i915_gem_execbuffer.c 71.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright © 2008,2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Chris Wilson <chris@chris-wilson.co.uk>
 *
 */

29 30
#include <linux/dma_remapping.h>
#include <linux/reservation.h>
31
#include <linux/sync_file.h>
32 33
#include <linux/uaccess.h>

34
#include <drm/drmP.h>
35
#include <drm/drm_syncobj.h>
36
#include <drm/i915_drm.h>
37

38
#include "i915_drv.h"
39
#include "i915_gem_clflush.h"
40 41
#include "i915_trace.h"
#include "intel_drv.h"
42
#include "intel_frontbuffer.h"
43

44 45 46 47 48 49
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};
50

51 52 53 54 55 56
#define __EXEC_OBJECT_HAS_REF		BIT(31)
#define __EXEC_OBJECT_HAS_PIN		BIT(30)
#define __EXEC_OBJECT_HAS_FENCE		BIT(29)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(28)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(27)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 27) /* all of the above */
57 58 59 60
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)

#define __EXEC_HAS_RELOC	BIT(31)
#define __EXEC_VALIDATED	BIT(30)
61
#define __EXEC_INTERNAL_FLAGS	(~0u << 30)
62
#define UPDATE			PIN_OFFSET_FIXED
63 64

#define BATCH_OFFSET_BIAS (256*1024)
65

66 67
#define __I915_EXEC_ILLEGAL_FLAGS \
	(__I915_EXEC_UNKNOWN_FLAGS | I915_EXEC_CONSTANTS_MASK)
68

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
 * At the level of talking to the hardware, submitting a batchbuffer for the
 * GPU to execute is to add content to a buffer from which the HW
 * command streamer is reading.
 *
 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 *    Execlists, this command is not placed on the same buffer as the
 *    remaining items.
 *
 * 2. Add a command to invalidate caches to the buffer.
 *
 * 3. Add a batchbuffer start command to the buffer; the start command is
 *    essentially a token together with the GPU address of the batchbuffer
 *    to be executed.
 *
 * 4. Add a pipeline flush to the buffer.
 *
 * 5. Add a memory write command to the buffer to record when the GPU
 *    is done executing the batchbuffer. The memory write writes the
 *    global sequence number of the request, ``i915_request::global_seqno``;
 *    the i915 driver uses the current value in the register to determine
 *    if the GPU has completed the batchbuffer.
 *
 * 6. Add a user interrupt command to the buffer. This command instructs
 *    the GPU to issue an interrupt when the command, pipeline flush and
 *    memory write are completed.
 *
 * 7. Inform the hardware of the additional commands added to the buffer
 *    (by updating the tail pointer).
 *
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

220
struct i915_execbuffer {
221 222 223 224
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
225 226
	struct i915_vma **vma;
	unsigned int *flags;
227 228 229 230 231

	struct intel_engine_cs *engine; /** engine to queue the request to */
	struct i915_gem_context *ctx; /** context for building the request */
	struct i915_address_space *vm; /** GTT and vma for the request */

232
	struct i915_request *request; /** our request to build */
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
	struct i915_vma *batch; /** identity of the batch obj/vma */

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
249
	struct reloc_cache {
250 251 252
		struct drm_mm_node node; /** temporary GTT binding */
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
253
		unsigned int gen; /** Cached value of INTEL_GEN */
254
		bool use_64bit_reloc : 1;
255 256 257
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
258

259
		struct i915_request *rq;
260 261
		u32 *rq_cmd;
		unsigned int rq_size;
262
	} reloc_cache;
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
278 279
};

280
#define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
281

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
/*
 * Used to convert any address to canonical form.
 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
 * addresses to be in a canonical form:
 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
 * canonical form [63:48] == [47]."
 */
#define GEN8_HIGH_ADDRESS_BIT 47
static inline u64 gen8_canonical_addr(u64 address)
{
	return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
}

static inline u64 gen8_noncanonical_addr(u64 address)
{
	return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
}

301 302
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
303
	return intel_engine_needs_cmd_parser(eb->engine) && eb->batch_len;
304 305
}

306
static int eb_create(struct i915_execbuffer *eb)
307
{
308 309
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
310

311 312 313 314 315 316 317 318 319 320 321
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
322
		do {
323
			gfp_t flags;
324 325 326 327 328 329 330

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
331
			flags = GFP_KERNEL;
332 333 334
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

335
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
336
					      flags);
337 338 339 340
			if (eb->buckets)
				break;
		} while (--size);

341 342
		if (unlikely(!size))
			return -ENOMEM;
343

344
		eb->lut_size = size;
345
	} else {
346
		eb->lut_size = -eb->buffer_count;
347
	}
348

349
	return 0;
350 351
}

352 353
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
354 355
		 const struct i915_vma *vma,
		 unsigned int flags)
356 357 358 359 360 361 362
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

363
	if (flags & EXEC_OBJECT_PINNED &&
364 365 366
	    vma->node.start != entry->offset)
		return true;

367
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
368 369 370
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

371
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
372 373 374
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

375 376 377 378
	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
	    !i915_vma_is_map_and_fenceable(vma))
		return true;

379 380 381
	return false;
}

382
static inline bool
383
eb_pin_vma(struct i915_execbuffer *eb,
384
	   const struct drm_i915_gem_exec_object2 *entry,
385 386
	   struct i915_vma *vma)
{
387 388
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
389

390
	if (vma->node.size)
391
		pin_flags = vma->node.start;
392
	else
393
		pin_flags = entry->offset & PIN_OFFSET_MASK;
394

395 396 397
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
		pin_flags |= PIN_GLOBAL;
398

399 400
	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
		return false;
401

402
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
403
		if (unlikely(i915_vma_pin_fence(vma))) {
404
			i915_vma_unpin(vma);
405
			return false;
406 407
		}

408
		if (vma->fence)
409
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
410 411
	}

412 413
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	return !eb_vma_misplaced(entry, vma, exec_flags);
414 415
}

416
static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
417
{
418
	GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
419

420
	if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
421
		__i915_vma_unpin_fence(vma);
422

423
	__i915_vma_unpin(vma);
424 425
}

426
static inline void
427
eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
428
{
429
	if (!(*flags & __EXEC_OBJECT_HAS_PIN))
430
		return;
431

432 433
	__eb_unreserve_vma(vma, *flags);
	*flags &= ~__EXEC_OBJECT_RESERVED;
434 435
}

436 437 438 439
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
440
{
441 442
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
443

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
	if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
		     entry->offset != gen8_canonical_addr(entry->offset & PAGE_MASK)))
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
461 462
	}

463
	if (unlikely(vma->exec_flags)) {
464 465 466 467 468 469 470 471 472 473 474 475
		DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
			  entry->handle, (int)(entry - eb->exec));
		return -EINVAL;
	}

	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

476 477 478 479 480 481 482 483 484 485 486 487
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

488
	return 0;
489 490
}

491
static int
492 493 494
eb_add_vma(struct i915_execbuffer *eb,
	   unsigned int i, unsigned batch_idx,
	   struct i915_vma *vma)
495
{
496
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
497 498 499 500 501 502 503 504
	int err;

	GEM_BUG_ON(i915_vma_is_closed(vma));

	if (!(eb->args->flags & __EXEC_VALIDATED)) {
		err = eb_validate_vma(eb, entry, vma);
		if (unlikely(err))
			return err;
505 506
	}

507
	if (eb->lut_size > 0) {
508
		vma->exec_handle = entry->handle;
509
		hlist_add_head(&vma->exec_node,
510 511
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
512
	}
513

514 515 516 517 518 519 520 521 522
	if (entry->relocation_count)
		list_add_tail(&vma->reloc_link, &eb->relocs);

	/*
	 * Stash a pointer from the vma to execobj, so we can query its flags,
	 * size, alignment etc as provided by the user. Also we stash a pointer
	 * to the vma inside the execobj so that we can use a direct lookup
	 * to find the right target VMA when doing relocations.
	 */
523
	eb->vma[i] = vma;
524
	eb->flags[i] = entry->flags;
525
	vma->exec_flags = &eb->flags[i];
526

527 528 529 530 531 532 533 534 535 536
	/*
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
	 */
	if (i == batch_idx) {
537 538
		if (entry->relocation_count &&
		    !(eb->flags[i] & EXEC_OBJECT_PINNED))
539 540 541 542 543 544 545
			eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
		if (eb->reloc_cache.has_fence)
			eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;

		eb->batch = vma;
	}

546
	err = 0;
547
	if (eb_pin_vma(eb, entry, vma)) {
548 549 550 551
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
552 553 554 555 556 557
	} else {
		eb_unreserve_vma(vma, vma->exec_flags);

		list_add_tail(&vma->exec_link, &eb->unbound);
		if (drm_mm_node_allocated(&vma->node))
			err = i915_vma_unbind(vma);
558 559
		if (unlikely(err))
			vma->exec_flags = NULL;
560 561 562 563 564 565 566 567 568 569
	}
	return err;
}

static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

570 571 572 573 574
	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;
575 576 577 578 579 580 581 582 583

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
			  struct i915_vma *vma)
{
584 585 586
	struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
587 588
	int err;

589 590 591
	pin_flags = PIN_USER | PIN_NONBLOCK;
	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;
592 593 594 595 596

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
597 598
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;
599

600 601
	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;
602

603 604 605 606 607
	if (exec_flags & EXEC_OBJECT_PINNED) {
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
		pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
	} else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
608 609
	}

610 611 612
	err = i915_vma_pin(vma,
			   entry->pad_to_size, entry->alignment,
			   pin_flags);
613 614 615 616 617 618 619 620
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

621
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
622
		err = i915_vma_pin_fence(vma);
623 624 625 626 627
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

628
		if (vma->fence)
629
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
630 631
	}

632 633
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
634

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	struct list_head last;
	struct i915_vma *vma;
	unsigned int i, pass;
	int err;

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

	pass = 0;
	err = 0;
	do {
		list_for_each_entry(vma, &eb->unbound, exec_link) {
			err = eb_reserve_vma(eb, vma);
			if (err)
				break;
		}
		if (err != -ENOSPC)
			return err;

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
675 676
			unsigned int flags = eb->flags[i];
			struct i915_vma *vma = eb->vma[i];
677

678 679
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
680 681
				continue;

682
			eb_unreserve_vma(vma, &eb->flags[i]);
683

684
			if (flags & EXEC_OBJECT_PINNED)
685
				list_add(&vma->exec_link, &eb->unbound);
686
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
				list_add_tail(&vma->exec_link, &eb->unbound);
			else
				list_add_tail(&vma->exec_link, &last);
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
			err = i915_gem_evict_vm(eb->vm);
			if (err)
				return err;
			break;

		default:
			return -ENOSPC;
		}
	} while (1);
708
}
709

710 711
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
712 713 714 715
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
716 717 718 719 720 721 722
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
723 724
	if (unlikely(!ctx))
		return -ENOENT;
725

726
	eb->ctx = ctx;
727
	eb->vm = ctx->ppgtt ? &ctx->ppgtt->vm : &eb->i915->ggtt.vm;
728 729 730 731 732 733 734 735 736

	eb->context_flags = 0;
	if (ctx->flags & CONTEXT_NO_ZEROMAP)
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

static int eb_lookup_vmas(struct i915_execbuffer *eb)
737
{
738
	struct radix_tree_root *handles_vma = &eb->ctx->handles_vma;
739
	struct drm_i915_gem_object *obj;
740
	unsigned int i, batch;
741
	int err;
742

743 744 745 746 747 748
	if (unlikely(i915_gem_context_is_closed(eb->ctx)))
		return -ENOENT;

	if (unlikely(i915_gem_context_is_banned(eb->ctx)))
		return -EIO;

749 750
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);
751

752 753
	batch = eb_batch_index(eb);

754 755
	for (i = 0; i < eb->buffer_count; i++) {
		u32 handle = eb->exec[i].handle;
756
		struct i915_lut_handle *lut;
757
		struct i915_vma *vma;
758

759 760
		vma = radix_tree_lookup(handles_vma, handle);
		if (likely(vma))
761
			goto add_vma;
762

763
		obj = i915_gem_object_lookup(eb->file, handle);
764
		if (unlikely(!obj)) {
765
			err = -ENOENT;
766
			goto err_vma;
767 768
		}

769
		vma = i915_vma_instance(obj, eb->vm, NULL);
C
Chris Wilson 已提交
770
		if (unlikely(IS_ERR(vma))) {
771
			err = PTR_ERR(vma);
772
			goto err_obj;
773 774
		}

775 776 777 778 779 780 781 782
		lut = kmem_cache_alloc(eb->i915->luts, GFP_KERNEL);
		if (unlikely(!lut)) {
			err = -ENOMEM;
			goto err_obj;
		}

		err = radix_tree_insert(handles_vma, handle, vma);
		if (unlikely(err)) {
783
			kmem_cache_free(eb->i915->luts, lut);
784
			goto err_obj;
785
		}
786

787
		/* transfer ref to ctx */
788 789
		if (!vma->open_count++)
			i915_vma_reopen(vma);
790 791 792 793 794
		list_add(&lut->obj_link, &obj->lut_list);
		list_add(&lut->ctx_link, &eb->ctx->handles_list);
		lut->ctx = eb->ctx;
		lut->handle = handle;

795
add_vma:
796
		err = eb_add_vma(eb, i, batch, vma);
797
		if (unlikely(err))
798
			goto err_vma;
799

800 801
		GEM_BUG_ON(vma != eb->vma[i]);
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
802 803
		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
			   eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i]));
804 805
	}

806 807 808
	eb->args->flags |= __EXEC_VALIDATED;
	return eb_reserve(eb);

809
err_obj:
810
	i915_gem_object_put(obj);
811 812
err_vma:
	eb->vma[i] = NULL;
813
	return err;
814 815
}

816
static struct i915_vma *
817
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
818
{
819 820
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
821
			return NULL;
822
		return eb->vma[handle];
823 824
	} else {
		struct hlist_head *head;
825
		struct i915_vma *vma;
826

827
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
828
		hlist_for_each_entry(vma, head, exec_node) {
829 830
			if (vma->exec_handle == handle)
				return vma;
831 832 833
		}
		return NULL;
	}
834 835
}

836
static void eb_release_vmas(const struct i915_execbuffer *eb)
837
{
838 839 840 841
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
842 843
		struct i915_vma *vma = eb->vma[i];
		unsigned int flags = eb->flags[i];
844

845
		if (!vma)
846
			break;
847

848 849 850
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
		vma->exec_flags = NULL;
		eb->vma[i] = NULL;
851

852 853
		if (flags & __EXEC_OBJECT_HAS_PIN)
			__eb_unreserve_vma(vma, flags);
854

855
		if (flags & __EXEC_OBJECT_HAS_REF)
856
			i915_vma_put(vma);
857
	}
858 859
}

860
static void eb_reset_vmas(const struct i915_execbuffer *eb)
861
{
862
	eb_release_vmas(eb);
863
	if (eb->lut_size > 0)
864 865
		memset(eb->buckets, 0,
		       sizeof(struct hlist_head) << eb->lut_size);
866 867
}

868
static void eb_destroy(const struct i915_execbuffer *eb)
869
{
870 871
	GEM_BUG_ON(eb->reloc_cache.rq);

872
	if (eb->lut_size > 0)
873
		kfree(eb->buckets);
874 875
}

876
static inline u64
877
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
878
		  const struct i915_vma *target)
879
{
880
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
881 882
}

883 884
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
885
{
886
	cache->page = -1;
887
	cache->vaddr = 0;
888
	/* Must be a variable in the struct to allow GCC to unroll. */
889
	cache->gen = INTEL_GEN(i915);
890
	cache->has_llc = HAS_LLC(i915);
891
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
892 893
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
894
	cache->node.allocated = false;
895 896
	cache->rq = NULL;
	cache->rq_size = 0;
897
}
898

899 900 901 902 903 904 905 906
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
907 908
}

909 910
#define KMAP 0x4 /* after CLFLUSH_FLAGS */

911 912 913 914 915 916 917
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

918 919 920 921 922 923 924
static void reloc_gpu_flush(struct reloc_cache *cache)
{
	GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
	i915_gem_object_unpin_map(cache->rq->batch->obj);
	i915_gem_chipset_flush(cache->rq->i915);

925
	i915_request_add(cache->rq);
926 927 928
	cache->rq = NULL;
}

929
static void reloc_cache_reset(struct reloc_cache *cache)
930
{
931
	void *vaddr;
932

933 934 935
	if (cache->rq)
		reloc_gpu_flush(cache);

936 937
	if (!cache->vaddr)
		return;
938

939 940 941 942
	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();
943

944 945 946
		kunmap_atomic(vaddr);
		i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
	} else {
947
		wmb();
948
		io_mapping_unmap_atomic((void __iomem *)vaddr);
949
		if (cache->node.allocated) {
950
			struct i915_ggtt *ggtt = cache_to_ggtt(cache);
951

952 953 954
			ggtt->vm.clear_range(&ggtt->vm,
					     cache->node.start,
					     cache->node.size);
955 956 957
			drm_mm_remove_node(&cache->node);
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
958
		}
959
	}
960 961 962

	cache->vaddr = 0;
	cache->page = -1;
963 964 965 966
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
967
			unsigned long page)
968
{
969 970 971 972 973 974
	void *vaddr;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
975
		int err;
976

977 978 979
		err = i915_gem_obj_prepare_shmem_write(obj, &flushes);
		if (err)
			return ERR_PTR(err);
980 981 982

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
983

984 985 986 987
		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
988 989
	}

990 991
	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
992
	cache->page = page;
993

994
	return vaddr;
995 996
}

997 998
static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
999
			 unsigned long page)
1000
{
1001
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1002
	unsigned long offset;
1003
	void *vaddr;
1004

1005
	if (cache->vaddr) {
1006
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1007 1008
	} else {
		struct i915_vma *vma;
1009
		int err;
1010

1011
		if (use_cpu_reloc(cache, obj))
1012
			return NULL;
1013

1014 1015 1016
		err = i915_gem_object_set_to_gtt_domain(obj, true);
		if (err)
			return ERR_PTR(err);
1017

1018
		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1019 1020 1021
					       PIN_MAPPABLE |
					       PIN_NONBLOCK |
					       PIN_NONFAULT);
1022 1023
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
1024
			err = drm_mm_insert_node_in_range
1025
				(&ggtt->vm.mm, &cache->node,
1026
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1027
				 0, ggtt->mappable_end,
1028
				 DRM_MM_INSERT_LOW);
1029
			if (err) /* no inactive aperture space, use cpu reloc */
1030
				return NULL;
1031
		} else {
1032 1033
			err = i915_vma_put_fence(vma);
			if (err) {
1034
				i915_vma_unpin(vma);
1035
				return ERR_PTR(err);
1036
			}
1037

1038 1039
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
1040
		}
1041
	}
1042

1043 1044
	offset = cache->node.start;
	if (cache->node.allocated) {
1045
		wmb();
1046 1047 1048
		ggtt->vm.insert_page(&ggtt->vm,
				     i915_gem_object_get_dma_address(obj, page),
				     offset, I915_CACHE_NONE, 0);
1049 1050
	} else {
		offset += page << PAGE_SHIFT;
1051 1052
	}

1053
	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1054
							 offset);
1055 1056
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;
1057

1058
	return vaddr;
1059 1060
}

1061 1062
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1063
			 unsigned long page)
1064
{
1065
	void *vaddr;
1066

1067 1068 1069 1070 1071 1072 1073 1074
	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
1075 1076
	}

1077
	return vaddr;
1078 1079
}

1080
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1081
{
1082 1083 1084 1085 1086
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}
1087

1088
		*addr = value;
1089

1090 1091
		/*
		 * Writes to the same cacheline are serialised by the CPU
1092 1093 1094 1095 1096 1097 1098 1099 1100
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
1101 1102
}

1103 1104 1105 1106 1107 1108
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
			     struct i915_vma *vma,
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	struct drm_i915_gem_object *obj;
1109
	struct i915_request *rq;
1110 1111 1112 1113
	struct i915_vma *batch;
	u32 *cmd;
	int err;

1114
	GEM_BUG_ON(vma->obj->write_domain & I915_GEM_DOMAIN_CPU);
1115 1116 1117 1118 1119 1120

	obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, PAGE_SIZE);
	if (IS_ERR(obj))
		return PTR_ERR(obj);

	cmd = i915_gem_object_pin_map(obj,
1121 1122 1123
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
	i915_gem_object_unpin_pages(obj);
	if (IS_ERR(cmd))
		return PTR_ERR(cmd);

	err = i915_gem_object_set_to_wc_domain(obj, false);
	if (err)
		goto err_unmap;

	batch = i915_vma_instance(obj, vma->vm, NULL);
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

1142
	rq = i915_request_alloc(eb->engine, eb->ctx);
1143 1144 1145 1146 1147
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

1148
	err = i915_request_await_object(rq, vma->obj, true);
1149 1150 1151 1152 1153 1154 1155 1156 1157
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
		goto err_request;

1158
	GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch->resv, true));
1159
	i915_vma_move_to_active(batch, rq, 0);
1160 1161 1162
	reservation_object_lock(batch->resv, NULL);
	reservation_object_add_excl_fence(batch->resv, &rq->fence);
	reservation_object_unlock(batch->resv);
1163 1164
	i915_vma_unpin(batch);

1165
	i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1166 1167 1168
	reservation_object_lock(vma->resv, NULL);
	reservation_object_add_excl_fence(vma->resv, &rq->fence);
	reservation_object_unlock(vma->resv);
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179

	rq->batch = batch;

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;

	/* Return with batch mapping (cmd) still pinned */
	return 0;

err_request:
1180
	i915_request_add(rq);
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
	i915_gem_object_unpin_map(obj);
	return err;
}

static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
		reloc_gpu_flush(cache);

	if (unlikely(!cache->rq)) {
		int err;

1201 1202 1203 1204
		/* If we need to copy for the cmdparser, we will stall anyway */
		if (eb_use_cmdparser(eb))
			return ERR_PTR(-EWOULDBLOCK);

1205 1206 1207
		if (!intel_engine_can_store_dword(eb->engine))
			return ERR_PTR(-ENODEV);

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
		err = __reloc_gpu_alloc(eb, vma, len);
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1219 1220
static u64
relocate_entry(struct i915_vma *vma,
1221
	       const struct drm_i915_gem_relocation_entry *reloc,
1222 1223
	       struct i915_execbuffer *eb,
	       const struct i915_vma *target)
1224
{
1225
	u64 offset = reloc->offset;
1226 1227
	u64 target_offset = relocation_target(reloc, target);
	bool wide = eb->reloc_cache.use_64bit_reloc;
1228
	void *vaddr;
1229

1230 1231
	if (!eb->reloc_cache.vaddr &&
	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1232
	     !reservation_object_test_signaled_rcu(vma->resv, true))) {
1233 1234 1235 1236 1237 1238 1239 1240 1241
		const unsigned int gen = eb->reloc_cache.gen;
		unsigned int len;
		u32 *batch;
		u64 addr;

		if (wide)
			len = offset & 7 ? 8 : 5;
		else if (gen >= 4)
			len = 4;
1242
		else
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
			len = 3;

		batch = reloc_gpu(eb, vma, len);
		if (IS_ERR(batch))
			goto repeat;

		addr = gen8_canonical_addr(vma->node.start + offset);
		if (wide) {
			if (offset & 7) {
				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);

				addr = gen8_canonical_addr(addr + 4);

				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = upper_32_bits(target_offset);
			} else {
				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);
				*batch++ = upper_32_bits(target_offset);
			}
		} else if (gen >= 6) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else if (gen >= 4) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else {
			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
			*batch++ = addr;
			*batch++ = target_offset;
		}

		goto out;
	}

1289
repeat:
1290
	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1291 1292 1293 1294 1295
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_offset),
1296
			eb->reloc_cache.vaddr);
1297 1298 1299 1300 1301 1302

	if (wide) {
		offset += sizeof(u32);
		target_offset >>= 32;
		wide = false;
		goto repeat;
1303 1304
	}

1305
out:
1306
	return target->node.start | UPDATE;
1307 1308
}

1309 1310 1311 1312
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
		  struct i915_vma *vma,
		  const struct drm_i915_gem_relocation_entry *reloc)
1313
{
1314
	struct i915_vma *target;
1315
	int err;
1316

1317
	/* we've already hold a reference to all valid objects */
1318 1319
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1320
		return -ENOENT;
1321

1322
	/* Validate that the target is in a valid r/w GPU domain */
1323
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1324
		DRM_DEBUG("reloc with multiple write domains: "
1325
			  "target %d offset %d "
1326
			  "read %08x write %08x",
1327
			  reloc->target_handle,
1328 1329 1330
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1331
		return -EINVAL;
1332
	}
1333 1334
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1335
		DRM_DEBUG("reloc with read/write non-GPU domains: "
1336
			  "target %d offset %d "
1337
			  "read %08x write %08x",
1338
			  reloc->target_handle,
1339 1340 1341
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1342
		return -EINVAL;
1343 1344
	}

1345
	if (reloc->write_domain) {
1346
		*target->exec_flags |= EXEC_OBJECT_WRITE;
1347

1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
		    IS_GEN6(eb->i915)) {
			err = i915_vma_bind(target, target->obj->cache_level,
					    PIN_GLOBAL);
			if (WARN_ONCE(err,
				      "Unexpected failure to bind target VMA!"))
				return err;
		}
1362
	}
1363

1364 1365
	/*
	 * If the relocation already has the right value in it, no
1366 1367
	 * more work needs to be done.
	 */
1368 1369
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1370
		return 0;
1371 1372

	/* Check that the relocation address is valid... */
1373
	if (unlikely(reloc->offset >
1374
		     vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1375
		DRM_DEBUG("Relocation beyond object bounds: "
1376 1377 1378 1379
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
			  (int)vma->size);
1380
		return -EINVAL;
1381
	}
1382
	if (unlikely(reloc->offset & 3)) {
1383
		DRM_DEBUG("Relocation not 4-byte aligned: "
1384 1385 1386
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1387
		return -EINVAL;
1388 1389
	}

1390 1391 1392 1393 1394 1395
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1396
	 * out of our synchronisation.
1397
	 */
1398
	*vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1399

1400
	/* and update the user's relocation entry */
1401
	return relocate_entry(vma, reloc, eb, target);
1402 1403
}

1404
static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1405
{
1406
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1407 1408
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
	struct drm_i915_gem_relocation_entry __user *urelocs;
1409
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1410
	unsigned int remain;
1411

1412
	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1413
	remain = entry->relocation_count;
1414 1415
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
		return -EINVAL;
1416

1417 1418 1419 1420 1421
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1422
	if (unlikely(!access_ok(VERIFY_READ, urelocs, remain*sizeof(*urelocs))))
1423 1424 1425 1426 1427 1428 1429
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
			min_t(unsigned int, remain, ARRAY_SIZE(stack));
		unsigned int copied;
1430

1431 1432
		/*
		 * This is the fast path and we cannot handle a pagefault
1433 1434 1435 1436 1437 1438 1439
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
		pagefault_disable();
1440
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1441
		pagefault_enable();
1442 1443
		if (unlikely(copied)) {
			remain = -EFAULT;
1444 1445
			goto out;
		}
1446

1447
		remain -= count;
1448
		do {
1449
			u64 offset = eb_relocate_entry(eb, vma, r);
1450

1451 1452 1453
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
				remain = (int)offset;
1454
				goto out;
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
				__put_user(offset,
					   &urelocs[r-stack].presumed_offset);
1480
			}
1481 1482 1483
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1484
out:
1485
	reloc_cache_reset(&eb->reloc_cache);
1486
	return remain;
1487 1488 1489
}

static int
1490
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1491
{
1492
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1493 1494 1495 1496
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
	int err;
1497 1498

	for (i = 0; i < entry->relocation_count; i++) {
1499
		u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1500

1501 1502 1503 1504
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1505
	}
1506 1507 1508 1509
	err = 0;
err:
	reloc_cache_reset(&eb->reloc_cache);
	return err;
1510 1511
}

1512
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1513
{
1514 1515 1516
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1517

1518 1519 1520
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1521

1522 1523
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1524

1525 1526 1527 1528
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
	if (!access_ok(VERIFY_READ, addr, size))
		return -EFAULT;
1529

1530 1531 1532 1533 1534
	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
1535
	}
1536
	return __get_user(c, end - 1);
1537
}
1538

1539
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1540
{
1541 1542 1543
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1544

1545 1546 1547 1548 1549 1550
	for (i = 0; i < count; i++) {
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		struct drm_i915_gem_relocation_entry *relocs;
		unsigned long size;
		unsigned long copied;
1551

1552 1553
		if (nreloc == 0)
			continue;
1554

1555 1556 1557
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1558

1559 1560
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1561

1562
		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1563 1564 1565 1566 1567
		if (!relocs) {
			kvfree(relocs);
			err = -ENOMEM;
			goto err;
		}
1568

1569 1570 1571 1572 1573 1574 1575
		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
1576
					     (char __user *)urelocs + copied,
1577 1578 1579 1580 1581
					     len)) {
				kvfree(relocs);
				err = -EFAULT;
				goto err;
			}
1582

1583 1584
			copied += len;
		} while (copied < size);
1585

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
		user_access_begin();
		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
end_user:
		user_access_end();
1603

1604 1605
		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}
1606

1607
	return 0;
1608

1609 1610 1611 1612 1613 1614 1615 1616
err:
	while (i--) {
		struct drm_i915_gem_relocation_entry *relocs =
			u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
1617 1618
}

1619
static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1620
{
1621 1622
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1623

1624
	if (unlikely(i915_modparams.prefault_disable))
1625
		return 0;
1626

1627 1628
	for (i = 0; i < count; i++) {
		int err;
1629

1630 1631 1632 1633
		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}
1634

1635
	return 0;
1636 1637
}

1638
static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1639
{
1640
	struct drm_device *dev = &eb->i915->drm;
1641
	bool have_copy = false;
1642
	struct i915_vma *vma;
1643 1644 1645 1646 1647 1648 1649
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
	}
1650

1651
	/* We may process another execbuffer during the unlock... */
1652
	eb_reset_vmas(eb);
1653 1654
	mutex_unlock(&dev->struct_mutex);

1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
1676
	}
1677 1678 1679
	if (err) {
		mutex_lock(&dev->struct_mutex);
		goto out;
1680 1681
	}

1682 1683 1684
	/* A frequent cause for EAGAIN are currently unavailable client pages */
	flush_workqueue(eb->i915->mm.userptr_wq);

1685 1686
	err = i915_mutex_lock_interruptible(dev);
	if (err) {
1687
		mutex_lock(&dev->struct_mutex);
1688
		goto out;
1689 1690
	}

1691
	/* reacquire the objects */
1692 1693
	err = eb_lookup_vmas(eb);
	if (err)
1694
		goto err;
1695

1696 1697
	GEM_BUG_ON(!eb->batch);

1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
	list_for_each_entry(vma, &eb->relocs, reloc_link) {
		if (!have_copy) {
			pagefault_disable();
			err = eb_relocate_vma(eb, vma);
			pagefault_enable();
			if (err)
				goto repeat;
		} else {
			err = eb_relocate_vma_slow(eb, vma);
			if (err)
				goto err;
		}
1710 1711
	}

1712 1713
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
1714 1715 1716 1717 1718 1719
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

1741
	return err;
1742 1743
}

1744
static int eb_relocate(struct i915_execbuffer *eb)
1745
{
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
	if (eb_lookup_vmas(eb))
		goto slow;

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
		struct i915_vma *vma;

		list_for_each_entry(vma, &eb->relocs, reloc_link) {
			if (eb_relocate_vma(eb, vma))
				goto slow;
		}
	}

	return 0;

slow:
	return eb_relocate_slow(eb);
}

1765
static void eb_export_fence(struct i915_vma *vma,
1766
			    struct i915_request *rq,
1767 1768
			    unsigned int flags)
{
1769
	struct reservation_object *resv = vma->resv;
1770 1771 1772 1773 1774 1775 1776 1777

	/*
	 * Ignore errors from failing to allocate the new fence, we can't
	 * handle an error right now. Worst case should be missed
	 * synchronisation leading to rendering corruption.
	 */
	reservation_object_lock(resv, NULL);
	if (flags & EXEC_OBJECT_WRITE)
1778
		reservation_object_add_excl_fence(resv, &rq->fence);
1779
	else if (reservation_object_reserve_shared(resv) == 0)
1780
		reservation_object_add_shared_fence(resv, &rq->fence);
1781 1782 1783 1784 1785 1786 1787 1788
	reservation_object_unlock(resv);
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1789

1790
	for (i = 0; i < count; i++) {
1791 1792
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];
1793
		struct drm_i915_gem_object *obj = vma->obj;
1794

1795
		if (flags & EXEC_OBJECT_CAPTURE) {
1796
			struct i915_capture_list *capture;
1797 1798 1799 1800 1801

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
			if (unlikely(!capture))
				return -ENOMEM;

1802
			capture->next = eb->request->capture_list;
1803
			capture->vma = eb->vma[i];
1804
			eb->request->capture_list = capture;
1805 1806
		}

1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1820
			if (i915_gem_clflush_object(obj, 0))
1821
				flags &= ~EXEC_OBJECT_ASYNC;
1822 1823
		}

1824 1825
		if (flags & EXEC_OBJECT_ASYNC)
			continue;
1826

1827
		err = i915_request_await_object
1828
			(eb->request, obj, flags & EXEC_OBJECT_WRITE);
1829 1830 1831 1832 1833
		if (err)
			return err;
	}

	for (i = 0; i < count; i++) {
1834 1835 1836 1837 1838
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];

		i915_vma_move_to_active(vma, eb->request, flags);
		eb_export_fence(vma, eb->request, flags);
1839

1840 1841 1842 1843
		__eb_unreserve_vma(vma, flags);
		vma->exec_flags = NULL;

		if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1844
			i915_vma_put(vma);
1845
	}
1846
	eb->exec = NULL;
1847

1848
	/* Unconditionally flush any chipset caches (for streaming writes). */
1849
	i915_gem_chipset_flush(eb->i915);
1850

1851
	return 0;
1852 1853
}

1854
static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1855
{
1856
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1857 1858
		return false;

C
Chris Wilson 已提交
1859
	/* Kernel clipping was a DRI1 misfeature */
1860 1861 1862 1863
	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
		if (exec->num_cliprects || exec->cliprects_ptr)
			return false;
	}
C
Chris Wilson 已提交
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
		return false;

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
		return false;

	return true;
1876 1877
}

1878
void i915_vma_move_to_active(struct i915_vma *vma,
1879
			     struct i915_request *rq,
1880 1881 1882
			     unsigned int flags)
{
	struct drm_i915_gem_object *obj = vma->obj;
1883
	const unsigned int idx = rq->engine->id;
1884

1885
	lockdep_assert_held(&rq->i915->drm.struct_mutex);
1886 1887
	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));

1888 1889
	/*
	 * Add a reference if we're newly entering the active list.
1890 1891 1892 1893 1894 1895
	 * The order in which we add operations to the retirement queue is
	 * vital here: mark_active adds to the start of the callback list,
	 * such that subsequent callbacks are called first. Therefore we
	 * add the active reference first and queue for it to be dropped
	 * *last*.
	 */
1896 1897 1898
	if (!i915_vma_is_active(vma))
		obj->active_count++;
	i915_vma_set_active(vma, idx);
1899
	i915_gem_active_set(&vma->last_read[idx], rq);
1900
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
1901

1902
	obj->write_domain = 0;
1903
	if (flags & EXEC_OBJECT_WRITE) {
1904
		obj->write_domain = I915_GEM_DOMAIN_RENDER;
1905

1906
		if (intel_fb_obj_invalidate(obj, ORIGIN_CS))
1907
			i915_gem_active_set(&obj->frontbuffer_write, rq);
1908

1909
		obj->read_domains = 0;
1910
	}
1911
	obj->read_domains |= I915_GEM_GPU_DOMAINS;
1912

1913
	if (flags & EXEC_OBJECT_NEEDS_FENCE)
1914
		i915_gem_active_set(&vma->last_fence, rq);
1915 1916
}

1917
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1918
{
1919 1920
	u32 *cs;
	int i;
1921

1922
	if (!IS_GEN7(rq->i915) || rq->engine->id != RCS) {
1923 1924 1925
		DRM_DEBUG("sol reset is gen7/rcs only\n");
		return -EINVAL;
	}
1926

1927
	cs = intel_ring_begin(rq, 4 * 2 + 2);
1928 1929
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1930

1931
	*cs++ = MI_LOAD_REGISTER_IMM(4);
1932
	for (i = 0; i < 4; i++) {
1933 1934
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
1935
	}
1936
	*cs++ = MI_NOOP;
1937
	intel_ring_advance(rq, cs);
1938 1939 1940 1941

	return 0;
}

1942
static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
1943 1944
{
	struct drm_i915_gem_object *shadow_batch_obj;
1945
	struct i915_vma *vma;
1946
	int err;
1947

1948 1949
	shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool,
						   PAGE_ALIGN(eb->batch_len));
1950
	if (IS_ERR(shadow_batch_obj))
1951
		return ERR_CAST(shadow_batch_obj);
1952

1953
	err = intel_engine_cmd_parser(eb->engine,
1954
				      eb->batch->obj,
1955
				      shadow_batch_obj,
1956 1957
				      eb->batch_start_offset,
				      eb->batch_len,
1958
				      is_master);
1959 1960
	if (err) {
		if (err == -EACCES) /* unhandled chained batch */
C
Chris Wilson 已提交
1961 1962
			vma = NULL;
		else
1963
			vma = ERR_PTR(err);
C
Chris Wilson 已提交
1964 1965
		goto out;
	}
1966

C
Chris Wilson 已提交
1967 1968 1969
	vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
	if (IS_ERR(vma))
		goto out;
C
Chris Wilson 已提交
1970

1971 1972 1973 1974 1975
	eb->vma[eb->buffer_count] = i915_vma_get(vma);
	eb->flags[eb->buffer_count] =
		__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
	vma->exec_flags = &eb->flags[eb->buffer_count];
	eb->buffer_count++;
1976

C
Chris Wilson 已提交
1977
out:
C
Chris Wilson 已提交
1978
	i915_gem_object_unpin_pages(shadow_batch_obj);
C
Chris Wilson 已提交
1979
	return vma;
1980
}
1981

1982
static void
1983
add_to_client(struct i915_request *rq, struct drm_file *file)
1984
{
1985 1986
	rq->file_priv = file->driver_priv;
	list_add_tail(&rq->client_link, &rq->file_priv->mm.request_list);
1987 1988
}

1989
static int eb_submit(struct i915_execbuffer *eb)
1990
{
1991
	int err;
1992

1993 1994 1995
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
1996

1997
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
1998 1999 2000
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
2001 2002
	}

2003
	err = eb->engine->emit_bb_start(eb->request,
2004 2005 2006
					eb->batch->node.start +
					eb->batch_start_offset,
					eb->batch_len,
2007 2008 2009
					eb->batch_flags);
	if (err)
		return err;
2010

C
Chris Wilson 已提交
2011
	return 0;
2012 2013
}

2014
/*
2015
 * Find one BSD ring to dispatch the corresponding BSD command.
2016
 * The engine index is returned.
2017
 */
2018
static unsigned int
2019 2020
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
2021 2022 2023
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

2024
	/* Check whether the file_priv has already selected one ring. */
2025 2026 2027
	if ((int)file_priv->bsd_engine < 0)
		file_priv->bsd_engine = atomic_fetch_xor(1,
			 &dev_priv->mm.bsd_engine_dispatch_index);
2028

2029
	return file_priv->bsd_engine;
2030 2031
}

2032 2033
#define I915_USER_RINGS (4)

2034
static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
2035 2036 2037 2038 2039 2040 2041
	[I915_EXEC_DEFAULT]	= RCS,
	[I915_EXEC_RENDER]	= RCS,
	[I915_EXEC_BLT]		= BCS,
	[I915_EXEC_BSD]		= VCS,
	[I915_EXEC_VEBOX]	= VECS
};

2042 2043 2044 2045
static struct intel_engine_cs *
eb_select_engine(struct drm_i915_private *dev_priv,
		 struct drm_file *file,
		 struct drm_i915_gem_execbuffer2 *args)
2046 2047
{
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2048
	struct intel_engine_cs *engine;
2049 2050 2051

	if (user_ring_id > I915_USER_RINGS) {
		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
2052
		return NULL;
2053 2054 2055 2056 2057 2058
	}

	if ((user_ring_id != I915_EXEC_BSD) &&
	    ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
		DRM_DEBUG("execbuf with non bsd ring but with invalid "
			  "bsd dispatch flags: %d\n", (int)(args->flags));
2059
		return NULL;
2060 2061 2062 2063 2064 2065
	}

	if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2066
			bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
2067 2068
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2069
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2070 2071 2072 2073
			bsd_idx--;
		} else {
			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
				  bsd_idx);
2074
			return NULL;
2075 2076
		}

2077
		engine = dev_priv->engine[_VCS(bsd_idx)];
2078
	} else {
2079
		engine = dev_priv->engine[user_ring_map[user_ring_id]];
2080 2081
	}

2082
	if (!engine) {
2083
		DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
2084
		return NULL;
2085 2086
	}

2087
	return engine;
2088 2089
}

2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
static void
__free_fence_array(struct drm_syncobj **fences, unsigned int n)
{
	while (n--)
		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
	kvfree(fences);
}

static struct drm_syncobj **
get_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_file *file)
{
2102
	const unsigned long nfences = args->num_cliprects;
2103 2104
	struct drm_i915_gem_exec_fence __user *user;
	struct drm_syncobj **fences;
2105
	unsigned long n;
2106 2107 2108 2109 2110
	int err;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return NULL;

2111 2112 2113 2114 2115
	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (nfences > min_t(unsigned long,
			    ULONG_MAX / sizeof(*user),
			    SIZE_MAX / sizeof(*fences)))
2116 2117 2118
		return ERR_PTR(-EINVAL);

	user = u64_to_user_ptr(args->cliprects_ptr);
2119
	if (!access_ok(VERIFY_READ, user, nfences * sizeof(*user)))
2120 2121
		return ERR_PTR(-EFAULT);

2122
	fences = kvmalloc_array(nfences, sizeof(*fences),
2123
				__GFP_NOWARN | GFP_KERNEL);
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
	if (!fences)
		return ERR_PTR(-ENOMEM);

	for (n = 0; n < nfences; n++) {
		struct drm_i915_gem_exec_fence fence;
		struct drm_syncobj *syncobj;

		if (__copy_from_user(&fence, user++, sizeof(fence))) {
			err = -EFAULT;
			goto err;
		}

2136 2137 2138 2139 2140
		if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
			err = -EINVAL;
			goto err;
		}

2141 2142 2143 2144 2145 2146 2147
		syncobj = drm_syncobj_find(file, fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			err = -ENOENT;
			goto err;
		}

2148 2149 2150
		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
	}

	return fences;

err:
	__free_fence_array(fences, n);
	return ERR_PTR(err);
}

static void
put_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_syncobj **fences)
{
	if (fences)
		__free_fence_array(fences, args->num_cliprects);
}

static int
await_fence_array(struct i915_execbuffer *eb,
		  struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	unsigned int n;
	int err;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		struct dma_fence *fence;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_WAIT))
			continue;

J
Jason Ekstrand 已提交
2186
		fence = drm_syncobj_fence_get(syncobj);
2187 2188 2189
		if (!fence)
			return -EINVAL;

2190
		err = i915_request_await_dma_fence(eb->request, fence);
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
		dma_fence_put(fence);
		if (err < 0)
			return err;
	}

	return 0;
}

static void
signal_fence_array(struct i915_execbuffer *eb,
		   struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

		drm_syncobj_replace_fence(syncobj, fence);
	}
}

2219
static int
2220
i915_gem_do_execbuffer(struct drm_device *dev,
2221 2222
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2223 2224
		       struct drm_i915_gem_exec_object2 *exec,
		       struct drm_syncobj **fences)
2225
{
2226
	struct i915_execbuffer eb;
2227 2228 2229
	struct dma_fence *in_fence = NULL;
	struct sync_file *out_fence = NULL;
	int out_fence_fd = -1;
2230
	int err;
2231

2232
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2233 2234
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2235

2236 2237 2238
	eb.i915 = to_i915(dev);
	eb.file = file;
	eb.args = args;
2239
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2240
		args->flags |= __EXEC_HAS_RELOC;
2241

2242
	eb.exec = exec;
2243 2244
	eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
	eb.vma[0] = NULL;
2245 2246
	eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);

2247 2248 2249
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
	if (USES_FULL_PPGTT(eb.i915))
		eb.invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
2250 2251
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2252
	eb.buffer_count = args->buffer_count;
2253 2254 2255
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;

2256
	eb.batch_flags = 0;
2257
	if (args->flags & I915_EXEC_SECURE) {
2258
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2259 2260
		    return -EPERM;

2261
		eb.batch_flags |= I915_DISPATCH_SECURE;
2262
	}
2263
	if (args->flags & I915_EXEC_IS_PINNED)
2264
		eb.batch_flags |= I915_DISPATCH_PINNED;
2265

2266 2267
	eb.engine = eb_select_engine(eb.i915, file, args);
	if (!eb.engine)
2268 2269
		return -EINVAL;

2270
	if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
2271
		if (!HAS_RESOURCE_STREAMER(eb.i915)) {
2272 2273 2274
			DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
			return -EINVAL;
		}
2275
		if (eb.engine->id != RCS) {
2276
			DRM_DEBUG("RS is not available on %s\n",
2277
				 eb.engine->name);
2278 2279 2280
			return -EINVAL;
		}

2281
		eb.batch_flags |= I915_DISPATCH_RS;
2282 2283
	}

2284 2285
	if (args->flags & I915_EXEC_FENCE_IN) {
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2286 2287
		if (!in_fence)
			return -EINVAL;
2288 2289 2290 2291 2292
	}

	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
2293
			err = out_fence_fd;
2294
			goto err_in_fence;
2295 2296 2297
		}
	}

2298 2299 2300 2301 2302
	err = eb_create(&eb);
	if (err)
		goto err_out_fence;

	GEM_BUG_ON(!eb.lut_size);
2303

2304 2305 2306 2307
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

2308 2309
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
2310 2311 2312 2313 2314
	 * we expect to access the hardware fairly frequently in the
	 * process. Upon first dispatch, we acquire another prolonged
	 * wakeref that we hold until the GPU has been idle for at least
	 * 100ms.
	 */
2315
	intel_runtime_pm_get(eb.i915);
2316

2317 2318 2319
	err = i915_mutex_lock_interruptible(dev);
	if (err)
		goto err_rpm;
2320

2321
	err = eb_relocate(&eb);
2322
	if (err) {
2323 2324 2325 2326 2327 2328 2329 2330 2331
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
2332
	}
2333

2334
	if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2335
		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2336 2337
		err = -EINVAL;
		goto err_vma;
2338
	}
2339 2340
	if (eb.batch_start_offset > eb.batch->size ||
	    eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2341
		DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2342 2343
		err = -EINVAL;
		goto err_vma;
2344
	}
2345

2346
	if (eb_use_cmdparser(&eb)) {
2347 2348
		struct i915_vma *vma;

2349
		vma = eb_parse(&eb, drm_is_current_master(file));
2350
		if (IS_ERR(vma)) {
2351 2352
			err = PTR_ERR(vma);
			goto err_vma;
2353
		}
2354

2355
		if (vma) {
2356 2357 2358 2359 2360 2361 2362 2363 2364
			/*
			 * Batch parsed and accepted:
			 *
			 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
			 * bit from MI_BATCH_BUFFER_START commands issued in
			 * the dispatch_execbuffer implementations. We
			 * specifically don't want that set on batches the
			 * command parser has accepted.
			 */
2365
			eb.batch_flags |= I915_DISPATCH_SECURE;
2366 2367
			eb.batch_start_offset = 0;
			eb.batch = vma;
2368
		}
2369 2370
	}

2371 2372
	if (eb.batch_len == 0)
		eb.batch_len = eb.batch->size - eb.batch_start_offset;
2373

2374 2375
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2376
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2377
	 * hsw should have this fixed, but bdw mucks it up again. */
2378
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2379
		struct i915_vma *vma;
2380

2381 2382 2383 2384 2385 2386
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2387
		 *   so we don't really have issues with multiple objects not
2388 2389 2390
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2391
		vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2392
		if (IS_ERR(vma)) {
2393 2394
			err = PTR_ERR(vma);
			goto err_vma;
C
Chris Wilson 已提交
2395
		}
2396

2397
		eb.batch = vma;
2398
	}
2399

2400 2401 2402
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

2403
	/* Allocate a request for this batch buffer nice and early. */
2404
	eb.request = i915_request_alloc(eb.engine, eb.ctx);
2405
	if (IS_ERR(eb.request)) {
2406
		err = PTR_ERR(eb.request);
2407
		goto err_batch_unpin;
2408
	}
2409

2410
	if (in_fence) {
2411
		err = i915_request_await_dma_fence(eb.request, in_fence);
2412
		if (err < 0)
2413 2414 2415
			goto err_request;
	}

2416 2417 2418 2419 2420 2421
	if (fences) {
		err = await_fence_array(&eb, fences);
		if (err)
			goto err_request;
	}

2422
	if (out_fence_fd != -1) {
2423
		out_fence = sync_file_create(&eb.request->fence);
2424
		if (!out_fence) {
2425
			err = -ENOMEM;
2426 2427 2428 2429
			goto err_request;
		}
	}

2430 2431
	/*
	 * Whilst this request exists, batch_obj will be on the
2432 2433 2434 2435 2436
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2437
	eb.request->batch = eb.batch;
2438

2439
	trace_i915_request_queue(eb.request, eb.batch_flags);
2440
	err = eb_submit(&eb);
2441
err_request:
2442
	i915_request_add(eb.request);
2443
	add_to_client(eb.request, file);
2444

2445 2446 2447
	if (fences)
		signal_fence_array(&eb, fences);

2448
	if (out_fence) {
2449
		if (err == 0) {
2450
			fd_install(out_fence_fd, out_fence->file);
2451
			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2452 2453 2454 2455 2456 2457
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2458

2459
err_batch_unpin:
2460
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2461
		i915_vma_unpin(eb.batch);
2462 2463 2464
err_vma:
	if (eb.exec)
		eb_release_vmas(&eb);
2465
	mutex_unlock(&dev->struct_mutex);
2466
err_rpm:
2467
	intel_runtime_pm_put(eb.i915);
2468 2469
	i915_gem_context_put(eb.ctx);
err_destroy:
2470
	eb_destroy(&eb);
2471
err_out_fence:
2472 2473
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2474
err_in_fence:
2475
	dma_fence_put(in_fence);
2476
	return err;
2477 2478
}

2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
static size_t eb_element_size(void)
{
	return (sizeof(struct drm_i915_gem_exec_object2) +
		sizeof(struct i915_vma *) +
		sizeof(unsigned int));
}

static bool check_buffer_count(size_t count)
{
	const size_t sz = eb_element_size();

	/*
	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
	 * array size (see eb_create()). Otherwise, we can accept an array as
	 * large as can be addressed (though use large arrays at your peril)!
	 */

	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}

2499 2500 2501 2502 2503
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
2504 2505
i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file)
2506 2507 2508 2509 2510
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2511
	const size_t count = args->buffer_count;
2512 2513
	unsigned int i;
	int err;
2514

2515 2516
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2517 2518 2519
		return -EINVAL;
	}

2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

	if (!i915_gem_check_execbuffer(&exec2))
		return -EINVAL;

2534
	/* Copy in the exec list from userland */
2535
	exec_list = kvmalloc_array(count, sizeof(*exec_list),
2536
				   __GFP_NOWARN | GFP_KERNEL);
2537
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2538
				    __GFP_NOWARN | GFP_KERNEL);
2539
	if (exec_list == NULL || exec2_list == NULL) {
2540
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2541
			  args->buffer_count);
M
Michal Hocko 已提交
2542 2543
		kvfree(exec_list);
		kvfree(exec2_list);
2544 2545
		return -ENOMEM;
	}
2546
	err = copy_from_user(exec_list,
2547
			     u64_to_user_ptr(args->buffers_ptr),
2548
			     sizeof(*exec_list) * count);
2549
	if (err) {
2550
		DRM_DEBUG("copy %d exec entries failed %d\n",
2551
			  args->buffer_count, err);
M
Michal Hocko 已提交
2552 2553
		kvfree(exec_list);
		kvfree(exec2_list);
2554 2555 2556 2557 2558 2559 2560 2561 2562
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2563
		if (INTEL_GEN(to_i915(dev)) < 4)
2564 2565 2566 2567 2568
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2569
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2570
	if (exec2.flags & __EXEC_HAS_RELOC) {
2571
		struct drm_i915_gem_exec_object __user *user_exec_list =
2572
			u64_to_user_ptr(args->buffers_ptr);
2573

2574
		/* Copy the new buffer offsets back to the user's exec list. */
2575
		for (i = 0; i < args->buffer_count; i++) {
2576 2577 2578
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2579
			exec2_list[i].offset =
2580 2581 2582 2583 2584
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2585
				break;
2586 2587 2588
		}
	}

M
Michal Hocko 已提交
2589 2590
	kvfree(exec_list);
	kvfree(exec2_list);
2591
	return err;
2592 2593 2594
}

int
2595 2596
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
2597 2598
{
	struct drm_i915_gem_execbuffer2 *args = data;
2599
	struct drm_i915_gem_exec_object2 *exec2_list;
2600
	struct drm_syncobj **fences = NULL;
2601
	const size_t count = args->buffer_count;
2602
	int err;
2603

2604 2605
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2606 2607 2608
		return -EINVAL;
	}

2609 2610 2611 2612
	if (!i915_gem_check_execbuffer(args))
		return -EINVAL;

	/* Allocate an extra slot for use by the command parser */
2613
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2614
				    __GFP_NOWARN | GFP_KERNEL);
2615
	if (exec2_list == NULL) {
2616 2617
		DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
			  count);
2618 2619
		return -ENOMEM;
	}
2620 2621
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
2622 2623
			   sizeof(*exec2_list) * count)) {
		DRM_DEBUG("copy %zd exec entries failed\n", count);
M
Michal Hocko 已提交
2624
		kvfree(exec2_list);
2625 2626 2627
		return -EFAULT;
	}

2628 2629 2630 2631 2632 2633 2634 2635 2636
	if (args->flags & I915_EXEC_FENCE_ARRAY) {
		fences = get_fence_array(args, file);
		if (IS_ERR(fences)) {
			kvfree(exec2_list);
			return PTR_ERR(fences);
		}
	}

	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2637 2638 2639 2640 2641 2642 2643 2644

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
2645
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2646 2647
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
2648

2649 2650
		/* Copy the new buffer offsets back to the user's exec list. */
		user_access_begin();
2651
		for (i = 0; i < args->buffer_count; i++) {
2652 2653 2654
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2655
			exec2_list[i].offset =
2656 2657 2658 2659
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
2660
		}
2661 2662
end_user:
		user_access_end();
2663 2664
	}

2665
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2666
	put_fence_array(args, fences);
M
Michal Hocko 已提交
2667
	kvfree(exec2_list);
2668
	return err;
2669
}