i915_gem.c 135.6 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include <linux/shmem_fs.h>
36
#include <linux/slab.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40

41 42
#define RQ_BUG_ON(expr)

43
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45
static void
46 47 48
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49 50 51 52 53 54
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

55 56 57 58 59 60
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

61 62 63 64 65 66 67 68
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

69 70 71 72 73 74 75 76
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
77
	obj->fence_dirty = false;
78 79 80
	obj->fence_reg = I915_FENCE_REG_NONE;
}

81 82 83 84
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
85
	spin_lock(&dev_priv->mm.object_stat_lock);
86 87
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
88
	spin_unlock(&dev_priv->mm.object_stat_lock);
89 90 91 92 93
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
94
	spin_lock(&dev_priv->mm.object_stat_lock);
95 96
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
97
	spin_unlock(&dev_priv->mm.object_stat_lock);
98 99
}

100
static int
101
i915_gem_wait_for_error(struct i915_gpu_error *error)
102 103 104
{
	int ret;

105 106
#define EXIT_COND (!i915_reset_in_progress(error) || \
		   i915_terminally_wedged(error))
107
	if (EXIT_COND)
108 109
		return 0;

110 111 112 113 114
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
115 116 117
	ret = wait_event_interruptible_timeout(error->reset_queue,
					       EXIT_COND,
					       10*HZ);
118 119 120 121
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
122
		return ret;
123
	}
124
#undef EXIT_COND
125

126
	return 0;
127 128
}

129
int i915_mutex_lock_interruptible(struct drm_device *dev)
130
{
131
	struct drm_i915_private *dev_priv = dev->dev_private;
132 133
	int ret;

134
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 136 137 138 139 140 141
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

142
	WARN_ON(i915_verify_lists(dev));
143 144
	return 0;
}
145

146 147
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148
			    struct drm_file *file)
149
{
150
	struct drm_i915_private *dev_priv = dev->dev_private;
151
	struct drm_i915_gem_get_aperture *args = data;
152 153
	struct drm_i915_gem_object *obj;
	size_t pinned;
154

155
	pinned = 0;
156
	mutex_lock(&dev->struct_mutex);
157
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
B
Ben Widawsky 已提交
158
		if (i915_gem_obj_is_pinned(obj))
159
			pinned += i915_gem_obj_ggtt_size(obj);
160
	mutex_unlock(&dev->struct_mutex);
161

162
	args->aper_size = dev_priv->gtt.base.total;
163
	args->aper_available_size = args->aper_size - pinned;
164

165 166 167
	return 0;
}

168 169
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
170
{
171 172 173 174 175
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
176

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

		page_cache_release(page);
		vaddr += PAGE_SIZE;
	}

	i915_gem_chipset_flush(obj->base.dev);

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
211

212 213 214 215 216 217 218 219 220 221 222 223 224 225
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	obj->has_dma_mapping = true;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
226

227 228 229 230 231 232 233 234 235 236 237 238 239
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
240
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241
		char *vaddr = obj->phys_handle->vaddr;
242 243 244
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 246 247 248 249 250 251 252 253 254 255 256 257 258
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
259
				mark_page_accessed(page);
260
			page_cache_release(page);
261 262
			vaddr += PAGE_SIZE;
		}
263
		obj->dirty = 0;
264 265
	}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
	sg_free_table(obj->pages);
	kfree(obj->pages);

	obj->has_dma_mapping = false;
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
299 300 301 302 303 304 305
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
306
	int ret;
307 308 309 310 311 312 313 314 315 316 317 318 319 320

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

321 322 323 324
	ret = drop_pages(obj);
	if (ret)
		return ret;

325 326 327 328 329 330
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
331 332 333
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
334 335 336 337 338 339 340 341 342 343
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
344
	int ret = 0;
345 346 347 348 349 350 351

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
352

353
	intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
354 355 356 357 358 359 360 361 362 363
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
364 365 366 367
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
368 369
	}

370
	drm_clflush_virt_range(vaddr, args->size);
371
	i915_gem_chipset_flush(dev);
372 373 374 375

out:
	intel_fb_obj_flush(obj, false);
	return ret;
376 377
}

378 379 380
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
381
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 383 384 385 386
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
387
	kmem_cache_free(dev_priv->objects, obj);
388 389
}

390 391 392 393 394
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
395
{
396
	struct drm_i915_gem_object *obj;
397 398
	int ret;
	u32 handle;
399

400
	size = roundup(size, PAGE_SIZE);
401 402
	if (size == 0)
		return -EINVAL;
403 404

	/* Allocate the new object */
405
	obj = i915_gem_alloc_object(dev, size);
406 407 408
	if (obj == NULL)
		return -ENOMEM;

409
	ret = drm_gem_handle_create(file, &obj->base, &handle);
410
	/* drop reference from allocate - handle holds it now */
411 412 413
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
414

415
	*handle_p = handle;
416 417 418
	return 0;
}

419 420 421 422 423 424
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
425
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 427
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
428
			       args->size, &args->handle);
429 430 431 432 433 434 435 436 437 438
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
439

440
	return i915_gem_create(file, dev,
441
			       args->size, &args->handle);
442 443
}

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

470
static inline int
471 472
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

	if (!obj->base.filp)
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

532 533 534
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
535
static int
536 537 538 539 540 541 542
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

543
	if (unlikely(page_do_bit17_swizzling))
544 545 546 547 548 549 550 551 552 553 554
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

555
	return ret ? -EFAULT : 0;
556 557
}

558 559 560 561
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
562
	if (unlikely(swizzled)) {
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

580 581 582 583 584 585 586 587 588 589 590 591
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
592 593 594
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
595 596 597 598 599 600 601 602 603 604 605

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

606
	return ret ? - EFAULT : 0;
607 608
}

609
static int
610 611 612 613
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
614
{
615
	char __user *user_data;
616
	ssize_t remain;
617
	loff_t offset;
618
	int shmem_page_offset, page_length, ret = 0;
619
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
620
	int prefaulted = 0;
621
	int needs_clflush = 0;
622
	struct sg_page_iter sg_iter;
623

V
Ville Syrjälä 已提交
624
	user_data = to_user_ptr(args->data_ptr);
625 626
	remain = args->size;

627
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
628

629
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
630 631 632
	if (ret)
		return ret;

633
	offset = args->offset;
634

635 636
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
637
		struct page *page = sg_page_iter_page(&sg_iter);
638 639 640 641

		if (remain <= 0)
			break;

642 643 644 645 646
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
647
		shmem_page_offset = offset_in_page(offset);
648 649 650 651
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

652 653 654
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

655 656 657 658 659
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
660 661 662

		mutex_unlock(&dev->struct_mutex);

663
		if (likely(!i915.prefault_disable) && !prefaulted) {
664
			ret = fault_in_multipages_writeable(user_data, remain);
665 666 667 668 669 670 671
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
672

673 674 675
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
676

677
		mutex_lock(&dev->struct_mutex);
678 679

		if (ret)
680 681
			goto out;

682
next_page:
683
		remain -= page_length;
684
		user_data += page_length;
685 686 687
		offset += page_length;
	}

688
out:
689 690
	i915_gem_object_unpin_pages(obj);

691 692 693
	return ret;
}

694 695 696 697 698 699 700
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
701
		     struct drm_file *file)
702 703
{
	struct drm_i915_gem_pread *args = data;
704
	struct drm_i915_gem_object *obj;
705
	int ret = 0;
706

707 708 709 710
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
711
		       to_user_ptr(args->data_ptr),
712 713 714
		       args->size))
		return -EFAULT;

715
	ret = i915_mutex_lock_interruptible(dev);
716
	if (ret)
717
		return ret;
718

719
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
720
	if (&obj->base == NULL) {
721 722
		ret = -ENOENT;
		goto unlock;
723
	}
724

725
	/* Bounds check source.  */
726 727
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
728
		ret = -EINVAL;
729
		goto out;
C
Chris Wilson 已提交
730 731
	}

732 733 734 735 736 737 738 739
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
740 741
	trace_i915_gem_object_pread(obj, args->offset, args->size);

742
	ret = i915_gem_shmem_pread(dev, obj, args, file);
743

744
out:
745
	drm_gem_object_unreference(&obj->base);
746
unlock:
747
	mutex_unlock(&dev->struct_mutex);
748
	return ret;
749 750
}

751 752
/* This is the fast write path which cannot handle
 * page faults in the source data
753
 */
754 755 756 757 758 759

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
760
{
761 762
	void __iomem *vaddr_atomic;
	void *vaddr;
763
	unsigned long unwritten;
764

P
Peter Zijlstra 已提交
765
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
766 767 768
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
769
						      user_data, length);
P
Peter Zijlstra 已提交
770
	io_mapping_unmap_atomic(vaddr_atomic);
771
	return unwritten;
772 773
}

774 775 776 777
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
778
static int
779 780
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
781
			 struct drm_i915_gem_pwrite *args,
782
			 struct drm_file *file)
783
{
784
	struct drm_i915_private *dev_priv = dev->dev_private;
785
	ssize_t remain;
786
	loff_t offset, page_base;
787
	char __user *user_data;
D
Daniel Vetter 已提交
788 789
	int page_offset, page_length, ret;

790
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
791 792 793 794 795 796 797 798 799 800
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
801

V
Ville Syrjälä 已提交
802
	user_data = to_user_ptr(args->data_ptr);
803 804
	remain = args->size;

805
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
806

807 808
	intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);

809 810 811
	while (remain > 0) {
		/* Operation in this page
		 *
812 813 814
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
815
		 */
816 817
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
818 819 820 821 822
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
823 824
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
825
		 */
B
Ben Widawsky 已提交
826
		if (fast_user_write(dev_priv->gtt.mappable, page_base,
D
Daniel Vetter 已提交
827 828
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
829
			goto out_flush;
D
Daniel Vetter 已提交
830
		}
831

832 833 834
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
835 836
	}

837 838
out_flush:
	intel_fb_obj_flush(obj, false);
D
Daniel Vetter 已提交
839
out_unpin:
B
Ben Widawsky 已提交
840
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
841
out:
842
	return ret;
843 844
}

845 846 847 848
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
849
static int
850 851 852 853 854
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
855
{
856
	char *vaddr;
857
	int ret;
858

859
	if (unlikely(page_do_bit17_swizzling))
860
		return -EINVAL;
861

862 863 864 865
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
866 867
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
868 869 870 871
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
872

873
	return ret ? -EFAULT : 0;
874 875
}

876 877
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
878
static int
879 880 881 882 883
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
884
{
885 886
	char *vaddr;
	int ret;
887

888
	vaddr = kmap(page);
889
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
890 891 892
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
893 894
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
895 896
						user_data,
						page_length);
897 898 899 900 901
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
902 903 904
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
905
	kunmap(page);
906

907
	return ret ? -EFAULT : 0;
908 909 910
}

static int
911 912 913 914
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
915 916
{
	ssize_t remain;
917 918
	loff_t offset;
	char __user *user_data;
919
	int shmem_page_offset, page_length, ret = 0;
920
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
921
	int hit_slowpath = 0;
922 923
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
924
	struct sg_page_iter sg_iter;
925

V
Ville Syrjälä 已提交
926
	user_data = to_user_ptr(args->data_ptr);
927 928
	remain = args->size;

929
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
930

931 932 933 934 935
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
936
		needs_clflush_after = cpu_write_needs_clflush(obj);
937 938 939
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
940
	}
941 942 943 944 945
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
946

947 948 949 950
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

951 952
	intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);

953 954
	i915_gem_object_pin_pages(obj);

955
	offset = args->offset;
956
	obj->dirty = 1;
957

958 959
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
960
		struct page *page = sg_page_iter_page(&sg_iter);
961
		int partial_cacheline_write;
962

963 964 965
		if (remain <= 0)
			break;

966 967 968 969 970
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
971
		shmem_page_offset = offset_in_page(offset);
972 973 974 975 976

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

977 978 979 980 981 982 983
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

984 985 986
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

987 988 989 990 991 992
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
993 994 995

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
996 997 998 999
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1000

1001
		mutex_lock(&dev->struct_mutex);
1002 1003

		if (ret)
1004 1005
			goto out;

1006
next_page:
1007
		remain -= page_length;
1008
		user_data += page_length;
1009
		offset += page_length;
1010 1011
	}

1012
out:
1013 1014
	i915_gem_object_unpin_pages(obj);

1015
	if (hit_slowpath) {
1016 1017 1018 1019 1020 1021 1022
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1023 1024
			if (i915_gem_clflush_object(obj, obj->pin_display))
				i915_gem_chipset_flush(dev);
1025
		}
1026
	}
1027

1028
	if (needs_clflush_after)
1029
		i915_gem_chipset_flush(dev);
1030

1031
	intel_fb_obj_flush(obj, false);
1032
	return ret;
1033 1034 1035 1036 1037 1038 1039 1040 1041
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1042
		      struct drm_file *file)
1043
{
1044
	struct drm_i915_private *dev_priv = dev->dev_private;
1045
	struct drm_i915_gem_pwrite *args = data;
1046
	struct drm_i915_gem_object *obj;
1047 1048 1049 1050 1051 1052
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1053
		       to_user_ptr(args->data_ptr),
1054 1055 1056
		       args->size))
		return -EFAULT;

1057
	if (likely(!i915.prefault_disable)) {
1058 1059 1060 1061 1062
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1063

1064 1065
	intel_runtime_pm_get(dev_priv);

1066
	ret = i915_mutex_lock_interruptible(dev);
1067
	if (ret)
1068
		goto put_rpm;
1069

1070
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1071
	if (&obj->base == NULL) {
1072 1073
		ret = -ENOENT;
		goto unlock;
1074
	}
1075

1076
	/* Bounds check destination. */
1077 1078
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1079
		ret = -EINVAL;
1080
		goto out;
C
Chris Wilson 已提交
1081 1082
	}

1083 1084 1085 1086 1087 1088 1089 1090
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1091 1092
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1093
	ret = -EFAULT;
1094 1095 1096 1097 1098 1099
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1100 1101 1102
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1103
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1104 1105 1106
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1107
	}
1108

1109 1110 1111 1112 1113 1114
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1115

1116
out:
1117
	drm_gem_object_unreference(&obj->base);
1118
unlock:
1119
	mutex_unlock(&dev->struct_mutex);
1120 1121 1122
put_rpm:
	intel_runtime_pm_put(dev_priv);

1123 1124 1125
	return ret;
}

1126
int
1127
i915_gem_check_wedge(struct i915_gpu_error *error,
1128 1129
		     bool interruptible)
{
1130
	if (i915_reset_in_progress(error)) {
1131 1132 1133 1134 1135
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1136 1137
		/* Recovery complete, but the reset failed ... */
		if (i915_terminally_wedged(error))
1138 1139
			return -EIO;

1140 1141 1142 1143 1144 1145 1146
		/*
		 * Check if GPU Reset is in progress - we need intel_ring_begin
		 * to work properly to reinit the hw state while the gpu is
		 * still marked as reset-in-progress. Handle this with a flag.
		 */
		if (!error->reload_in_reset)
			return -EAGAIN;
1147 1148 1149 1150 1151 1152
	}

	return 0;
}

/*
1153
 * Compare arbitrary request against outstanding lazy request. Emit on match.
1154
 */
1155
int
1156
i915_gem_check_olr(struct drm_i915_gem_request *req)
1157 1158 1159
{
	int ret;

1160
	WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1161 1162

	ret = 0;
1163
	if (req == req->ring->outstanding_lazy_request)
1164
		ret = i915_add_request(req->ring);
1165 1166 1167 1168

	return ret;
}

1169 1170 1171 1172 1173 1174
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1175
		       struct intel_engine_cs *ring)
1176 1177 1178 1179
{
	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
}

D
Daniel Vetter 已提交
1180
static int __i915_spin_request(struct drm_i915_gem_request *req)
1181
{
1182
	unsigned long timeout;
1183

D
Daniel Vetter 已提交
1184
	if (i915_gem_request_get_ring(req)->irq_refcount)
1185 1186 1187 1188
		return -EBUSY;

	timeout = jiffies + 1;
	while (!need_resched()) {
D
Daniel Vetter 已提交
1189
		if (i915_gem_request_completed(req, true))
1190 1191 1192 1193
			return 0;

		if (time_after_eq(jiffies, timeout))
			break;
1194

1195 1196
		cpu_relax_lowlatency();
	}
D
Daniel Vetter 已提交
1197
	if (i915_gem_request_completed(req, false))
1198 1199 1200
		return 0;

	return -EAGAIN;
1201 1202
}

1203
/**
1204 1205 1206
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
 * @reset_counter: reset sequence associated with the given request
1207 1208 1209
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1210 1211 1212 1213 1214 1215 1216
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1217
 * Returns 0 if the request was found within the alloted time. Else returns the
1218 1219
 * errno with remaining time filled in timeout argument.
 */
1220
int __i915_wait_request(struct drm_i915_gem_request *req,
1221
			unsigned reset_counter,
1222
			bool interruptible,
1223
			s64 *timeout,
1224
			struct intel_rps_client *rps)
1225
{
1226
	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1227
	struct drm_device *dev = ring->dev;
1228
	struct drm_i915_private *dev_priv = dev->dev_private;
1229 1230
	const bool irq_test_in_progress =
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1231
	DEFINE_WAIT(wait);
1232
	unsigned long timeout_expire;
1233
	s64 before, now;
1234 1235
	int ret;

1236
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1237

1238 1239 1240
	if (list_empty(&req->list))
		return 0;

1241
	if (i915_gem_request_completed(req, true))
1242 1243
		return 0;

1244 1245
	timeout_expire = timeout ?
		jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1246

1247
	if (INTEL_INFO(dev_priv)->gen >= 6)
1248
		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1249

1250
	/* Record current time in case interrupted by signal, or wedged */
1251
	trace_i915_gem_request_wait_begin(req);
1252
	before = ktime_get_raw_ns();
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263

	/* Optimistic spin for the next jiffie before touching IRQs */
	ret = __i915_spin_request(req);
	if (ret == 0)
		goto out;

	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
		ret = -ENODEV;
		goto out;
	}

1264 1265
	for (;;) {
		struct timer_list timer;
1266

1267 1268
		prepare_to_wait(&ring->irq_queue, &wait,
				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1269

1270 1271
		/* We need to check whether any gpu reset happened in between
		 * the caller grabbing the seqno and now ... */
1272 1273 1274 1275 1276 1277 1278 1279
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
			 * is truely gone. */
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
			if (ret == 0)
				ret = -EAGAIN;
			break;
		}
1280

1281
		if (i915_gem_request_completed(req, false)) {
1282 1283 1284
			ret = 0;
			break;
		}
1285

1286 1287 1288 1289 1290
		if (interruptible && signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

1291
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1292 1293 1294 1295 1296 1297
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
		if (timeout || missed_irq(dev_priv, ring)) {
1298 1299
			unsigned long expire;

1300
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1301
			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1302 1303 1304
			mod_timer(&timer, expire);
		}

1305
		io_schedule();
1306 1307 1308 1309 1310 1311

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1312 1313
	if (!irq_test_in_progress)
		ring->irq_put(ring);
1314 1315

	finish_wait(&ring->irq_queue, &wait);
1316

1317 1318 1319 1320
out:
	now = ktime_get_raw_ns();
	trace_i915_gem_request_wait_end(req);

1321
	if (timeout) {
1322 1323 1324
		s64 tres = *timeout - (now - before);

		*timeout = tres < 0 ? 0 : tres;
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1335 1336
	}

1337
	return ret;
1338 1339
}

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
}

static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
	trace_i915_gem_request_retire(request);

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
	request->ringbuf->last_retired_head = request->postfix;

	list_del_init(&request->list);
	i915_gem_request_remove_from_client(request);

	put_pid(request->pid);

	i915_gem_request_unreference(request);
}

static void
__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
{
	struct intel_engine_cs *engine = req->ring;
	struct drm_i915_gem_request *tmp;

	lockdep_assert_held(&engine->dev->struct_mutex);

	if (list_empty(&req->list))
		return;

	do {
		tmp = list_first_entry(&engine->request_list,
				       typeof(*tmp), list);

		i915_gem_request_retire(tmp);
	} while (tmp != req);

	WARN_ON(i915_verify_lists(engine->dev));
}

1397
/**
1398
 * Waits for a request to be signaled, and cleans up the
1399 1400 1401
 * request and object lists appropriately for that event.
 */
int
1402
i915_wait_request(struct drm_i915_gem_request *req)
1403
{
1404 1405 1406
	struct drm_device *dev;
	struct drm_i915_private *dev_priv;
	bool interruptible;
1407 1408
	int ret;

1409 1410 1411 1412 1413 1414
	BUG_ON(req == NULL);

	dev = req->ring->dev;
	dev_priv = dev->dev_private;
	interruptible = dev_priv->mm.interruptible;

1415 1416
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));

1417
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1418 1419 1420
	if (ret)
		return ret;

1421
	ret = i915_gem_check_olr(req);
1422 1423 1424
	if (ret)
		return ret;

1425 1426
	ret = __i915_wait_request(req,
				  atomic_read(&dev_priv->gpu_error.reset_counter),
1427
				  interruptible, NULL, NULL);
1428 1429
	if (ret)
		return ret;
1430

1431
	__i915_gem_request_retire__upto(req);
1432 1433 1434
	return 0;
}

1435 1436 1437 1438
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
1439
int
1440 1441 1442
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1443
	int ret, i;
1444

1445
	if (!obj->active)
1446 1447
		return 0;

1448 1449 1450 1451 1452
	if (readonly) {
		if (obj->last_write_req != NULL) {
			ret = i915_wait_request(obj->last_write_req);
			if (ret)
				return ret;
1453

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
			i = obj->last_write_req->ring->id;
			if (obj->last_read_req[i] == obj->last_write_req)
				i915_gem_object_retire__read(obj, i);
			else
				i915_gem_object_retire__write(obj);
		}
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++) {
			if (obj->last_read_req[i] == NULL)
				continue;

			ret = i915_wait_request(obj->last_read_req[i]);
			if (ret)
				return ret;

			i915_gem_object_retire__read(obj, i);
		}
		RQ_BUG_ON(obj->active);
	}

	return 0;
}

static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
			       struct drm_i915_gem_request *req)
{
	int ring = req->ring->id;

	if (obj->last_read_req[ring] == req)
		i915_gem_object_retire__read(obj, ring);
	else if (obj->last_write_req == req)
		i915_gem_object_retire__write(obj);
1487

1488
	__i915_gem_request_retire__upto(req);
1489 1490
}

1491 1492 1493 1494 1495
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1496
					    struct intel_rps_client *rps,
1497 1498 1499 1500
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1501
	struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1502
	unsigned reset_counter;
1503
	int ret, i, n = 0;
1504 1505 1506 1507

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1508
	if (!obj->active)
1509 1510
		return 0;

1511
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1512 1513 1514
	if (ret)
		return ret;

1515
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544

	if (readonly) {
		struct drm_i915_gem_request *req;

		req = obj->last_write_req;
		if (req == NULL)
			return 0;

		ret = i915_gem_check_olr(req);
		if (ret)
			goto err;

		requests[n++] = i915_gem_request_reference(req);
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++) {
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req == NULL)
				continue;

			ret = i915_gem_check_olr(req);
			if (ret)
				goto err;

			requests[n++] = i915_gem_request_reference(req);
		}
	}

1545
	mutex_unlock(&dev->struct_mutex);
1546 1547
	for (i = 0; ret == 0 && i < n; i++)
		ret = __i915_wait_request(requests[i], reset_counter, true,
1548
					  NULL, rps);
1549 1550
	mutex_lock(&dev->struct_mutex);

1551 1552 1553 1554 1555 1556 1557 1558
err:
	for (i = 0; i < n; i++) {
		if (ret == 0)
			i915_gem_object_retire_request(obj, requests[i]);
		i915_gem_request_unreference(requests[i]);
	}

	return ret;
1559 1560
}

1561 1562 1563 1564
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
1565 1566
}

1567
/**
1568 1569
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1570 1571 1572
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1573
			  struct drm_file *file)
1574 1575
{
	struct drm_i915_gem_set_domain *args = data;
1576
	struct drm_i915_gem_object *obj;
1577 1578
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1579 1580
	int ret;

1581
	/* Only handle setting domains to types used by the CPU. */
1582
	if (write_domain & I915_GEM_GPU_DOMAINS)
1583 1584
		return -EINVAL;

1585
	if (read_domains & I915_GEM_GPU_DOMAINS)
1586 1587 1588 1589 1590 1591 1592 1593
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1594
	ret = i915_mutex_lock_interruptible(dev);
1595
	if (ret)
1596
		return ret;
1597

1598
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1599
	if (&obj->base == NULL) {
1600 1601
		ret = -ENOENT;
		goto unlock;
1602
	}
1603

1604 1605 1606 1607
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1608
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1609
							  to_rps_client(file),
1610
							  !write_domain);
1611 1612 1613
	if (ret)
		goto unref;

1614
	if (read_domains & I915_GEM_DOMAIN_GTT)
1615
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1616
	else
1617
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1618

1619
unref:
1620
	drm_gem_object_unreference(&obj->base);
1621
unlock:
1622 1623 1624 1625 1626 1627 1628 1629 1630
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1631
			 struct drm_file *file)
1632 1633
{
	struct drm_i915_gem_sw_finish *args = data;
1634
	struct drm_i915_gem_object *obj;
1635 1636
	int ret = 0;

1637
	ret = i915_mutex_lock_interruptible(dev);
1638
	if (ret)
1639
		return ret;
1640

1641
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1642
	if (&obj->base == NULL) {
1643 1644
		ret = -ENOENT;
		goto unlock;
1645 1646 1647
	}

	/* Pinned buffers may be scanout, so flush the cache */
1648
	if (obj->pin_display)
1649
		i915_gem_object_flush_cpu_write_domain(obj);
1650

1651
	drm_gem_object_unreference(&obj->base);
1652
unlock:
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1673 1674 1675
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1676
		    struct drm_file *file)
1677 1678 1679 1680 1681
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1682 1683 1684 1685 1686 1687
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
		return -ENODEV;

1688
	obj = drm_gem_object_lookup(dev, file, args->handle);
1689
	if (obj == NULL)
1690
		return -ENOENT;
1691

1692 1693 1694 1695 1696 1697 1698 1699
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1700
	addr = vm_mmap(obj->filp, 0, args->size,
1701 1702
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

		down_write(&mm->mmap_sem);
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
	}
1716
	drm_gem_object_unreference_unlocked(obj);
1717 1718 1719 1720 1721 1722 1723 1724
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1743 1744
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1745
	struct drm_i915_private *dev_priv = dev->dev_private;
1746
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1747 1748 1749
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1750
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1751

1752 1753
	intel_runtime_pm_get(dev_priv);

1754 1755 1756 1757
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1758 1759 1760
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1761

C
Chris Wilson 已提交
1762 1763
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1764 1765 1766 1767 1768 1769 1770 1771 1772
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1773 1774
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1775
		ret = -EFAULT;
1776 1777 1778
		goto unlock;
	}

1779
	/* Use a partial view if the object is bigger than the aperture. */
1780 1781
	if (obj->base.size >= dev_priv->gtt.mappable_end &&
	    obj->tiling_mode == I915_TILING_NONE) {
1782
		static const unsigned int chunk_size = 256; // 1 MiB
1783

1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1796 1797
	if (ret)
		goto unlock;
1798

1799 1800 1801
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1802

1803
	ret = i915_gem_object_get_fence(obj);
1804
	if (ret)
1805
		goto unpin;
1806

1807
	/* Finally, remap it using the new GTT offset */
1808 1809
	pfn = dev_priv->gtt.mappable_base +
		i915_gem_obj_ggtt_offset_view(obj, &view);
1810
	pfn >>= PAGE_SHIFT;
1811

1812 1813 1814 1815 1816 1817 1818 1819 1820
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1821

1822 1823
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1824 1825 1826 1827 1828
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1850
unpin:
1851
	i915_gem_object_ggtt_unpin_view(obj, &view);
1852
unlock:
1853
	mutex_unlock(&dev->struct_mutex);
1854
out:
1855
	switch (ret) {
1856
	case -EIO:
1857 1858 1859 1860 1861 1862 1863
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1864 1865 1866
			ret = VM_FAULT_SIGBUS;
			break;
		}
1867
	case -EAGAIN:
D
Daniel Vetter 已提交
1868 1869 1870 1871
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1872
		 */
1873 1874
	case 0:
	case -ERESTARTSYS:
1875
	case -EINTR:
1876 1877 1878 1879 1880
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1881 1882
		ret = VM_FAULT_NOPAGE;
		break;
1883
	case -ENOMEM:
1884 1885
		ret = VM_FAULT_OOM;
		break;
1886
	case -ENOSPC:
1887
	case -EFAULT:
1888 1889
		ret = VM_FAULT_SIGBUS;
		break;
1890
	default:
1891
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1892 1893
		ret = VM_FAULT_SIGBUS;
		break;
1894
	}
1895 1896 1897

	intel_runtime_pm_put(dev_priv);
	return ret;
1898 1899
}

1900 1901 1902 1903
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1904
 * Preserve the reservation of the mmapping with the DRM core code, but
1905 1906 1907 1908 1909 1910 1911 1912 1913
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1914
void
1915
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1916
{
1917 1918
	if (!obj->fault_mappable)
		return;
1919

1920 1921
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1922
	obj->fault_mappable = false;
1923 1924
}

1925 1926 1927 1928 1929 1930 1931 1932 1933
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1934
uint32_t
1935
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1936
{
1937
	uint32_t gtt_size;
1938 1939

	if (INTEL_INFO(dev)->gen >= 4 ||
1940 1941
	    tiling_mode == I915_TILING_NONE)
		return size;
1942 1943 1944

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1945
		gtt_size = 1024*1024;
1946
	else
1947
		gtt_size = 512*1024;
1948

1949 1950
	while (gtt_size < size)
		gtt_size <<= 1;
1951

1952
	return gtt_size;
1953 1954
}

1955 1956 1957 1958 1959
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1960
 * potential fence register mapping.
1961
 */
1962 1963 1964
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1965 1966 1967 1968 1969
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1970
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1971
	    tiling_mode == I915_TILING_NONE)
1972 1973
		return 4096;

1974 1975 1976 1977
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1978
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1979 1980
}

1981 1982 1983 1984 1985
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

1986
	if (drm_vma_node_has_offset(&obj->base.vma_node))
1987 1988
		return 0;

1989 1990
	dev_priv->mm.shrinker_no_lock_stealing = true;

1991 1992
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1993
		goto out;
1994 1995 1996 1997 1998 1999 2000 2001

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
2002 2003 2004 2005 2006
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
2007 2008
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2009
		goto out;
2010 2011

	i915_gem_shrink_all(dev_priv);
2012 2013 2014 2015 2016
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
2017 2018 2019 2020 2021 2022 2023
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2024
int
2025 2026
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2027
		  uint32_t handle,
2028
		  uint64_t *offset)
2029
{
2030
	struct drm_i915_gem_object *obj;
2031 2032
	int ret;

2033
	ret = i915_mutex_lock_interruptible(dev);
2034
	if (ret)
2035
		return ret;
2036

2037
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2038
	if (&obj->base == NULL) {
2039 2040 2041
		ret = -ENOENT;
		goto unlock;
	}
2042

2043
	if (obj->madv != I915_MADV_WILLNEED) {
2044
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2045
		ret = -EFAULT;
2046
		goto out;
2047 2048
	}

2049 2050 2051
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
2052

2053
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2054

2055
out:
2056
	drm_gem_object_unreference(&obj->base);
2057
unlock:
2058
	mutex_unlock(&dev->struct_mutex);
2059
	return ret;
2060 2061
}

2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2083
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2084 2085
}

D
Daniel Vetter 已提交
2086 2087 2088
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2089
{
2090
	i915_gem_object_free_mmap_offset(obj);
2091

2092 2093
	if (obj->base.filp == NULL)
		return;
2094

D
Daniel Vetter 已提交
2095 2096 2097 2098 2099
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2100
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2101 2102
	obj->madv = __I915_MADV_PURGED;
}
2103

2104 2105 2106
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2107
{
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2122 2123
}

2124
static void
2125
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2126
{
2127 2128
	struct sg_page_iter sg_iter;
	int ret;
2129

2130
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2131

C
Chris Wilson 已提交
2132 2133 2134 2135 2136 2137
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
2138
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2139 2140 2141
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2142 2143
	i915_gem_gtt_finish_object(obj);

2144
	if (i915_gem_object_needs_bit17_swizzle(obj))
2145 2146
		i915_gem_object_save_bit_17_swizzle(obj);

2147 2148
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2149

2150
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2151
		struct page *page = sg_page_iter_page(&sg_iter);
2152

2153
		if (obj->dirty)
2154
			set_page_dirty(page);
2155

2156
		if (obj->madv == I915_MADV_WILLNEED)
2157
			mark_page_accessed(page);
2158

2159
		page_cache_release(page);
2160
	}
2161
	obj->dirty = 0;
2162

2163 2164
	sg_free_table(obj->pages);
	kfree(obj->pages);
2165
}
C
Chris Wilson 已提交
2166

2167
int
2168 2169 2170 2171
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2172
	if (obj->pages == NULL)
2173 2174
		return 0;

2175 2176 2177
	if (obj->pages_pin_count)
		return -EBUSY;

2178
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2179

2180 2181 2182
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2183
	list_del(&obj->global_list);
2184

2185
	ops->put_pages(obj);
2186
	obj->pages = NULL;
2187

2188
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2189 2190 2191 2192

	return 0;
}

2193
static int
C
Chris Wilson 已提交
2194
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2195
{
C
Chris Wilson 已提交
2196
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2197 2198
	int page_count, i;
	struct address_space *mapping;
2199 2200
	struct sg_table *st;
	struct scatterlist *sg;
2201
	struct sg_page_iter sg_iter;
2202
	struct page *page;
2203
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2204
	int ret;
C
Chris Wilson 已提交
2205
	gfp_t gfp;
2206

C
Chris Wilson 已提交
2207 2208 2209 2210 2211 2212 2213
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2214 2215 2216 2217
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2218
	page_count = obj->base.size / PAGE_SIZE;
2219 2220
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2221
		return -ENOMEM;
2222
	}
2223

2224 2225 2226 2227 2228
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2229
	mapping = file_inode(obj->base.filp)->i_mapping;
C
Chris Wilson 已提交
2230
	gfp = mapping_gfp_mask(mapping);
2231
	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
C
Chris Wilson 已提交
2232
	gfp &= ~(__GFP_IO | __GFP_WAIT);
2233 2234 2235
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2236 2237
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2238 2239 2240 2241 2242
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2243 2244 2245 2246 2247 2248 2249 2250
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2251
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2252 2253
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2254
				goto err_pages;
I
Imre Deak 已提交
2255
			}
C
Chris Wilson 已提交
2256
		}
2257 2258 2259 2260 2261 2262 2263 2264
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2265 2266 2267 2268 2269 2270 2271 2272 2273
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2274 2275 2276

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2277
	}
2278 2279 2280 2281
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2282 2283
	obj->pages = st;

I
Imre Deak 已提交
2284 2285 2286 2287
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2288
	if (i915_gem_object_needs_bit17_swizzle(obj))
2289 2290
		i915_gem_object_do_bit_17_swizzle(obj);

2291 2292 2293 2294
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2295 2296 2297
	return 0;

err_pages:
2298 2299
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2300
		page_cache_release(sg_page_iter_page(&sg_iter));
2301 2302
	sg_free_table(st);
	kfree(st);
2303 2304 2305 2306 2307 2308 2309 2310 2311

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2312 2313 2314 2315
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2316 2317
}

2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2332
	if (obj->pages)
2333 2334
		return 0;

2335
	if (obj->madv != I915_MADV_WILLNEED) {
2336
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2337
		return -EFAULT;
2338 2339
	}

2340 2341
	BUG_ON(obj->pages_pin_count);

2342 2343 2344 2345
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2346
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2347 2348 2349 2350

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2351
	return 0;
2352 2353
}

2354 2355
void i915_vma_move_to_active(struct i915_vma *vma,
			     struct intel_engine_cs *ring)
2356
{
2357
	struct drm_i915_gem_object *obj = vma->obj;
2358 2359

	/* Add a reference if we're newly entering the active list. */
2360
	if (obj->active == 0)
2361
		drm_gem_object_reference(&obj->base);
2362
	obj->active |= intel_ring_flag(ring);
2363

2364 2365 2366
	list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
	i915_gem_request_assign(&obj->last_read_req[ring->id],
				intel_ring_get_request(ring));
2367

2368
	list_move_tail(&vma->mm_list, &vma->vm->active_list);
2369 2370
}

2371 2372
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
B
Ben Widawsky 已提交
2373
{
2374 2375 2376 2377 2378
	RQ_BUG_ON(obj->last_write_req == NULL);
	RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));

	i915_gem_request_assign(&obj->last_write_req, NULL);
	intel_fb_obj_flush(obj, true);
B
Ben Widawsky 已提交
2379 2380
}

2381
static void
2382
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2383
{
2384
	struct i915_vma *vma;
2385

2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
	RQ_BUG_ON(obj->last_read_req[ring] == NULL);
	RQ_BUG_ON(!(obj->active & (1 << ring)));

	list_del_init(&obj->ring_list[ring]);
	i915_gem_request_assign(&obj->last_read_req[ring], NULL);

	if (obj->last_write_req && obj->last_write_req->ring->id == ring)
		i915_gem_object_retire__write(obj);

	obj->active &= ~(1 << ring);
	if (obj->active)
		return;
2398

2399 2400 2401
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (!list_empty(&vma->mm_list))
			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2402
	}
2403

2404
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2405
	drm_gem_object_unreference(&obj->base);
2406 2407
}

2408
static int
2409
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2410
{
2411
	struct drm_i915_private *dev_priv = dev->dev_private;
2412
	struct intel_engine_cs *ring;
2413
	int ret, i, j;
2414

2415
	/* Carefully retire all requests without writing to the rings */
2416
	for_each_ring(ring, dev_priv, i) {
2417 2418 2419
		ret = intel_ring_idle(ring);
		if (ret)
			return ret;
2420 2421
	}
	i915_gem_retire_requests(dev);
2422 2423

	/* Finally reset hw state */
2424
	for_each_ring(ring, dev_priv, i) {
2425
		intel_ring_init_seqno(ring, seqno);
2426

2427 2428
		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
			ring->semaphore.sync_seqno[j] = 0;
2429
	}
2430

2431
	return 0;
2432 2433
}

2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2460 2461
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2462
{
2463 2464 2465 2466
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2467
		int ret = i915_gem_init_seqno(dev, 0);
2468 2469
		if (ret)
			return ret;
2470

2471 2472
		dev_priv->next_seqno = 1;
	}
2473

2474
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2475
	return 0;
2476 2477
}

2478
int __i915_add_request(struct intel_engine_cs *ring,
2479
		       struct drm_file *file,
2480
		       struct drm_i915_gem_object *obj)
2481
{
2482
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2483
	struct drm_i915_gem_request *request;
2484
	struct intel_ringbuffer *ringbuf;
2485
	u32 request_start;
2486 2487
	int ret;

2488
	request = ring->outstanding_lazy_request;
2489 2490 2491 2492
	if (WARN_ON(request == NULL))
		return -ENOMEM;

	if (i915.enable_execlists) {
2493
		ringbuf = request->ctx->engine[ring->id].ringbuf;
2494 2495 2496 2497
	} else
		ringbuf = ring->buffer;

	request_start = intel_ring_get_tail(ringbuf);
2498 2499 2500 2501 2502 2503 2504
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2505
	if (i915.enable_execlists) {
2506
		ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
2507 2508 2509 2510 2511 2512 2513
		if (ret)
			return ret;
	} else {
		ret = intel_ring_flush_all_caches(ring);
		if (ret)
			return ret;
	}
2514

2515 2516 2517 2518 2519
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2520
	request->postfix = intel_ring_get_tail(ringbuf);
2521

2522
	if (i915.enable_execlists) {
2523
		ret = ring->emit_request(ringbuf, request);
2524 2525 2526 2527 2528 2529
		if (ret)
			return ret;
	} else {
		ret = ring->add_request(ring);
		if (ret)
			return ret;
2530 2531

		request->tail = intel_ring_get_tail(ringbuf);
2532
	}
2533

2534 2535 2536 2537 2538 2539 2540 2541
	request->head = request_start;

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2542
	request->batch_obj = obj;
2543

2544 2545 2546 2547 2548 2549 2550 2551
	if (!i915.enable_execlists) {
		/* Hold a reference to the current context so that we can inspect
		 * it later in case a hangcheck error event fires.
		 */
		request->ctx = ring->last_context;
		if (request->ctx)
			i915_gem_context_reference(request->ctx);
	}
2552

2553
	request->emitted_jiffies = jiffies;
2554
	ring->last_submitted_seqno = request->seqno;
2555
	list_add_tail(&request->list, &ring->request_list);
2556
	request->file_priv = NULL;
2557

C
Chris Wilson 已提交
2558 2559 2560
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

2561
		spin_lock(&file_priv->mm.lock);
2562
		request->file_priv = file_priv;
2563
		list_add_tail(&request->client_list,
2564
			      &file_priv->mm.request_list);
2565
		spin_unlock(&file_priv->mm.lock);
2566 2567

		request->pid = get_pid(task_pid(current));
2568
	}
2569

2570
	trace_i915_gem_request_add(request);
2571
	ring->outstanding_lazy_request = NULL;
C
Chris Wilson 已提交
2572

2573
	i915_queue_hangcheck(ring->dev);
2574

2575 2576 2577 2578
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
	intel_mark_busy(dev_priv->dev);
2579

2580
	return 0;
2581 2582
}

2583
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2584
				   const struct intel_context *ctx)
2585
{
2586
	unsigned long elapsed;
2587

2588 2589 2590
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2591 2592
		return true;

2593 2594
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2595
		if (!i915_gem_context_is_default(ctx)) {
2596
			DRM_DEBUG("context hanging too fast, banning!\n");
2597
			return true;
2598 2599 2600
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2601
			return true;
2602
		}
2603 2604 2605 2606 2607
	}

	return false;
}

2608
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2609
				  struct intel_context *ctx,
2610
				  const bool guilty)
2611
{
2612 2613 2614 2615
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2616

2617 2618 2619
	hs = &ctx->hang_stats;

	if (guilty) {
2620
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2621 2622 2623 2624
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2625 2626 2627
	}
}

2628 2629 2630 2631 2632 2633
void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
	struct intel_context *ctx = req->ctx;

2634 2635
	if (ctx) {
		if (i915.enable_execlists) {
2636
			struct intel_engine_cs *ring = req->ring;
2637

2638 2639 2640
			if (ctx != ring->default_context)
				intel_lr_context_unpin(ring, ctx);
		}
2641

2642 2643
		i915_gem_context_unreference(ctx);
	}
2644

2645
	kmem_cache_free(req->i915->requests, req);
2646 2647
}

2648 2649 2650
int i915_gem_request_alloc(struct intel_engine_cs *ring,
			   struct intel_context *ctx)
{
2651
	struct drm_i915_private *dev_priv = to_i915(ring->dev);
D
Daniel Vetter 已提交
2652
	struct drm_i915_gem_request *req;
2653 2654 2655 2656 2657
	int ret;

	if (ring->outstanding_lazy_request)
		return 0;

D
Daniel Vetter 已提交
2658 2659
	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
	if (req == NULL)
2660 2661
		return -ENOMEM;

D
Daniel Vetter 已提交
2662 2663
	kref_init(&req->ref);
	req->i915 = dev_priv;
2664

D
Daniel Vetter 已提交
2665
	ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2666 2667
	if (ret)
		goto err;
2668

D
Daniel Vetter 已提交
2669
	req->ring = ring;
2670 2671

	if (i915.enable_execlists)
D
Daniel Vetter 已提交
2672
		ret = intel_logical_ring_alloc_request_extras(req, ctx);
2673
	else
D
Daniel Vetter 已提交
2674
		ret = intel_ring_alloc_request_extras(req);
2675 2676
	if (ret)
		goto err;
2677

D
Daniel Vetter 已提交
2678
	ring->outstanding_lazy_request = req;
2679
	return 0;
2680 2681 2682 2683

err:
	kmem_cache_free(dev_priv->requests, req);
	return ret;
2684 2685
}

2686
struct drm_i915_gem_request *
2687
i915_gem_find_active_request(struct intel_engine_cs *ring)
2688
{
2689 2690 2691
	struct drm_i915_gem_request *request;

	list_for_each_entry(request, &ring->request_list, list) {
2692
		if (i915_gem_request_completed(request, false))
2693
			continue;
2694

2695
		return request;
2696
	}
2697 2698 2699 2700 2701

	return NULL;
}

static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2702
				       struct intel_engine_cs *ring)
2703 2704 2705 2706
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2707
	request = i915_gem_find_active_request(ring);
2708 2709 2710 2711 2712 2713

	if (request == NULL)
		return;

	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;

2714
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2715 2716

	list_for_each_entry_continue(request, &ring->request_list, list)
2717
		i915_set_reset_status(dev_priv, request->ctx, false);
2718
}
2719

2720
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2721
					struct intel_engine_cs *ring)
2722
{
2723
	while (!list_empty(&ring->active_list)) {
2724
		struct drm_i915_gem_object *obj;
2725

2726 2727
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
2728
				       ring_list[ring->id]);
2729

2730
		i915_gem_object_retire__read(obj, ring->id);
2731
	}
2732

2733 2734 2735 2736 2737 2738
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */
	while (!list_empty(&ring->execlist_queue)) {
2739
		struct drm_i915_gem_request *submit_req;
2740 2741

		submit_req = list_first_entry(&ring->execlist_queue,
2742
				struct drm_i915_gem_request,
2743 2744
				execlist_link);
		list_del(&submit_req->execlist_link);
2745 2746 2747 2748

		if (submit_req->ctx != ring->default_context)
			intel_lr_context_unpin(ring, submit_req->ctx);

2749
		i915_gem_request_unreference(submit_req);
2750 2751
	}

2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

2766
		i915_gem_request_retire(request);
2767
	}
2768

2769 2770
	/* This may not have been flushed before the reset, so clean it now */
	i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2771 2772
}

2773
void i915_gem_restore_fences(struct drm_device *dev)
2774 2775 2776 2777
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

2778
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2779
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2780

2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
		/*
		 * Commit delayed tiling changes if we have an object still
		 * attached to the fence, otherwise just clear the fence.
		 */
		if (reg->obj) {
			i915_gem_object_update_fence(reg->obj, reg,
						     reg->obj->tiling_mode);
		} else {
			i915_gem_write_fence(dev, i, NULL);
		}
2791 2792 2793
	}
}

2794
void i915_gem_reset(struct drm_device *dev)
2795
{
2796
	struct drm_i915_private *dev_priv = dev->dev_private;
2797
	struct intel_engine_cs *ring;
2798
	int i;
2799

2800 2801 2802 2803 2804 2805 2806 2807
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_status(dev_priv, ring);

2808
	for_each_ring(ring, dev_priv, i)
2809
		i915_gem_reset_ring_cleanup(dev_priv, ring);
2810

2811 2812
	i915_gem_context_reset(dev);

2813
	i915_gem_restore_fences(dev);
2814 2815

	WARN_ON(i915_verify_lists(dev));
2816 2817 2818 2819 2820
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2821
void
2822
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2823
{
C
Chris Wilson 已提交
2824
	WARN_ON(i915_verify_lists(ring->dev));
2825

2826 2827 2828 2829
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
2830
	 */
2831
	while (!list_empty(&ring->request_list)) {
2832 2833
		struct drm_i915_gem_request *request;

2834
		request = list_first_entry(&ring->request_list,
2835 2836 2837
					   struct drm_i915_gem_request,
					   list);

2838
		if (!i915_gem_request_completed(request, true))
2839 2840
			break;

2841
		i915_gem_request_retire(request);
2842
	}
2843

2844 2845 2846 2847 2848 2849 2850 2851 2852
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
2853
				      ring_list[ring->id]);
2854

2855
		if (!list_empty(&obj->last_read_req[ring->id]->list))
2856 2857
			break;

2858
		i915_gem_object_retire__read(obj, ring->id);
2859 2860
	}

2861 2862
	if (unlikely(ring->trace_irq_req &&
		     i915_gem_request_completed(ring->trace_irq_req, true))) {
2863
		ring->irq_put(ring);
2864
		i915_gem_request_assign(&ring->trace_irq_req, NULL);
2865
	}
2866

C
Chris Wilson 已提交
2867
	WARN_ON(i915_verify_lists(ring->dev));
2868 2869
}

2870
bool
2871 2872
i915_gem_retire_requests(struct drm_device *dev)
{
2873
	struct drm_i915_private *dev_priv = dev->dev_private;
2874
	struct intel_engine_cs *ring;
2875
	bool idle = true;
2876
	int i;
2877

2878
	for_each_ring(ring, dev_priv, i) {
2879
		i915_gem_retire_requests_ring(ring);
2880
		idle &= list_empty(&ring->request_list);
2881 2882 2883 2884 2885 2886 2887 2888 2889
		if (i915.enable_execlists) {
			unsigned long flags;

			spin_lock_irqsave(&ring->execlist_lock, flags);
			idle &= list_empty(&ring->execlist_queue);
			spin_unlock_irqrestore(&ring->execlist_lock, flags);

			intel_execlists_retire_requests(ring);
		}
2890 2891 2892 2893 2894 2895 2896 2897
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
2898 2899
}

2900
static void
2901 2902
i915_gem_retire_work_handler(struct work_struct *work)
{
2903 2904 2905
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
2906
	bool idle;
2907

2908
	/* Come back later if the device is busy... */
2909 2910 2911 2912
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
2913
	}
2914
	if (!idle)
2915 2916
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
2917
}
2918

2919 2920 2921 2922 2923
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);
2924
	struct drm_device *dev = dev_priv->dev;
2925 2926
	struct intel_engine_cs *ring;
	int i;
2927

2928 2929 2930
	for_each_ring(ring, dev_priv, i)
		if (!list_empty(&ring->request_list))
			return;
2931 2932 2933 2934 2935 2936

	intel_mark_idle(dev);

	if (mutex_trylock(&dev->struct_mutex)) {
		struct intel_engine_cs *ring;
		int i;
2937

2938 2939
		for_each_ring(ring, dev_priv, i)
			i915_gem_batch_pool_fini(&ring->batch_pool);
2940

2941 2942
		mutex_unlock(&dev->struct_mutex);
	}
2943 2944
}

2945 2946 2947 2948 2949 2950 2951 2952
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
2953 2954 2955 2956
	int ret, i;

	if (!obj->active)
		return 0;
2957

2958 2959
	for (i = 0; i < I915_NUM_RINGS; i++) {
		struct drm_i915_gem_request *req;
2960

2961 2962 2963
		req = obj->last_read_req[i];
		if (req == NULL)
			continue;
2964

2965 2966
		if (list_empty(&req->list))
			goto retire;
2967

2968
		ret = i915_gem_check_olr(req);
2969 2970 2971
		if (ret)
			return ret;

2972 2973 2974 2975 2976
		if (i915_gem_request_completed(req, true)) {
			__i915_gem_request_retire__upto(req);
retire:
			i915_gem_object_retire__read(obj, i);
		}
2977 2978 2979 2980 2981
	}

	return 0;
}

2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
3007
	struct drm_i915_private *dev_priv = dev->dev_private;
3008 3009
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3010
	struct drm_i915_gem_request *req[I915_NUM_RINGS];
3011
	unsigned reset_counter;
3012 3013
	int i, n = 0;
	int ret;
3014

3015 3016 3017
	if (args->flags != 0)
		return -EINVAL;

3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

3028 3029
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
3030 3031 3032
	if (ret)
		goto out;

3033
	if (!obj->active)
3034
		goto out;
3035 3036

	/* Do this after OLR check to make sure we make forward progress polling
3037
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3038
	 */
3039
	if (args->timeout_ns == 0) {
3040 3041 3042 3043 3044
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
3045
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3046

3047 3048 3049 3050 3051 3052 3053
	for (i = 0; i < I915_NUM_RINGS; i++) {
		if (obj->last_read_req[i] == NULL)
			continue;

		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
	}

3054
	mutex_unlock(&dev->struct_mutex);
3055

3056 3057 3058 3059 3060 3061 3062
	for (i = 0; i < n; i++) {
		if (ret == 0)
			ret = __i915_wait_request(req[i], reset_counter, true,
						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
						  file->driver_priv);
		i915_gem_request_unreference__unlocked(req[i]);
	}
3063
	return ret;
3064 3065 3066 3067 3068 3069 3070

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
static int
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
		       struct intel_engine_cs *to,
		       struct drm_i915_gem_request *req)
{
	struct intel_engine_cs *from;
	int ret;

	from = i915_gem_request_get_ring(req);
	if (to == from)
		return 0;

	if (i915_gem_request_completed(req, true))
		return 0;

	ret = i915_gem_check_olr(req);
	if (ret)
		return ret;

	if (!i915_semaphore_is_enabled(obj->base.dev)) {
3091
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3092
		ret = __i915_wait_request(req,
3093 3094 3095 3096
					  atomic_read(&i915->gpu_error.reset_counter),
					  i915->mm.interruptible,
					  NULL,
					  &i915->rps.semaphores);
3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
		if (ret)
			return ret;

		i915_gem_object_retire_request(obj, req);
	} else {
		int idx = intel_ring_sync_index(from, to);
		u32 seqno = i915_gem_request_get_seqno(req);

		if (seqno <= from->semaphore.sync_seqno[idx])
			return 0;

		trace_i915_gem_ring_sync_to(from, to, req);
		ret = to->semaphore.sync_to(to, from, seqno);
		if (ret)
			return ret;

		/* We use last_read_req because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
		from->semaphore.sync_seqno[idx] =
			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
	}

	return 0;
}

3124 3125 3126 3127 3128 3129 3130 3131
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
 * rather than a particular GPU ring. Conceptually we serialise writes
 * between engines inside the GPU. We only allow on engine to write
 * into a buffer at any time, but multiple readers. To ensure each has
 * a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
3143 3144 3145
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
3146 3147
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
3148
		     struct intel_engine_cs *to)
3149
{
3150 3151 3152
	const bool readonly = obj->base.pending_write_domain == 0;
	struct drm_i915_gem_request *req[I915_NUM_RINGS];
	int ret, i, n;
3153

3154
	if (!obj->active)
3155 3156
		return 0;

3157 3158
	if (to == NULL)
		return i915_gem_object_wait_rendering(obj, readonly);
3159

3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
	n = 0;
	if (readonly) {
		if (obj->last_write_req)
			req[n++] = obj->last_write_req;
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++)
			if (obj->last_read_req[i])
				req[n++] = obj->last_read_req[i];
	}
	for (i = 0; i < n; i++) {
		ret = __i915_gem_object_sync(obj, to, req[i]);
		if (ret)
			return ret;
	}
3174

3175
	return 0;
3176 3177
}

3178 3179 3180 3181 3182 3183 3184
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3185 3186 3187
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3188 3189 3190
	/* Wait for any direct GTT access to complete */
	mb();

3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3202
int i915_vma_unbind(struct i915_vma *vma)
3203
{
3204
	struct drm_i915_gem_object *obj = vma->obj;
3205
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3206
	int ret;
3207

3208
	if (list_empty(&vma->vma_link))
3209 3210
		return 0;

3211 3212 3213 3214
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3215

B
Ben Widawsky 已提交
3216
	if (vma->pin_count)
3217
		return -EBUSY;
3218

3219 3220
	BUG_ON(obj->pages == NULL);

3221
	ret = i915_gem_object_wait_rendering(obj, false);
3222
	if (ret)
3223 3224 3225 3226 3227 3228
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

3229 3230
	if (i915_is_ggtt(vma->vm) &&
	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3231
		i915_gem_object_finish_gtt(obj);
3232

3233 3234 3235 3236 3237
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
3238

3239
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3240

3241
	vma->vm->unbind_vma(vma);
3242
	vma->bound = 0;
3243

3244
	list_del_init(&vma->mm_list);
3245 3246 3247 3248 3249 3250 3251
	if (i915_is_ggtt(vma->vm)) {
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
3252
		vma->ggtt_view.pages = NULL;
3253
	}
3254

B
Ben Widawsky 已提交
3255 3256 3257 3258
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3259
	 * no more VMAs exist. */
I
Imre Deak 已提交
3260
	if (list_empty(&obj->vma_list))
B
Ben Widawsky 已提交
3261
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3262

3263 3264 3265 3266 3267 3268
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3269
	return 0;
3270 3271
}

3272
int i915_gpu_idle(struct drm_device *dev)
3273
{
3274
	struct drm_i915_private *dev_priv = dev->dev_private;
3275
	struct intel_engine_cs *ring;
3276
	int ret, i;
3277 3278

	/* Flush everything onto the inactive list. */
3279
	for_each_ring(ring, dev_priv, i) {
3280 3281 3282 3283 3284
		if (!i915.enable_execlists) {
			ret = i915_switch_context(ring, ring->default_context);
			if (ret)
				return ret;
		}
3285

3286
		ret = intel_ring_idle(ring);
3287 3288 3289
		if (ret)
			return ret;
	}
3290

3291
	WARN_ON(i915_verify_lists(dev));
3292
	return 0;
3293 3294
}

3295 3296
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3297
{
3298
	struct drm_i915_private *dev_priv = dev->dev_private;
3299 3300
	int fence_reg;
	int fence_pitch_shift;
3301

3302 3303 3304 3305 3306 3307 3308 3309
	if (INTEL_INFO(dev)->gen >= 6) {
		fence_reg = FENCE_REG_SANDYBRIDGE_0;
		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
	} else {
		fence_reg = FENCE_REG_965_0;
		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
	}

3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
	fence_reg += reg * 8;

	/* To w/a incoherency with non-atomic 64-bit register updates,
	 * we split the 64-bit update into two 32-bit writes. In order
	 * for a partial fence not to be evaluated between writes, we
	 * precede the update with write to turn off the fence register,
	 * and only enable the fence as the last step.
	 *
	 * For extra levels of paranoia, we make sure each step lands
	 * before applying the next step.
	 */
	I915_WRITE(fence_reg, 0);
	POSTING_READ(fence_reg);

3324
	if (obj) {
3325
		u32 size = i915_gem_obj_ggtt_size(obj);
3326
		uint64_t val;
3327

3328 3329 3330 3331 3332 3333 3334
		/* Adjust fence size to match tiled area */
		if (obj->tiling_mode != I915_TILING_NONE) {
			uint32_t row_size = obj->stride *
				(obj->tiling_mode == I915_TILING_Y ? 32 : 8);
			size = (size / row_size) * row_size;
		}

3335
		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3336
				 0xfffff000) << 32;
3337
		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3338
		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3339 3340 3341
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
3342

3343 3344 3345 3346 3347 3348 3349 3350 3351
		I915_WRITE(fence_reg + 4, val >> 32);
		POSTING_READ(fence_reg + 4);

		I915_WRITE(fence_reg + 0, val);
		POSTING_READ(fence_reg);
	} else {
		I915_WRITE(fence_reg + 4, 0);
		POSTING_READ(fence_reg + 4);
	}
3352 3353
}

3354 3355
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3356
{
3357
	struct drm_i915_private *dev_priv = dev->dev_private;
3358
	u32 val;
3359

3360
	if (obj) {
3361
		u32 size = i915_gem_obj_ggtt_size(obj);
3362 3363
		int pitch_val;
		int tile_width;
3364

3365
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3366
		     (size & -size) != size ||
3367 3368 3369
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3370

3371 3372 3373 3374 3375 3376 3377 3378 3379
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

3380
		val = i915_gem_obj_ggtt_offset(obj);
3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
3396 3397
}

3398 3399
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
3400
{
3401
	struct drm_i915_private *dev_priv = dev->dev_private;
3402 3403
	uint32_t val;

3404
	if (obj) {
3405
		u32 size = i915_gem_obj_ggtt_size(obj);
3406
		uint32_t pitch_val;
3407

3408
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3409
		     (size & -size) != size ||
3410 3411 3412
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
		     i915_gem_obj_ggtt_offset(obj), size);
3413

3414 3415
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
3416

3417
		val = i915_gem_obj_ggtt_offset(obj);
3418 3419 3420 3421 3422 3423 3424
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
3425

3426 3427 3428 3429
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

3430 3431 3432 3433 3434
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
{
	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
}

3435 3436 3437
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
3438 3439 3440 3441 3442 3443 3444 3445
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
		mb();

3446 3447 3448 3449
	WARN(obj && (!obj->stride || !obj->tiling_mode),
	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
	     obj->stride, obj->tiling_mode);

3450 3451 3452 3453 3454 3455
	if (IS_GEN2(dev))
		i830_write_fence_reg(dev, reg, obj);
	else if (IS_GEN3(dev))
		i915_write_fence_reg(dev, reg, obj);
	else if (INTEL_INFO(dev)->gen >= 4)
		i965_write_fence_reg(dev, reg, obj);
3456 3457 3458 3459 3460 3461

	/* And similarly be paranoid that no direct access to this region
	 * is reordered to before the fence is installed.
	 */
	if (i915_gem_object_needs_mb(obj))
		mb();
3462 3463
}

3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
3474
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3475 3476 3477
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3478 3479

	if (enable) {
3480
		obj->fence_reg = reg;
3481 3482 3483 3484 3485 3486 3487
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
3488
	obj->fence_dirty = false;
3489 3490
}

3491
static int
3492
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3493
{
3494
	if (obj->last_fenced_req) {
3495
		int ret = i915_wait_request(obj->last_fenced_req);
3496 3497
		if (ret)
			return ret;
3498

3499
		i915_gem_request_assign(&obj->last_fenced_req, NULL);
3500 3501 3502 3503 3504 3505 3506 3507
	}

	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
3508
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3509
	struct drm_i915_fence_reg *fence;
3510 3511
	int ret;

3512
	ret = i915_gem_object_wait_fence(obj);
3513 3514 3515
	if (ret)
		return ret;

3516 3517
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
3518

3519 3520
	fence = &dev_priv->fence_regs[obj->fence_reg];

3521 3522 3523
	if (WARN_ON(fence->pin_count))
		return -EBUSY;

3524
	i915_gem_object_fence_lost(obj);
3525
	i915_gem_object_update_fence(obj, fence, false);
3526 3527 3528 3529 3530

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
3531
i915_find_fence_reg(struct drm_device *dev)
3532 3533
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
3534
	struct drm_i915_fence_reg *reg, *avail;
3535
	int i;
3536 3537

	/* First try to find a free reg */
3538
	avail = NULL;
3539 3540 3541
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
3542
			return reg;
3543

3544
		if (!reg->pin_count)
3545
			avail = reg;
3546 3547
	}

3548
	if (avail == NULL)
3549
		goto deadlock;
3550 3551

	/* None available, try to steal one or wait for a user to finish */
3552
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3553
		if (reg->pin_count)
3554 3555
			continue;

C
Chris Wilson 已提交
3556
		return reg;
3557 3558
	}

3559 3560 3561 3562 3563 3564
deadlock:
	/* Wait for completion of pending flips which consume fences */
	if (intel_has_pending_fb_unpin(dev))
		return ERR_PTR(-EAGAIN);

	return ERR_PTR(-EDEADLK);
3565 3566
}

3567
/**
3568
 * i915_gem_object_get_fence - set up fencing for an object
3569 3570 3571 3572 3573 3574 3575 3576 3577
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
3578 3579
 *
 * For an untiled surface, this removes any existing fence.
3580
 */
3581
int
3582
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3583
{
3584
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
3585
	struct drm_i915_private *dev_priv = dev->dev_private;
3586
	bool enable = obj->tiling_mode != I915_TILING_NONE;
3587
	struct drm_i915_fence_reg *reg;
3588
	int ret;
3589

3590 3591 3592
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
3593
	if (obj->fence_dirty) {
3594
		ret = i915_gem_object_wait_fence(obj);
3595 3596 3597
		if (ret)
			return ret;
	}
3598

3599
	/* Just update our place in the LRU if our fence is getting reused. */
3600 3601
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
3602
		if (!obj->fence_dirty) {
3603 3604 3605 3606 3607
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
3608 3609 3610
		if (WARN_ON(!obj->map_and_fenceable))
			return -EINVAL;

3611
		reg = i915_find_fence_reg(dev);
3612 3613
		if (IS_ERR(reg))
			return PTR_ERR(reg);
3614

3615 3616 3617
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

3618
			ret = i915_gem_object_wait_fence(old);
3619 3620 3621
			if (ret)
				return ret;

3622
			i915_gem_object_fence_lost(old);
3623
		}
3624
	} else
3625 3626
		return 0;

3627 3628
	i915_gem_object_update_fence(obj, reg, enable);

3629
	return 0;
3630 3631
}

3632
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3633 3634
				     unsigned long cache_level)
{
3635
	struct drm_mm_node *gtt_space = &vma->node;
3636 3637
	struct drm_mm_node *other;

3638 3639 3640 3641 3642 3643
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3644
	 */
3645
	if (vma->vm->mm.color_adjust == NULL)
3646 3647
		return true;

3648
	if (!drm_mm_node_allocated(gtt_space))
3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3665
/**
3666 3667
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3668
 */
3669
static struct i915_vma *
3670 3671
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3672
			   const struct i915_ggtt_view *ggtt_view,
3673
			   unsigned alignment,
3674
			   uint64_t flags)
3675
{
3676
	struct drm_device *dev = obj->base.dev;
3677
	struct drm_i915_private *dev_priv = dev->dev_private;
3678
	u32 size, fence_size, fence_alignment, unfenced_alignment;
3679 3680 3681
	unsigned long start =
		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	unsigned long end =
3682
		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
B
Ben Widawsky 已提交
3683
	struct i915_vma *vma;
3684
	int ret;
3685

3686 3687 3688 3689 3690
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3691

3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3721

3722
	if (alignment == 0)
3723
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3724
						unfenced_alignment;
3725
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3726 3727 3728
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3729
		return ERR_PTR(-EINVAL);
3730 3731
	}

3732 3733 3734
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3735
	 */
3736 3737 3738 3739
	if (size > end) {
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%u > %s aperture=%lu\n",
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3740
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3741
			  end);
3742
		return ERR_PTR(-E2BIG);
3743 3744
	}

3745
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3746
	if (ret)
3747
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3748

3749 3750
	i915_gem_object_pin_pages(obj);

3751 3752 3753
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3754
	if (IS_ERR(vma))
3755
		goto err_unpin;
B
Ben Widawsky 已提交
3756

3757
search_free:
3758
	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3759
						  size, alignment,
3760 3761
						  obj->cache_level,
						  start, end,
3762 3763
						  DRM_MM_SEARCH_DEFAULT,
						  DRM_MM_CREATE_DEFAULT);
3764
	if (ret) {
3765
		ret = i915_gem_evict_something(dev, vm, size, alignment,
3766 3767 3768
					       obj->cache_level,
					       start, end,
					       flags);
3769 3770
		if (ret == 0)
			goto search_free;
3771

3772
		goto err_free_vma;
3773
	}
3774
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3775
		ret = -EINVAL;
3776
		goto err_remove_node;
3777 3778
	}

3779
	trace_i915_vma_bind(vma, flags);
3780
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3781
	if (ret)
I
Imre Deak 已提交
3782
		goto err_remove_node;
3783

3784
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
B
Ben Widawsky 已提交
3785
	list_add_tail(&vma->mm_list, &vm->inactive_list);
3786

3787
	return vma;
B
Ben Widawsky 已提交
3788

3789
err_remove_node:
3790
	drm_mm_remove_node(&vma->node);
3791
err_free_vma:
B
Ben Widawsky 已提交
3792
	i915_gem_vma_destroy(vma);
3793
	vma = ERR_PTR(ret);
3794
err_unpin:
B
Ben Widawsky 已提交
3795
	i915_gem_object_unpin_pages(obj);
3796
	return vma;
3797 3798
}

3799
bool
3800 3801
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3802 3803 3804 3805 3806
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3807
	if (obj->pages == NULL)
3808
		return false;
3809

3810 3811 3812 3813
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3814
	if (obj->stolen || obj->phys_handle)
3815
		return false;
3816

3817 3818 3819 3820 3821 3822 3823 3824
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3825 3826
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3827
		return false;
3828
	}
3829

C
Chris Wilson 已提交
3830
	trace_i915_gem_object_clflush(obj);
3831
	drm_clflush_sg(obj->pages);
3832
	obj->cache_dirty = false;
3833 3834

	return true;
3835 3836 3837 3838
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3839
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3840
{
C
Chris Wilson 已提交
3841 3842
	uint32_t old_write_domain;

3843
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3844 3845
		return;

3846
	/* No actual flushing is required for the GTT write domain.  Writes
3847 3848
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3849 3850 3851 3852
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3853
	 */
3854 3855
	wmb();

3856 3857
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3858

3859 3860
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3861
	trace_i915_gem_object_change_domain(obj,
3862
					    obj->base.read_domains,
C
Chris Wilson 已提交
3863
					    old_write_domain);
3864 3865 3866 3867
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3868
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3869
{
C
Chris Wilson 已提交
3870
	uint32_t old_write_domain;
3871

3872
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3873 3874
		return;

3875
	if (i915_gem_clflush_object(obj, obj->pin_display))
3876 3877
		i915_gem_chipset_flush(obj->base.dev);

3878 3879
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3880

3881 3882
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3883
	trace_i915_gem_object_change_domain(obj,
3884
					    obj->base.read_domains,
C
Chris Wilson 已提交
3885
					    old_write_domain);
3886 3887
}

3888 3889 3890 3891 3892 3893
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3894
int
3895
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3896
{
C
Chris Wilson 已提交
3897
	uint32_t old_write_domain, old_read_domains;
3898
	struct i915_vma *vma;
3899
	int ret;
3900

3901 3902 3903
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3904
	ret = i915_gem_object_wait_rendering(obj, !write);
3905 3906 3907
	if (ret)
		return ret;

3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3920
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3921

3922 3923 3924 3925 3926 3927 3928
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3929 3930
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3931

3932 3933 3934
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3935 3936
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3937
	if (write) {
3938 3939 3940
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3941 3942
	}

3943
	if (write)
3944
		intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
3945

C
Chris Wilson 已提交
3946 3947 3948 3949
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3950
	/* And bump the LRU for this access */
3951 3952
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3953
		list_move_tail(&vma->mm_list,
3954
			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
3955

3956 3957 3958
	return 0;
}

3959 3960 3961
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3962
	struct drm_device *dev = obj->base.dev;
3963
	struct i915_vma *vma, *next;
3964 3965 3966 3967 3968
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

B
Ben Widawsky 已提交
3969
	if (i915_gem_obj_is_pinned(obj)) {
3970 3971 3972 3973
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

3974
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3975
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3976
			ret = i915_vma_unbind(vma);
3977 3978 3979
			if (ret)
				return ret;
		}
3980 3981
	}

3982
	if (i915_gem_obj_bound_any(obj)) {
3983
		ret = i915_gem_object_wait_rendering(obj, false);
3984 3985 3986 3987 3988 3989 3990 3991 3992
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
3993
		if (INTEL_INFO(dev)->gen < 6) {
3994 3995 3996 3997 3998
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

3999
		list_for_each_entry(vma, &obj->vma_list, vma_link)
4000 4001
			if (drm_mm_node_allocated(&vma->node)) {
				ret = i915_vma_bind(vma, cache_level,
4002
						    PIN_UPDATE);
4003 4004 4005
				if (ret)
					return ret;
			}
4006 4007
	}

4008 4009 4010 4011
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

4012 4013 4014 4015 4016
	if (obj->cache_dirty &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
		if (i915_gem_clflush_object(obj, true))
			i915_gem_chipset_flush(obj->base.dev);
4017 4018 4019 4020 4021
	}

	return 0;
}

B
Ben Widawsky 已提交
4022 4023
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4024
{
B
Ben Widawsky 已提交
4025
	struct drm_i915_gem_caching *args = data;
4026 4027 4028
	struct drm_i915_gem_object *obj;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4029 4030
	if (&obj->base == NULL)
		return -ENOENT;
4031

4032 4033 4034 4035 4036 4037
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

4038 4039 4040 4041
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

4042 4043 4044 4045
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
4046

4047 4048
	drm_gem_object_unreference_unlocked(&obj->base);
	return 0;
4049 4050
}

B
Ben Widawsky 已提交
4051 4052
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4053
{
B
Ben Widawsky 已提交
4054
	struct drm_i915_gem_caching *args = data;
4055 4056 4057 4058
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
4059 4060
	switch (args->caching) {
	case I915_CACHING_NONE:
4061 4062
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
4063
	case I915_CACHING_CACHED:
4064 4065
		level = I915_CACHE_LLC;
		break;
4066 4067 4068
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
4069 4070 4071 4072
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
4073 4074 4075 4076
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

4091
/*
4092 4093 4094
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
4095 4096
 */
int
4097 4098
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4099 4100
				     struct intel_engine_cs *pipelined,
				     const struct i915_ggtt_view *view)
4101
{
4102
	u32 old_read_domains, old_write_domain;
4103 4104
	int ret;

4105 4106 4107
	ret = i915_gem_object_sync(obj, pipelined);
	if (ret)
		return ret;
4108

4109 4110 4111
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
4112
	obj->pin_display++;
4113

4114 4115 4116 4117 4118 4119 4120 4121 4122
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4123 4124
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4125
	if (ret)
4126
		goto err_unpin_display;
4127

4128 4129 4130 4131
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
4132 4133 4134
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
4135
	if (ret)
4136
		goto err_unpin_display;
4137

4138
	i915_gem_object_flush_cpu_write_domain(obj);
4139

4140
	old_write_domain = obj->base.write_domain;
4141
	old_read_domains = obj->base.read_domains;
4142 4143 4144 4145

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4146
	obj->base.write_domain = 0;
4147
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4148 4149 4150

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
4151
					    old_write_domain);
4152 4153

	return 0;
4154 4155

err_unpin_display:
4156
	obj->pin_display--;
4157 4158 4159 4160
	return ret;
}

void
4161 4162
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
4163
{
4164 4165
	if (WARN_ON(obj->pin_display == 0))
		return;
4166

4167
	i915_gem_object_ggtt_unpin_view(obj, view);
4168

4169
	obj->pin_display--;
4170 4171
}

4172 4173 4174 4175 4176 4177
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4178
int
4179
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4180
{
C
Chris Wilson 已提交
4181
	uint32_t old_write_domain, old_read_domains;
4182 4183
	int ret;

4184 4185 4186
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4187
	ret = i915_gem_object_wait_rendering(obj, !write);
4188 4189 4190
	if (ret)
		return ret;

4191
	i915_gem_object_flush_gtt_write_domain(obj);
4192

4193 4194
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4195

4196
	/* Flush the CPU cache if it's still invalid. */
4197
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4198
		i915_gem_clflush_object(obj, false);
4199

4200
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4201 4202 4203 4204 4205
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4206
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4207 4208 4209 4210 4211

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4212 4213
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4214
	}
4215

4216
	if (write)
4217
		intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
4218

C
Chris Wilson 已提交
4219 4220 4221 4222
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4223 4224 4225
	return 0;
}

4226 4227 4228
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4229 4230 4231 4232
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4233 4234 4235
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4236
static int
4237
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4238
{
4239 4240
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4241
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4242
	struct drm_i915_gem_request *request, *target = NULL;
4243
	unsigned reset_counter;
4244
	int ret;
4245

4246 4247 4248 4249 4250 4251 4252
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
	if (ret)
		return ret;
4253

4254
	spin_lock(&file_priv->mm.lock);
4255
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4256 4257
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4258

4259
		target = request;
4260
	}
4261
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4262 4263
	if (target)
		i915_gem_request_reference(target);
4264
	spin_unlock(&file_priv->mm.lock);
4265

4266
	if (target == NULL)
4267
		return 0;
4268

4269
	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4270 4271
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4272

4273
	i915_gem_request_unreference__unlocked(target);
4274

4275 4276 4277
	return ret;
}

4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

	return false;
}

4297 4298 4299 4300 4301 4302
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
4303
{
4304
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4305
	struct i915_vma *vma;
4306
	unsigned bound;
4307 4308
	int ret;

4309 4310 4311
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4312
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4313
		return -EINVAL;
4314

4315 4316 4317
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4318 4319 4320 4321 4322 4323 4324 4325 4326
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

	if (IS_ERR(vma))
		return PTR_ERR(vma);

4327
	if (vma) {
B
Ben Widawsky 已提交
4328 4329 4330
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4331
		if (i915_vma_misplaced(vma, alignment, flags)) {
4332
			unsigned long offset;
4333
			offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4334
					     i915_gem_obj_offset(obj, vm);
B
Ben Widawsky 已提交
4335
			WARN(vma->pin_count,
4336
			     "bo is already pinned in %s with incorrect alignment:"
4337
			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4338
			     " obj->map_and_fenceable=%d\n",
4339 4340
			     ggtt_view ? "ggtt" : "ppgtt",
			     offset,
4341
			     alignment,
4342
			     !!(flags & PIN_MAPPABLE),
4343
			     obj->map_and_fenceable);
4344
			ret = i915_vma_unbind(vma);
4345 4346
			if (ret)
				return ret;
4347 4348

			vma = NULL;
4349 4350 4351
		}
	}

4352
	bound = vma ? vma->bound : 0;
4353
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4354 4355
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4356 4357
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4358 4359
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
4360 4361 4362
		if (ret)
			return ret;
	}
4363

4364 4365
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379
		bool mappable, fenceable;
		u32 fence_size, fence_alignment;

		fence_size = i915_gem_get_gtt_size(obj->base.dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);

		fenceable = (vma->node.size == fence_size &&
			     (vma->node.start & (fence_alignment - 1)) == 0);

4380
		mappable = (vma->node.start + fence_size <=
4381 4382 4383 4384
			    dev_priv->gtt.mappable_end);

		obj->map_and_fenceable = mappable && fenceable;

4385 4386
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
4387

4388
	vma->pin_count++;
4389 4390 4391
	return 0;
}

4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
	if (WARN_ONCE(!view, "no view specified"))
		return -EINVAL;

	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4413
				      alignment, flags | PIN_GLOBAL);
4414 4415
}

4416
void
4417 4418
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4419
{
4420
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4421

B
Ben Widawsky 已提交
4422
	BUG_ON(!vma);
4423
	WARN_ON(vma->pin_count == 0);
4424
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4425

4426
	--vma->pin_count;
4427 4428
}

4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454
bool
i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);

		WARN_ON(!ggtt_vma ||
			dev_priv->fence_regs[obj->fence_reg].pin_count >
			ggtt_vma->pin_count);
		dev_priv->fence_regs[obj->fence_reg].pin_count++;
		return true;
	} else
		return false;
}

void
i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
		dev_priv->fence_regs[obj->fence_reg].pin_count--;
	}
}

4455 4456
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4457
		    struct drm_file *file)
4458 4459
{
	struct drm_i915_gem_busy *args = data;
4460
	struct drm_i915_gem_object *obj;
4461 4462
	int ret;

4463
	ret = i915_mutex_lock_interruptible(dev);
4464
	if (ret)
4465
		return ret;
4466

4467
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4468
	if (&obj->base == NULL) {
4469 4470
		ret = -ENOENT;
		goto unlock;
4471
	}
4472

4473 4474 4475 4476
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4477
	 */
4478
	ret = i915_gem_object_flush_active(obj);
4479 4480
	if (ret)
		goto unref;
4481

4482 4483 4484 4485
	BUILD_BUG_ON(I915_NUM_RINGS > 16);
	args->busy = obj->active << 16;
	if (obj->last_write_req)
		args->busy |= obj->last_write_req->ring->id;
4486

4487
unref:
4488
	drm_gem_object_unreference(&obj->base);
4489
unlock:
4490
	mutex_unlock(&dev->struct_mutex);
4491
	return ret;
4492 4493 4494 4495 4496 4497
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4498
	return i915_gem_ring_throttle(dev, file_priv);
4499 4500
}

4501 4502 4503 4504
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4505
	struct drm_i915_private *dev_priv = dev->dev_private;
4506
	struct drm_i915_gem_madvise *args = data;
4507
	struct drm_i915_gem_object *obj;
4508
	int ret;
4509 4510 4511 4512 4513 4514 4515 4516 4517

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4518 4519 4520 4521
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4522
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4523
	if (&obj->base == NULL) {
4524 4525
		ret = -ENOENT;
		goto unlock;
4526 4527
	}

B
Ben Widawsky 已提交
4528
	if (i915_gem_obj_is_pinned(obj)) {
4529 4530
		ret = -EINVAL;
		goto out;
4531 4532
	}

4533 4534 4535 4536 4537 4538 4539 4540 4541
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4542 4543
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4544

C
Chris Wilson 已提交
4545
	/* if the object is no longer attached, discard its backing storage */
4546
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4547 4548
		i915_gem_object_truncate(obj);

4549
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4550

4551
out:
4552
	drm_gem_object_unreference(&obj->base);
4553
unlock:
4554
	mutex_unlock(&dev->struct_mutex);
4555
	return ret;
4556 4557
}

4558 4559
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4560
{
4561 4562
	int i;

4563
	INIT_LIST_HEAD(&obj->global_list);
4564 4565
	for (i = 0; i < I915_NUM_RINGS; i++)
		INIT_LIST_HEAD(&obj->ring_list[i]);
4566
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4567
	INIT_LIST_HEAD(&obj->vma_list);
4568
	INIT_LIST_HEAD(&obj->batch_pool_link);
4569

4570 4571
	obj->ops = ops;

4572 4573 4574 4575 4576 4577
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4578 4579 4580 4581 4582
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4583 4584
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4585
{
4586
	struct drm_i915_gem_object *obj;
4587
	struct address_space *mapping;
D
Daniel Vetter 已提交
4588
	gfp_t mask;
4589

4590
	obj = i915_gem_object_alloc(dev);
4591 4592
	if (obj == NULL)
		return NULL;
4593

4594
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4595
		i915_gem_object_free(obj);
4596 4597
		return NULL;
	}
4598

4599 4600 4601 4602 4603 4604 4605
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4606
	mapping = file_inode(obj->base.filp)->i_mapping;
4607
	mapping_set_gfp_mask(mapping, mask);
4608

4609
	i915_gem_object_init(obj, &i915_gem_object_ops);
4610

4611 4612
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4613

4614 4615
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4631 4632
	trace_i915_gem_object_create(obj);

4633
	return obj;
4634 4635
}

4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4660
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4661
{
4662
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4663
	struct drm_device *dev = obj->base.dev;
4664
	struct drm_i915_private *dev_priv = dev->dev_private;
4665
	struct i915_vma *vma, *next;
4666

4667 4668
	intel_runtime_pm_get(dev_priv);

4669 4670
	trace_i915_gem_object_destroy(obj);

4671
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
B
Ben Widawsky 已提交
4672 4673 4674 4675
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4676 4677
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4678

4679 4680
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4681

4682
			WARN_ON(i915_vma_unbind(vma));
4683

4684 4685
			dev_priv->mm.interruptible = was_interruptible;
		}
4686 4687
	}

B
Ben Widawsky 已提交
4688 4689 4690 4691 4692
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4693 4694
	WARN_ON(obj->frontbuffer_bits);

4695 4696 4697 4698 4699
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4700 4701
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4702
	if (discard_backing_storage(obj))
4703
		obj->madv = I915_MADV_DONTNEED;
4704
	i915_gem_object_put_pages(obj);
4705
	i915_gem_object_free_mmap_offset(obj);
4706

4707 4708
	BUG_ON(obj->pages);

4709 4710
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4711

4712 4713 4714
	if (obj->ops->release)
		obj->ops->release(obj);

4715 4716
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4717

4718
	kfree(obj->bit_17);
4719
	i915_gem_object_free(obj);
4720 4721

	intel_runtime_pm_put(dev_priv);
4722 4723
}

4724 4725
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4726 4727
{
	struct i915_vma *vma;
4728 4729 4730 4731 4732
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
4733
			return vma;
4734 4735 4736 4737 4738 4739 4740 4741 4742
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
	struct i915_vma *vma;
4743

4744 4745 4746 4747
	if (WARN_ONCE(!view, "no view specified"))
		return ERR_PTR(-EINVAL);

	list_for_each_entry(vma, &obj->vma_list, vma_link)
4748 4749
		if (vma->vm == ggtt &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4750
			return vma;
4751 4752 4753
	return NULL;
}

B
Ben Widawsky 已提交
4754 4755
void i915_gem_vma_destroy(struct i915_vma *vma)
{
4756
	struct i915_address_space *vm = NULL;
B
Ben Widawsky 已提交
4757
	WARN_ON(vma->node.allocated);
4758 4759 4760 4761 4762

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4763 4764
	vm = vma->vm;

4765 4766
	if (!i915_is_ggtt(vm))
		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4767

4768
	list_del(&vma->vma_link);
4769

4770
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4771 4772
}

4773 4774 4775 4776
static void
i915_gem_stop_ringbuffers(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4777
	struct intel_engine_cs *ring;
4778 4779 4780
	int i;

	for_each_ring(ring, dev_priv, i)
4781
		dev_priv->gt.stop_ring(ring);
4782 4783
}

4784
int
4785
i915_gem_suspend(struct drm_device *dev)
4786
{
4787
	struct drm_i915_private *dev_priv = dev->dev_private;
4788
	int ret = 0;
4789

4790
	mutex_lock(&dev->struct_mutex);
4791
	ret = i915_gpu_idle(dev);
4792
	if (ret)
4793
		goto err;
4794

4795
	i915_gem_retire_requests(dev);
4796

4797
	i915_gem_stop_ringbuffers(dev);
4798 4799
	mutex_unlock(&dev->struct_mutex);

4800
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4801
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4802
	flush_delayed_work(&dev_priv->mm.idle_work);
4803

4804 4805 4806 4807 4808
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4809
	return 0;
4810 4811 4812 4813

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4814 4815
}

4816
int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
B
Ben Widawsky 已提交
4817
{
4818
	struct drm_device *dev = ring->dev;
4819
	struct drm_i915_private *dev_priv = dev->dev_private;
4820 4821
	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4822
	int i, ret;
B
Ben Widawsky 已提交
4823

4824
	if (!HAS_L3_DPF(dev) || !remap_info)
4825
		return 0;
B
Ben Widawsky 已提交
4826

4827 4828 4829
	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4830

4831 4832 4833 4834 4835
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
B
Ben Widawsky 已提交
4836
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4837 4838 4839
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, reg_base + i);
		intel_ring_emit(ring, remap_info[i/4]);
B
Ben Widawsky 已提交
4840 4841
	}

4842
	intel_ring_advance(ring);
B
Ben Widawsky 已提交
4843

4844
	return ret;
B
Ben Widawsky 已提交
4845 4846
}

4847 4848
void i915_gem_init_swizzling(struct drm_device *dev)
{
4849
	struct drm_i915_private *dev_priv = dev->dev_private;
4850

4851
	if (INTEL_INFO(dev)->gen < 5 ||
4852 4853 4854 4855 4856 4857
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4858 4859 4860
	if (IS_GEN5(dev))
		return;

4861 4862
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4863
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4864
	else if (IS_GEN7(dev))
4865
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4866 4867
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4868 4869
	else
		BUG();
4870
}
D
Daniel Vetter 已提交
4871

4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887
static bool
intel_enable_blt(struct drm_device *dev)
{
	if (!HAS_BLT(dev))
		return false;

	/* The blitter was dysfunctional on early prototypes */
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
		DRM_INFO("BLT not supported on this pre-production hardware;"
			 " graphics performance will be degraded.\n");
		return false;
	}

	return true;
}

4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4915
int i915_gem_init_rings(struct drm_device *dev)
4916
{
4917
	struct drm_i915_private *dev_priv = dev->dev_private;
4918
	int ret;
4919

4920
	ret = intel_init_render_ring_buffer(dev);
4921
	if (ret)
4922
		return ret;
4923 4924

	if (HAS_BSD(dev)) {
4925
		ret = intel_init_bsd_ring_buffer(dev);
4926 4927
		if (ret)
			goto cleanup_render_ring;
4928
	}
4929

4930
	if (intel_enable_blt(dev)) {
4931 4932 4933 4934 4935
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4936 4937 4938 4939 4940 4941
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4942 4943 4944 4945 4946
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4947

4948
	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4949
	if (ret)
4950
		goto cleanup_bsd2_ring;
4951 4952 4953

	return 0;

4954 4955
cleanup_bsd2_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
B
Ben Widawsky 已提交
4956 4957
cleanup_vebox_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970
cleanup_blt_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4971
	struct drm_i915_private *dev_priv = dev->dev_private;
D
Daniel Vetter 已提交
4972
	struct intel_engine_cs *ring;
4973
	int ret, i;
4974 4975 4976 4977

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

4978 4979 4980
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

B
Ben Widawsky 已提交
4981
	if (dev_priv->ellc_size)
4982
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4983

4984 4985 4986
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4987

4988
	if (HAS_PCH_NOP(dev)) {
4989 4990 4991 4992 4993 4994 4995 4996 4997
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4998 4999
	}

5000 5001
	i915_gem_init_swizzling(dev);

5002 5003 5004 5005 5006 5007 5008 5009
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

D
Daniel Vetter 已提交
5010 5011 5012
	for_each_ring(ring, dev_priv, i) {
		ret = ring->init_hw(ring);
		if (ret)
5013
			goto out;
D
Daniel Vetter 已提交
5014
	}
5015

5016 5017 5018
	for (i = 0; i < NUM_L3_SLICES(dev); i++)
		i915_gem_l3_remap(&dev_priv->ring[RCS], i);

5019
	ret = i915_ppgtt_init_hw(dev);
5020
	if (ret && ret != -EIO) {
5021
		DRM_ERROR("PPGTT enable failed %d\n", ret);
5022
		i915_gem_cleanup_ringbuffer(dev);
5023 5024
	}

5025
	ret = i915_gem_context_enable(dev_priv);
5026
	if (ret && ret != -EIO) {
5027
		DRM_ERROR("Context enable failed %d\n", ret);
5028
		i915_gem_cleanup_ringbuffer(dev);
5029

5030
		goto out;
5031
	}
D
Daniel Vetter 已提交
5032

5033 5034
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5035
	return ret;
5036 5037
}

5038 5039 5040 5041 5042
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

5043 5044 5045
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

5046
	mutex_lock(&dev->struct_mutex);
5047 5048 5049

	if (IS_VALLEYVIEW(dev)) {
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
5050 5051 5052
		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
			      VLV_GTLC_ALLOWWAKEACK), 10))
5053 5054 5055
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
	}

5056
	if (!i915.enable_execlists) {
5057
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5058 5059 5060
		dev_priv->gt.init_rings = i915_gem_init_rings;
		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
5061
	} else {
5062
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
5063 5064 5065
		dev_priv->gt.init_rings = intel_logical_rings_init;
		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
		dev_priv->gt.stop_ring = intel_logical_ring_stop;
5066 5067
	}

5068 5069 5070 5071 5072 5073 5074 5075
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5076
	ret = i915_gem_init_userptr(dev);
5077 5078
	if (ret)
		goto out_unlock;
5079

5080
	i915_gem_init_global_gtt(dev);
5081

5082
	ret = i915_gem_context_init(dev);
5083 5084
	if (ret)
		goto out_unlock;
5085

D
Daniel Vetter 已提交
5086 5087
	ret = dev_priv->gt.init_rings(dev);
	if (ret)
5088
		goto out_unlock;
5089

5090
	ret = i915_gem_init_hw(dev);
5091 5092 5093 5094 5095 5096 5097 5098
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
		atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
		ret = 0;
5099
	}
5100 5101

out_unlock:
5102
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5103
	mutex_unlock(&dev->struct_mutex);
5104

5105
	return ret;
5106 5107
}

5108 5109 5110
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
5111
	struct drm_i915_private *dev_priv = dev->dev_private;
5112
	struct intel_engine_cs *ring;
5113
	int i;
5114

5115
	for_each_ring(ring, dev_priv, i)
5116
		dev_priv->gt.cleanup_ring(ring);
5117 5118
}

5119
static void
5120
init_ring_lists(struct intel_engine_cs *ring)
5121 5122 5123 5124 5125
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

5126 5127
void i915_init_vm(struct drm_i915_private *dev_priv,
		  struct i915_address_space *vm)
B
Ben Widawsky 已提交
5128
{
5129 5130
	if (!i915_is_ggtt(vm))
		drm_mm_init(&vm->mm, vm->start, vm->total);
B
Ben Widawsky 已提交
5131 5132 5133 5134
	vm->dev = dev_priv->dev;
	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
	INIT_LIST_HEAD(&vm->global_link);
5135
	list_add_tail(&vm->global_link, &dev_priv->vm_list);
B
Ben Widawsky 已提交
5136 5137
}

5138 5139 5140
void
i915_gem_load(struct drm_device *dev)
{
5141
	struct drm_i915_private *dev_priv = dev->dev_private;
5142 5143
	int i;

5144
	dev_priv->objects =
5145 5146 5147 5148
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5149 5150 5151 5152 5153
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5154 5155 5156 5157 5158
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5159

B
Ben Widawsky 已提交
5160 5161 5162
	INIT_LIST_HEAD(&dev_priv->vm_list);
	i915_init_vm(dev_priv, &dev_priv->gtt.base);

5163
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
5164 5165
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5166
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5167 5168
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
5169
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5170
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5171 5172
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
5173 5174
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
5175
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5176

5177 5178
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

5179 5180 5181
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5182 5183 5184 5185
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5186 5187 5188 5189
	if (intel_vgpu_active(dev))
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

5190
	/* Initialize fence registers to zero */
5191 5192
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
	i915_gem_restore_fences(dev);
5193

5194
	i915_gem_detect_bit_6_swizzle(dev);
5195
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5196

5197 5198
	dev_priv->mm.interruptible = true;

5199
	i915_gem_shrinker_init(dev_priv);
5200 5201

	mutex_init(&dev_priv->fb_tracking.lock);
5202
}
5203

5204
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5205
{
5206
	struct drm_i915_file_private *file_priv = file->driver_priv;
5207 5208 5209 5210 5211

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5212
	spin_lock(&file_priv->mm.lock);
5213 5214 5215 5216 5217 5218 5219 5220 5221
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5222
	spin_unlock(&file_priv->mm.lock);
5223

5224
	if (!list_empty(&file_priv->rps.link)) {
5225
		spin_lock(&to_i915(dev)->rps.client_lock);
5226
		list_del(&file_priv->rps.link);
5227
		spin_unlock(&to_i915(dev)->rps.client_lock);
5228
	}
5229 5230 5231 5232 5233
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5234
	int ret;
5235 5236 5237 5238 5239 5240 5241 5242 5243

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5244
	file_priv->file = file;
5245
	INIT_LIST_HEAD(&file_priv->rps.link);
5246 5247 5248 5249

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5250 5251 5252
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5253

5254
	return ret;
5255 5256
}

5257 5258 5259 5260 5261 5262 5263 5264 5265
/**
 * i915_gem_track_fb - update frontbuffer tracking
 * old: current GEM buffer for the frontbuffer slots
 * new: new GEM buffer for the frontbuffer slots
 * frontbuffer_bits: bitmask of frontbuffer slots
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5283
/* All the new VM stuff */
5284 5285 5286
unsigned long
i915_gem_obj_offset(struct drm_i915_gem_object *o,
		    struct i915_address_space *vm)
5287 5288 5289 5290
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5291
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5292 5293

	list_for_each_entry(vma, &o->vma_list, vma_link) {
5294 5295 5296 5297
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
5298 5299
			return vma->node.start;
	}
5300

5301 5302
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5303 5304 5305
	return -1;
}

5306 5307
unsigned long
i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5308
			      const struct i915_ggtt_view *view)
5309
{
5310
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5311 5312 5313
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
5314 5315
		if (vma->vm == ggtt &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5316 5317
			return vma->node.start;

5318
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5339
				  const struct i915_ggtt_view *view)
5340 5341 5342 5343 5344 5345
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (vma->vm == ggtt &&
5346
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5347
		    drm_mm_node_allocated(&vma->node))
5348 5349 5350 5351 5352 5353 5354
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5355
	struct i915_vma *vma;
5356

5357 5358
	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5370
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5371 5372 5373

	BUG_ON(list_empty(&o->vma_list));

5374 5375 5376 5377
	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
5378 5379
		if (vma->vm == vm)
			return vma->node.size;
5380
	}
5381 5382 5383
	return 0;
}

5384
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5385 5386
{
	struct i915_vma *vma;
5387
	list_for_each_entry(vma, &obj->vma_list, vma_link)
5388 5389
		if (vma->pin_count > 0)
			return true;
5390

5391
	return false;
5392
}
5393