i915_gem_execbuffer.c 71.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright © 2008,2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Chris Wilson <chris@chris-wilson.co.uk>
 *
 */

29 30
#include <linux/dma_remapping.h>
#include <linux/reservation.h>
31
#include <linux/sync_file.h>
32 33
#include <linux/uaccess.h>

34
#include <drm/drmP.h>
35
#include <drm/drm_syncobj.h>
36
#include <drm/i915_drm.h>
37

38
#include "i915_drv.h"
39
#include "i915_gem_clflush.h"
40 41
#include "i915_trace.h"
#include "intel_drv.h"
42
#include "intel_frontbuffer.h"
43

44 45 46 47 48 49
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};
50

51 52 53 54 55 56
#define __EXEC_OBJECT_HAS_REF		BIT(31)
#define __EXEC_OBJECT_HAS_PIN		BIT(30)
#define __EXEC_OBJECT_HAS_FENCE		BIT(29)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(28)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(27)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 27) /* all of the above */
57 58 59 60
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)

#define __EXEC_HAS_RELOC	BIT(31)
#define __EXEC_VALIDATED	BIT(30)
61
#define __EXEC_INTERNAL_FLAGS	(~0u << 30)
62
#define UPDATE			PIN_OFFSET_FIXED
63 64

#define BATCH_OFFSET_BIAS (256*1024)
65

66 67
#define __I915_EXEC_ILLEGAL_FLAGS \
	(__I915_EXEC_UNKNOWN_FLAGS | I915_EXEC_CONSTANTS_MASK)
68

69 70 71 72 73 74 75 76 77
/* Catch emission of unexpected errors for CI! */
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
#undef EINVAL
#define EINVAL ({ \
	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
	22; \
})
#endif

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
 * At the level of talking to the hardware, submitting a batchbuffer for the
 * GPU to execute is to add content to a buffer from which the HW
 * command streamer is reading.
 *
 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 *    Execlists, this command is not placed on the same buffer as the
 *    remaining items.
 *
 * 2. Add a command to invalidate caches to the buffer.
 *
 * 3. Add a batchbuffer start command to the buffer; the start command is
 *    essentially a token together with the GPU address of the batchbuffer
 *    to be executed.
 *
 * 4. Add a pipeline flush to the buffer.
 *
 * 5. Add a memory write command to the buffer to record when the GPU
 *    is done executing the batchbuffer. The memory write writes the
 *    global sequence number of the request, ``i915_request::global_seqno``;
 *    the i915 driver uses the current value in the register to determine
 *    if the GPU has completed the batchbuffer.
 *
 * 6. Add a user interrupt command to the buffer. This command instructs
 *    the GPU to issue an interrupt when the command, pipeline flush and
 *    memory write are completed.
 *
 * 7. Inform the hardware of the additional commands added to the buffer
 *    (by updating the tail pointer).
 *
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

229
struct i915_execbuffer {
230 231 232 233
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
234 235
	struct i915_vma **vma;
	unsigned int *flags;
236 237 238 239 240

	struct intel_engine_cs *engine; /** engine to queue the request to */
	struct i915_gem_context *ctx; /** context for building the request */
	struct i915_address_space *vm; /** GTT and vma for the request */

241
	struct i915_request *request; /** our request to build */
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
	struct i915_vma *batch; /** identity of the batch obj/vma */

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
258
	struct reloc_cache {
259 260 261
		struct drm_mm_node node; /** temporary GTT binding */
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
262
		unsigned int gen; /** Cached value of INTEL_GEN */
263
		bool use_64bit_reloc : 1;
264 265 266
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
267

268
		struct i915_request *rq;
269 270
		u32 *rq_cmd;
		unsigned int rq_size;
271
	} reloc_cache;
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
287 288
};

289
#define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
290

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
/*
 * Used to convert any address to canonical form.
 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
 * addresses to be in a canonical form:
 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
 * canonical form [63:48] == [47]."
 */
#define GEN8_HIGH_ADDRESS_BIT 47
static inline u64 gen8_canonical_addr(u64 address)
{
	return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
}

static inline u64 gen8_noncanonical_addr(u64 address)
{
	return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
}

310 311
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
312
	return intel_engine_needs_cmd_parser(eb->engine) && eb->batch_len;
313 314
}

315
static int eb_create(struct i915_execbuffer *eb)
316
{
317 318
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
319

320 321 322 323 324 325 326 327 328 329 330
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
331
		do {
332
			gfp_t flags;
333 334 335 336 337 338 339

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
340
			flags = GFP_KERNEL;
341 342 343
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

344
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
345
					      flags);
346 347 348 349
			if (eb->buckets)
				break;
		} while (--size);

350 351
		if (unlikely(!size))
			return -ENOMEM;
352

353
		eb->lut_size = size;
354
	} else {
355
		eb->lut_size = -eb->buffer_count;
356
	}
357

358
	return 0;
359 360
}

361 362
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
363 364
		 const struct i915_vma *vma,
		 unsigned int flags)
365 366 367 368 369 370 371
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

372
	if (flags & EXEC_OBJECT_PINNED &&
373 374 375
	    vma->node.start != entry->offset)
		return true;

376
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
377 378 379
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

380
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
381 382 383
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

384 385 386 387
	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
	    !i915_vma_is_map_and_fenceable(vma))
		return true;

388 389 390
	return false;
}

391
static inline bool
392
eb_pin_vma(struct i915_execbuffer *eb,
393
	   const struct drm_i915_gem_exec_object2 *entry,
394 395
	   struct i915_vma *vma)
{
396 397
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
398

399
	if (vma->node.size)
400
		pin_flags = vma->node.start;
401
	else
402
		pin_flags = entry->offset & PIN_OFFSET_MASK;
403

404 405 406
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
		pin_flags |= PIN_GLOBAL;
407

408 409
	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
		return false;
410

411
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
412
		if (unlikely(i915_vma_pin_fence(vma))) {
413
			i915_vma_unpin(vma);
414
			return false;
415 416
		}

417
		if (vma->fence)
418
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
419 420
	}

421 422
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	return !eb_vma_misplaced(entry, vma, exec_flags);
423 424
}

425
static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
426
{
427
	GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
428

429
	if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
430
		__i915_vma_unpin_fence(vma);
431

432
	__i915_vma_unpin(vma);
433 434
}

435
static inline void
436
eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
437
{
438
	if (!(*flags & __EXEC_OBJECT_HAS_PIN))
439
		return;
440

441 442
	__eb_unreserve_vma(vma, *flags);
	*flags &= ~__EXEC_OBJECT_RESERVED;
443 444
}

445 446 447 448
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
449
{
450 451
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
452

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
	if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
		     entry->offset != gen8_canonical_addr(entry->offset & PAGE_MASK)))
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
470 471
	}

472
	if (unlikely(vma->exec_flags)) {
473 474 475 476 477 478 479 480 481 482 483 484
		DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
			  entry->handle, (int)(entry - eb->exec));
		return -EINVAL;
	}

	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

485 486 487 488 489 490 491 492 493 494 495 496
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

497
	return 0;
498 499
}

500
static int
501 502 503
eb_add_vma(struct i915_execbuffer *eb,
	   unsigned int i, unsigned batch_idx,
	   struct i915_vma *vma)
504
{
505
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
506 507 508 509 510 511 512 513
	int err;

	GEM_BUG_ON(i915_vma_is_closed(vma));

	if (!(eb->args->flags & __EXEC_VALIDATED)) {
		err = eb_validate_vma(eb, entry, vma);
		if (unlikely(err))
			return err;
514 515
	}

516
	if (eb->lut_size > 0) {
517
		vma->exec_handle = entry->handle;
518
		hlist_add_head(&vma->exec_node,
519 520
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
521
	}
522

523 524 525 526 527 528 529 530 531
	if (entry->relocation_count)
		list_add_tail(&vma->reloc_link, &eb->relocs);

	/*
	 * Stash a pointer from the vma to execobj, so we can query its flags,
	 * size, alignment etc as provided by the user. Also we stash a pointer
	 * to the vma inside the execobj so that we can use a direct lookup
	 * to find the right target VMA when doing relocations.
	 */
532
	eb->vma[i] = vma;
533
	eb->flags[i] = entry->flags;
534
	vma->exec_flags = &eb->flags[i];
535

536 537 538 539 540 541 542 543 544 545
	/*
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
	 */
	if (i == batch_idx) {
546 547
		if (entry->relocation_count &&
		    !(eb->flags[i] & EXEC_OBJECT_PINNED))
548 549 550 551 552 553 554
			eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
		if (eb->reloc_cache.has_fence)
			eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;

		eb->batch = vma;
	}

555
	err = 0;
556
	if (eb_pin_vma(eb, entry, vma)) {
557 558 559 560
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
561 562 563 564 565 566
	} else {
		eb_unreserve_vma(vma, vma->exec_flags);

		list_add_tail(&vma->exec_link, &eb->unbound);
		if (drm_mm_node_allocated(&vma->node))
			err = i915_vma_unbind(vma);
567 568
		if (unlikely(err))
			vma->exec_flags = NULL;
569 570 571 572 573 574 575 576 577 578
	}
	return err;
}

static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

579 580 581 582 583
	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;
584 585 586 587 588 589 590 591 592

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
			  struct i915_vma *vma)
{
593 594 595
	struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
596 597
	int err;

598 599 600
	pin_flags = PIN_USER | PIN_NONBLOCK;
	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;
601 602 603 604 605

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
606 607
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;
608

609 610
	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;
611

612 613 614 615 616
	if (exec_flags & EXEC_OBJECT_PINNED) {
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
		pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
	} else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
617 618
	}

619 620 621
	err = i915_vma_pin(vma,
			   entry->pad_to_size, entry->alignment,
			   pin_flags);
622 623 624 625 626 627 628 629
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

630
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
631
		err = i915_vma_pin_fence(vma);
632 633 634 635 636
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

637
		if (vma->fence)
638
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
639 640
	}

641 642
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
643

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	struct list_head last;
	struct i915_vma *vma;
	unsigned int i, pass;
	int err;

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

	pass = 0;
	err = 0;
	do {
		list_for_each_entry(vma, &eb->unbound, exec_link) {
			err = eb_reserve_vma(eb, vma);
			if (err)
				break;
		}
		if (err != -ENOSPC)
			return err;

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
684 685
			unsigned int flags = eb->flags[i];
			struct i915_vma *vma = eb->vma[i];
686

687 688
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
689 690
				continue;

691
			eb_unreserve_vma(vma, &eb->flags[i]);
692

693
			if (flags & EXEC_OBJECT_PINNED)
694
				list_add(&vma->exec_link, &eb->unbound);
695
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
				list_add_tail(&vma->exec_link, &eb->unbound);
			else
				list_add_tail(&vma->exec_link, &last);
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
			err = i915_gem_evict_vm(eb->vm);
			if (err)
				return err;
			break;

		default:
			return -ENOSPC;
		}
	} while (1);
717
}
718

719 720
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
721 722 723 724
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
725 726 727 728 729 730 731
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
732 733
	if (unlikely(!ctx))
		return -ENOENT;
734

735
	eb->ctx = ctx;
736
	eb->vm = ctx->ppgtt ? &ctx->ppgtt->vm : &eb->i915->ggtt.vm;
737 738 739 740 741 742 743 744 745

	eb->context_flags = 0;
	if (ctx->flags & CONTEXT_NO_ZEROMAP)
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

static int eb_lookup_vmas(struct i915_execbuffer *eb)
746
{
747
	struct radix_tree_root *handles_vma = &eb->ctx->handles_vma;
748
	struct drm_i915_gem_object *obj;
749
	unsigned int i, batch;
750
	int err;
751

752 753 754 755 756 757
	if (unlikely(i915_gem_context_is_closed(eb->ctx)))
		return -ENOENT;

	if (unlikely(i915_gem_context_is_banned(eb->ctx)))
		return -EIO;

758 759
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);
760

761 762
	batch = eb_batch_index(eb);

763 764
	for (i = 0; i < eb->buffer_count; i++) {
		u32 handle = eb->exec[i].handle;
765
		struct i915_lut_handle *lut;
766
		struct i915_vma *vma;
767

768 769
		vma = radix_tree_lookup(handles_vma, handle);
		if (likely(vma))
770
			goto add_vma;
771

772
		obj = i915_gem_object_lookup(eb->file, handle);
773
		if (unlikely(!obj)) {
774
			err = -ENOENT;
775
			goto err_vma;
776 777
		}

778
		vma = i915_vma_instance(obj, eb->vm, NULL);
C
Chris Wilson 已提交
779
		if (unlikely(IS_ERR(vma))) {
780
			err = PTR_ERR(vma);
781
			goto err_obj;
782 783
		}

784 785 786 787 788 789 790 791
		lut = kmem_cache_alloc(eb->i915->luts, GFP_KERNEL);
		if (unlikely(!lut)) {
			err = -ENOMEM;
			goto err_obj;
		}

		err = radix_tree_insert(handles_vma, handle, vma);
		if (unlikely(err)) {
792
			kmem_cache_free(eb->i915->luts, lut);
793
			goto err_obj;
794
		}
795

796
		/* transfer ref to ctx */
797 798
		if (!vma->open_count++)
			i915_vma_reopen(vma);
799 800 801 802 803
		list_add(&lut->obj_link, &obj->lut_list);
		list_add(&lut->ctx_link, &eb->ctx->handles_list);
		lut->ctx = eb->ctx;
		lut->handle = handle;

804
add_vma:
805
		err = eb_add_vma(eb, i, batch, vma);
806
		if (unlikely(err))
807
			goto err_vma;
808

809 810
		GEM_BUG_ON(vma != eb->vma[i]);
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
811 812
		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
			   eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i]));
813 814
	}

815 816 817
	eb->args->flags |= __EXEC_VALIDATED;
	return eb_reserve(eb);

818
err_obj:
819
	i915_gem_object_put(obj);
820 821
err_vma:
	eb->vma[i] = NULL;
822
	return err;
823 824
}

825
static struct i915_vma *
826
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
827
{
828 829
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
830
			return NULL;
831
		return eb->vma[handle];
832 833
	} else {
		struct hlist_head *head;
834
		struct i915_vma *vma;
835

836
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
837
		hlist_for_each_entry(vma, head, exec_node) {
838 839
			if (vma->exec_handle == handle)
				return vma;
840 841 842
		}
		return NULL;
	}
843 844
}

845
static void eb_release_vmas(const struct i915_execbuffer *eb)
846
{
847 848 849 850
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
851 852
		struct i915_vma *vma = eb->vma[i];
		unsigned int flags = eb->flags[i];
853

854
		if (!vma)
855
			break;
856

857 858 859
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
		vma->exec_flags = NULL;
		eb->vma[i] = NULL;
860

861 862
		if (flags & __EXEC_OBJECT_HAS_PIN)
			__eb_unreserve_vma(vma, flags);
863

864
		if (flags & __EXEC_OBJECT_HAS_REF)
865
			i915_vma_put(vma);
866
	}
867 868
}

869
static void eb_reset_vmas(const struct i915_execbuffer *eb)
870
{
871
	eb_release_vmas(eb);
872
	if (eb->lut_size > 0)
873 874
		memset(eb->buckets, 0,
		       sizeof(struct hlist_head) << eb->lut_size);
875 876
}

877
static void eb_destroy(const struct i915_execbuffer *eb)
878
{
879 880
	GEM_BUG_ON(eb->reloc_cache.rq);

881
	if (eb->lut_size > 0)
882
		kfree(eb->buckets);
883 884
}

885
static inline u64
886
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
887
		  const struct i915_vma *target)
888
{
889
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
890 891
}

892 893
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
894
{
895
	cache->page = -1;
896
	cache->vaddr = 0;
897
	/* Must be a variable in the struct to allow GCC to unroll. */
898
	cache->gen = INTEL_GEN(i915);
899
	cache->has_llc = HAS_LLC(i915);
900
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
901 902
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
903
	cache->node.allocated = false;
904 905
	cache->rq = NULL;
	cache->rq_size = 0;
906
}
907

908 909 910 911 912 913 914 915
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
916 917
}

918 919
#define KMAP 0x4 /* after CLFLUSH_FLAGS */

920 921 922 923 924 925 926
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

927 928 929 930 931 932 933
static void reloc_gpu_flush(struct reloc_cache *cache)
{
	GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
	i915_gem_object_unpin_map(cache->rq->batch->obj);
	i915_gem_chipset_flush(cache->rq->i915);

934
	i915_request_add(cache->rq);
935 936 937
	cache->rq = NULL;
}

938
static void reloc_cache_reset(struct reloc_cache *cache)
939
{
940
	void *vaddr;
941

942 943 944
	if (cache->rq)
		reloc_gpu_flush(cache);

945 946
	if (!cache->vaddr)
		return;
947

948 949 950 951
	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();
952

953 954 955
		kunmap_atomic(vaddr);
		i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
	} else {
956
		wmb();
957
		io_mapping_unmap_atomic((void __iomem *)vaddr);
958
		if (cache->node.allocated) {
959
			struct i915_ggtt *ggtt = cache_to_ggtt(cache);
960

961 962 963
			ggtt->vm.clear_range(&ggtt->vm,
					     cache->node.start,
					     cache->node.size);
964 965 966
			drm_mm_remove_node(&cache->node);
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
967
		}
968
	}
969 970 971

	cache->vaddr = 0;
	cache->page = -1;
972 973 974 975
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
976
			unsigned long page)
977
{
978 979 980 981 982 983
	void *vaddr;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
984
		int err;
985

986 987 988
		err = i915_gem_obj_prepare_shmem_write(obj, &flushes);
		if (err)
			return ERR_PTR(err);
989 990 991

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
992

993 994 995 996
		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
997 998
	}

999 1000
	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1001
	cache->page = page;
1002

1003
	return vaddr;
1004 1005
}

1006 1007
static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1008
			 unsigned long page)
1009
{
1010
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1011
	unsigned long offset;
1012
	void *vaddr;
1013

1014
	if (cache->vaddr) {
1015
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1016 1017
	} else {
		struct i915_vma *vma;
1018
		int err;
1019

1020
		if (use_cpu_reloc(cache, obj))
1021
			return NULL;
1022

1023 1024 1025
		err = i915_gem_object_set_to_gtt_domain(obj, true);
		if (err)
			return ERR_PTR(err);
1026

1027
		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1028 1029 1030
					       PIN_MAPPABLE |
					       PIN_NONBLOCK |
					       PIN_NONFAULT);
1031 1032
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
1033
			err = drm_mm_insert_node_in_range
1034
				(&ggtt->vm.mm, &cache->node,
1035
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1036
				 0, ggtt->mappable_end,
1037
				 DRM_MM_INSERT_LOW);
1038
			if (err) /* no inactive aperture space, use cpu reloc */
1039
				return NULL;
1040
		} else {
1041 1042
			err = i915_vma_put_fence(vma);
			if (err) {
1043
				i915_vma_unpin(vma);
1044
				return ERR_PTR(err);
1045
			}
1046

1047 1048
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
1049
		}
1050
	}
1051

1052 1053
	offset = cache->node.start;
	if (cache->node.allocated) {
1054
		wmb();
1055 1056 1057
		ggtt->vm.insert_page(&ggtt->vm,
				     i915_gem_object_get_dma_address(obj, page),
				     offset, I915_CACHE_NONE, 0);
1058 1059
	} else {
		offset += page << PAGE_SHIFT;
1060 1061
	}

1062
	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1063
							 offset);
1064 1065
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;
1066

1067
	return vaddr;
1068 1069
}

1070 1071
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1072
			 unsigned long page)
1073
{
1074
	void *vaddr;
1075

1076 1077 1078 1079 1080 1081 1082 1083
	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
1084 1085
	}

1086
	return vaddr;
1087 1088
}

1089
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1090
{
1091 1092 1093 1094 1095
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}
1096

1097
		*addr = value;
1098

1099 1100
		/*
		 * Writes to the same cacheline are serialised by the CPU
1101 1102 1103 1104 1105 1106 1107 1108 1109
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
1110 1111
}

1112 1113 1114 1115 1116 1117
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
			     struct i915_vma *vma,
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	struct drm_i915_gem_object *obj;
1118
	struct i915_request *rq;
1119 1120 1121 1122
	struct i915_vma *batch;
	u32 *cmd;
	int err;

1123
	GEM_BUG_ON(vma->obj->write_domain & I915_GEM_DOMAIN_CPU);
1124 1125 1126 1127 1128 1129

	obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, PAGE_SIZE);
	if (IS_ERR(obj))
		return PTR_ERR(obj);

	cmd = i915_gem_object_pin_map(obj,
1130 1131 1132
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
	i915_gem_object_unpin_pages(obj);
	if (IS_ERR(cmd))
		return PTR_ERR(cmd);

	err = i915_gem_object_set_to_wc_domain(obj, false);
	if (err)
		goto err_unmap;

	batch = i915_vma_instance(obj, vma->vm, NULL);
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

1151
	rq = i915_request_alloc(eb->engine, eb->ctx);
1152 1153 1154 1155 1156
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

1157
	err = i915_request_await_object(rq, vma->obj, true);
1158 1159 1160 1161 1162 1163 1164 1165 1166
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
		goto err_request;

1167
	GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch->resv, true));
1168 1169 1170
	i915_vma_move_to_active(batch, rq, 0);
	i915_vma_unpin(batch);

1171
	i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

	rq->batch = batch;

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;

	/* Return with batch mapping (cmd) still pinned */
	return 0;

err_request:
1183
	i915_request_add(rq);
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
	i915_gem_object_unpin_map(obj);
	return err;
}

static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
		reloc_gpu_flush(cache);

	if (unlikely(!cache->rq)) {
		int err;

1204 1205 1206 1207
		/* If we need to copy for the cmdparser, we will stall anyway */
		if (eb_use_cmdparser(eb))
			return ERR_PTR(-EWOULDBLOCK);

1208 1209 1210
		if (!intel_engine_can_store_dword(eb->engine))
			return ERR_PTR(-ENODEV);

1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
		err = __reloc_gpu_alloc(eb, vma, len);
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1222 1223
static u64
relocate_entry(struct i915_vma *vma,
1224
	       const struct drm_i915_gem_relocation_entry *reloc,
1225 1226
	       struct i915_execbuffer *eb,
	       const struct i915_vma *target)
1227
{
1228
	u64 offset = reloc->offset;
1229 1230
	u64 target_offset = relocation_target(reloc, target);
	bool wide = eb->reloc_cache.use_64bit_reloc;
1231
	void *vaddr;
1232

1233 1234
	if (!eb->reloc_cache.vaddr &&
	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1235
	     !reservation_object_test_signaled_rcu(vma->resv, true))) {
1236 1237 1238 1239 1240 1241 1242 1243 1244
		const unsigned int gen = eb->reloc_cache.gen;
		unsigned int len;
		u32 *batch;
		u64 addr;

		if (wide)
			len = offset & 7 ? 8 : 5;
		else if (gen >= 4)
			len = 4;
1245
		else
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
			len = 3;

		batch = reloc_gpu(eb, vma, len);
		if (IS_ERR(batch))
			goto repeat;

		addr = gen8_canonical_addr(vma->node.start + offset);
		if (wide) {
			if (offset & 7) {
				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);

				addr = gen8_canonical_addr(addr + 4);

				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = upper_32_bits(target_offset);
			} else {
				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);
				*batch++ = upper_32_bits(target_offset);
			}
		} else if (gen >= 6) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else if (gen >= 4) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else {
			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
			*batch++ = addr;
			*batch++ = target_offset;
		}

		goto out;
	}

1292
repeat:
1293
	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1294 1295 1296 1297 1298
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_offset),
1299
			eb->reloc_cache.vaddr);
1300 1301 1302 1303 1304 1305

	if (wide) {
		offset += sizeof(u32);
		target_offset >>= 32;
		wide = false;
		goto repeat;
1306 1307
	}

1308
out:
1309
	return target->node.start | UPDATE;
1310 1311
}

1312 1313 1314 1315
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
		  struct i915_vma *vma,
		  const struct drm_i915_gem_relocation_entry *reloc)
1316
{
1317
	struct i915_vma *target;
1318
	int err;
1319

1320
	/* we've already hold a reference to all valid objects */
1321 1322
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1323
		return -ENOENT;
1324

1325
	/* Validate that the target is in a valid r/w GPU domain */
1326
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1327
		DRM_DEBUG("reloc with multiple write domains: "
1328
			  "target %d offset %d "
1329
			  "read %08x write %08x",
1330
			  reloc->target_handle,
1331 1332 1333
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1334
		return -EINVAL;
1335
	}
1336 1337
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1338
		DRM_DEBUG("reloc with read/write non-GPU domains: "
1339
			  "target %d offset %d "
1340
			  "read %08x write %08x",
1341
			  reloc->target_handle,
1342 1343 1344
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1345
		return -EINVAL;
1346 1347
	}

1348
	if (reloc->write_domain) {
1349
		*target->exec_flags |= EXEC_OBJECT_WRITE;
1350

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
		    IS_GEN6(eb->i915)) {
			err = i915_vma_bind(target, target->obj->cache_level,
					    PIN_GLOBAL);
			if (WARN_ONCE(err,
				      "Unexpected failure to bind target VMA!"))
				return err;
		}
1365
	}
1366

1367 1368
	/*
	 * If the relocation already has the right value in it, no
1369 1370
	 * more work needs to be done.
	 */
1371 1372
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1373
		return 0;
1374 1375

	/* Check that the relocation address is valid... */
1376
	if (unlikely(reloc->offset >
1377
		     vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1378
		DRM_DEBUG("Relocation beyond object bounds: "
1379 1380 1381 1382
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
			  (int)vma->size);
1383
		return -EINVAL;
1384
	}
1385
	if (unlikely(reloc->offset & 3)) {
1386
		DRM_DEBUG("Relocation not 4-byte aligned: "
1387 1388 1389
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1390
		return -EINVAL;
1391 1392
	}

1393 1394 1395 1396 1397 1398
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1399
	 * out of our synchronisation.
1400
	 */
1401
	*vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1402

1403
	/* and update the user's relocation entry */
1404
	return relocate_entry(vma, reloc, eb, target);
1405 1406
}

1407
static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1408
{
1409
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1410 1411
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
	struct drm_i915_gem_relocation_entry __user *urelocs;
1412
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1413
	unsigned int remain;
1414

1415
	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1416
	remain = entry->relocation_count;
1417 1418
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
		return -EINVAL;
1419

1420 1421 1422 1423 1424
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1425
	if (unlikely(!access_ok(VERIFY_READ, urelocs, remain*sizeof(*urelocs))))
1426 1427 1428 1429 1430 1431 1432
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
			min_t(unsigned int, remain, ARRAY_SIZE(stack));
		unsigned int copied;
1433

1434 1435
		/*
		 * This is the fast path and we cannot handle a pagefault
1436 1437 1438 1439 1440 1441 1442
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
		pagefault_disable();
1443
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1444
		pagefault_enable();
1445 1446
		if (unlikely(copied)) {
			remain = -EFAULT;
1447 1448
			goto out;
		}
1449

1450
		remain -= count;
1451
		do {
1452
			u64 offset = eb_relocate_entry(eb, vma, r);
1453

1454 1455 1456
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
				remain = (int)offset;
1457
				goto out;
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
				__put_user(offset,
					   &urelocs[r-stack].presumed_offset);
1483
			}
1484 1485 1486
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1487
out:
1488
	reloc_cache_reset(&eb->reloc_cache);
1489
	return remain;
1490 1491 1492
}

static int
1493
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1494
{
1495
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1496 1497 1498 1499
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
	int err;
1500 1501

	for (i = 0; i < entry->relocation_count; i++) {
1502
		u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1503

1504 1505 1506 1507
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1508
	}
1509 1510 1511 1512
	err = 0;
err:
	reloc_cache_reset(&eb->reloc_cache);
	return err;
1513 1514
}

1515
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1516
{
1517 1518 1519
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1520

1521 1522 1523
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1524

1525 1526
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1527

1528 1529 1530 1531
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
	if (!access_ok(VERIFY_READ, addr, size))
		return -EFAULT;
1532

1533 1534 1535 1536 1537
	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
1538
	}
1539
	return __get_user(c, end - 1);
1540
}
1541

1542
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1543
{
1544 1545 1546
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1547

1548 1549 1550 1551 1552 1553
	for (i = 0; i < count; i++) {
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		struct drm_i915_gem_relocation_entry *relocs;
		unsigned long size;
		unsigned long copied;
1554

1555 1556
		if (nreloc == 0)
			continue;
1557

1558 1559 1560
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1561

1562 1563
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1564

1565
		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1566 1567 1568 1569 1570
		if (!relocs) {
			kvfree(relocs);
			err = -ENOMEM;
			goto err;
		}
1571

1572 1573 1574 1575 1576 1577 1578
		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
1579
					     (char __user *)urelocs + copied,
1580 1581 1582 1583 1584
					     len)) {
				kvfree(relocs);
				err = -EFAULT;
				goto err;
			}
1585

1586 1587
			copied += len;
		} while (copied < size);
1588

1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
		user_access_begin();
		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
end_user:
		user_access_end();
1606

1607 1608
		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}
1609

1610
	return 0;
1611

1612 1613 1614 1615 1616 1617 1618 1619
err:
	while (i--) {
		struct drm_i915_gem_relocation_entry *relocs =
			u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
1620 1621
}

1622
static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1623
{
1624 1625
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1626

1627
	if (unlikely(i915_modparams.prefault_disable))
1628
		return 0;
1629

1630 1631
	for (i = 0; i < count; i++) {
		int err;
1632

1633 1634 1635 1636
		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}
1637

1638
	return 0;
1639 1640
}

1641
static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1642
{
1643
	struct drm_device *dev = &eb->i915->drm;
1644
	bool have_copy = false;
1645
	struct i915_vma *vma;
1646 1647 1648 1649 1650 1651 1652
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
	}
1653

1654
	/* We may process another execbuffer during the unlock... */
1655
	eb_reset_vmas(eb);
1656 1657
	mutex_unlock(&dev->struct_mutex);

1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
1679
	}
1680 1681 1682
	if (err) {
		mutex_lock(&dev->struct_mutex);
		goto out;
1683 1684
	}

1685 1686 1687
	/* A frequent cause for EAGAIN are currently unavailable client pages */
	flush_workqueue(eb->i915->mm.userptr_wq);

1688 1689
	err = i915_mutex_lock_interruptible(dev);
	if (err) {
1690
		mutex_lock(&dev->struct_mutex);
1691
		goto out;
1692 1693
	}

1694
	/* reacquire the objects */
1695 1696
	err = eb_lookup_vmas(eb);
	if (err)
1697
		goto err;
1698

1699 1700
	GEM_BUG_ON(!eb->batch);

1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
	list_for_each_entry(vma, &eb->relocs, reloc_link) {
		if (!have_copy) {
			pagefault_disable();
			err = eb_relocate_vma(eb, vma);
			pagefault_enable();
			if (err)
				goto repeat;
		} else {
			err = eb_relocate_vma_slow(eb, vma);
			if (err)
				goto err;
		}
1713 1714
	}

1715 1716
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
1717 1718 1719 1720 1721 1722
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

1744
	return err;
1745 1746
}

1747
static int eb_relocate(struct i915_execbuffer *eb)
1748
{
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
	if (eb_lookup_vmas(eb))
		goto slow;

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
		struct i915_vma *vma;

		list_for_each_entry(vma, &eb->relocs, reloc_link) {
			if (eb_relocate_vma(eb, vma))
				goto slow;
		}
	}

	return 0;

slow:
	return eb_relocate_slow(eb);
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1773

1774
	for (i = 0; i < count; i++) {
1775 1776
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];
1777
		struct drm_i915_gem_object *obj = vma->obj;
1778

1779
		if (flags & EXEC_OBJECT_CAPTURE) {
1780
			struct i915_capture_list *capture;
1781 1782 1783 1784 1785

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
			if (unlikely(!capture))
				return -ENOMEM;

1786
			capture->next = eb->request->capture_list;
1787
			capture->vma = eb->vma[i];
1788
			eb->request->capture_list = capture;
1789 1790
		}

1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1804
			if (i915_gem_clflush_object(obj, 0))
1805
				flags &= ~EXEC_OBJECT_ASYNC;
1806 1807
		}

1808 1809
		if (flags & EXEC_OBJECT_ASYNC)
			continue;
1810

1811
		err = i915_request_await_object
1812
			(eb->request, obj, flags & EXEC_OBJECT_WRITE);
1813 1814 1815 1816 1817
		if (err)
			return err;
	}

	for (i = 0; i < count; i++) {
1818 1819 1820 1821
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];

		i915_vma_move_to_active(vma, eb->request, flags);
1822

1823 1824 1825 1826
		__eb_unreserve_vma(vma, flags);
		vma->exec_flags = NULL;

		if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1827
			i915_vma_put(vma);
1828
	}
1829
	eb->exec = NULL;
1830

1831
	/* Unconditionally flush any chipset caches (for streaming writes). */
1832
	i915_gem_chipset_flush(eb->i915);
1833

1834
	return 0;
1835 1836
}

1837
static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1838
{
1839
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1840 1841
		return false;

C
Chris Wilson 已提交
1842
	/* Kernel clipping was a DRI1 misfeature */
1843 1844 1845 1846
	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
		if (exec->num_cliprects || exec->cliprects_ptr)
			return false;
	}
C
Chris Wilson 已提交
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
		return false;

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
		return false;

	return true;
1859 1860
}

1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
static void export_fence(struct i915_vma *vma,
			 struct i915_request *rq,
			 unsigned int flags)
{
	struct reservation_object *resv = vma->resv;

	/*
	 * Ignore errors from failing to allocate the new fence, we can't
	 * handle an error right now. Worst case should be missed
	 * synchronisation leading to rendering corruption.
	 */
	reservation_object_lock(resv, NULL);
	if (flags & EXEC_OBJECT_WRITE)
		reservation_object_add_excl_fence(resv, &rq->fence);
	else if (reservation_object_reserve_shared(resv) == 0)
		reservation_object_add_shared_fence(resv, &rq->fence);
	reservation_object_unlock(resv);
}

1880
void i915_vma_move_to_active(struct i915_vma *vma,
1881
			     struct i915_request *rq,
1882 1883 1884
			     unsigned int flags)
{
	struct drm_i915_gem_object *obj = vma->obj;
1885
	const unsigned int idx = rq->engine->id;
1886

1887
	lockdep_assert_held(&rq->i915->drm.struct_mutex);
1888 1889
	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));

1890 1891
	/*
	 * Add a reference if we're newly entering the active list.
1892 1893 1894 1895 1896 1897
	 * The order in which we add operations to the retirement queue is
	 * vital here: mark_active adds to the start of the callback list,
	 * such that subsequent callbacks are called first. Therefore we
	 * add the active reference first and queue for it to be dropped
	 * *last*.
	 */
1898 1899 1900
	if (!i915_vma_is_active(vma))
		obj->active_count++;
	i915_vma_set_active(vma, idx);
1901
	i915_gem_active_set(&vma->last_read[idx], rq);
1902
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
1903

1904
	obj->write_domain = 0;
1905
	if (flags & EXEC_OBJECT_WRITE) {
1906
		obj->write_domain = I915_GEM_DOMAIN_RENDER;
1907

1908
		if (intel_fb_obj_invalidate(obj, ORIGIN_CS))
1909
			i915_gem_active_set(&obj->frontbuffer_write, rq);
1910

1911
		obj->read_domains = 0;
1912
	}
1913
	obj->read_domains |= I915_GEM_GPU_DOMAINS;
1914

1915
	if (flags & EXEC_OBJECT_NEEDS_FENCE)
1916
		i915_gem_active_set(&vma->last_fence, rq);
1917 1918

	export_fence(vma, rq, flags);
1919 1920
}

1921
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1922
{
1923 1924
	u32 *cs;
	int i;
1925

1926
	if (!IS_GEN7(rq->i915) || rq->engine->id != RCS) {
1927 1928 1929
		DRM_DEBUG("sol reset is gen7/rcs only\n");
		return -EINVAL;
	}
1930

1931
	cs = intel_ring_begin(rq, 4 * 2 + 2);
1932 1933
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1934

1935
	*cs++ = MI_LOAD_REGISTER_IMM(4);
1936
	for (i = 0; i < 4; i++) {
1937 1938
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
1939
	}
1940
	*cs++ = MI_NOOP;
1941
	intel_ring_advance(rq, cs);
1942 1943 1944 1945

	return 0;
}

1946
static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
1947 1948
{
	struct drm_i915_gem_object *shadow_batch_obj;
1949
	struct i915_vma *vma;
1950
	int err;
1951

1952 1953
	shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool,
						   PAGE_ALIGN(eb->batch_len));
1954
	if (IS_ERR(shadow_batch_obj))
1955
		return ERR_CAST(shadow_batch_obj);
1956

1957
	err = intel_engine_cmd_parser(eb->engine,
1958
				      eb->batch->obj,
1959
				      shadow_batch_obj,
1960 1961
				      eb->batch_start_offset,
				      eb->batch_len,
1962
				      is_master);
1963 1964
	if (err) {
		if (err == -EACCES) /* unhandled chained batch */
C
Chris Wilson 已提交
1965 1966
			vma = NULL;
		else
1967
			vma = ERR_PTR(err);
C
Chris Wilson 已提交
1968 1969
		goto out;
	}
1970

C
Chris Wilson 已提交
1971 1972 1973
	vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
	if (IS_ERR(vma))
		goto out;
C
Chris Wilson 已提交
1974

1975 1976 1977 1978 1979
	eb->vma[eb->buffer_count] = i915_vma_get(vma);
	eb->flags[eb->buffer_count] =
		__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
	vma->exec_flags = &eb->flags[eb->buffer_count];
	eb->buffer_count++;
1980

C
Chris Wilson 已提交
1981
out:
C
Chris Wilson 已提交
1982
	i915_gem_object_unpin_pages(shadow_batch_obj);
C
Chris Wilson 已提交
1983
	return vma;
1984
}
1985

1986
static void
1987
add_to_client(struct i915_request *rq, struct drm_file *file)
1988
{
1989 1990
	rq->file_priv = file->driver_priv;
	list_add_tail(&rq->client_link, &rq->file_priv->mm.request_list);
1991 1992
}

1993
static int eb_submit(struct i915_execbuffer *eb)
1994
{
1995
	int err;
1996

1997 1998 1999
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
2000

2001
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2002 2003 2004
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
2005 2006
	}

2007
	err = eb->engine->emit_bb_start(eb->request,
2008 2009 2010
					eb->batch->node.start +
					eb->batch_start_offset,
					eb->batch_len,
2011 2012 2013
					eb->batch_flags);
	if (err)
		return err;
2014

C
Chris Wilson 已提交
2015
	return 0;
2016 2017
}

2018
/*
2019
 * Find one BSD ring to dispatch the corresponding BSD command.
2020
 * The engine index is returned.
2021
 */
2022
static unsigned int
2023 2024
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
2025 2026 2027
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

2028
	/* Check whether the file_priv has already selected one ring. */
2029 2030 2031
	if ((int)file_priv->bsd_engine < 0)
		file_priv->bsd_engine = atomic_fetch_xor(1,
			 &dev_priv->mm.bsd_engine_dispatch_index);
2032

2033
	return file_priv->bsd_engine;
2034 2035
}

2036 2037
#define I915_USER_RINGS (4)

2038
static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
2039 2040 2041 2042 2043 2044 2045
	[I915_EXEC_DEFAULT]	= RCS,
	[I915_EXEC_RENDER]	= RCS,
	[I915_EXEC_BLT]		= BCS,
	[I915_EXEC_BSD]		= VCS,
	[I915_EXEC_VEBOX]	= VECS
};

2046 2047 2048 2049
static struct intel_engine_cs *
eb_select_engine(struct drm_i915_private *dev_priv,
		 struct drm_file *file,
		 struct drm_i915_gem_execbuffer2 *args)
2050 2051
{
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2052
	struct intel_engine_cs *engine;
2053 2054 2055

	if (user_ring_id > I915_USER_RINGS) {
		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
2056
		return NULL;
2057 2058 2059 2060 2061 2062
	}

	if ((user_ring_id != I915_EXEC_BSD) &&
	    ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
		DRM_DEBUG("execbuf with non bsd ring but with invalid "
			  "bsd dispatch flags: %d\n", (int)(args->flags));
2063
		return NULL;
2064 2065 2066 2067 2068 2069
	}

	if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2070
			bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
2071 2072
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2073
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2074 2075 2076 2077
			bsd_idx--;
		} else {
			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
				  bsd_idx);
2078
			return NULL;
2079 2080
		}

2081
		engine = dev_priv->engine[_VCS(bsd_idx)];
2082
	} else {
2083
		engine = dev_priv->engine[user_ring_map[user_ring_id]];
2084 2085
	}

2086
	if (!engine) {
2087
		DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
2088
		return NULL;
2089 2090
	}

2091
	return engine;
2092 2093
}

2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
static void
__free_fence_array(struct drm_syncobj **fences, unsigned int n)
{
	while (n--)
		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
	kvfree(fences);
}

static struct drm_syncobj **
get_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_file *file)
{
2106
	const unsigned long nfences = args->num_cliprects;
2107 2108
	struct drm_i915_gem_exec_fence __user *user;
	struct drm_syncobj **fences;
2109
	unsigned long n;
2110 2111 2112 2113 2114
	int err;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return NULL;

2115 2116 2117 2118 2119
	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (nfences > min_t(unsigned long,
			    ULONG_MAX / sizeof(*user),
			    SIZE_MAX / sizeof(*fences)))
2120 2121 2122
		return ERR_PTR(-EINVAL);

	user = u64_to_user_ptr(args->cliprects_ptr);
2123
	if (!access_ok(VERIFY_READ, user, nfences * sizeof(*user)))
2124 2125
		return ERR_PTR(-EFAULT);

2126
	fences = kvmalloc_array(nfences, sizeof(*fences),
2127
				__GFP_NOWARN | GFP_KERNEL);
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
	if (!fences)
		return ERR_PTR(-ENOMEM);

	for (n = 0; n < nfences; n++) {
		struct drm_i915_gem_exec_fence fence;
		struct drm_syncobj *syncobj;

		if (__copy_from_user(&fence, user++, sizeof(fence))) {
			err = -EFAULT;
			goto err;
		}

2140 2141 2142 2143 2144
		if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
			err = -EINVAL;
			goto err;
		}

2145 2146 2147 2148 2149 2150 2151
		syncobj = drm_syncobj_find(file, fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			err = -ENOENT;
			goto err;
		}

2152 2153 2154
		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
	}

	return fences;

err:
	__free_fence_array(fences, n);
	return ERR_PTR(err);
}

static void
put_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_syncobj **fences)
{
	if (fences)
		__free_fence_array(fences, args->num_cliprects);
}

static int
await_fence_array(struct i915_execbuffer *eb,
		  struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	unsigned int n;
	int err;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		struct dma_fence *fence;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_WAIT))
			continue;

J
Jason Ekstrand 已提交
2190
		fence = drm_syncobj_fence_get(syncobj);
2191 2192 2193
		if (!fence)
			return -EINVAL;

2194
		err = i915_request_await_dma_fence(eb->request, fence);
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
		dma_fence_put(fence);
		if (err < 0)
			return err;
	}

	return 0;
}

static void
signal_fence_array(struct i915_execbuffer *eb,
		   struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

		drm_syncobj_replace_fence(syncobj, fence);
	}
}

2223
static int
2224
i915_gem_do_execbuffer(struct drm_device *dev,
2225 2226
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2227 2228
		       struct drm_i915_gem_exec_object2 *exec,
		       struct drm_syncobj **fences)
2229
{
2230
	struct i915_execbuffer eb;
2231 2232 2233
	struct dma_fence *in_fence = NULL;
	struct sync_file *out_fence = NULL;
	int out_fence_fd = -1;
2234
	int err;
2235

2236
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2237 2238
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2239

2240 2241 2242
	eb.i915 = to_i915(dev);
	eb.file = file;
	eb.args = args;
2243
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2244
		args->flags |= __EXEC_HAS_RELOC;
2245

2246
	eb.exec = exec;
2247 2248
	eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
	eb.vma[0] = NULL;
2249 2250
	eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);

2251 2252 2253
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
	if (USES_FULL_PPGTT(eb.i915))
		eb.invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
2254 2255
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2256
	eb.buffer_count = args->buffer_count;
2257 2258 2259
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;

2260
	eb.batch_flags = 0;
2261
	if (args->flags & I915_EXEC_SECURE) {
2262
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2263 2264
		    return -EPERM;

2265
		eb.batch_flags |= I915_DISPATCH_SECURE;
2266
	}
2267
	if (args->flags & I915_EXEC_IS_PINNED)
2268
		eb.batch_flags |= I915_DISPATCH_PINNED;
2269

2270 2271
	eb.engine = eb_select_engine(eb.i915, file, args);
	if (!eb.engine)
2272 2273
		return -EINVAL;

2274
	if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
2275
		if (!HAS_RESOURCE_STREAMER(eb.i915)) {
2276 2277 2278
			DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
			return -EINVAL;
		}
2279
		if (eb.engine->id != RCS) {
2280
			DRM_DEBUG("RS is not available on %s\n",
2281
				 eb.engine->name);
2282 2283 2284
			return -EINVAL;
		}

2285
		eb.batch_flags |= I915_DISPATCH_RS;
2286 2287
	}

2288 2289
	if (args->flags & I915_EXEC_FENCE_IN) {
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2290 2291
		if (!in_fence)
			return -EINVAL;
2292 2293 2294 2295 2296
	}

	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
2297
			err = out_fence_fd;
2298
			goto err_in_fence;
2299 2300 2301
		}
	}

2302 2303 2304 2305 2306
	err = eb_create(&eb);
	if (err)
		goto err_out_fence;

	GEM_BUG_ON(!eb.lut_size);
2307

2308 2309 2310 2311
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

2312 2313
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
2314 2315 2316 2317 2318
	 * we expect to access the hardware fairly frequently in the
	 * process. Upon first dispatch, we acquire another prolonged
	 * wakeref that we hold until the GPU has been idle for at least
	 * 100ms.
	 */
2319
	intel_runtime_pm_get(eb.i915);
2320

2321 2322 2323
	err = i915_mutex_lock_interruptible(dev);
	if (err)
		goto err_rpm;
2324

2325
	err = eb_relocate(&eb);
2326
	if (err) {
2327 2328 2329 2330 2331 2332 2333 2334 2335
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
2336
	}
2337

2338
	if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2339
		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2340 2341
		err = -EINVAL;
		goto err_vma;
2342
	}
2343 2344
	if (eb.batch_start_offset > eb.batch->size ||
	    eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2345
		DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2346 2347
		err = -EINVAL;
		goto err_vma;
2348
	}
2349

2350
	if (eb_use_cmdparser(&eb)) {
2351 2352
		struct i915_vma *vma;

2353
		vma = eb_parse(&eb, drm_is_current_master(file));
2354
		if (IS_ERR(vma)) {
2355 2356
			err = PTR_ERR(vma);
			goto err_vma;
2357
		}
2358

2359
		if (vma) {
2360 2361 2362 2363 2364 2365 2366 2367 2368
			/*
			 * Batch parsed and accepted:
			 *
			 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
			 * bit from MI_BATCH_BUFFER_START commands issued in
			 * the dispatch_execbuffer implementations. We
			 * specifically don't want that set on batches the
			 * command parser has accepted.
			 */
2369
			eb.batch_flags |= I915_DISPATCH_SECURE;
2370 2371
			eb.batch_start_offset = 0;
			eb.batch = vma;
2372
		}
2373 2374
	}

2375 2376
	if (eb.batch_len == 0)
		eb.batch_len = eb.batch->size - eb.batch_start_offset;
2377

2378 2379
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2380
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2381
	 * hsw should have this fixed, but bdw mucks it up again. */
2382
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2383
		struct i915_vma *vma;
2384

2385 2386 2387 2388 2389 2390
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2391
		 *   so we don't really have issues with multiple objects not
2392 2393 2394
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2395
		vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2396
		if (IS_ERR(vma)) {
2397 2398
			err = PTR_ERR(vma);
			goto err_vma;
C
Chris Wilson 已提交
2399
		}
2400

2401
		eb.batch = vma;
2402
	}
2403

2404 2405 2406
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

2407
	/* Allocate a request for this batch buffer nice and early. */
2408
	eb.request = i915_request_alloc(eb.engine, eb.ctx);
2409
	if (IS_ERR(eb.request)) {
2410
		err = PTR_ERR(eb.request);
2411
		goto err_batch_unpin;
2412
	}
2413

2414
	if (in_fence) {
2415
		err = i915_request_await_dma_fence(eb.request, in_fence);
2416
		if (err < 0)
2417 2418 2419
			goto err_request;
	}

2420 2421 2422 2423 2424 2425
	if (fences) {
		err = await_fence_array(&eb, fences);
		if (err)
			goto err_request;
	}

2426
	if (out_fence_fd != -1) {
2427
		out_fence = sync_file_create(&eb.request->fence);
2428
		if (!out_fence) {
2429
			err = -ENOMEM;
2430 2431 2432 2433
			goto err_request;
		}
	}

2434 2435
	/*
	 * Whilst this request exists, batch_obj will be on the
2436 2437 2438 2439 2440
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2441
	eb.request->batch = eb.batch;
2442

2443
	trace_i915_request_queue(eb.request, eb.batch_flags);
2444
	err = eb_submit(&eb);
2445
err_request:
2446
	i915_request_add(eb.request);
2447
	add_to_client(eb.request, file);
2448

2449 2450 2451
	if (fences)
		signal_fence_array(&eb, fences);

2452
	if (out_fence) {
2453
		if (err == 0) {
2454
			fd_install(out_fence_fd, out_fence->file);
2455
			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2456 2457 2458 2459 2460 2461
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2462

2463
err_batch_unpin:
2464
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2465
		i915_vma_unpin(eb.batch);
2466 2467 2468
err_vma:
	if (eb.exec)
		eb_release_vmas(&eb);
2469
	mutex_unlock(&dev->struct_mutex);
2470
err_rpm:
2471
	intel_runtime_pm_put(eb.i915);
2472 2473
	i915_gem_context_put(eb.ctx);
err_destroy:
2474
	eb_destroy(&eb);
2475
err_out_fence:
2476 2477
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2478
err_in_fence:
2479
	dma_fence_put(in_fence);
2480
	return err;
2481 2482
}

2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
static size_t eb_element_size(void)
{
	return (sizeof(struct drm_i915_gem_exec_object2) +
		sizeof(struct i915_vma *) +
		sizeof(unsigned int));
}

static bool check_buffer_count(size_t count)
{
	const size_t sz = eb_element_size();

	/*
	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
	 * array size (see eb_create()). Otherwise, we can accept an array as
	 * large as can be addressed (though use large arrays at your peril)!
	 */

	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}

2503 2504 2505 2506 2507
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
2508 2509
i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file)
2510 2511 2512 2513 2514
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2515
	const size_t count = args->buffer_count;
2516 2517
	unsigned int i;
	int err;
2518

2519 2520
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2521 2522 2523
		return -EINVAL;
	}

2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

	if (!i915_gem_check_execbuffer(&exec2))
		return -EINVAL;

2538
	/* Copy in the exec list from userland */
2539
	exec_list = kvmalloc_array(count, sizeof(*exec_list),
2540
				   __GFP_NOWARN | GFP_KERNEL);
2541
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2542
				    __GFP_NOWARN | GFP_KERNEL);
2543
	if (exec_list == NULL || exec2_list == NULL) {
2544
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2545
			  args->buffer_count);
M
Michal Hocko 已提交
2546 2547
		kvfree(exec_list);
		kvfree(exec2_list);
2548 2549
		return -ENOMEM;
	}
2550
	err = copy_from_user(exec_list,
2551
			     u64_to_user_ptr(args->buffers_ptr),
2552
			     sizeof(*exec_list) * count);
2553
	if (err) {
2554
		DRM_DEBUG("copy %d exec entries failed %d\n",
2555
			  args->buffer_count, err);
M
Michal Hocko 已提交
2556 2557
		kvfree(exec_list);
		kvfree(exec2_list);
2558 2559 2560 2561 2562 2563 2564 2565 2566
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2567
		if (INTEL_GEN(to_i915(dev)) < 4)
2568 2569 2570 2571 2572
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2573
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2574
	if (exec2.flags & __EXEC_HAS_RELOC) {
2575
		struct drm_i915_gem_exec_object __user *user_exec_list =
2576
			u64_to_user_ptr(args->buffers_ptr);
2577

2578
		/* Copy the new buffer offsets back to the user's exec list. */
2579
		for (i = 0; i < args->buffer_count; i++) {
2580 2581 2582
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2583
			exec2_list[i].offset =
2584 2585 2586 2587 2588
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2589
				break;
2590 2591 2592
		}
	}

M
Michal Hocko 已提交
2593 2594
	kvfree(exec_list);
	kvfree(exec2_list);
2595
	return err;
2596 2597 2598
}

int
2599 2600
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
2601 2602
{
	struct drm_i915_gem_execbuffer2 *args = data;
2603
	struct drm_i915_gem_exec_object2 *exec2_list;
2604
	struct drm_syncobj **fences = NULL;
2605
	const size_t count = args->buffer_count;
2606
	int err;
2607

2608 2609
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2610 2611 2612
		return -EINVAL;
	}

2613 2614 2615 2616
	if (!i915_gem_check_execbuffer(args))
		return -EINVAL;

	/* Allocate an extra slot for use by the command parser */
2617
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2618
				    __GFP_NOWARN | GFP_KERNEL);
2619
	if (exec2_list == NULL) {
2620 2621
		DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
			  count);
2622 2623
		return -ENOMEM;
	}
2624 2625
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
2626 2627
			   sizeof(*exec2_list) * count)) {
		DRM_DEBUG("copy %zd exec entries failed\n", count);
M
Michal Hocko 已提交
2628
		kvfree(exec2_list);
2629 2630 2631
		return -EFAULT;
	}

2632 2633 2634 2635 2636 2637 2638 2639 2640
	if (args->flags & I915_EXEC_FENCE_ARRAY) {
		fences = get_fence_array(args, file);
		if (IS_ERR(fences)) {
			kvfree(exec2_list);
			return PTR_ERR(fences);
		}
	}

	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2641 2642 2643 2644 2645 2646 2647 2648

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
2649
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2650 2651
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
2652

2653 2654
		/* Copy the new buffer offsets back to the user's exec list. */
		user_access_begin();
2655
		for (i = 0; i < args->buffer_count; i++) {
2656 2657 2658
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2659
			exec2_list[i].offset =
2660 2661 2662 2663
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
2664
		}
2665 2666
end_user:
		user_access_end();
2667 2668
	}

2669
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2670
	put_fence_array(args, fences);
M
Michal Hocko 已提交
2671
	kvfree(exec2_list);
2672
	return err;
2673
}