

899 900
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
901
{
902
	cache->page = -1;
903
	cache->vaddr = 0;
904
	/* Must be a variable in the struct to allow GCC to unroll. */
905
	cache->gen = INTEL_GEN(i915);
906
	cache->has_llc = HAS_LLC(i915);
907
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
908 909
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
910
	cache->node.allocated = false;
911 912
	cache->rq = NULL;
	cache->rq_size = 0;
913
}
914

915 916 917 918 919 920 921 922
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
923 924
}

925 926
#define KMAP 0x4 /* after CLFLUSH_FLAGS */

927 928 929 930 931 932 933
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

934 935 936 937 938 939 940
static void reloc_gpu_flush(struct reloc_cache *cache)
{
	GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
	i915_gem_object_unpin_map(cache->rq->batch->obj);
	i915_gem_chipset_flush(cache->rq->i915);

941
	i915_request_add(cache->rq);
942 943 944
	cache->rq = NULL;
}

945
static void reloc_cache_reset(struct reloc_cache *cache)
946
{
947
	void *vaddr;
948

949 950 951
	if (cache->rq)
		reloc_gpu_flush(cache);

952 953
	if (!cache->vaddr)
		return;
954

955 956 957 958
	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();
959

960 961 962
		kunmap_atomic(vaddr);
		i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
	} else {
963
		wmb();
964
		io_mapping_unmap_atomic((void __iomem *)vaddr);
965
		if (cache->node.allocated) {
966
			struct i915_ggtt *ggtt = cache_to_ggtt(cache);
967

968 969 970
			ggtt->vm.clear_range(&ggtt->vm,
					     cache->node.start,
					     cache->node.size);
971 972 973
			drm_mm_remove_node(&cache->node);
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
974
		}
975
	}
976 977 978

	cache->vaddr = 0;
	cache->page = -1;
979 980 981 982
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
983
			unsigned long page)
984
{
985 986 987 988 989 990
	void *vaddr;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
991
		int err;
992

993 994 995
		err = i915_gem_obj_prepare_shmem_write(obj, &flushes);
		if (err)
			return ERR_PTR(err);
996 997 998

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
999

1000 1001 1002 1003
		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
1004 1005
	}

1006 1007
	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1008
	cache->page = page;
1009

1010
	return vaddr;
1011 1012
}

1013 1014
static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1015
			 unsigned long page)
1016
{
1017
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1018
	unsigned long offset;
1019
	void *vaddr;
1020

1021
	if (cache->vaddr) {
1022
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1023 1024
	} else {
		struct i915_vma *vma;
1025
		int err;
1026

1027
		if (use_cpu_reloc(cache, obj))
1028
			return NULL;
1029

1030 1031 1032
		err = i915_gem_object_set_to_gtt_domain(obj, true);
		if (err)
			return ERR_PTR(err);
1033

1034
		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1035 1036 1037
					       PIN_MAPPABLE |
					       PIN_NONBLOCK |
					       PIN_NONFAULT);
1038 1039
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
1040
			err = drm_mm_insert_node_in_range
1041
				(&ggtt->vm.mm, &cache->node,
1042
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1043
				 0, ggtt->mappable_end,
1044
				 DRM_MM_INSERT_LOW);
1045
			if (err) /* no inactive aperture space, use cpu reloc */
1046
				return NULL;
1047
		} else {
1048 1049
			err = i915_vma_put_fence(vma);
			if (err) {
1050
				i915_vma_unpin(vma);
1051
				return ERR_PTR(err);
1052
			}
1053

1054 1055
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
1056
		}
1057
	}
1058

1059 1060
	offset = cache->node.start;
	if (cache->node.allocated) {
1061
		wmb();
1062 1063 1064
		ggtt->vm.insert_page(&ggtt->vm,
				     i915_gem_object_get_dma_address(obj, page),
				     offset, I915_CACHE_NONE, 0);
1065 1066
	} else {
		offset += page << PAGE_SHIFT;
1067 1068
	}

1069
	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1070
							 offset);
1071 1072
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;
1073

1074
	return vaddr;
1075 1076
}

1077 1078
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1079
			 unsigned long page)
1080
{
1081
	void *vaddr;
1082

1083 1084 1085 1086 1087 1088 1089 1090
	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
1091 1092
	}

1093
	return vaddr;
1094 1095
}

1096
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1097
{
1098 1099 1100 1101 1102
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}
1103

1104
		*addr = value;
1105

1106 1107
		/*
		 * Writes to the same cacheline are serialised by the CPU
1108 1109 1110 1111 1112 1113 1114 1115 1116
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
1117 1118
}

1119 1120 1121 1122 1123 1124
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
			     struct i915_vma *vma,
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	struct drm_i915_gem_object *obj;
1125
	struct i915_request *rq;
1126 1127 1128 1129
	struct i915_vma *batch;
	u32 *cmd;
	int err;

1130 1131 1132 1133 1134 1135 1136
	if (DBG_FORCE_RELOC == FORCE_GPU_RELOC) {
		obj = vma->obj;
		if (obj->cache_dirty & ~obj->cache_coherent)
			i915_gem_clflush_object(obj, 0);
		obj->write_domain = 0;
	}

1137
	GEM_BUG_ON(vma->obj->write_domain & I915_GEM_DOMAIN_CPU);
1138 1139 1140 1141 1142 1143

	obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, PAGE_SIZE);
	if (IS_ERR(obj))
		return PTR_ERR(obj);

	cmd = i915_gem_object_pin_map(obj,
1144 1145 1146
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
	i915_gem_object_unpin_pages(obj);
	if (IS_ERR(cmd))
		return PTR_ERR(cmd);

	err = i915_gem_object_set_to_wc_domain(obj, false);
	if (err)
		goto err_unmap;

	batch = i915_vma_instance(obj, vma->vm, NULL);
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

1165
	rq = i915_request_alloc(eb->engine, eb->ctx);
1166 1167 1168 1169 1170
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

1171
	err = i915_request_await_object(rq, vma->obj, true);
1172 1173 1174 1175 1176 1177 1178 1179 1180
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
		goto err_request;

1181
	GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch->resv, true));
1182 1183 1184
	err = i915_vma_move_to_active(batch, rq, 0);
	if (err)
		goto skip_request;
1185

1186 1187 1188
	err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
	if (err)
		goto skip_request;
1189 1190

	rq->batch = batch;
1191
	i915_vma_unpin(batch);
1192 1193 1194 1195 1196 1197 1198 1199

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;

	/* Return with batch mapping (cmd) still pinned */
	return 0;

1200 1201
skip_request:
	i915_request_skip(rq, err);
1202
err_request:
1203
	i915_request_add(rq);
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
	i915_gem_object_unpin_map(obj);
	return err;
}

static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
		reloc_gpu_flush(cache);

	if (unlikely(!cache->rq)) {
		int err;

1224 1225 1226 1227
		/* If we need to copy for the cmdparser, we will stall anyway */
		if (eb_use_cmdparser(eb))
			return ERR_PTR(-EWOULDBLOCK);

1228 1229 1230
		if (!intel_engine_can_store_dword(eb->engine))
			return ERR_PTR(-ENODEV);

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
		err = __reloc_gpu_alloc(eb, vma, len);
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1242 1243
static u64
relocate_entry(struct i915_vma *vma,
1244
	       const struct drm_i915_gem_relocation_entry *reloc,
1245 1246
	       struct i915_execbuffer *eb,
	       const struct i915_vma *target)
1247
{
1248
	u64 offset = reloc->offset;
1249 1250
	u64 target_offset = relocation_target(reloc, target);
	bool wide = eb->reloc_cache.use_64bit_reloc;
1251
	void *vaddr;
1252

1253 1254
	if (!eb->reloc_cache.vaddr &&
	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1255
	     !reservation_object_test_signaled_rcu(vma->resv, true))) {
1256 1257 1258 1259 1260 1261 1262 1263 1264
		const unsigned int gen = eb->reloc_cache.gen;
		unsigned int len;
		u32 *batch;
		u64 addr;

		if (wide)
			len = offset & 7 ? 8 : 5;
		else if (gen >= 4)
			len = 4;
1265
		else
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
			len = 3;

		batch = reloc_gpu(eb, vma, len);
		if (IS_ERR(batch))
			goto repeat;

		addr = gen8_canonical_addr(vma->node.start + offset);
		if (wide) {
			if (offset & 7) {
				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);

				addr = gen8_canonical_addr(addr + 4);

				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = upper_32_bits(target_offset);
			} else {
				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);
				*batch++ = upper_32_bits(target_offset);
			}
		} else if (gen >= 6) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else if (gen >= 4) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else {
			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
			*batch++ = addr;
			*batch++ = target_offset;
		}

		goto out;
	}

1312
repeat:
1313
	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1314 1315 1316 1317 1318
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_offset),
1319
			eb->reloc_cache.vaddr);
1320 1321 1322 1323 1324 1325

	if (wide) {
		offset += sizeof(u32);
		target_offset >>= 32;
		wide = false;
		goto repeat;
1326 1327
	}

1328
out:
1329
	return target->node.start | UPDATE;
1330 1331
}

1332 1333 1334 1335
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
		  struct i915_vma *vma,
		  const struct drm_i915_gem_relocation_entry *reloc)
1336
{
1337
	struct i915_vma *target;
1338
	int err;
1339

1340
	/* we've already hold a reference to all valid objects */
1341 1342
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1343
		return -ENOENT;
1344

1345
	/* Validate that the target is in a valid r/w GPU domain */
1346
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1347
		DRM_DEBUG("reloc with multiple write domains: "
1348
			  "target %d offset %d "
1349
			  "read %08x write %08x",
1350
			  reloc->target_handle,
1351 1352 1353
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1354
		return -EINVAL;
1355
	}
1356 1357
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1358
		DRM_DEBUG("reloc with read/write non-GPU domains: "
1359
			  "target %d offset %d "
1360
			  "read %08x write %08x",
1361
			  reloc->target_handle,
1362 1363 1364
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1365
		return -EINVAL;
1366 1367
	}

1368
	if (reloc->write_domain) {
1369
		*target->exec_flags |= EXEC_OBJECT_WRITE;
1370

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
		    IS_GEN6(eb->i915)) {
			err = i915_vma_bind(target, target->obj->cache_level,
					    PIN_GLOBAL);
			if (WARN_ONCE(err,
				      "Unexpected failure to bind target VMA!"))
				return err;
		}
1385
	}
1386

1387 1388
	/*
	 * If the relocation already has the right value in it, no
1389 1390
	 * more work needs to be done.
	 */
1391 1392
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1393
		return 0;
1394 1395

	/* Check that the relocation address is valid... */
1396
	if (unlikely(reloc->offset >
1397
		     vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1398
		DRM_DEBUG("Relocation beyond object bounds: "
1399 1400 1401 1402
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
			  (int)vma->size);
1403
		return -EINVAL;
1404
	}
1405
	if (unlikely(reloc->offset & 3)) {
1406
		DRM_DEBUG("Relocation not 4-byte aligned: "
1407 1408 1409
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1410
		return -EINVAL;
1411 1412
	}

1413 1414 1415 1416 1417 1418
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1419
	 * out of our synchronisation.
1420
	 */
1421
	*vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1422

1423
	/* and update the user's relocation entry */
1424
	return relocate_entry(vma, reloc, eb, target);
1425 1426
}

1427
static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1428
{
1429
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1430 1431
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
	struct drm_i915_gem_relocation_entry __user *urelocs;
1432
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1433
	unsigned int remain;
1434

1435
	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1436
	remain = entry->relocation_count;
1437 1438
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
		return -EINVAL;
1439

1440 1441 1442 1443 1444
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1445
	if (unlikely(!access_ok(VERIFY_READ, urelocs, remain*sizeof(*urelocs))))
1446 1447 1448 1449 1450 1451 1452
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
			min_t(unsigned int, remain, ARRAY_SIZE(stack));
		unsigned int copied;
1453

1454 1455
		/*
		 * This is the fast path and we cannot handle a pagefault
1456 1457 1458 1459 1460 1461 1462
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
		pagefault_disable();
1463
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1464
		pagefault_enable();
1465 1466
		if (unlikely(copied)) {
			remain = -EFAULT;
1467 1468
			goto out;
		}
1469

1470
		remain -= count;
1471
		do {
1472
			u64 offset = eb_relocate_entry(eb, vma, r);
1473

1474 1475 1476
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
				remain = (int)offset;
1477
				goto out;
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
1501 1502 1503 1504
				if (unlikely(__put_user(offset, &urelocs[r-stack].presumed_offset))) {
					remain = -EFAULT;
					goto out;
				}
1505
			}
1506 1507 1508
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1509
out:
1510
	reloc_cache_reset(&eb->reloc_cache);
1511
	return remain;
1512 1513 1514
}

static int
1515
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1516
{
1517
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1518 1519 1520 1521
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
	int err;
1522 1523

	for (i = 0; i < entry->relocation_count; i++) {
1524
		u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1525

1526 1527 1528 1529
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1530
	}
1531 1532 1533 1534
	err = 0;
err:
	reloc_cache_reset(&eb->reloc_cache);
	return err;
1535 1536
}

1537
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1538
{
1539 1540 1541
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1542

1543 1544 1545
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1546

1547 1548
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1549

1550 1551 1552 1553
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
	if (!access_ok(VERIFY_READ, addr, size))
		return -EFAULT;
1554

1555 1556 1557 1558 1559
	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
1560
	}
1561
	return __get_user(c, end - 1);
1562
}
1563

1564
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1565
{
1566 1567 1568
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1569

1570 1571 1572 1573 1574 1575
	for (i = 0; i < count; i++) {
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		struct drm_i915_gem_relocation_entry *relocs;
		unsigned long size;
		unsigned long copied;
1576

1577 1578
		if (nreloc == 0)
			continue;
1579

1580 1581 1582
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1583

1584 1585
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1586

1587
		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1588 1589 1590 1591
		if (!relocs) {
			err = -ENOMEM;
			goto err;
		}
1592

1593 1594 1595 1596 1597 1598 1599
		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
1600
					     (char __user *)urelocs + copied,
1601
					     len)) {
1602
end_user:
1603 1604 1605 1606
				kvfree(relocs);
				err = -EFAULT;
				goto err;
			}
1607

1608 1609
			copied += len;
		} while (copied < size);
1610

1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
		user_access_begin();
		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
		user_access_end();
1627

1628 1629
		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}
1630

1631
	return 0;
1632

1633 1634 1635 1636 1637 1638 1639 1640
err:
	while (i--) {
		struct drm_i915_gem_relocation_entry *relocs =
			u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
1641 1642
}

1643
static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1644
{
1645 1646
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1647

1648
	if (unlikely(i915_modparams.prefault_disable))
1649
		return 0;
1650

1651 1652
	for (i = 0; i < count; i++) {
		int err;
1653

1654 1655 1656 1657
		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}
1658

1659
	return 0;
1660 1661
}

1662
static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1663
{
1664
	struct drm_device *dev = &eb->i915->drm;
1665
	bool have_copy = false;
1666
	struct i915_vma *vma;
1667 1668 1669 1670 1671 1672 1673
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
	}
1674

1675
	/* We may process another execbuffer during the unlock... */
1676
	eb_reset_vmas(eb);
1677 1678
	mutex_unlock(&dev->struct_mutex);

1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
1700
	}
1701 1702 1703
	if (err) {
		mutex_lock(&dev->struct_mutex);
		goto out;
1704 1705
	}

1706 1707 1708
	/* A frequent cause for EAGAIN are currently unavailable client pages */
	flush_workqueue(eb->i915->mm.userptr_wq);

1709 1710
	err = i915_mutex_lock_interruptible(dev);
	if (err) {
1711
		mutex_lock(&dev->struct_mutex);
1712
		goto out;
1713 1714
	}

1715
	/* reacquire the objects */
1716 1717
	err = eb_lookup_vmas(eb);
	if (err)
1718
		goto err;
1719

1720 1721
	GEM_BUG_ON(!eb->batch);

1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
	list_for_each_entry(vma, &eb->relocs, reloc_link) {
		if (!have_copy) {
			pagefault_disable();
			err = eb_relocate_vma(eb, vma);
			pagefault_enable();
			if (err)
				goto repeat;
		} else {
			err = eb_relocate_vma_slow(eb, vma);
			if (err)
				goto err;
		}
1734 1735
	}

1736 1737
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
1738 1739 1740 1741 1742 1743
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

1765
	return err;
1766 1767
}

1768
static int eb_relocate(struct i915_execbuffer *eb)
1769
{
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
	if (eb_lookup_vmas(eb))
		goto slow;

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
		struct i915_vma *vma;

		list_for_each_entry(vma, &eb->relocs, reloc_link) {
			if (eb_relocate_vma(eb, vma))
				goto slow;
		}
	}

	return 0;

slow:
	return eb_relocate_slow(eb);
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1794

1795
	for (i = 0; i < count; i++) {
1796 1797
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];
1798
		struct drm_i915_gem_object *obj = vma->obj;
1799

1800
		if (flags & EXEC_OBJECT_CAPTURE) {
1801
			struct i915_capture_list *capture;
1802 1803 1804 1805 1806

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
			if (unlikely(!capture))
				return -ENOMEM;

1807
			capture->next = eb->request->capture_list;
1808
			capture->vma = eb->vma[i];
1809
			eb->request->capture_list = capture;
1810 1811
		}

1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1825
			if (i915_gem_clflush_object(obj, 0))
1826
				flags &= ~EXEC_OBJECT_ASYNC;
1827 1828
		}

1829 1830
		if (flags & EXEC_OBJECT_ASYNC)
			continue;
1831

1832
		err = i915_request_await_object
1833
			(eb->request, obj, flags & EXEC_OBJECT_WRITE);
1834 1835 1836 1837 1838
		if (err)
			return err;
	}

	for (i = 0; i < count; i++) {
1839 1840 1841
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];

1842 1843 1844 1845 1846
		err = i915_vma_move_to_active(vma, eb->request, flags);
		if (unlikely(err)) {
			i915_request_skip(eb->request, err);
			return err;
		}
1847

1848 1849 1850 1851
		__eb_unreserve_vma(vma, flags);
		vma->exec_flags = NULL;

		if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1852
			i915_vma_put(vma);
1853
	}
1854
	eb->exec = NULL;
1855

1856
	/* Unconditionally flush any chipset caches (for streaming writes). */
1857
	i915_gem_chipset_flush(eb->i915);
1858

1859
	return 0;
1860 1861
}

1862
static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1863
{
1864
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1865 1866
		return false;

C
Chris Wilson 已提交
1867
	/* Kernel clipping was a DRI1 misfeature */
1868 1869 1870 1871
	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
		if (exec->num_cliprects || exec->cliprects_ptr)
			return false;
	}
C
Chris Wilson 已提交
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
		return false;

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
		return false;

	return true;
1884 1885
}

1886
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1887
{
1888 1889
	u32 *cs;
	int i;
1890

1891
	if (!IS_GEN7(rq->i915) || rq->engine->id != RCS) {
1892 1893 1894
		DRM_DEBUG("sol reset is gen7/rcs only\n");
		return -EINVAL;
	}
1895

1896
	cs = intel_ring_begin(rq, 4 * 2 + 2);
1897 1898
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1899

1900
	*cs++ = MI_LOAD_REGISTER_IMM(4);
1901
	for (i = 0; i < 4; i++) {
1902 1903
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
1904
	}
1905
	*cs++ = MI_NOOP;
1906
	intel_ring_advance(rq, cs);
1907 1908 1909 1910

	return 0;
}

1911
static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
1912 1913
{
	struct drm_i915_gem_object *shadow_batch_obj;
1914
	struct i915_vma *vma;
1915
	int err;
1916

1917 1918
	shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool,
						   PAGE_ALIGN(eb->batch_len));
1919
	if (IS_ERR(shadow_batch_obj))
1920
		return ERR_CAST(shadow_batch_obj);
1921

1922
	err = intel_engine_cmd_parser(eb->engine,
1923
				      eb->batch->obj,
1924
				      shadow_batch_obj,
1925 1926
				      eb->batch_start_offset,
				      eb->batch_len,
1927
				      is_master);
1928 1929
	if (err) {
		if (err == -EACCES) /* unhandled chained batch */
C
Chris Wilson 已提交
1930 1931
			vma = NULL;
		else
1932
			vma = ERR_PTR(err);
C
Chris Wilson 已提交
1933 1934
		goto out;
	}
1935

C
Chris Wilson 已提交
1936 1937 1938
	vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
	if (IS_ERR(vma))
		goto out;
C
Chris Wilson 已提交
1939

1940 1941 1942 1943 1944
	eb->vma[eb->buffer_count] = i915_vma_get(vma);
	eb->flags[eb->buffer_count] =
		__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
	vma->exec_flags = &eb->flags[eb->buffer_count];
	eb->buffer_count++;
1945

C
Chris Wilson 已提交
1946
out:
C
Chris Wilson 已提交
1947
	i915_gem_object_unpin_pages(shadow_batch_obj);
C
Chris Wilson 已提交
1948
	return vma;
1949
}
1950

1951
static void
1952
add_to_client(struct i915_request *rq, struct drm_file *file)
1953
{
1954 1955
	rq->file_priv = file->driver_priv;
	list_add_tail(&rq->client_link, &rq->file_priv->mm.request_list);
1956 1957
}

1958
static int eb_submit(struct i915_execbuffer *eb)
1959
{
1960
	int err;
1961

1962 1963 1964
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
1965

1966
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
1967 1968 1969
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
1970 1971
	}

1972
	err = eb->engine->emit_bb_start(eb->request,
1973 1974 1975
					eb->batch->node.start +
					eb->batch_start_offset,
					eb->batch_len,
1976 1977 1978
					eb->batch_flags);
	if (err)
		return err;
1979

C
Chris Wilson 已提交
1980
	return 0;
1981 1982
}

1983
/*
1984
 * Find one BSD ring to dispatch the corresponding BSD command.
1985
 * The engine index is returned.
1986
 */
1987
static unsigned int
1988 1989
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
1990 1991 1992
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

1993
	/* Check whether the file_priv has already selected one ring. */
1994 1995 1996
	if ((int)file_priv->bsd_engine < 0)
		file_priv->bsd_engine = atomic_fetch_xor(1,
			 &dev_priv->mm.bsd_engine_dispatch_index);
1997

1998
	return file_priv->bsd_engine;
1999 2000
}

2001 2002
#define I915_USER_RINGS (4)

2003
static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
2004 2005 2006 2007 2008 2009 2010
	[I915_EXEC_DEFAULT]	= RCS,
	[I915_EXEC_RENDER]	= RCS,
	[I915_EXEC_BLT]		= BCS,
	[I915_EXEC_BSD]		= VCS,
	[I915_EXEC_VEBOX]	= VECS
};

2011 2012 2013 2014
static struct intel_engine_cs *
eb_select_engine(struct drm_i915_private *dev_priv,
		 struct drm_file *file,
		 struct drm_i915_gem_execbuffer2 *args)
2015 2016
{
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2017
	struct intel_engine_cs *engine;
2018 2019 2020

	if (user_ring_id > I915_USER_RINGS) {
		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
2021
		return NULL;
2022 2023 2024 2025 2026 2027
	}

	if ((user_ring_id != I915_EXEC_BSD) &&
	    ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
		DRM_DEBUG("execbuf with non bsd ring but with invalid "
			  "bsd dispatch flags: %d\n", (int)(args->flags));
2028
		return NULL;
2029 2030 2031 2032 2033 2034
	}

	if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2035
			bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
2036 2037
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2038
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2039 2040 2041 2042
			bsd_idx--;
		} else {
			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
				  bsd_idx);
2043
			return NULL;
2044 2045
		}

2046
		engine = dev_priv->engine[_VCS(bsd_idx)];
2047
	} else {
2048
		engine = dev_priv->engine[user_ring_map[user_ring_id]];
2049 2050
	}

2051
	if (!engine) {
2052
		DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
2053
		return NULL;
2054 2055
	}

2056
	return engine;
2057 2058
}

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
static void
__free_fence_array(struct drm_syncobj **fences, unsigned int n)
{
	while (n--)
		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
	kvfree(fences);
}

static struct drm_syncobj **
get_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_file *file)
{
2071
	const unsigned long nfences = args->num_cliprects;
2072 2073
	struct drm_i915_gem_exec_fence __user *user;
	struct drm_syncobj **fences;
2074
	unsigned long n;
2075 2076 2077 2078 2079
	int err;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return NULL;

2080 2081 2082 2083 2084
	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (nfences > min_t(unsigned long,
			    ULONG_MAX / sizeof(*user),
			    SIZE_MAX / sizeof(*fences)))
2085 2086 2087
		return ERR_PTR(-EINVAL);

	user = u64_to_user_ptr(args->cliprects_ptr);
2088
	if (!access_ok(VERIFY_READ, user, nfences * sizeof(*user)))
2089 2090
		return ERR_PTR(-EFAULT);

2091
	fences = kvmalloc_array(nfences, sizeof(*fences),
2092
				__GFP_NOWARN | GFP_KERNEL);
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
	if (!fences)
		return ERR_PTR(-ENOMEM);

	for (n = 0; n < nfences; n++) {
		struct drm_i915_gem_exec_fence fence;
		struct drm_syncobj *syncobj;

		if (__copy_from_user(&fence, user++, sizeof(fence))) {
			err = -EFAULT;
			goto err;
		}

2105 2106 2107 2108 2109
		if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
			err = -EINVAL;
			goto err;
		}

2110 2111 2112 2113 2114 2115 2116
		syncobj = drm_syncobj_find(file, fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			err = -ENOENT;
			goto err;
		}

2117 2118 2119
		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
	}

	return fences;

err:
	__free_fence_array(fences, n);
	return ERR_PTR(err);
}

static void
put_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_syncobj **fences)
{
	if (fences)
		__free_fence_array(fences, args->num_cliprects);
}

static int
await_fence_array(struct i915_execbuffer *eb,
		  struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	unsigned int n;
	int err;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		struct dma_fence *fence;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_WAIT))
			continue;

J
Jason Ekstrand 已提交
2155
		fence = drm_syncobj_fence_get(syncobj);
2156 2157 2158
		if (!fence)
			return -EINVAL;

2159
		err = i915_request_await_dma_fence(eb->request, fence);
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
		dma_fence_put(fence);
		if (err < 0)
			return err;
	}

	return 0;
}

static void
signal_fence_array(struct i915_execbuffer *eb,
		   struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

2184
		drm_syncobj_replace_fence(syncobj, 0, fence);
2185 2186 2187
	}
}

2188
static int
2189
i915_gem_do_execbuffer(struct drm_device *dev,
2190 2191
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2192 2193
		       struct drm_i915_gem_exec_object2 *exec,
		       struct drm_syncobj **fences)
2194
{
2195
	struct i915_execbuffer eb;
2196 2197 2198
	struct dma_fence *in_fence = NULL;
	struct sync_file *out_fence = NULL;
	int out_fence_fd = -1;
2199
	int err;
2200

2201
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2202 2203
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2204

2205 2206 2207
	eb.i915 = to_i915(dev);
	eb.file = file;
	eb.args = args;
2208
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2209
		args->flags |= __EXEC_HAS_RELOC;
2210

2211
	eb.exec = exec;
2212 2213
	eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
	eb.vma[0] = NULL;
2214 2215
	eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);

2216
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2217 2218
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2219
	eb.buffer_count = args->buffer_count;
2220 2221 2222
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;

2223
	eb.batch_flags = 0;
2224
	if (args->flags & I915_EXEC_SECURE) {
2225
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2226 2227
		    return -EPERM;

2228
		eb.batch_flags |= I915_DISPATCH_SECURE;
2229
	}
2230
	if (args->flags & I915_EXEC_IS_PINNED)
2231
		eb.batch_flags |= I915_DISPATCH_PINNED;
2232

2233 2234
	eb.engine = eb_select_engine(eb.i915, file, args);
	if (!eb.engine)
2235 2236
		return -EINVAL;

2237 2238
	if (args->flags & I915_EXEC_FENCE_IN) {
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2239 2240
		if (!in_fence)
			return -EINVAL;
2241 2242 2243 2244 2245
	}

	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
2246
			err = out_fence_fd;
2247
			goto err_in_fence;
2248 2249 2250
		}
	}

2251 2252 2253 2254 2255
	err = eb_create(&eb);
	if (err)
		goto err_out_fence;

	GEM_BUG_ON(!eb.lut_size);
2256

2257 2258 2259 2260
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

2261 2262
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
2263 2264 2265 2266 2267
	 * we expect to access the hardware fairly frequently in the
	 * process. Upon first dispatch, we acquire another prolonged
	 * wakeref that we hold until the GPU has been idle for at least
	 * 100ms.
	 */
2268
	intel_runtime_pm_get(eb.i915);
2269

2270 2271 2272
	err = i915_mutex_lock_interruptible(dev);
	if (err)
		goto err_rpm;
2273

2274
	err = eb_relocate(&eb);
2275
	if (err) {
2276 2277 2278 2279 2280 2281 2282 2283 2284
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
2285
	}
2286

2287
	if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2288
		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2289 2290
		err = -EINVAL;
		goto err_vma;
2291
	}
2292 2293
	if (eb.batch_start_offset > eb.batch->size ||
	    eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2294
		DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2295 2296
		err = -EINVAL;
		goto err_vma;
2297
	}
2298

2299
	if (eb_use_cmdparser(&eb)) {
2300 2301
		struct i915_vma *vma;

2302
		vma = eb_parse(&eb, drm_is_current_master(file));
2303
		if (IS_ERR(vma)) {
2304 2305
			err = PTR_ERR(vma);
			goto err_vma;
2306
		}
2307

2308
		if (vma) {
2309 2310 2311 2312 2313 2314 2315 2316 2317
			/*
			 * Batch parsed and accepted:
			 *
			 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
			 * bit from MI_BATCH_BUFFER_START commands issued in
			 * the dispatch_execbuffer implementations. We
			 * specifically don't want that set on batches the
			 * command parser has accepted.
			 */
2318
			eb.batch_flags |= I915_DISPATCH_SECURE;
2319 2320
			eb.batch_start_offset = 0;
			eb.batch = vma;
2321
		}
2322 2323
	}

2324 2325
	if (eb.batch_len == 0)
		eb.batch_len = eb.batch->size - eb.batch_start_offset;
2326

2327 2328
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2329
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2330
	 * hsw should have this fixed, but bdw mucks it up again. */
2331
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2332
		struct i915_vma *vma;
2333

2334 2335 2336 2337 2338 2339
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2340
		 *   so we don't really have issues with multiple objects not
2341 2342 2343
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2344
		vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2345
		if (IS_ERR(vma)) {
2346 2347
			err = PTR_ERR(vma);
			goto err_vma;
C
Chris Wilson 已提交
2348
		}
2349

2350
		eb.batch = vma;
2351
	}
2352

2353 2354 2355
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

2356
	/* Allocate a request for this batch buffer nice and early. */
2357
	eb.request = i915_request_alloc(eb.engine, eb.ctx);
2358
	if (IS_ERR(eb.request)) {
2359
		err = PTR_ERR(eb.request);
2360
		goto err_batch_unpin;
2361
	}
2362

2363
	if (in_fence) {
2364
		err = i915_request_await_dma_fence(eb.request, in_fence);
2365
		if (err < 0)
2366 2367 2368
			goto err_request;
	}

2369 2370 2371 2372 2373 2374
	if (fences) {
		err = await_fence_array(&eb, fences);
		if (err)
			goto err_request;
	}

2375
	if (out_fence_fd != -1) {
2376
		out_fence = sync_file_create(&eb.request->fence);
2377
		if (!out_fence) {
2378
			err = -ENOMEM;
2379 2380 2381 2382
			goto err_request;
		}
	}

2383 2384
	/*
	 * Whilst this request exists, batch_obj will be on the
2385 2386 2387 2388 2389
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2390
	eb.request->batch = eb.batch;
2391

2392
	trace_i915_request_queue(eb.request, eb.batch_flags);
2393
	err = eb_submit(&eb);
2394
err_request:
2395
	i915_request_add(eb.request);
2396
	add_to_client(eb.request, file);
2397

2398 2399 2400
	if (fences)
		signal_fence_array(&eb, fences);

2401
	if (out_fence) {
2402
		if (err == 0) {
2403
			fd_install(out_fence_fd, out_fence->file);
2404
			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2405 2406 2407 2408 2409 2410
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2411

2412
err_batch_unpin:
2413
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2414
		i915_vma_unpin(eb.batch);
2415 2416 2417
err_vma:
	if (eb.exec)
		eb_release_vmas(&eb);
2418
	mutex_unlock(&dev->struct_mutex);
2419
err_rpm:
2420
	intel_runtime_pm_put(eb.i915);
2421 2422
	i915_gem_context_put(eb.ctx);
err_destroy:
2423
	eb_destroy(&eb);
2424
err_out_fence:
2425 2426
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2427
err_in_fence:
2428
	dma_fence_put(in_fence);
2429
	return err;
2430 2431
}

2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
static size_t eb_element_size(void)
{
	return (sizeof(struct drm_i915_gem_exec_object2) +
		sizeof(struct i915_vma *) +
		sizeof(unsigned int));
}

static bool check_buffer_count(size_t count)
{
	const size_t sz = eb_element_size();

	/*
	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
	 * array size (see eb_create()). Otherwise, we can accept an array as
	 * large as can be addressed (though use large arrays at your peril)!
	 */

	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}

2452 2453 2454 2455 2456
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
2457 2458
i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file)
2459 2460 2461 2462 2463
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2464
	const size_t count = args->buffer_count;
2465 2466
	unsigned int i;
	int err;
2467

2468 2469
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2470 2471 2472
		return -EINVAL;
	}

2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

	if (!i915_gem_check_execbuffer(&exec2))
		return -EINVAL;

2487
	/* Copy in the exec list from userland */
2488
	exec_list = kvmalloc_array(count, sizeof(*exec_list),
2489
				   __GFP_NOWARN | GFP_KERNEL);
2490
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2491
				    __GFP_NOWARN | GFP_KERNEL);
2492
	if (exec_list == NULL || exec2_list == NULL) {
2493
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2494
			  args->buffer_count);
M
Michal Hocko 已提交
2495 2496
		kvfree(exec_list);
		kvfree(exec2_list);
2497 2498
		return -ENOMEM;
	}
2499
	err = copy_from_user(exec_list,
2500
			     u64_to_user_ptr(args->buffers_ptr),
2501
			     sizeof(*exec_list) * count);
2502
	if (err) {
2503
		DRM_DEBUG("copy %d exec entries failed %d\n",
2504
			  args->buffer_count, err);
M
Michal Hocko 已提交
2505 2506
		kvfree(exec_list);
		kvfree(exec2_list);
2507 2508 2509 2510 2511 2512 2513 2514 2515
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2516
		if (INTEL_GEN(to_i915(dev)) < 4)
2517 2518 2519 2520 2521
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2522
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2523
	if (exec2.flags & __EXEC_HAS_RELOC) {
2524
		struct drm_i915_gem_exec_object __user *user_exec_list =
2525
			u64_to_user_ptr(args->buffers_ptr);
2526

2527
		/* Copy the new buffer offsets back to the user's exec list. */
2528
		for (i = 0; i < args->buffer_count; i++) {
2529 2530 2531
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2532
			exec2_list[i].offset =
2533 2534 2535 2536 2537
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2538
				break;
2539 2540 2541
		}
	}

M
Michal Hocko 已提交
2542 2543
	kvfree(exec_list);
	kvfree(exec2_list);
2544
	return err;
2545 2546 2547
}

int
2548 2549
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
2550 2551
{
	struct drm_i915_gem_execbuffer2 *args = data;
2552
	struct drm_i915_gem_exec_object2 *exec2_list;
2553
	struct drm_syncobj **fences = NULL;
2554
	const size_t count = args->buffer_count;
2555
	int err;
2556

2557 2558
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2559 2560 2561
		return -EINVAL;
	}

2562 2563 2564 2565
	if (!i915_gem_check_execbuffer(args))
		return -EINVAL;

	/* Allocate an extra slot for use by the command parser */
2566
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2567
				    __GFP_NOWARN | GFP_KERNEL);
2568
	if (exec2_list == NULL) {
2569 2570
		DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
			  count);
2571 2572
		return -ENOMEM;
	}
2573 2574
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
2575 2576
			   sizeof(*exec2_list) * count)) {
		DRM_DEBUG("copy %zd exec entries failed\n", count);
M
Michal Hocko 已提交
2577
		kvfree(exec2_list);
2578 2579 2580
		return -EFAULT;
	}

2581 2582 2583 2584 2585 2586 2587 2588 2589
	if (args->flags & I915_EXEC_FENCE_ARRAY) {
		fences = get_fence_array(args, file);
		if (IS_ERR(fences)) {
			kvfree(exec2_list);
			return PTR_ERR(fences);
		}
	}

	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2590 2591 2592 2593 2594 2595 2596 2597

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
2598
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2599 2600
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
2601

2602 2603
		/* Copy the new buffer offsets back to the user's exec list. */
		user_access_begin();
2604
		for (i = 0; i < args->buffer_count; i++) {
2605 2606 2607
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2608
			exec2_list[i].offset =
2609 2610 2611 2612
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
2613
		}
2614 2615
end_user:
		user_access_end();
2616 2617
	}

2618
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2619
	put_fence_array(args, fences);
M
Michal Hocko 已提交
2620
	kvfree(exec2_list);
2621
	return err;
2622
}