extent_io.c 198.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2

3 4 5 6 7 8
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/bio.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/page-flags.h>
9
#include <linux/sched/mm.h>
10 11 12 13 14
#include <linux/spinlock.h>
#include <linux/blkdev.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include <linux/pagevec.h>
15
#include <linux/prefetch.h>
B
Boris Burkov 已提交
16
#include <linux/fsverity.h>
17
#include "misc.h"
18
#include "extent_io.h"
19
#include "extent-io-tree.h"
20
#include "extent_map.h"
21 22
#include "ctree.h"
#include "btrfs_inode.h"
23
#include "volumes.h"
24
#include "check-integrity.h"
25
#include "locking.h"
26
#include "rcu-string.h"
27
#include "backref.h"
28
#include "disk-io.h"
29
#include "subpage.h"
30
#include "zoned.h"
31
#include "block-group.h"
32
#include "compression.h"
33 34 35

static struct kmem_cache *extent_state_cache;
static struct kmem_cache *extent_buffer_cache;
36
static struct bio_set btrfs_bioset;
37

38 39 40 41 42
static inline bool extent_state_in_tree(const struct extent_state *state)
{
	return !RB_EMPTY_NODE(&state->rb_node);
}

43
#ifdef CONFIG_BTRFS_DEBUG
44
static LIST_HEAD(states);
C
Chris Mason 已提交
45
static DEFINE_SPINLOCK(leak_lock);
46

47 48 49
static inline void btrfs_leak_debug_add(spinlock_t *lock,
					struct list_head *new,
					struct list_head *head)
50 51 52
{
	unsigned long flags;

53
	spin_lock_irqsave(lock, flags);
54
	list_add(new, head);
55
	spin_unlock_irqrestore(lock, flags);
56 57
}

58 59
static inline void btrfs_leak_debug_del(spinlock_t *lock,
					struct list_head *entry)
60 61 62
{
	unsigned long flags;

63
	spin_lock_irqsave(lock, flags);
64
	list_del(entry);
65
	spin_unlock_irqrestore(lock, flags);
66 67
}

68
void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
69 70
{
	struct extent_buffer *eb;
71
	unsigned long flags;
72

73 74 75 76 77 78 79
	/*
	 * If we didn't get into open_ctree our allocated_ebs will not be
	 * initialized, so just skip this.
	 */
	if (!fs_info->allocated_ebs.next)
		return;

80
	WARN_ON(!list_empty(&fs_info->allocated_ebs));
81 82 83 84
	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
	while (!list_empty(&fs_info->allocated_ebs)) {
		eb = list_first_entry(&fs_info->allocated_ebs,
				      struct extent_buffer, leak_list);
85 86 87 88
		pr_err(
	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
		       btrfs_header_owner(eb));
89 90 91
		list_del(&eb->leak_list);
		kmem_cache_free(extent_buffer_cache, eb);
	}
92
	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
93 94 95 96 97 98
}

static inline void btrfs_extent_state_leak_debug_check(void)
{
	struct extent_state *state;

99 100
	while (!list_empty(&states)) {
		state = list_entry(states.next, struct extent_state, leak_list);
101
		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
102 103
		       state->start, state->end, state->state,
		       extent_state_in_tree(state),
104
		       refcount_read(&state->refs));
105 106 107 108
		list_del(&state->leak_list);
		kmem_cache_free(extent_state_cache, state);
	}
}
109

110 111
#define btrfs_debug_check_extent_io_range(tree, start, end)		\
	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
112
static inline void __btrfs_debug_check_extent_io_range(const char *caller,
113
		struct extent_io_tree *tree, u64 start, u64 end)
114
{
115 116 117 118 119 120 121 122 123 124 125 126
	struct inode *inode = tree->private_data;
	u64 isize;

	if (!inode || !is_data_inode(inode))
		return;

	isize = i_size_read(inode);
	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
	}
127
}
128
#else
129 130
#define btrfs_leak_debug_add(lock, new, head)	do {} while (0)
#define btrfs_leak_debug_del(lock, entry)	do {} while (0)
131
#define btrfs_extent_state_leak_debug_check()	do {} while (0)
132
#define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
C
Chris Mason 已提交
133
#endif
134 135 136 137 138 139 140

struct tree_entry {
	u64 start;
	u64 end;
	struct rb_node rb_node;
};

141 142 143 144 145 146 147 148 149 150 151
/*
 * Structure to record info about the bio being assembled, and other info like
 * how many bytes are there before stripe/ordered extent boundary.
 */
struct btrfs_bio_ctrl {
	struct bio *bio;
	unsigned long bio_flags;
	u32 len_to_stripe_boundary;
	u32 len_to_oe_boundary;
};

152
struct extent_page_data {
153
	struct btrfs_bio_ctrl bio_ctrl;
154 155 156
	/* tells writepage not to lock the state bits for this range
	 * it still does the unlocking
	 */
157 158
	unsigned int extent_locked:1;

159
	/* tells the submit_bio code to use REQ_SYNC */
160
	unsigned int sync_io:1;
161 162
};

163
static int add_extent_changeset(struct extent_state *state, u32 bits,
164 165 166 167 168 169
				 struct extent_changeset *changeset,
				 int set)
{
	int ret;

	if (!changeset)
170
		return 0;
171
	if (set && (state->state & bits) == bits)
172
		return 0;
173
	if (!set && (state->state & bits) == 0)
174
		return 0;
175
	changeset->bytes_changed += state->end - state->start + 1;
176
	ret = ulist_add(&changeset->range_changed, state->start, state->end,
177
			GFP_ATOMIC);
178
	return ret;
179 180
}

181
static void submit_one_bio(struct bio *bio, int mirror_num, unsigned long bio_flags)
182 183 184 185 186
{
	struct extent_io_tree *tree = bio->bi_private;

	bio->bi_private = NULL;

187 188
	/* Caller should ensure the bio has at least some range added */
	ASSERT(bio->bi_iter.bi_size);
189

190
	if (is_data_inode(tree->private_data))
191
		btrfs_submit_data_bio(tree->private_data, bio, mirror_num,
192 193
					    bio_flags);
	else
194
		btrfs_submit_metadata_bio(tree->private_data, bio, mirror_num);
195 196 197 198 199 200
	/*
	 * Above submission hooks will handle the error by ending the bio,
	 * which will do the cleanup properly.  So here we should not return
	 * any error, or the caller of submit_extent_page() will do cleanup
	 * again, causing problems.
	 */
201 202
}

203 204 205
/* Cleanup unsubmitted bios */
static void end_write_bio(struct extent_page_data *epd, int ret)
{
206 207 208 209 210 211
	struct bio *bio = epd->bio_ctrl.bio;

	if (bio) {
		bio->bi_status = errno_to_blk_status(ret);
		bio_endio(bio);
		epd->bio_ctrl.bio = NULL;
212 213 214
	}
}

215 216 217 218 219 220
/*
 * Submit bio from extent page data via submit_one_bio
 *
 * Return 0 if everything is OK.
 * Return <0 for error.
 */
221
static void flush_write_bio(struct extent_page_data *epd)
222
{
223
	struct bio *bio = epd->bio_ctrl.bio;
224

225
	if (bio) {
226
		submit_one_bio(bio, 0, 0);
227 228 229 230 231 232 233
		/*
		 * Clean up of epd->bio is handled by its endio function.
		 * And endio is either triggered by successful bio execution
		 * or the error handler of submit bio hook.
		 * So at this point, no matter what happened, we don't need
		 * to clean up epd->bio.
		 */
234
		epd->bio_ctrl.bio = NULL;
235 236
	}
}
237

238
int __init extent_state_cache_init(void)
239
{
D
David Sterba 已提交
240
	extent_state_cache = kmem_cache_create("btrfs_extent_state",
241
			sizeof(struct extent_state), 0,
242
			SLAB_MEM_SPREAD, NULL);
243 244
	if (!extent_state_cache)
		return -ENOMEM;
245 246
	return 0;
}
247

248 249
int __init extent_io_init(void)
{
D
David Sterba 已提交
250
	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
251
			sizeof(struct extent_buffer), 0,
252
			SLAB_MEM_SPREAD, NULL);
253
	if (!extent_buffer_cache)
254
		return -ENOMEM;
255

256
	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
257
			offsetof(struct btrfs_bio, bio),
258
			BIOSET_NEED_BVECS))
259
		goto free_buffer_cache;
260

261
	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
262 263
		goto free_bioset;

264 265
	return 0;

266
free_bioset:
267
	bioset_exit(&btrfs_bioset);
268

269 270 271
free_buffer_cache:
	kmem_cache_destroy(extent_buffer_cache);
	extent_buffer_cache = NULL;
272 273
	return -ENOMEM;
}
274

275 276 277
void __cold extent_state_cache_exit(void)
{
	btrfs_extent_state_leak_debug_check();
278 279 280
	kmem_cache_destroy(extent_state_cache);
}

281
void __cold extent_io_exit(void)
282
{
283 284 285 286 287
	/*
	 * Make sure all delayed rcu free are flushed before we
	 * destroy caches.
	 */
	rcu_barrier();
288
	kmem_cache_destroy(extent_buffer_cache);
289
	bioset_exit(&btrfs_bioset);
290 291
}

292 293 294 295 296 297 298 299 300
/*
 * For the file_extent_tree, we want to hold the inode lock when we lookup and
 * update the disk_i_size, but lockdep will complain because our io_tree we hold
 * the tree lock and get the inode lock when setting delalloc.  These two things
 * are unrelated, so make a class for the file_extent_tree so we don't get the
 * two locking patterns mixed up.
 */
static struct lock_class_key file_extent_tree_class;

301
void extent_io_tree_init(struct btrfs_fs_info *fs_info,
302 303
			 struct extent_io_tree *tree, unsigned int owner,
			 void *private_data)
304
{
305
	tree->fs_info = fs_info;
306
	tree->state = RB_ROOT;
307
	tree->dirty_bytes = 0;
308
	spin_lock_init(&tree->lock);
309
	tree->private_data = private_data;
310
	tree->owner = owner;
311 312
	if (owner == IO_TREE_INODE_FILE_EXTENT)
		lockdep_set_class(&tree->lock, &file_extent_tree_class);
313 314
}

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
void extent_io_tree_release(struct extent_io_tree *tree)
{
	spin_lock(&tree->lock);
	/*
	 * Do a single barrier for the waitqueue_active check here, the state
	 * of the waitqueue should not change once extent_io_tree_release is
	 * called.
	 */
	smp_mb();
	while (!RB_EMPTY_ROOT(&tree->state)) {
		struct rb_node *node;
		struct extent_state *state;

		node = rb_first(&tree->state);
		state = rb_entry(node, struct extent_state, rb_node);
		rb_erase(&state->rb_node, &tree->state);
		RB_CLEAR_NODE(&state->rb_node);
		/*
		 * btree io trees aren't supposed to have tasks waiting for
		 * changes in the flags of extent states ever.
		 */
		ASSERT(!waitqueue_active(&state->wq));
		free_extent_state(state);

		cond_resched_lock(&tree->lock);
	}
	spin_unlock(&tree->lock);
}

344
static struct extent_state *alloc_extent_state(gfp_t mask)
345 346 347
{
	struct extent_state *state;

348 349 350 351 352
	/*
	 * The given mask might be not appropriate for the slab allocator,
	 * drop the unsupported bits
	 */
	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
353
	state = kmem_cache_alloc(extent_state_cache, mask);
354
	if (!state)
355 356
		return state;
	state->state = 0;
357
	state->failrec = NULL;
358
	RB_CLEAR_NODE(&state->rb_node);
359
	btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
360
	refcount_set(&state->refs, 1);
361
	init_waitqueue_head(&state->wq);
362
	trace_alloc_extent_state(state, mask, _RET_IP_);
363 364 365
	return state;
}

366
void free_extent_state(struct extent_state *state)
367 368 369
{
	if (!state)
		return;
370
	if (refcount_dec_and_test(&state->refs)) {
371
		WARN_ON(extent_state_in_tree(state));
372
		btrfs_leak_debug_del(&leak_lock, &state->leak_list);
373
		trace_free_extent_state(state, _RET_IP_);
374 375 376 377
		kmem_cache_free(extent_state_cache, state);
	}
}

378 379 380
static struct rb_node *tree_insert(struct rb_root *root,
				   struct rb_node *search_start,
				   u64 offset,
381 382 383
				   struct rb_node *node,
				   struct rb_node ***p_in,
				   struct rb_node **parent_in)
384
{
385
	struct rb_node **p;
C
Chris Mason 已提交
386
	struct rb_node *parent = NULL;
387 388
	struct tree_entry *entry;

389 390 391 392 393 394
	if (p_in && parent_in) {
		p = *p_in;
		parent = *parent_in;
		goto do_insert;
	}

395
	p = search_start ? &search_start : &root->rb_node;
C
Chris Mason 已提交
396
	while (*p) {
397 398 399 400 401 402 403 404 405 406 407
		parent = *p;
		entry = rb_entry(parent, struct tree_entry, rb_node);

		if (offset < entry->start)
			p = &(*p)->rb_left;
		else if (offset > entry->end)
			p = &(*p)->rb_right;
		else
			return parent;
	}

408
do_insert:
409 410 411 412 413
	rb_link_node(node, parent, p);
	rb_insert_color(node, root);
	return NULL;
}

N
Nikolay Borisov 已提交
414
/**
415 416
 * Search @tree for an entry that contains @offset. Such entry would have
 * entry->start <= offset && entry->end >= offset.
N
Nikolay Borisov 已提交
417
 *
418 419 420 421 422 423 424
 * @tree:       the tree to search
 * @offset:     offset that should fall within an entry in @tree
 * @next_ret:   pointer to the first entry whose range ends after @offset
 * @prev_ret:   pointer to the first entry whose range begins before @offset
 * @p_ret:      pointer where new node should be anchored (used when inserting an
 *	        entry in the tree)
 * @parent_ret: points to entry which would have been the parent of the entry,
N
Nikolay Borisov 已提交
425 426 427 428 429 430 431
 *               containing @offset
 *
 * This function returns a pointer to the entry that contains @offset byte
 * address. If no such entry exists, then NULL is returned and the other
 * pointer arguments to the function are filled, otherwise the found entry is
 * returned and other pointers are left untouched.
 */
432
static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
433
				      struct rb_node **next_ret,
434
				      struct rb_node **prev_ret,
435 436
				      struct rb_node ***p_ret,
				      struct rb_node **parent_ret)
437
{
438
	struct rb_root *root = &tree->state;
439
	struct rb_node **n = &root->rb_node;
440 441 442 443 444
	struct rb_node *prev = NULL;
	struct rb_node *orig_prev = NULL;
	struct tree_entry *entry;
	struct tree_entry *prev_entry = NULL;

445 446 447
	while (*n) {
		prev = *n;
		entry = rb_entry(prev, struct tree_entry, rb_node);
448 449 450
		prev_entry = entry;

		if (offset < entry->start)
451
			n = &(*n)->rb_left;
452
		else if (offset > entry->end)
453
			n = &(*n)->rb_right;
C
Chris Mason 已提交
454
		else
455
			return *n;
456 457
	}

458 459 460 461 462
	if (p_ret)
		*p_ret = n;
	if (parent_ret)
		*parent_ret = prev;

463
	if (next_ret) {
464
		orig_prev = prev;
C
Chris Mason 已提交
465
		while (prev && offset > prev_entry->end) {
466 467 468
			prev = rb_next(prev);
			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
		}
469
		*next_ret = prev;
470 471 472
		prev = orig_prev;
	}

473
	if (prev_ret) {
474
		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
C
Chris Mason 已提交
475
		while (prev && offset < prev_entry->start) {
476 477 478
			prev = rb_prev(prev);
			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
		}
479
		*prev_ret = prev;
480 481 482 483
	}
	return NULL;
}

484 485 486 487 488
static inline struct rb_node *
tree_search_for_insert(struct extent_io_tree *tree,
		       u64 offset,
		       struct rb_node ***p_ret,
		       struct rb_node **parent_ret)
489
{
490
	struct rb_node *next= NULL;
491
	struct rb_node *ret;
492

493
	ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
C
Chris Mason 已提交
494
	if (!ret)
495
		return next;
496 497 498
	return ret;
}

499 500 501 502 503 504
static inline struct rb_node *tree_search(struct extent_io_tree *tree,
					  u64 offset)
{
	return tree_search_for_insert(tree, offset, NULL, NULL);
}

505 506 507 508 509 510 511 512 513
/*
 * utility function to look for merge candidates inside a given range.
 * Any extents with matching state are merged together into a single
 * extent in the tree.  Extents with EXTENT_IO in their state field
 * are not merged because the end_io handlers need to be able to do
 * operations on them without sleeping (or doing allocations/splits).
 *
 * This should be called with the tree lock held.
 */
514 515
static void merge_state(struct extent_io_tree *tree,
		        struct extent_state *state)
516 517 518 519
{
	struct extent_state *other;
	struct rb_node *other_node;

N
Nikolay Borisov 已提交
520
	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
521
		return;
522 523 524 525 526 527

	other_node = rb_prev(&state->rb_node);
	if (other_node) {
		other = rb_entry(other_node, struct extent_state, rb_node);
		if (other->end == state->start - 1 &&
		    other->state == state->state) {
528 529 530 531
			if (tree->private_data &&
			    is_data_inode(tree->private_data))
				btrfs_merge_delalloc_extent(tree->private_data,
							    state, other);
532 533
			state->start = other->start;
			rb_erase(&other->rb_node, &tree->state);
534
			RB_CLEAR_NODE(&other->rb_node);
535 536 537 538 539 540 541 542
			free_extent_state(other);
		}
	}
	other_node = rb_next(&state->rb_node);
	if (other_node) {
		other = rb_entry(other_node, struct extent_state, rb_node);
		if (other->start == state->end + 1 &&
		    other->state == state->state) {
543 544 545 546
			if (tree->private_data &&
			    is_data_inode(tree->private_data))
				btrfs_merge_delalloc_extent(tree->private_data,
							    state, other);
547 548
			state->end = other->end;
			rb_erase(&other->rb_node, &tree->state);
549
			RB_CLEAR_NODE(&other->rb_node);
550
			free_extent_state(other);
551 552 553 554
		}
	}
}

555
static void set_state_bits(struct extent_io_tree *tree,
556
			   struct extent_state *state, u32 *bits,
557
			   struct extent_changeset *changeset);
558

559 560 561 562 563 564 565 566 567 568 569 570
/*
 * insert an extent_state struct into the tree.  'bits' are set on the
 * struct before it is inserted.
 *
 * This may return -EEXIST if the extent is already there, in which case the
 * state struct is freed.
 *
 * The tree lock is not taken internally.  This is a utility function and
 * probably isn't what you want to call (see set/clear_extent_bit).
 */
static int insert_state(struct extent_io_tree *tree,
			struct extent_state *state, u64 start, u64 end,
571 572
			struct rb_node ***p,
			struct rb_node **parent,
573
			u32 *bits, struct extent_changeset *changeset)
574 575 576
{
	struct rb_node *node;

577 578 579 580 581
	if (end < start) {
		btrfs_err(tree->fs_info,
			"insert state: end < start %llu %llu", end, start);
		WARN_ON(1);
	}
582 583
	state->start = start;
	state->end = end;
J
Josef Bacik 已提交
584

585
	set_state_bits(tree, state, bits, changeset);
586

587
	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
588 589 590
	if (node) {
		struct extent_state *found;
		found = rb_entry(node, struct extent_state, rb_node);
591 592
		btrfs_err(tree->fs_info,
		       "found node %llu %llu on insert of %llu %llu",
593
		       found->start, found->end, start, end);
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
		return -EEXIST;
	}
	merge_state(tree, state);
	return 0;
}

/*
 * split a given extent state struct in two, inserting the preallocated
 * struct 'prealloc' as the newly created second half.  'split' indicates an
 * offset inside 'orig' where it should be split.
 *
 * Before calling,
 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 * are two extent state structs in the tree:
 * prealloc: [orig->start, split - 1]
 * orig: [ split, orig->end ]
 *
 * The tree locks are not taken by this function. They need to be held
 * by the caller.
 */
static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
		       struct extent_state *prealloc, u64 split)
{
	struct rb_node *node;
J
Josef Bacik 已提交
618

619 620
	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_split_delalloc_extent(tree->private_data, orig, split);
J
Josef Bacik 已提交
621

622 623 624 625 626
	prealloc->start = orig->start;
	prealloc->end = split - 1;
	prealloc->state = orig->state;
	orig->start = split;

627 628
	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
			   &prealloc->rb_node, NULL, NULL);
629 630 631 632 633 634 635
	if (node) {
		free_extent_state(prealloc);
		return -EEXIST;
	}
	return 0;
}

636 637 638 639 640 641 642 643 644
static struct extent_state *next_state(struct extent_state *state)
{
	struct rb_node *next = rb_next(&state->rb_node);
	if (next)
		return rb_entry(next, struct extent_state, rb_node);
	else
		return NULL;
}

645 646
/*
 * utility function to clear some bits in an extent state struct.
647
 * it will optionally wake up anyone waiting on this state (wake == 1).
648 649 650 651
 *
 * If no bits are set on the state struct after clearing things, the
 * struct is freed and removed from the tree
 */
652 653
static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
					    struct extent_state *state,
654
					    u32 *bits, int wake,
655
					    struct extent_changeset *changeset)
656
{
657
	struct extent_state *next;
658
	u32 bits_to_clear = *bits & ~EXTENT_CTLBITS;
659
	int ret;
660

661
	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
662 663 664 665
		u64 range = state->end - state->start + 1;
		WARN_ON(range > tree->dirty_bytes);
		tree->dirty_bytes -= range;
	}
666 667 668 669

	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_clear_delalloc_extent(tree->private_data, state, bits);

670 671
	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
	BUG_ON(ret < 0);
672
	state->state &= ~bits_to_clear;
673 674
	if (wake)
		wake_up(&state->wq);
675
	if (state->state == 0) {
676
		next = next_state(state);
677
		if (extent_state_in_tree(state)) {
678
			rb_erase(&state->rb_node, &tree->state);
679
			RB_CLEAR_NODE(&state->rb_node);
680 681 682 683 684 685
			free_extent_state(state);
		} else {
			WARN_ON(1);
		}
	} else {
		merge_state(tree, state);
686
		next = next_state(state);
687
	}
688
	return next;
689 690
}

691 692 693 694 695 696 697 698 699
static struct extent_state *
alloc_extent_state_atomic(struct extent_state *prealloc)
{
	if (!prealloc)
		prealloc = alloc_extent_state(GFP_ATOMIC);

	return prealloc;
}

700
static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
701
{
702
	btrfs_panic(tree->fs_info, err,
703
	"locking error: extent tree was modified by another thread while locked");
704 705
}

706 707 708 709 710 711 712 713 714 715
/*
 * clear some bits on a range in the tree.  This may require splitting
 * or inserting elements in the tree, so the gfp mask is used to
 * indicate which allocations or sleeping are allowed.
 *
 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 * the given range from the tree regardless of state (ie for truncate).
 *
 * the range [start, end] is inclusive.
 *
716
 * This takes the tree lock, and returns 0 on success and < 0 on error.
717
 */
718
int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
719 720 721
		       u32 bits, int wake, int delete,
		       struct extent_state **cached_state,
		       gfp_t mask, struct extent_changeset *changeset)
722 723
{
	struct extent_state *state;
724
	struct extent_state *cached;
725 726
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
727
	u64 last_end;
728
	int err;
729
	int clear = 0;
730

731
	btrfs_debug_check_extent_io_range(tree, start, end);
732
	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
733

734 735 736
	if (bits & EXTENT_DELALLOC)
		bits |= EXTENT_NORESERVE;

737 738 739
	if (delete)
		bits |= ~EXTENT_CTLBITS;

N
Nikolay Borisov 已提交
740
	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
741
		clear = 1;
742
again:
743
	if (!prealloc && gfpflags_allow_blocking(mask)) {
744 745 746 747 748 749 750
		/*
		 * Don't care for allocation failure here because we might end
		 * up not needing the pre-allocated extent state at all, which
		 * is the case if we only have in the tree extent states that
		 * cover our input range and don't cover too any other range.
		 * If we end up needing a new extent state we allocate it later.
		 */
751 752 753
		prealloc = alloc_extent_state(mask);
	}

754
	spin_lock(&tree->lock);
755 756
	if (cached_state) {
		cached = *cached_state;
757 758 759 760 761 762

		if (clear) {
			*cached_state = NULL;
			cached_state = NULL;
		}

763 764
		if (cached && extent_state_in_tree(cached) &&
		    cached->start <= start && cached->end > start) {
765
			if (clear)
766
				refcount_dec(&cached->refs);
767
			state = cached;
768
			goto hit_next;
769
		}
770 771
		if (clear)
			free_extent_state(cached);
772
	}
773 774 775 776
	/*
	 * this search will find the extents that end after
	 * our range starts
	 */
777
	node = tree_search(tree, start);
778 779 780
	if (!node)
		goto out;
	state = rb_entry(node, struct extent_state, rb_node);
781
hit_next:
782 783 784
	if (state->start > end)
		goto out;
	WARN_ON(state->end < start);
785
	last_end = state->end;
786

787
	/* the state doesn't have the wanted bits, go ahead */
788 789
	if (!(state->state & bits)) {
		state = next_state(state);
790
		goto next;
791
	}
792

793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
	/*
	 *     | ---- desired range ---- |
	 *  | state | or
	 *  | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip
	 * bits on second half.
	 *
	 * If the extent we found extends past our range, we
	 * just split and search again.  It'll get split again
	 * the next time though.
	 *
	 * If the extent we found is inside our range, we clear
	 * the desired bit on it.
	 */

	if (state->start < start) {
810 811
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
812
		err = split_state(tree, state, prealloc, start);
813 814 815
		if (err)
			extent_io_tree_panic(tree, err);

816 817 818 819
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
820 821
			state = clear_state_bit(tree, state, &bits, wake,
						changeset);
822
			goto next;
823 824 825 826 827 828 829 830 831 832
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and clear the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
833 834
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
835
		err = split_state(tree, state, prealloc, end + 1);
836 837 838
		if (err)
			extent_io_tree_panic(tree, err);

839 840
		if (wake)
			wake_up(&state->wq);
841

842
		clear_state_bit(tree, prealloc, &bits, wake, changeset);
J
Josef Bacik 已提交
843

844 845 846
		prealloc = NULL;
		goto out;
	}
847

848
	state = clear_state_bit(tree, state, &bits, wake, changeset);
849
next:
850 851 852
	if (last_end == (u64)-1)
		goto out;
	start = last_end + 1;
853
	if (start <= end && state && !need_resched())
854
		goto hit_next;
855 856 857 858

search_again:
	if (start > end)
		goto out;
859
	spin_unlock(&tree->lock);
860
	if (gfpflags_allow_blocking(mask))
861 862
		cond_resched();
	goto again;
863 864 865 866 867 868 869 870

out:
	spin_unlock(&tree->lock);
	if (prealloc)
		free_extent_state(prealloc);

	return 0;

871 872
}

873 874
static void wait_on_state(struct extent_io_tree *tree,
			  struct extent_state *state)
875 876
		__releases(tree->lock)
		__acquires(tree->lock)
877 878 879
{
	DEFINE_WAIT(wait);
	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
880
	spin_unlock(&tree->lock);
881
	schedule();
882
	spin_lock(&tree->lock);
883 884 885 886 887 888 889 890
	finish_wait(&state->wq, &wait);
}

/*
 * waits for one or more bits to clear on a range in the state tree.
 * The range [start, end] is inclusive.
 * The tree lock is taken by this function
 */
891
static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
892
			    u32 bits)
893 894 895 896
{
	struct extent_state *state;
	struct rb_node *node;

897
	btrfs_debug_check_extent_io_range(tree, start, end);
898

899
	spin_lock(&tree->lock);
900 901 902 903 904 905
again:
	while (1) {
		/*
		 * this search will find all the extents that end after
		 * our range starts
		 */
906
		node = tree_search(tree, start);
907
process_node:
908 909 910 911 912 913 914 915 916 917
		if (!node)
			break;

		state = rb_entry(node, struct extent_state, rb_node);

		if (state->start > end)
			goto out;

		if (state->state & bits) {
			start = state->start;
918
			refcount_inc(&state->refs);
919 920 921 922 923 924 925 926 927
			wait_on_state(tree, state);
			free_extent_state(state);
			goto again;
		}
		start = state->end + 1;

		if (start > end)
			break;

928 929 930 931
		if (!cond_resched_lock(&tree->lock)) {
			node = rb_next(node);
			goto process_node;
		}
932 933
	}
out:
934
	spin_unlock(&tree->lock);
935 936
}

937
static void set_state_bits(struct extent_io_tree *tree,
938
			   struct extent_state *state,
939
			   u32 *bits, struct extent_changeset *changeset)
940
{
941
	u32 bits_to_set = *bits & ~EXTENT_CTLBITS;
942
	int ret;
J
Josef Bacik 已提交
943

944 945 946
	if (tree->private_data && is_data_inode(tree->private_data))
		btrfs_set_delalloc_extent(tree->private_data, state, bits);

947
	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
948 949 950
		u64 range = state->end - state->start + 1;
		tree->dirty_bytes += range;
	}
951 952
	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
	BUG_ON(ret < 0);
953
	state->state |= bits_to_set;
954 955
}

956 957
static void cache_state_if_flags(struct extent_state *state,
				 struct extent_state **cached_ptr,
958
				 unsigned flags)
959 960
{
	if (cached_ptr && !(*cached_ptr)) {
961
		if (!flags || (state->state & flags)) {
962
			*cached_ptr = state;
963
			refcount_inc(&state->refs);
964 965 966 967
		}
	}
}

968 969 970 971
static void cache_state(struct extent_state *state,
			struct extent_state **cached_ptr)
{
	return cache_state_if_flags(state, cached_ptr,
N
Nikolay Borisov 已提交
972
				    EXTENT_LOCKED | EXTENT_BOUNDARY);
973 974
}

975
/*
976 977
 * set some bits on a range in the tree.  This may require allocations or
 * sleeping, so the gfp mask is used to indicate what is allowed.
978
 *
979 980 981
 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 * part of the range already has the desired bits set.  The start of the
 * existing range is returned in failed_start in this case.
982
 *
983
 * [start, end] is inclusive This takes the tree lock.
984
 */
985 986
int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
		   u32 exclusive_bits, u64 *failed_start,
987 988
		   struct extent_state **cached_state, gfp_t mask,
		   struct extent_changeset *changeset)
989 990 991 992
{
	struct extent_state *state;
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
993 994
	struct rb_node **p;
	struct rb_node *parent;
995 996 997
	int err = 0;
	u64 last_start;
	u64 last_end;
998

999
	btrfs_debug_check_extent_io_range(tree, start, end);
1000
	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
1001

1002 1003 1004 1005
	if (exclusive_bits)
		ASSERT(failed_start);
	else
		ASSERT(failed_start == NULL);
1006
again:
1007
	if (!prealloc && gfpflags_allow_blocking(mask)) {
1008 1009 1010 1011 1012 1013 1014
		/*
		 * Don't care for allocation failure here because we might end
		 * up not needing the pre-allocated extent state at all, which
		 * is the case if we only have in the tree extent states that
		 * cover our input range and don't cover too any other range.
		 * If we end up needing a new extent state we allocate it later.
		 */
1015 1016 1017
		prealloc = alloc_extent_state(mask);
	}

1018
	spin_lock(&tree->lock);
1019 1020
	if (cached_state && *cached_state) {
		state = *cached_state;
1021
		if (state->start <= start && state->end > start &&
1022
		    extent_state_in_tree(state)) {
1023 1024 1025 1026
			node = &state->rb_node;
			goto hit_next;
		}
	}
1027 1028 1029 1030
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1031
	node = tree_search_for_insert(tree, start, &p, &parent);
1032
	if (!node) {
1033 1034
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1035
		err = insert_state(tree, prealloc, start, end,
1036
				   &p, &parent, &bits, changeset);
1037 1038 1039
		if (err)
			extent_io_tree_panic(tree, err);

1040
		cache_state(prealloc, cached_state);
1041 1042 1043 1044
		prealloc = NULL;
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
C
Chris Mason 已提交
1045
hit_next:
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
	last_start = state->start;
	last_end = state->end;

	/*
	 * | ---- desired range ---- |
	 * | state |
	 *
	 * Just lock what we found and keep going
	 */
	if (state->start == start && state->end <= end) {
1056
		if (state->state & exclusive_bits) {
1057 1058 1059 1060
			*failed_start = state->start;
			err = -EEXIST;
			goto out;
		}
1061

1062
		set_state_bits(tree, state, &bits, changeset);
1063
		cache_state(state, cached_state);
1064
		merge_state(tree, state);
1065 1066 1067
		if (last_end == (u64)-1)
			goto out;
		start = last_end + 1;
1068 1069 1070 1071
		state = next_state(state);
		if (start < end && state && state->start == start &&
		    !need_resched())
			goto hit_next;
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
		goto search_again;
	}

	/*
	 *     | ---- desired range ---- |
	 * | state |
	 *   or
	 * | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip bits on
	 * second half.
	 *
	 * If the extent we found extends past our
	 * range, we just split and search again.  It'll get split
	 * again the next time though.
	 *
	 * If the extent we found is inside our range, we set the
	 * desired bit on it.
	 */
	if (state->start < start) {
1092
		if (state->state & exclusive_bits) {
1093 1094 1095 1096
			*failed_start = start;
			err = -EEXIST;
			goto out;
		}
1097

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
		/*
		 * If this extent already has all the bits we want set, then
		 * skip it, not necessary to split it or do anything with it.
		 */
		if ((state->state & bits) == bits) {
			start = state->end + 1;
			cache_state(state, cached_state);
			goto search_again;
		}

1108 1109
		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1110
		err = split_state(tree, state, prealloc, start);
1111 1112 1113
		if (err)
			extent_io_tree_panic(tree, err);

1114 1115 1116 1117
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
1118
			set_state_bits(tree, state, &bits, changeset);
1119
			cache_state(state, cached_state);
1120
			merge_state(tree, state);
1121 1122 1123
			if (last_end == (u64)-1)
				goto out;
			start = last_end + 1;
1124 1125 1126 1127
			state = next_state(state);
			if (start < end && state && state->start == start &&
			    !need_resched())
				goto hit_next;
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *     | state | or               | state |
	 *
	 * There's a hole, we need to insert something in it and
	 * ignore the extent we found.
	 */
	if (state->start > start) {
		u64 this_end;
		if (end < last_start)
			this_end = end;
		else
C
Chris Mason 已提交
1143
			this_end = last_start - 1;
1144 1145 1146

		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1147 1148 1149 1150 1151

		/*
		 * Avoid to free 'prealloc' if it can be merged with
		 * the later extent.
		 */
1152
		err = insert_state(tree, prealloc, start, this_end,
1153
				   NULL, NULL, &bits, changeset);
1154 1155 1156
		if (err)
			extent_io_tree_panic(tree, err);

J
Josef Bacik 已提交
1157 1158
		cache_state(prealloc, cached_state);
		prealloc = NULL;
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
		start = this_end + 1;
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and set the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
1169
		if (state->state & exclusive_bits) {
1170 1171 1172 1173
			*failed_start = start;
			err = -EEXIST;
			goto out;
		}
1174 1175 1176

		prealloc = alloc_extent_state_atomic(prealloc);
		BUG_ON(!prealloc);
1177
		err = split_state(tree, state, prealloc, end + 1);
1178 1179
		if (err)
			extent_io_tree_panic(tree, err);
1180

1181
		set_state_bits(tree, prealloc, &bits, changeset);
1182
		cache_state(prealloc, cached_state);
1183 1184 1185 1186 1187
		merge_state(tree, prealloc);
		prealloc = NULL;
		goto out;
	}

1188 1189 1190 1191 1192 1193 1194
search_again:
	if (start > end)
		goto out;
	spin_unlock(&tree->lock);
	if (gfpflags_allow_blocking(mask))
		cond_resched();
	goto again;
1195 1196

out:
1197
	spin_unlock(&tree->lock);
1198 1199 1200 1201 1202 1203 1204
	if (prealloc)
		free_extent_state(prealloc);

	return err;

}

J
Josef Bacik 已提交
1205
/**
L
Liu Bo 已提交
1206 1207
 * convert_extent_bit - convert all bits in a given range from one bit to
 * 			another
J
Josef Bacik 已提交
1208 1209 1210 1211 1212
 * @tree:	the io tree to search
 * @start:	the start offset in bytes
 * @end:	the end offset in bytes (inclusive)
 * @bits:	the bits to set in this range
 * @clear_bits:	the bits to clear in this range
1213
 * @cached_state:	state that we're going to cache
J
Josef Bacik 已提交
1214 1215 1216 1217 1218 1219
 *
 * This will go through and set bits for the given range.  If any states exist
 * already in this range they are set with the given bit and cleared of the
 * clear_bits.  This is only meant to be used by things that are mergeable, ie
 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
 * boundary bits like LOCK.
1220 1221
 *
 * All allocations are done with GFP_NOFS.
J
Josef Bacik 已提交
1222 1223
 */
int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1224
		       u32 bits, u32 clear_bits,
1225
		       struct extent_state **cached_state)
J
Josef Bacik 已提交
1226 1227 1228 1229
{
	struct extent_state *state;
	struct extent_state *prealloc = NULL;
	struct rb_node *node;
1230 1231
	struct rb_node **p;
	struct rb_node *parent;
J
Josef Bacik 已提交
1232 1233 1234
	int err = 0;
	u64 last_start;
	u64 last_end;
1235
	bool first_iteration = true;
J
Josef Bacik 已提交
1236

1237
	btrfs_debug_check_extent_io_range(tree, start, end);
1238 1239
	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
				       clear_bits);
1240

J
Josef Bacik 已提交
1241
again:
1242
	if (!prealloc) {
1243 1244 1245 1246 1247 1248 1249
		/*
		 * Best effort, don't worry if extent state allocation fails
		 * here for the first iteration. We might have a cached state
		 * that matches exactly the target range, in which case no
		 * extent state allocations are needed. We'll only know this
		 * after locking the tree.
		 */
1250
		prealloc = alloc_extent_state(GFP_NOFS);
1251
		if (!prealloc && !first_iteration)
J
Josef Bacik 已提交
1252 1253 1254 1255
			return -ENOMEM;
	}

	spin_lock(&tree->lock);
1256 1257 1258
	if (cached_state && *cached_state) {
		state = *cached_state;
		if (state->start <= start && state->end > start &&
1259
		    extent_state_in_tree(state)) {
1260 1261 1262 1263 1264
			node = &state->rb_node;
			goto hit_next;
		}
	}

J
Josef Bacik 已提交
1265 1266 1267 1268
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1269
	node = tree_search_for_insert(tree, start, &p, &parent);
J
Josef Bacik 已提交
1270 1271
	if (!node) {
		prealloc = alloc_extent_state_atomic(prealloc);
1272 1273 1274 1275
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
1276
		err = insert_state(tree, prealloc, start, end,
1277
				   &p, &parent, &bits, NULL);
1278 1279
		if (err)
			extent_io_tree_panic(tree, err);
1280 1281
		cache_state(prealloc, cached_state);
		prealloc = NULL;
J
Josef Bacik 已提交
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
hit_next:
	last_start = state->start;
	last_end = state->end;

	/*
	 * | ---- desired range ---- |
	 * | state |
	 *
	 * Just lock what we found and keep going
	 */
	if (state->start == start && state->end <= end) {
1296
		set_state_bits(tree, state, &bits, NULL);
1297
		cache_state(state, cached_state);
1298
		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
J
Josef Bacik 已提交
1299 1300 1301
		if (last_end == (u64)-1)
			goto out;
		start = last_end + 1;
1302 1303 1304
		if (start < end && state && state->start == start &&
		    !need_resched())
			goto hit_next;
J
Josef Bacik 已提交
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
		goto search_again;
	}

	/*
	 *     | ---- desired range ---- |
	 * | state |
	 *   or
	 * | ------------- state -------------- |
	 *
	 * We need to split the extent we found, and may flip bits on
	 * second half.
	 *
	 * If the extent we found extends past our
	 * range, we just split and search again.  It'll get split
	 * again the next time though.
	 *
	 * If the extent we found is inside our range, we set the
	 * desired bit on it.
	 */
	if (state->start < start) {
		prealloc = alloc_extent_state_atomic(prealloc);
1326 1327 1328 1329
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1330
		err = split_state(tree, state, prealloc, start);
1331 1332
		if (err)
			extent_io_tree_panic(tree, err);
J
Josef Bacik 已提交
1333 1334 1335 1336
		prealloc = NULL;
		if (err)
			goto out;
		if (state->end <= end) {
1337
			set_state_bits(tree, state, &bits, NULL);
1338
			cache_state(state, cached_state);
1339 1340
			state = clear_state_bit(tree, state, &clear_bits, 0,
						NULL);
J
Josef Bacik 已提交
1341 1342 1343
			if (last_end == (u64)-1)
				goto out;
			start = last_end + 1;
1344 1345 1346
			if (start < end && state && state->start == start &&
			    !need_resched())
				goto hit_next;
J
Josef Bacik 已提交
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
		}
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *     | state | or               | state |
	 *
	 * There's a hole, we need to insert something in it and
	 * ignore the extent we found.
	 */
	if (state->start > start) {
		u64 this_end;
		if (end < last_start)
			this_end = end;
		else
			this_end = last_start - 1;

		prealloc = alloc_extent_state_atomic(prealloc);
1365 1366 1367 1368
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1369 1370 1371 1372 1373 1374

		/*
		 * Avoid to free 'prealloc' if it can be merged with
		 * the later extent.
		 */
		err = insert_state(tree, prealloc, start, this_end,
1375
				   NULL, NULL, &bits, NULL);
1376 1377
		if (err)
			extent_io_tree_panic(tree, err);
1378
		cache_state(prealloc, cached_state);
J
Josef Bacik 已提交
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
		prealloc = NULL;
		start = this_end + 1;
		goto search_again;
	}
	/*
	 * | ---- desired range ---- |
	 *                        | state |
	 * We need to split the extent, and set the bit
	 * on the first half
	 */
	if (state->start <= end && state->end > end) {
		prealloc = alloc_extent_state_atomic(prealloc);
1391 1392 1393 1394
		if (!prealloc) {
			err = -ENOMEM;
			goto out;
		}
J
Josef Bacik 已提交
1395 1396

		err = split_state(tree, state, prealloc, end + 1);
1397 1398
		if (err)
			extent_io_tree_panic(tree, err);
J
Josef Bacik 已提交
1399

1400
		set_state_bits(tree, prealloc, &bits, NULL);
1401
		cache_state(prealloc, cached_state);
1402
		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
J
Josef Bacik 已提交
1403 1404 1405 1406 1407 1408 1409 1410
		prealloc = NULL;
		goto out;
	}

search_again:
	if (start > end)
		goto out;
	spin_unlock(&tree->lock);
1411
	cond_resched();
1412
	first_iteration = false;
J
Josef Bacik 已提交
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
	goto again;

out:
	spin_unlock(&tree->lock);
	if (prealloc)
		free_extent_state(prealloc);

	return err;
}

1423
/* wrappers around set/clear extent bit */
1424
int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1425
			   u32 bits, struct extent_changeset *changeset)
1426 1427 1428 1429 1430 1431 1432 1433 1434
{
	/*
	 * We don't support EXTENT_LOCKED yet, as current changeset will
	 * record any bits changed, so for EXTENT_LOCKED case, it will
	 * either fail with -EEXIST or changeset will record the whole
	 * range.
	 */
	BUG_ON(bits & EXTENT_LOCKED);

1435 1436
	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
			      changeset);
1437 1438
}

1439
int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1440
			   u32 bits)
1441
{
1442 1443
	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
			      GFP_NOWAIT, NULL);
1444 1445
}

1446
int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1447
		     u32 bits, int wake, int delete,
1448
		     struct extent_state **cached)
1449 1450
{
	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1451
				  cached, GFP_NOFS, NULL);
1452 1453 1454
}

int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1455
		u32 bits, struct extent_changeset *changeset)
1456 1457 1458 1459 1460 1461 1462
{
	/*
	 * Don't support EXTENT_LOCKED case, same reason as
	 * set_record_extent_bits().
	 */
	BUG_ON(bits & EXTENT_LOCKED);

1463
	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1464 1465 1466
				  changeset);
}

C
Chris Mason 已提交
1467 1468 1469 1470
/*
 * either insert or lock state struct between start and end use mask to tell
 * us if waiting is desired.
 */
1471
int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1472
		     struct extent_state **cached_state)
1473 1474 1475
{
	int err;
	u64 failed_start;
1476

1477
	while (1) {
1478 1479 1480
		err = set_extent_bit(tree, start, end, EXTENT_LOCKED,
				     EXTENT_LOCKED, &failed_start,
				     cached_state, GFP_NOFS, NULL);
1481
		if (err == -EEXIST) {
1482 1483
			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
			start = failed_start;
1484
		} else
1485 1486 1487 1488 1489 1490
			break;
		WARN_ON(start > end);
	}
	return err;
}

1491
int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1492 1493 1494 1495
{
	int err;
	u64 failed_start;

1496 1497
	err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
			     &failed_start, NULL, GFP_NOFS, NULL);
Y
Yan Zheng 已提交
1498 1499 1500
	if (err == -EEXIST) {
		if (failed_start > start)
			clear_extent_bit(tree, start, failed_start - 1,
1501
					 EXTENT_LOCKED, 1, 0, NULL);
1502
		return 0;
Y
Yan Zheng 已提交
1503
	}
1504 1505 1506
	return 1;
}

1507
void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1508
{
1509 1510
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
1511 1512 1513 1514 1515 1516
	struct page *page;

	while (index <= end_index) {
		page = find_get_page(inode->i_mapping, index);
		BUG_ON(!page); /* Pages should be in the extent_io_tree */
		clear_page_dirty_for_io(page);
1517
		put_page(page);
1518 1519 1520 1521
		index++;
	}
}

1522
void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1523
{
1524
	struct address_space *mapping = inode->i_mapping;
1525 1526
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
1527
	struct folio *folio;
1528 1529

	while (index <= end_index) {
1530 1531 1532 1533 1534
		folio = filemap_get_folio(mapping, index);
		filemap_dirty_folio(mapping, folio);
		folio_account_redirty(folio);
		index += folio_nr_pages(folio);
		folio_put(folio);
1535 1536 1537
	}
}

C
Chris Mason 已提交
1538 1539 1540 1541
/* find the first state struct with 'bits' set after 'start', and
 * return it.  tree->lock must be held.  NULL will returned if
 * nothing was found after 'start'
 */
1542
static struct extent_state *
1543
find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits)
C
Chris Mason 已提交
1544 1545 1546 1547 1548 1549 1550 1551 1552
{
	struct rb_node *node;
	struct extent_state *state;

	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
	node = tree_search(tree, start);
C
Chris Mason 已提交
1553
	if (!node)
C
Chris Mason 已提交
1554 1555
		goto out;

C
Chris Mason 已提交
1556
	while (1) {
C
Chris Mason 已提交
1557
		state = rb_entry(node, struct extent_state, rb_node);
C
Chris Mason 已提交
1558
		if (state->end >= start && (state->state & bits))
C
Chris Mason 已提交
1559
			return state;
C
Chris Mason 已提交
1560

C
Chris Mason 已提交
1561 1562 1563 1564 1565 1566 1567 1568
		node = rb_next(node);
		if (!node)
			break;
	}
out:
	return NULL;
}

1569
/*
1570
 * Find the first offset in the io tree with one or more @bits set.
1571
 *
1572 1573 1574 1575
 * Note: If there are multiple bits set in @bits, any of them will match.
 *
 * Return 0 if we find something, and update @start_ret and @end_ret.
 * Return 1 if we found nothing.
1576 1577
 */
int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1578
			  u64 *start_ret, u64 *end_ret, u32 bits,
1579
			  struct extent_state **cached_state)
1580 1581 1582 1583 1584
{
	struct extent_state *state;
	int ret = 1;

	spin_lock(&tree->lock);
1585 1586
	if (cached_state && *cached_state) {
		state = *cached_state;
1587
		if (state->end == start - 1 && extent_state_in_tree(state)) {
1588
			while ((state = next_state(state)) != NULL) {
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
				if (state->state & bits)
					goto got_it;
			}
			free_extent_state(*cached_state);
			*cached_state = NULL;
			goto out;
		}
		free_extent_state(*cached_state);
		*cached_state = NULL;
	}

1600
	state = find_first_extent_bit_state(tree, start, bits);
1601
got_it:
1602
	if (state) {
1603
		cache_state_if_flags(state, cached_state, 0);
1604 1605 1606 1607
		*start_ret = state->start;
		*end_ret = state->end;
		ret = 0;
	}
1608
out:
1609 1610 1611 1612
	spin_unlock(&tree->lock);
	return ret;
}

1613
/**
1614 1615 1616 1617 1618 1619 1620
 * Find a contiguous area of bits
 *
 * @tree:      io tree to check
 * @start:     offset to start the search from
 * @start_ret: the first offset we found with the bits set
 * @end_ret:   the final contiguous range of the bits that were set
 * @bits:      bits to look for
1621 1622 1623 1624 1625 1626 1627 1628 1629
 *
 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
 * to set bits appropriately, and then merge them again.  During this time it
 * will drop the tree->lock, so use this helper if you want to find the actual
 * contiguous area for given bits.  We will search to the first bit we find, and
 * then walk down the tree until we find a non-contiguous area.  The area
 * returned will be the full contiguous area with the bits set.
 */
int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1630
			       u64 *start_ret, u64 *end_ret, u32 bits)
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
{
	struct extent_state *state;
	int ret = 1;

	spin_lock(&tree->lock);
	state = find_first_extent_bit_state(tree, start, bits);
	if (state) {
		*start_ret = state->start;
		*end_ret = state->end;
		while ((state = next_state(state)) != NULL) {
			if (state->start > (*end_ret + 1))
				break;
			*end_ret = state->end;
		}
		ret = 0;
	}
	spin_unlock(&tree->lock);
	return ret;
}

1651
/**
1652 1653
 * Find the first range that has @bits not set. This range could start before
 * @start.
1654
 *
1655 1656 1657 1658 1659
 * @tree:      the tree to search
 * @start:     offset at/after which the found extent should start
 * @start_ret: records the beginning of the range
 * @end_ret:   records the end of the range (inclusive)
 * @bits:      the set of bits which must be unset
1660 1661 1662 1663 1664 1665 1666
 *
 * Since unallocated range is also considered one which doesn't have the bits
 * set it's possible that @end_ret contains -1, this happens in case the range
 * spans (last_range_end, end of device]. In this case it's up to the caller to
 * trim @end_ret to the appropriate size.
 */
void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1667
				 u64 *start_ret, u64 *end_ret, u32 bits)
1668 1669 1670 1671 1672 1673 1674 1675 1676
{
	struct extent_state *state;
	struct rb_node *node, *prev = NULL, *next;

	spin_lock(&tree->lock);

	/* Find first extent with bits cleared */
	while (1) {
		node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
		if (!node && !next && !prev) {
			/*
			 * Tree is completely empty, send full range and let
			 * caller deal with it
			 */
			*start_ret = 0;
			*end_ret = -1;
			goto out;
		} else if (!node && !next) {
			/*
			 * We are past the last allocated chunk, set start at
			 * the end of the last extent.
			 */
			state = rb_entry(prev, struct extent_state, rb_node);
			*start_ret = state->end + 1;
			*end_ret = -1;
			goto out;
		} else if (!node) {
1695 1696
			node = next;
		}
1697 1698 1699 1700
		/*
		 * At this point 'node' either contains 'start' or start is
		 * before 'node'
		 */
1701
		state = rb_entry(node, struct extent_state, rb_node);
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723

		if (in_range(start, state->start, state->end - state->start + 1)) {
			if (state->state & bits) {
				/*
				 * |--range with bits sets--|
				 *    |
				 *    start
				 */
				start = state->end + 1;
			} else {
				/*
				 * 'start' falls within a range that doesn't
				 * have the bits set, so take its start as
				 * the beginning of the desired range
				 *
				 * |--range with bits cleared----|
				 *      |
				 *      start
				 */
				*start_ret = state->start;
				break;
			}
1724
		} else {
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
			/*
			 * |---prev range---|---hole/unset---|---node range---|
			 *                          |
			 *                        start
			 *
			 *                        or
			 *
			 * |---hole/unset--||--first node--|
			 * 0   |
			 *    start
			 */
			if (prev) {
				state = rb_entry(prev, struct extent_state,
						 rb_node);
				*start_ret = state->end + 1;
			} else {
				*start_ret = 0;
			}
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
			break;
		}
	}

	/*
	 * Find the longest stretch from start until an entry which has the
	 * bits set
	 */
	while (1) {
		state = rb_entry(node, struct extent_state, rb_node);
		if (state->end >= start && !(state->state & bits)) {
			*end_ret = state->end;
		} else {
			*end_ret = state->start - 1;
			break;
		}

		node = rb_next(node);
		if (!node)
			break;
	}
out:
	spin_unlock(&tree->lock);
}

C
Chris Mason 已提交
1768 1769 1770 1771
/*
 * find a contiguous range of bytes in the file marked as delalloc, not
 * more than 'max_bytes'.  start and end are used to return the range,
 *
1772
 * true is returned if we find something, false if nothing was in the tree
C
Chris Mason 已提交
1773
 */
J
Josef Bacik 已提交
1774 1775 1776
bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
			       u64 *end, u64 max_bytes,
			       struct extent_state **cached_state)
1777 1778 1779 1780
{
	struct rb_node *node;
	struct extent_state *state;
	u64 cur_start = *start;
1781
	bool found = false;
1782 1783
	u64 total_bytes = 0;

1784
	spin_lock(&tree->lock);
C
Chris Mason 已提交
1785

1786 1787 1788 1789
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
1790
	node = tree_search(tree, cur_start);
1791
	if (!node) {
1792
		*end = (u64)-1;
1793 1794 1795
		goto out;
	}

C
Chris Mason 已提交
1796
	while (1) {
1797
		state = rb_entry(node, struct extent_state, rb_node);
1798 1799
		if (found && (state->start != cur_start ||
			      (state->state & EXTENT_BOUNDARY))) {
1800 1801 1802 1803 1804 1805 1806
			goto out;
		}
		if (!(state->state & EXTENT_DELALLOC)) {
			if (!found)
				*end = state->end;
			goto out;
		}
1807
		if (!found) {
1808
			*start = state->start;
1809
			*cached_state = state;
1810
			refcount_inc(&state->refs);
1811
		}
1812
		found = true;
1813 1814 1815 1816
		*end = state->end;
		cur_start = state->end + 1;
		node = rb_next(node);
		total_bytes += state->end - state->start + 1;
1817
		if (total_bytes >= max_bytes)
1818 1819
			break;
		if (!node)
1820 1821 1822
			break;
	}
out:
1823
	spin_unlock(&tree->lock);
1824 1825 1826
	return found;
}

1827 1828 1829 1830 1831 1832 1833 1834
/*
 * Process one page for __process_pages_contig().
 *
 * Return >0 if we hit @page == @locked_page.
 * Return 0 if we updated the page status.
 * Return -EGAIN if the we need to try again.
 * (For PAGE_LOCK case but got dirty page or page not belong to mapping)
 */
1835 1836
static int process_one_page(struct btrfs_fs_info *fs_info,
			    struct address_space *mapping,
1837
			    struct page *page, struct page *locked_page,
1838
			    unsigned long page_ops, u64 start, u64 end)
1839
{
1840 1841 1842 1843 1844
	u32 len;

	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
	len = end + 1 - start;

1845
	if (page_ops & PAGE_SET_ORDERED)
1846
		btrfs_page_clamp_set_ordered(fs_info, page, start, len);
1847
	if (page_ops & PAGE_SET_ERROR)
1848
		btrfs_page_clamp_set_error(fs_info, page, start, len);
1849
	if (page_ops & PAGE_START_WRITEBACK) {
1850 1851
		btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
		btrfs_page_clamp_set_writeback(fs_info, page, start, len);
1852 1853
	}
	if (page_ops & PAGE_END_WRITEBACK)
1854
		btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
1855 1856 1857 1858

	if (page == locked_page)
		return 1;

1859
	if (page_ops & PAGE_LOCK) {
1860 1861 1862 1863 1864
		int ret;

		ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
		if (ret)
			return ret;
1865
		if (!PageDirty(page) || page->mapping != mapping) {
1866
			btrfs_page_end_writer_lock(fs_info, page, start, len);
1867 1868 1869 1870
			return -EAGAIN;
		}
	}
	if (page_ops & PAGE_UNLOCK)
1871
		btrfs_page_end_writer_lock(fs_info, page, start, len);
1872 1873 1874
	return 0;
}

1875 1876
static int __process_pages_contig(struct address_space *mapping,
				  struct page *locked_page,
1877
				  u64 start, u64 end, unsigned long page_ops,
1878 1879
				  u64 *processed_end)
{
1880
	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
	pgoff_t start_index = start >> PAGE_SHIFT;
	pgoff_t end_index = end >> PAGE_SHIFT;
	pgoff_t index = start_index;
	unsigned long nr_pages = end_index - start_index + 1;
	unsigned long pages_processed = 0;
	struct page *pages[16];
	int err = 0;
	int i;

	if (page_ops & PAGE_LOCK) {
		ASSERT(page_ops == PAGE_LOCK);
		ASSERT(processed_end && *processed_end == start);
	}

	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
		mapping_set_error(mapping, -EIO);

	while (nr_pages > 0) {
		int found_pages;

		found_pages = find_get_pages_contig(mapping, index,
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
		if (found_pages == 0) {
			/*
			 * Only if we're going to lock these pages, we can find
			 * nothing at @index.
			 */
			ASSERT(page_ops & PAGE_LOCK);
			err = -EAGAIN;
			goto out;
		}

		for (i = 0; i < found_pages; i++) {
			int process_ret;

1917 1918 1919
			process_ret = process_one_page(fs_info, mapping,
					pages[i], locked_page, page_ops,
					start, end);
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
			if (process_ret < 0) {
				for (; i < found_pages; i++)
					put_page(pages[i]);
				err = -EAGAIN;
				goto out;
			}
			put_page(pages[i]);
			pages_processed++;
		}
		nr_pages -= found_pages;
		index += found_pages;
		cond_resched();
	}
out:
	if (err && processed_end) {
		/*
		 * Update @processed_end. I know this is awful since it has
		 * two different return value patterns (inclusive vs exclusive).
		 *
		 * But the exclusive pattern is necessary if @start is 0, or we
		 * underflow and check against processed_end won't work as
		 * expected.
		 */
		if (pages_processed)
			*processed_end = min(end,
			((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
		else
			*processed_end = start;
	}
	return err;
}
1951

1952 1953 1954
static noinline void __unlock_for_delalloc(struct inode *inode,
					   struct page *locked_page,
					   u64 start, u64 end)
C
Chris Mason 已提交
1955
{
1956 1957
	unsigned long index = start >> PAGE_SHIFT;
	unsigned long end_index = end >> PAGE_SHIFT;
C
Chris Mason 已提交
1958

1959
	ASSERT(locked_page);
C
Chris Mason 已提交
1960
	if (index == locked_page->index && end_index == index)
1961
		return;
C
Chris Mason 已提交
1962

1963
	__process_pages_contig(inode->i_mapping, locked_page, start, end,
1964
			       PAGE_UNLOCK, NULL);
C
Chris Mason 已提交
1965 1966 1967 1968 1969 1970 1971
}

static noinline int lock_delalloc_pages(struct inode *inode,
					struct page *locked_page,
					u64 delalloc_start,
					u64 delalloc_end)
{
1972 1973
	unsigned long index = delalloc_start >> PAGE_SHIFT;
	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1974
	u64 processed_end = delalloc_start;
C
Chris Mason 已提交
1975 1976
	int ret;

1977
	ASSERT(locked_page);
C
Chris Mason 已提交
1978 1979 1980
	if (index == locked_page->index && index == end_index)
		return 0;

1981 1982 1983
	ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
				     delalloc_end, PAGE_LOCK, &processed_end);
	if (ret == -EAGAIN && processed_end > delalloc_start)
1984
		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1985
				      processed_end);
C
Chris Mason 已提交
1986 1987 1988 1989
	return ret;
}

/*
1990
 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1991
 * more than @max_bytes.
C
Chris Mason 已提交
1992
 *
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
 * @start:	The original start bytenr to search.
 *		Will store the extent range start bytenr.
 * @end:	The original end bytenr of the search range
 *		Will store the extent range end bytenr.
 *
 * Return true if we find a delalloc range which starts inside the original
 * range, and @start/@end will store the delalloc range start/end.
 *
 * Return false if we can't find any delalloc range which starts inside the
 * original range, and @start/@end will be the non-delalloc range start/end.
C
Chris Mason 已提交
2003
 */
2004
EXPORT_FOR_TESTS
2005
noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
2006
				    struct page *locked_page, u64 *start,
2007
				    u64 *end)
C
Chris Mason 已提交
2008
{
2009
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2010 2011
	const u64 orig_start = *start;
	const u64 orig_end = *end;
2012
	u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
C
Chris Mason 已提交
2013 2014
	u64 delalloc_start;
	u64 delalloc_end;
2015
	bool found;
2016
	struct extent_state *cached_state = NULL;
C
Chris Mason 已提交
2017 2018 2019
	int ret;
	int loops = 0;

2020 2021 2022 2023 2024 2025
	/* Caller should pass a valid @end to indicate the search range end */
	ASSERT(orig_end > orig_start);

	/* The range should at least cover part of the page */
	ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
		 orig_end <= page_offset(locked_page)));
C
Chris Mason 已提交
2026 2027 2028 2029
again:
	/* step one, find a bunch of delalloc bytes starting at start */
	delalloc_start = *start;
	delalloc_end = 0;
J
Josef Bacik 已提交
2030 2031
	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
					  max_bytes, &cached_state);
2032
	if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
C
Chris Mason 已提交
2033
		*start = delalloc_start;
2034 2035 2036

		/* @delalloc_end can be -1, never go beyond @orig_end */
		*end = min(delalloc_end, orig_end);
2037
		free_extent_state(cached_state);
2038
		return false;
C
Chris Mason 已提交
2039 2040
	}

C
Chris Mason 已提交
2041 2042 2043 2044 2045
	/*
	 * start comes from the offset of locked_page.  We have to lock
	 * pages in order, so we can't process delalloc bytes before
	 * locked_page
	 */
C
Chris Mason 已提交
2046
	if (delalloc_start < *start)
C
Chris Mason 已提交
2047 2048
		delalloc_start = *start;

C
Chris Mason 已提交
2049 2050 2051
	/*
	 * make sure to limit the number of pages we try to lock down
	 */
2052 2053
	if (delalloc_end + 1 - delalloc_start > max_bytes)
		delalloc_end = delalloc_start + max_bytes - 1;
C
Chris Mason 已提交
2054

C
Chris Mason 已提交
2055 2056 2057
	/* step two, lock all the pages after the page that has start */
	ret = lock_delalloc_pages(inode, locked_page,
				  delalloc_start, delalloc_end);
2058
	ASSERT(!ret || ret == -EAGAIN);
C
Chris Mason 已提交
2059 2060 2061 2062
	if (ret == -EAGAIN) {
		/* some of the pages are gone, lets avoid looping by
		 * shortening the size of the delalloc range we're searching
		 */
2063
		free_extent_state(cached_state);
2064
		cached_state = NULL;
C
Chris Mason 已提交
2065
		if (!loops) {
2066
			max_bytes = PAGE_SIZE;
C
Chris Mason 已提交
2067 2068 2069
			loops = 1;
			goto again;
		} else {
2070
			found = false;
C
Chris Mason 已提交
2071 2072 2073 2074 2075
			goto out_failed;
		}
	}

	/* step three, lock the state bits for the whole range */
2076
	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
C
Chris Mason 已提交
2077 2078 2079

	/* then test to make sure it is all still delalloc */
	ret = test_range_bit(tree, delalloc_start, delalloc_end,
2080
			     EXTENT_DELALLOC, 1, cached_state);
C
Chris Mason 已提交
2081
	if (!ret) {
2082
		unlock_extent_cached(tree, delalloc_start, delalloc_end,
2083
				     &cached_state);
C
Chris Mason 已提交
2084 2085 2086 2087 2088
		__unlock_for_delalloc(inode, locked_page,
			      delalloc_start, delalloc_end);
		cond_resched();
		goto again;
	}
2089
	free_extent_state(cached_state);
C
Chris Mason 已提交
2090 2091 2092 2093 2094 2095
	*start = delalloc_start;
	*end = delalloc_end;
out_failed:
	return found;
}

2096
void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2097
				  struct page *locked_page,
2098
				  u32 clear_bits, unsigned long page_ops)
2099
{
2100
	clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2101

2102
	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2103
			       start, end, page_ops, NULL);
2104 2105
}

C
Chris Mason 已提交
2106 2107 2108 2109 2110
/*
 * count the number of bytes in the tree that have a given bit(s)
 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
 * cached.  The total number found is returned.
 */
2111 2112
u64 count_range_bits(struct extent_io_tree *tree,
		     u64 *start, u64 search_end, u64 max_bytes,
2113
		     u32 bits, int contig)
2114 2115 2116 2117 2118
{
	struct rb_node *node;
	struct extent_state *state;
	u64 cur_start = *start;
	u64 total_bytes = 0;
2119
	u64 last = 0;
2120 2121
	int found = 0;

2122
	if (WARN_ON(search_end <= cur_start))
2123 2124
		return 0;

2125
	spin_lock(&tree->lock);
2126 2127 2128 2129 2130 2131 2132 2133
	if (cur_start == 0 && bits == EXTENT_DIRTY) {
		total_bytes = tree->dirty_bytes;
		goto out;
	}
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2134
	node = tree_search(tree, cur_start);
C
Chris Mason 已提交
2135
	if (!node)
2136 2137
		goto out;

C
Chris Mason 已提交
2138
	while (1) {
2139 2140 2141
		state = rb_entry(node, struct extent_state, rb_node);
		if (state->start > search_end)
			break;
2142 2143 2144
		if (contig && found && state->start > last + 1)
			break;
		if (state->end >= cur_start && (state->state & bits) == bits) {
2145 2146 2147 2148 2149
			total_bytes += min(search_end, state->end) + 1 -
				       max(cur_start, state->start);
			if (total_bytes >= max_bytes)
				break;
			if (!found) {
2150
				*start = max(cur_start, state->start);
2151 2152
				found = 1;
			}
2153 2154 2155
			last = state->end;
		} else if (contig && found) {
			break;
2156 2157 2158 2159 2160 2161
		}
		node = rb_next(node);
		if (!node)
			break;
	}
out:
2162
	spin_unlock(&tree->lock);
2163 2164
	return total_bytes;
}
2165

C
Chris Mason 已提交
2166 2167 2168 2169
/*
 * set the private field for a given byte offset in the tree.  If there isn't
 * an extent_state there already, this does nothing.
 */
2170 2171
int set_state_failrec(struct extent_io_tree *tree, u64 start,
		      struct io_failure_record *failrec)
2172 2173 2174 2175 2176
{
	struct rb_node *node;
	struct extent_state *state;
	int ret = 0;

2177
	spin_lock(&tree->lock);
2178 2179 2180 2181
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2182
	node = tree_search(tree, start);
2183
	if (!node) {
2184 2185 2186 2187 2188 2189 2190 2191
		ret = -ENOENT;
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
	if (state->start != start) {
		ret = -ENOENT;
		goto out;
	}
2192
	state->failrec = failrec;
2193
out:
2194
	spin_unlock(&tree->lock);
2195 2196 2197
	return ret;
}

2198
struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
2199 2200 2201
{
	struct rb_node *node;
	struct extent_state *state;
2202
	struct io_failure_record *failrec;
2203

2204
	spin_lock(&tree->lock);
2205 2206 2207 2208
	/*
	 * this search will find all the extents that end after
	 * our range starts.
	 */
2209
	node = tree_search(tree, start);
2210
	if (!node) {
2211
		failrec = ERR_PTR(-ENOENT);
2212 2213 2214 2215
		goto out;
	}
	state = rb_entry(node, struct extent_state, rb_node);
	if (state->start != start) {
2216
		failrec = ERR_PTR(-ENOENT);
2217 2218
		goto out;
	}
2219 2220

	failrec = state->failrec;
2221
out:
2222
	spin_unlock(&tree->lock);
2223
	return failrec;
2224 2225 2226 2227
}

/*
 * searches a range in the state tree for a given mask.
2228
 * If 'filled' == 1, this returns 1 only if every extent in the tree
2229 2230 2231 2232
 * has the bits set.  Otherwise, 1 is returned if any bit in the
 * range is found set.
 */
int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2233
		   u32 bits, int filled, struct extent_state *cached)
2234 2235 2236 2237 2238
{
	struct extent_state *state = NULL;
	struct rb_node *node;
	int bitset = 0;

2239
	spin_lock(&tree->lock);
2240
	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2241
	    cached->end > start)
2242 2243 2244
		node = &cached->rb_node;
	else
		node = tree_search(tree, start);
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
	while (node && start <= end) {
		state = rb_entry(node, struct extent_state, rb_node);

		if (filled && state->start > start) {
			bitset = 0;
			break;
		}

		if (state->start > end)
			break;

		if (state->state & bits) {
			bitset = 1;
			if (!filled)
				break;
		} else if (filled) {
			bitset = 0;
			break;
		}
2264 2265 2266 2267

		if (state->end == (u64)-1)
			break;

2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
		start = state->end + 1;
		if (start > end)
			break;
		node = rb_next(node);
		if (!node) {
			if (filled)
				bitset = 0;
			break;
		}
	}
2278
	spin_unlock(&tree->lock);
2279 2280 2281
	return bitset;
}

2282 2283 2284
int free_io_failure(struct extent_io_tree *failure_tree,
		    struct extent_io_tree *io_tree,
		    struct io_failure_record *rec)
2285 2286 2287 2288
{
	int ret;
	int err = 0;

2289
	set_state_failrec(failure_tree, rec->start, NULL);
2290 2291
	ret = clear_extent_bits(failure_tree, rec->start,
				rec->start + rec->len - 1,
2292
				EXTENT_LOCKED | EXTENT_DIRTY);
2293 2294 2295
	if (ret)
		err = ret;

2296
	ret = clear_extent_bits(io_tree, rec->start,
D
David Woodhouse 已提交
2297
				rec->start + rec->len - 1,
2298
				EXTENT_DAMAGED);
D
David Woodhouse 已提交
2299 2300
	if (ret && !err)
		err = ret;
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310

	kfree(rec);
	return err;
}

/*
 * this bypasses the standard btrfs submit functions deliberately, as
 * the standard behavior is to write all copies in a raid setup. here we only
 * want to write the one bad copy. so we do the mapping for ourselves and issue
 * submit_bio directly.
2311
 * to avoid any synchronization issues, wait for the data after writing, which
2312 2313 2314 2315
 * actually prevents the read that triggered the error from finishing.
 * currently, there can be no more than two copies of every data bit. thus,
 * exactly one rewrite is required.
 */
Q
Qu Wenruo 已提交
2316 2317 2318
static int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
			     u64 length, u64 logical, struct page *page,
			     unsigned int pg_offset, int mirror_num)
2319 2320
{
	struct btrfs_device *dev;
2321 2322
	struct bio_vec bvec;
	struct bio bio;
2323 2324
	u64 map_length = 0;
	u64 sector;
2325
	struct btrfs_io_context *bioc = NULL;
2326
	int ret = 0;
2327

2328
	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2329 2330
	BUG_ON(!mirror_num);

2331 2332
	if (btrfs_repair_one_zone(fs_info, logical))
		return 0;
2333

2334 2335
	map_length = length;

2336
	/*
2337
	 * Avoid races with device replace and make sure our bioc has devices
2338 2339 2340 2341
	 * associated to its stripes that don't go away while we are doing the
	 * read repair operation.
	 */
	btrfs_bio_counter_inc_blocked(fs_info);
2342
	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2343 2344 2345 2346 2347 2348 2349
		/*
		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
		 * to update all raid stripes, but here we just want to correct
		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
		 * stripe's dev and sector.
		 */
		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2350
				      &map_length, &bioc, 0);
2351 2352
		if (ret)
			goto out_counter_dec;
2353
		ASSERT(bioc->mirror_num == 1);
2354 2355
	} else {
		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2356
				      &map_length, &bioc, mirror_num);
2357 2358
		if (ret)
			goto out_counter_dec;
2359
		BUG_ON(mirror_num != bioc->mirror_num);
2360
	}
2361

2362 2363 2364
	sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9;
	dev = bioc->stripes[bioc->mirror_num - 1].dev;
	btrfs_put_bioc(bioc);
2365

2366 2367
	if (!dev || !dev->bdev ||
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2368 2369
		ret = -EIO;
		goto out_counter_dec;
2370 2371
	}

2372 2373 2374 2375 2376 2377 2378
	bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
	bio.bi_iter.bi_sector = sector;
	__bio_add_page(&bio, page, length, pg_offset);

	btrfsic_check_bio(&bio);
	ret = submit_bio_wait(&bio);
	if (ret) {
2379
		/* try to remap that extent elsewhere? */
2380
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2381
		goto out_bio_uninit;
2382 2383
	}

2384 2385
	btrfs_info_rl_in_rcu(fs_info,
		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2386
				  ino, start,
2387
				  rcu_str_deref(dev->name), sector);
2388 2389 2390 2391 2392
	ret = 0;

out_bio_uninit:
	bio_uninit(&bio);
out_counter_dec:
2393
	btrfs_bio_counter_dec(fs_info);
2394
	return ret;
2395 2396
}

2397
int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2398
{
2399
	struct btrfs_fs_info *fs_info = eb->fs_info;
2400
	u64 start = eb->start;
2401
	int i, num_pages = num_extent_pages(eb);
2402
	int ret = 0;
2403

2404
	if (sb_rdonly(fs_info->sb))
2405 2406
		return -EROFS;

2407
	for (i = 0; i < num_pages; i++) {
2408
		struct page *p = eb->pages[i];
2409

2410
		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2411
					start - page_offset(p), mirror_num);
2412 2413
		if (ret)
			break;
2414
		start += PAGE_SIZE;
2415 2416 2417 2418 2419
	}

	return ret;
}

2420 2421 2422 2423
/*
 * each time an IO finishes, we do a fast check in the IO failure tree
 * to see if we need to process or clean up an io_failure_record
 */
2424 2425 2426 2427
int clean_io_failure(struct btrfs_fs_info *fs_info,
		     struct extent_io_tree *failure_tree,
		     struct extent_io_tree *io_tree, u64 start,
		     struct page *page, u64 ino, unsigned int pg_offset)
2428 2429 2430 2431 2432 2433 2434 2435
{
	u64 private;
	struct io_failure_record *failrec;
	struct extent_state *state;
	int num_copies;
	int ret;

	private = 0;
2436 2437
	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
			       EXTENT_DIRTY, 0);
2438 2439 2440
	if (!ret)
		return 0;

2441 2442
	failrec = get_state_failrec(failure_tree, start);
	if (IS_ERR(failrec))
2443 2444 2445 2446
		return 0;

	BUG_ON(!failrec->this_mirror);

2447
	if (sb_rdonly(fs_info->sb))
2448
		goto out;
2449

2450 2451
	spin_lock(&io_tree->lock);
	state = find_first_extent_bit_state(io_tree,
2452 2453
					    failrec->start,
					    EXTENT_LOCKED);
2454
	spin_unlock(&io_tree->lock);
2455

2456 2457
	if (state && state->start <= failrec->start &&
	    state->end >= failrec->start + failrec->len - 1) {
2458 2459
		num_copies = btrfs_num_copies(fs_info, failrec->logical,
					      failrec->len);
2460
		if (num_copies > 1)  {
2461 2462 2463
			repair_io_failure(fs_info, ino, start, failrec->len,
					  failrec->logical, page, pg_offset,
					  failrec->failed_mirror);
2464 2465 2466 2467
		}
	}

out:
2468
	free_io_failure(failure_tree, io_tree, failrec);
2469

2470
	return 0;
2471 2472
}

2473 2474 2475 2476 2477 2478
/*
 * Can be called when
 * - hold extent lock
 * - under ordered extent
 * - the inode is freeing
 */
2479
void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2480
{
2481
	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
	struct io_failure_record *failrec;
	struct extent_state *state, *next;

	if (RB_EMPTY_ROOT(&failure_tree->state))
		return;

	spin_lock(&failure_tree->lock);
	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
	while (state) {
		if (state->start > end)
			break;

		ASSERT(state->end <= end);

		next = next_state(state);

2498
		failrec = state->failrec;
2499 2500 2501 2502 2503 2504 2505 2506
		free_extent_state(state);
		kfree(failrec);

		state = next;
	}
	spin_unlock(&failure_tree->lock);
}

2507
static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2508
							     u64 start)
2509
{
2510
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2511
	struct io_failure_record *failrec;
2512 2513 2514 2515
	struct extent_map *em;
	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2516
	const u32 sectorsize = fs_info->sectorsize;
2517 2518 2519
	int ret;
	u64 logical;

2520
	failrec = get_state_failrec(failure_tree, start);
2521
	if (!IS_ERR(failrec)) {
2522
		btrfs_debug(fs_info,
2523 2524
	"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu",
			failrec->logical, failrec->start, failrec->len);
2525 2526 2527 2528 2529
		/*
		 * when data can be on disk more than twice, add to failrec here
		 * (e.g. with a list for failed_mirror) to make
		 * clean_io_failure() clean all those errors at once.
		 */
2530 2531

		return failrec;
2532
	}
2533

2534 2535 2536
	failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
	if (!failrec)
		return ERR_PTR(-ENOMEM);
2537

2538
	failrec->start = start;
2539
	failrec->len = sectorsize;
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
	failrec->this_mirror = 0;
	failrec->bio_flags = 0;

	read_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, start, failrec->len);
	if (!em) {
		read_unlock(&em_tree->lock);
		kfree(failrec);
		return ERR_PTR(-EIO);
	}

	if (em->start > start || em->start + em->len <= start) {
		free_extent_map(em);
		em = NULL;
	}
	read_unlock(&em_tree->lock);
	if (!em) {
		kfree(failrec);
		return ERR_PTR(-EIO);
	}

	logical = start - em->start;
	logical = em->block_start + logical;
	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
		logical = em->block_start;
2565
		failrec->bio_flags = em->compress_type;
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
	}

	btrfs_debug(fs_info,
		    "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
		    logical, start, failrec->len);

	failrec->logical = logical;
	free_extent_map(em);

	/* Set the bits in the private failure tree */
2576
	ret = set_extent_bits(failure_tree, start, start + sectorsize - 1,
2577 2578 2579 2580
			      EXTENT_LOCKED | EXTENT_DIRTY);
	if (ret >= 0) {
		ret = set_state_failrec(failure_tree, start, failrec);
		/* Set the bits in the inode's tree */
2581 2582
		ret = set_extent_bits(tree, start, start + sectorsize - 1,
				      EXTENT_DAMAGED);
2583 2584 2585 2586 2587 2588
	} else if (ret < 0) {
		kfree(failrec);
		return ERR_PTR(ret);
	}

	return failrec;
2589 2590
}

2591
static bool btrfs_check_repairable(struct inode *inode,
2592 2593
				   struct io_failure_record *failrec,
				   int failed_mirror)
2594
{
2595
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2596 2597
	int num_copies;

2598
	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2599 2600 2601 2602 2603 2604
	if (num_copies == 1) {
		/*
		 * we only have a single copy of the data, so don't bother with
		 * all the retry and error correction code that follows. no
		 * matter what the error is, it is very likely to persist.
		 */
2605 2606 2607
		btrfs_debug(fs_info,
			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
			num_copies, failrec->this_mirror, failed_mirror);
2608
		return false;
2609 2610
	}

2611 2612 2613
	/* The failure record should only contain one sector */
	ASSERT(failrec->len == fs_info->sectorsize);

2614
	/*
2615 2616 2617 2618 2619 2620 2621
	 * There are two premises:
	 * a) deliver good data to the caller
	 * b) correct the bad sectors on disk
	 *
	 * Since we're only doing repair for one sector, we only need to get
	 * a good copy of the failed sector and if we succeed, we have setup
	 * everything for repair_io_failure to do the rest for us.
2622
	 */
2623
	ASSERT(failed_mirror);
2624 2625 2626
	failrec->failed_mirror = failed_mirror;
	failrec->this_mirror++;
	if (failrec->this_mirror == failed_mirror)
2627 2628
		failrec->this_mirror++;

2629
	if (failrec->this_mirror > num_copies) {
2630 2631 2632
		btrfs_debug(fs_info,
			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
			num_copies, failrec->this_mirror, failed_mirror);
2633
		return false;
2634 2635
	}

2636
	return true;
2637 2638
}

2639 2640 2641 2642 2643
int btrfs_repair_one_sector(struct inode *inode,
			    struct bio *failed_bio, u32 bio_offset,
			    struct page *page, unsigned int pgoff,
			    u64 start, int failed_mirror,
			    submit_bio_hook_t *submit_bio_hook)
2644 2645
{
	struct io_failure_record *failrec;
2646
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2647
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2648
	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2649
	struct btrfs_bio *failed_bbio = btrfs_bio(failed_bio);
2650
	const int icsum = bio_offset >> fs_info->sectorsize_bits;
2651
	struct bio *repair_bio;
2652
	struct btrfs_bio *repair_bbio;
2653

2654 2655
	btrfs_debug(fs_info,
		   "repair read error: read error at %llu", start);
2656

2657
	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2658

2659
	failrec = btrfs_get_io_failure_record(inode, start);
2660
	if (IS_ERR(failrec))
2661
		return PTR_ERR(failrec);
2662

2663 2664

	if (!btrfs_check_repairable(inode, failrec, failed_mirror)) {
2665
		free_io_failure(failure_tree, tree, failrec);
2666
		return -EIO;
2667 2668
	}

2669 2670
	repair_bio = btrfs_bio_alloc(1);
	repair_bbio = btrfs_bio(repair_bio);
2671
	repair_bbio->file_offset = start;
2672 2673 2674 2675
	repair_bio->bi_opf = REQ_OP_READ;
	repair_bio->bi_end_io = failed_bio->bi_end_io;
	repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
	repair_bio->bi_private = failed_bio->bi_private;
2676

2677
	if (failed_bbio->csum) {
2678
		const u32 csum_size = fs_info->csum_size;
2679

2680 2681 2682
		repair_bbio->csum = repair_bbio->csum_inline;
		memcpy(repair_bbio->csum,
		       failed_bbio->csum + csum_size * icsum, csum_size);
2683
	}
2684

2685
	bio_add_page(repair_bio, page, failrec->len, pgoff);
2686
	repair_bbio->iter = repair_bio->bi_iter;
2687

2688
	btrfs_debug(btrfs_sb(inode->i_sb),
2689 2690
		    "repair read error: submitting new read to mirror %d",
		    failrec->this_mirror);
2691

2692 2693 2694 2695 2696 2697 2698
	/*
	 * At this point we have a bio, so any errors from submit_bio_hook()
	 * will be handled by the endio on the repair_bio, so we can't return an
	 * error here.
	 */
	submit_bio_hook(inode, repair_bio, failrec->this_mirror, failrec->bio_flags);
	return BLK_STS_OK;
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
}

static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);

	ASSERT(page_offset(page) <= start &&
	       start + len <= page_offset(page) + PAGE_SIZE);

	if (uptodate) {
B
Boris Burkov 已提交
2709 2710 2711 2712 2713 2714 2715 2716 2717
		if (fsverity_active(page->mapping->host) &&
		    !PageError(page) &&
		    !PageUptodate(page) &&
		    start < i_size_read(page->mapping->host) &&
		    !fsverity_verify_page(page)) {
			btrfs_page_set_error(fs_info, page, start, len);
		} else {
			btrfs_page_set_uptodate(fs_info, page, start, len);
		}
2718 2719 2720 2721 2722
	} else {
		btrfs_page_clear_uptodate(fs_info, page, start, len);
		btrfs_page_set_error(fs_info, page, start, len);
	}

2723
	if (!btrfs_is_subpage(fs_info, page))
2724
		unlock_page(page);
2725
	else
2726 2727 2728
		btrfs_subpage_end_reader(fs_info, page, start, len);
}

2729 2730 2731 2732 2733 2734 2735
static blk_status_t submit_data_read_repair(struct inode *inode,
					    struct bio *failed_bio,
					    u32 bio_offset, struct page *page,
					    unsigned int pgoff,
					    u64 start, u64 end,
					    int failed_mirror,
					    unsigned int error_bitmap)
2736 2737 2738 2739 2740 2741 2742 2743 2744
{
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
	const u32 sectorsize = fs_info->sectorsize;
	const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits;
	int error = 0;
	int i;

	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);

2745 2746 2747
	/* This repair is only for data */
	ASSERT(is_data_inode(inode));

2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
	/* We're here because we had some read errors or csum mismatch */
	ASSERT(error_bitmap);

	/*
	 * We only get called on buffered IO, thus page must be mapped and bio
	 * must not be cloned.
	 */
	ASSERT(page->mapping && !bio_flagged(failed_bio, BIO_CLONED));

	/* Iterate through all the sectors in the range */
	for (i = 0; i < nr_bits; i++) {
		const unsigned int offset = i * sectorsize;
		struct extent_state *cached = NULL;
		bool uptodate = false;
		int ret;

		if (!(error_bitmap & (1U << i))) {
			/*
			 * This sector has no error, just end the page read
			 * and unlock the range.
			 */
			uptodate = true;
			goto next;
		}

		ret = btrfs_repair_one_sector(inode, failed_bio,
				bio_offset + offset,
				page, pgoff + offset, start + offset,
2776
				failed_mirror, btrfs_submit_data_bio);
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
		if (!ret) {
			/*
			 * We have submitted the read repair, the page release
			 * will be handled by the endio function of the
			 * submitted repair bio.
			 * Thus we don't need to do any thing here.
			 */
			continue;
		}
		/*
		 * Repair failed, just record the error but still continue.
		 * Or the remaining sectors will not be properly unlocked.
		 */
		if (!error)
			error = ret;
next:
		end_page_read(page, uptodate, start + offset, sectorsize);
		if (uptodate)
			set_extent_uptodate(&BTRFS_I(inode)->io_tree,
					start + offset,
					start + offset + sectorsize - 1,
					&cached, GFP_ATOMIC);
		unlock_extent_cached_atomic(&BTRFS_I(inode)->io_tree,
				start + offset,
				start + offset + sectorsize - 1,
				&cached);
	}
	return errno_to_blk_status(error);
2805 2806
}

2807 2808
/* lots and lots of room for performance fixes in the end_bio funcs */

2809
void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2810
{
2811
	struct btrfs_inode *inode;
2812
	const bool uptodate = (err == 0);
2813
	int ret = 0;
2814

2815 2816 2817
	ASSERT(page && page->mapping);
	inode = BTRFS_I(page->mapping->host);
	btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
2818 2819

	if (!uptodate) {
2820 2821 2822 2823 2824 2825 2826 2827
		const struct btrfs_fs_info *fs_info = inode->root->fs_info;
		u32 len;

		ASSERT(end + 1 - start <= U32_MAX);
		len = end + 1 - start;

		btrfs_page_clear_uptodate(fs_info, page, start, len);
		btrfs_page_set_error(fs_info, page, start, len);
2828
		ret = err < 0 ? err : -EIO;
2829
		mapping_set_error(page->mapping, ret);
2830 2831 2832
	}
}

2833 2834 2835 2836 2837 2838 2839 2840 2841
/*
 * after a writepage IO is done, we need to:
 * clear the uptodate bits on error
 * clear the writeback bits in the extent tree for this IO
 * end_page_writeback if the page has no more pending IO
 *
 * Scheduling is not allowed, so the extent state tree is expected
 * to have one and only one object corresponding to this IO.
 */
2842
static void end_bio_extent_writepage(struct bio *bio)
2843
{
2844
	int error = blk_status_to_errno(bio->bi_status);
2845
	struct bio_vec *bvec;
2846 2847
	u64 start;
	u64 end;
2848
	struct bvec_iter_all iter_all;
2849
	bool first_bvec = true;
2850

2851
	ASSERT(!bio_flagged(bio, BIO_CLONED));
2852
	bio_for_each_segment_all(bvec, bio, iter_all) {
2853
		struct page *page = bvec->bv_page;
2854 2855
		struct inode *inode = page->mapping->host;
		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
		const u32 sectorsize = fs_info->sectorsize;

		/* Our read/write should always be sector aligned. */
		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
			btrfs_err(fs_info,
		"partial page write in btrfs with offset %u and length %u",
				  bvec->bv_offset, bvec->bv_len);
		else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
			btrfs_info(fs_info,
		"incomplete page write with offset %u and length %u",
				   bvec->bv_offset, bvec->bv_len);

		start = page_offset(page) + bvec->bv_offset;
		end = start + bvec->bv_len - 1;
2870

2871 2872 2873 2874 2875
		if (first_bvec) {
			btrfs_record_physical_zoned(inode, start, bio);
			first_bvec = false;
		}

2876
		end_extent_writepage(page, error, start, end);
2877 2878

		btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len);
2879
	}
2880

2881 2882 2883
	bio_put(bio);
}

2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
/*
 * Record previously processed extent range
 *
 * For endio_readpage_release_extent() to handle a full extent range, reducing
 * the extent io operations.
 */
struct processed_extent {
	struct btrfs_inode *inode;
	/* Start of the range in @inode */
	u64 start;
2894
	/* End of the range in @inode */
2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
	u64 end;
	bool uptodate;
};

/*
 * Try to release processed extent range
 *
 * May not release the extent range right now if the current range is
 * contiguous to processed extent.
 *
 * Will release processed extent when any of @inode, @uptodate, the range is
 * no longer contiguous to the processed range.
 *
 * Passing @inode == NULL will force processed extent to be released.
 */
static void endio_readpage_release_extent(struct processed_extent *processed,
			      struct btrfs_inode *inode, u64 start, u64 end,
			      bool uptodate)
2913 2914
{
	struct extent_state *cached = NULL;
2915 2916 2917 2918 2919
	struct extent_io_tree *tree;

	/* The first extent, initialize @processed */
	if (!processed->inode)
		goto update;
2920

2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
	/*
	 * Contiguous to processed extent, just uptodate the end.
	 *
	 * Several things to notice:
	 *
	 * - bio can be merged as long as on-disk bytenr is contiguous
	 *   This means we can have page belonging to other inodes, thus need to
	 *   check if the inode still matches.
	 * - bvec can contain range beyond current page for multi-page bvec
	 *   Thus we need to do processed->end + 1 >= start check
	 */
	if (processed->inode == inode && processed->uptodate == uptodate &&
	    processed->end + 1 >= start && end >= processed->end) {
		processed->end = end;
		return;
	}

	tree = &processed->inode->io_tree;
	/*
	 * Now we don't have range contiguous to the processed range, release
	 * the processed range now.
	 */
	if (processed->uptodate && tree->track_uptodate)
		set_extent_uptodate(tree, processed->start, processed->end,
				    &cached, GFP_ATOMIC);
	unlock_extent_cached_atomic(tree, processed->start, processed->end,
				    &cached);

update:
	/* Update processed to current range */
	processed->inode = inode;
	processed->start = start;
	processed->end = end;
	processed->uptodate = uptodate;
2955 2956
}

2957 2958 2959
static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
{
	ASSERT(PageLocked(page));
2960
	if (!btrfs_is_subpage(fs_info, page))
2961 2962 2963 2964 2965 2966
		return;

	ASSERT(PagePrivate(page));
	btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
}

2967
/*
2968
 * Find extent buffer for a given bytenr.
2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
 *
 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
 * in endio context.
 */
static struct extent_buffer *find_extent_buffer_readpage(
		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
{
	struct extent_buffer *eb;

	/*
	 * For regular sectorsize, we can use page->private to grab extent
	 * buffer
	 */
2982
	if (fs_info->nodesize >= PAGE_SIZE) {
2983 2984 2985 2986
		ASSERT(PagePrivate(page) && page->private);
		return (struct extent_buffer *)page->private;
	}

2987 2988 2989
	/* For subpage case, we need to lookup extent buffer xarray */
	eb = xa_load(&fs_info->extent_buffers,
		     bytenr >> fs_info->sectorsize_bits);
2990 2991 2992 2993
	ASSERT(eb);
	return eb;
}

2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
/*
 * after a readpage IO is done, we need to:
 * clear the uptodate bits on error
 * set the uptodate bits if things worked
 * set the page up to date if all extents in the tree are uptodate
 * clear the lock bit in the extent tree
 * unlock the page if there are no other extents locked for it
 *
 * Scheduling is not allowed, so the extent state tree is expected
 * to have one and only one object corresponding to this IO.
 */
3005
static void end_bio_extent_readpage(struct bio *bio)
3006
{
3007
	struct bio_vec *bvec;
3008
	struct btrfs_bio *bbio = btrfs_bio(bio);
3009
	struct extent_io_tree *tree, *failure_tree;
3010
	struct processed_extent processed = { 0 };
3011 3012 3013 3014 3015
	/*
	 * The offset to the beginning of a bio, since one bio can never be
	 * larger than UINT_MAX, u32 here is enough.
	 */
	u32 bio_offset = 0;
3016
	int mirror;
3017
	int ret;
3018
	struct bvec_iter_all iter_all;
3019

3020
	ASSERT(!bio_flagged(bio, BIO_CLONED));
3021
	bio_for_each_segment_all(bvec, bio, iter_all) {
3022
		bool uptodate = !bio->bi_status;
3023
		struct page *page = bvec->bv_page;
3024
		struct inode *inode = page->mapping->host;
3025
		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3026
		const u32 sectorsize = fs_info->sectorsize;
3027
		unsigned int error_bitmap = (unsigned int)-1;
3028 3029 3030
		u64 start;
		u64 end;
		u32 len;
3031

3032 3033
		btrfs_debug(fs_info,
			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
D
David Sterba 已提交
3034
			bio->bi_iter.bi_sector, bio->bi_status,
3035
			bbio->mirror_num);
3036
		tree = &BTRFS_I(inode)->io_tree;
3037
		failure_tree = &BTRFS_I(inode)->io_failure_tree;
3038

3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
		/*
		 * We always issue full-sector reads, but if some block in a
		 * page fails to read, blk_update_request() will advance
		 * bv_offset and adjust bv_len to compensate.  Print a warning
		 * for unaligned offsets, and an error if they don't add up to
		 * a full sector.
		 */
		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
			btrfs_err(fs_info,
		"partial page read in btrfs with offset %u and length %u",
				  bvec->bv_offset, bvec->bv_len);
		else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
				     sectorsize))
			btrfs_info(fs_info,
		"incomplete page read with offset %u and length %u",
				   bvec->bv_offset, bvec->bv_len);

		start = page_offset(page) + bvec->bv_offset;
		end = start + bvec->bv_len - 1;
3058
		len = bvec->bv_len;
3059

3060
		mirror = bbio->mirror_num;
3061
		if (likely(uptodate)) {
3062
			if (is_data_inode(inode)) {
3063
				error_bitmap = btrfs_verify_data_csum(bbio,
3064
						bio_offset, page, start, end);
3065 3066
				ret = error_bitmap;
			} else {
3067
				ret = btrfs_validate_metadata_buffer(bbio,
3068
					page, start, end, mirror);
3069
			}
3070
			if (ret)
3071
				uptodate = false;
3072
			else
3073 3074 3075 3076
				clean_io_failure(BTRFS_I(inode)->root->fs_info,
						 failure_tree, tree, start,
						 page,
						 btrfs_ino(BTRFS_I(inode)), 0);
3077
		}
3078

3079 3080 3081
		if (likely(uptodate))
			goto readpage_ok;

3082
		if (is_data_inode(inode)) {
3083 3084 3085 3086 3087 3088 3089 3090
			/*
			 * If we failed to submit the IO at all we'll have a
			 * mirror_num == 0, in which case we need to just mark
			 * the page with an error and unlock it and carry on.
			 */
			if (mirror == 0)
				goto readpage_ok;

3091
			/*
3092
			 * submit_data_read_repair() will handle all the good
3093
			 * and bad sectors, we just continue to the next bvec.
3094
			 */
3095 3096 3097 3098
			submit_data_read_repair(inode, bio, bio_offset, page,
						start - page_offset(page),
						start, end, mirror,
						error_bitmap);
3099 3100 3101 3102

			ASSERT(bio_offset + len > bio_offset);
			bio_offset += len;
			continue;
3103 3104 3105
		} else {
			struct extent_buffer *eb;

3106
			eb = find_extent_buffer_readpage(fs_info, page, start);
3107 3108 3109
			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
			eb->read_mirror = mirror;
			atomic_dec(&eb->io_pages);
3110
		}
3111
readpage_ok:
3112
		if (likely(uptodate)) {
3113
			loff_t i_size = i_size_read(inode);
3114
			pgoff_t end_index = i_size >> PAGE_SHIFT;
3115

3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
			/*
			 * Zero out the remaining part if this range straddles
			 * i_size.
			 *
			 * Here we should only zero the range inside the bvec,
			 * not touch anything else.
			 *
			 * NOTE: i_size is exclusive while end is inclusive.
			 */
			if (page->index == end_index && i_size <= end) {
				u32 zero_start = max(offset_in_page(i_size),
3127
						     offset_in_page(start));
3128 3129 3130 3131

				zero_user_segment(page, zero_start,
						  offset_in_page(end) + 1);
			}
3132
		}
3133 3134
		ASSERT(bio_offset + len > bio_offset);
		bio_offset += len;
3135

3136
		/* Update page status and unlock */
3137
		end_page_read(page, uptodate, start, len);
3138
		endio_readpage_release_extent(&processed, BTRFS_I(inode),
B
Boris Burkov 已提交
3139
					      start, end, PageUptodate(page));
3140
	}
3141 3142
	/* Release the last extent */
	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
3143
	btrfs_bio_free_csum(bbio);
3144 3145 3146
	bio_put(bio);
}

3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
/**
 * Populate every free slot in a provided array with pages.
 *
 * @nr_pages:   number of pages to allocate
 * @page_array: the array to fill with pages; any existing non-null entries in
 * 		the array will be skipped
 *
 * Return: 0        if all pages were able to be allocated;
 *         -ENOMEM  otherwise, and the caller is responsible for freeing all
 *                  non-null page pointers in the array.
 */
int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array)
{
3160
	unsigned int allocated;
3161

3162 3163
	for (allocated = 0; allocated < nr_pages;) {
		unsigned int last = allocated;
3164

3165 3166
		allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array);

3167 3168 3169
		if (allocated == nr_pages)
			return 0;

3170 3171 3172 3173 3174 3175
		/*
		 * During this iteration, no page could be allocated, even
		 * though alloc_pages_bulk_array() falls back to alloc_page()
		 * if  it could not bulk-allocate. So we must be out of memory.
		 */
		if (allocated == last)
3176
			return -ENOMEM;
3177 3178

		memalloc_retry_wait(GFP_NOFS);
3179 3180 3181 3182
	}
	return 0;
}

3183
/*
3184 3185 3186
 * Initialize the members up to but not including 'bio'. Use after allocating a
 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
 * 'bio' because use of __GFP_ZERO is not supported.
3187
 */
3188
static inline void btrfs_bio_init(struct btrfs_bio *bbio)
3189
{
3190
	memset(bbio, 0, offsetof(struct btrfs_bio, bio));
3191
}
3192

3193
/*
Q
Qu Wenruo 已提交
3194 3195 3196
 * Allocate a btrfs_io_bio, with @nr_iovecs as maximum number of iovecs.
 *
 * The bio allocation is backed by bioset and does not fail.
3197
 */
3198
struct bio *btrfs_bio_alloc(unsigned int nr_iovecs)
3199 3200 3201
{
	struct bio *bio;

Q
Qu Wenruo 已提交
3202
	ASSERT(0 < nr_iovecs && nr_iovecs <= BIO_MAX_VECS);
3203
	bio = bio_alloc_bioset(NULL, nr_iovecs, 0, GFP_NOFS, &btrfs_bioset);
3204
	btrfs_bio_init(btrfs_bio(bio));
3205 3206 3207
	return bio;
}

3208
struct bio *btrfs_bio_clone(struct block_device *bdev, struct bio *bio)
3209
{
3210
	struct btrfs_bio *bbio;
3211
	struct bio *new;
3212

3213
	/* Bio allocation backed by a bioset does not fail */
3214
	new = bio_alloc_clone(bdev, bio, GFP_NOFS, &btrfs_bioset);
3215 3216 3217
	bbio = btrfs_bio(new);
	btrfs_bio_init(bbio);
	bbio->iter = bio->bi_iter;
3218 3219
	return new;
}
3220

3221
struct bio *btrfs_bio_clone_partial(struct bio *orig, u64 offset, u64 size)
3222 3223
{
	struct bio *bio;
3224
	struct btrfs_bio *bbio;
3225

3226 3227
	ASSERT(offset <= UINT_MAX && size <= UINT_MAX);

3228
	/* this will never fail when it's backed by a bioset */
3229
	bio = bio_alloc_clone(orig->bi_bdev, orig, GFP_NOFS, &btrfs_bioset);
3230 3231
	ASSERT(bio);

3232 3233
	bbio = btrfs_bio(bio);
	btrfs_bio_init(bbio);
3234 3235

	bio_trim(bio, offset >> 9, size >> 9);
3236
	bbio->iter = bio->bi_iter;
3237 3238
	return bio;
}
3239

3240 3241 3242
/**
 * Attempt to add a page to bio
 *
3243
 * @bio_ctrl:	record both the bio, and its bio_flags
3244 3245 3246 3247
 * @page:	page to add to the bio
 * @disk_bytenr:  offset of the new bio or to check whether we are adding
 *                a contiguous page to the previous one
 * @size:	portion of page that we want to write
3248
 * @pg_offset:	starting offset in the page
3249 3250 3251 3252
 * @bio_flags:	flags of the current bio to see if we can merge them
 *
 * Attempt to add a page to bio considering stripe alignment etc.
 *
3253 3254 3255
 * Return >= 0 for the number of bytes added to the bio.
 * Can return 0 if the current bio is already at stripe/zone boundary.
 * Return <0 for error.
3256
 */
3257 3258 3259 3260 3261
static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl,
			      struct page *page,
			      u64 disk_bytenr, unsigned int size,
			      unsigned int pg_offset,
			      unsigned long bio_flags)
3262
{
3263 3264
	struct bio *bio = bio_ctrl->bio;
	u32 bio_size = bio->bi_iter.bi_size;
3265
	u32 real_size;
3266 3267
	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
	bool contig;
3268
	int ret;
3269

3270 3271 3272 3273
	ASSERT(bio);
	/* The limit should be calculated when bio_ctrl->bio is allocated */
	ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary);
	if (bio_ctrl->bio_flags != bio_flags)
3274
		return 0;
3275

3276
	if (bio_ctrl->bio_flags != BTRFS_COMPRESS_NONE)
3277 3278 3279 3280
		contig = bio->bi_iter.bi_sector == sector;
	else
		contig = bio_end_sector(bio) == sector;
	if (!contig)
3281
		return 0;
3282

3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
	real_size = min(bio_ctrl->len_to_oe_boundary,
			bio_ctrl->len_to_stripe_boundary) - bio_size;
	real_size = min(real_size, size);

	/*
	 * If real_size is 0, never call bio_add_*_page(), as even size is 0,
	 * bio will still execute its endio function on the page!
	 */
	if (real_size == 0)
		return 0;
3293

3294
	if (bio_op(bio) == REQ_OP_ZONE_APPEND)
3295
		ret = bio_add_zone_append_page(bio, page, real_size, pg_offset);
3296
	else
3297
		ret = bio_add_page(bio, page, real_size, pg_offset);
3298

3299
	return ret;
3300 3301
}

3302
static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl,
3303
			       struct btrfs_inode *inode, u64 file_offset)
3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
{
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
	struct btrfs_io_geometry geom;
	struct btrfs_ordered_extent *ordered;
	struct extent_map *em;
	u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT);
	int ret;

	/*
	 * Pages for compressed extent are never submitted to disk directly,
	 * thus it has no real boundary, just set them to U32_MAX.
	 *
	 * The split happens for real compressed bio, which happens in
	 * btrfs_submit_compressed_read/write().
	 */
3319
	if (bio_ctrl->bio_flags != BTRFS_COMPRESS_NONE) {
3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		bio_ctrl->len_to_stripe_boundary = U32_MAX;
		return 0;
	}
	em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
	if (IS_ERR(em))
		return PTR_ERR(em);
	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio),
				    logical, &geom);
	free_extent_map(em);
	if (ret < 0) {
		return ret;
	}
	if (geom.len > U32_MAX)
		bio_ctrl->len_to_stripe_boundary = U32_MAX;
	else
		bio_ctrl->len_to_stripe_boundary = (u32)geom.len;

3338
	if (bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) {
3339 3340 3341 3342 3343
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		return 0;
	}

	/* Ordered extent not yet created, so we're good */
3344
	ordered = btrfs_lookup_ordered_extent(inode, file_offset);
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
	if (!ordered) {
		bio_ctrl->len_to_oe_boundary = U32_MAX;
		return 0;
	}

	bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
		ordered->disk_bytenr + ordered->disk_num_bytes - logical);
	btrfs_put_ordered_extent(ordered);
	return 0;
}

3356 3357 3358 3359 3360
static int alloc_new_bio(struct btrfs_inode *inode,
			 struct btrfs_bio_ctrl *bio_ctrl,
			 struct writeback_control *wbc,
			 unsigned int opf,
			 bio_end_io_t end_io_func,
3361
			 u64 disk_bytenr, u32 offset, u64 file_offset,
3362 3363 3364 3365 3366 3367
			 unsigned long bio_flags)
{
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
	struct bio *bio;
	int ret;

3368
	bio = btrfs_bio_alloc(BIO_MAX_VECS);
3369 3370 3371 3372
	/*
	 * For compressed page range, its disk_bytenr is always @disk_bytenr
	 * passed in, no matter if we have added any range into previous bio.
	 */
3373
	if (bio_flags != BTRFS_COMPRESS_NONE)
Q
Qu Wenruo 已提交
3374
		bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
3375
	else
Q
Qu Wenruo 已提交
3376
		bio->bi_iter.bi_sector = (disk_bytenr + offset) >> SECTOR_SHIFT;
3377 3378 3379 3380 3381
	bio_ctrl->bio = bio;
	bio_ctrl->bio_flags = bio_flags;
	bio->bi_end_io = end_io_func;
	bio->bi_private = &inode->io_tree;
	bio->bi_opf = opf;
3382 3383 3384
	ret = calc_bio_boundaries(bio_ctrl, inode, file_offset);
	if (ret < 0)
		goto error;
3385

3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
	if (wbc) {
		/*
		 * For Zone append we need the correct block_device that we are
		 * going to write to set in the bio to be able to respect the
		 * hardware limitation.  Look it up here:
		 */
		if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
			struct btrfs_device *dev;

			dev = btrfs_zoned_get_device(fs_info, disk_bytenr,
						     fs_info->sectorsize);
			if (IS_ERR(dev)) {
				ret = PTR_ERR(dev);
				goto error;
			}
3401

3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
			bio_set_dev(bio, dev->bdev);
		} else {
			/*
			 * Otherwise pick the last added device to support
			 * cgroup writeback.  For multi-device file systems this
			 * means blk-cgroup policies have to always be set on the
			 * last added/replaced device.  This is a bit odd but has
			 * been like that for a long time.
			 */
			bio_set_dev(bio, fs_info->fs_devices->latest_dev->bdev);
3412
		}
3413 3414 3415
		wbc_init_bio(wbc, bio);
	} else {
		ASSERT(bio_op(bio) != REQ_OP_ZONE_APPEND);
3416 3417 3418 3419 3420 3421 3422 3423 3424
	}
	return 0;
error:
	bio_ctrl->bio = NULL;
	bio->bi_status = errno_to_blk_status(ret);
	bio_endio(bio);
	return ret;
}

3425 3426
/*
 * @opf:	bio REQ_OP_* and REQ_* flags as one value
3427 3428
 * @wbc:	optional writeback control for io accounting
 * @page:	page to add to the bio
3429 3430
 * @disk_bytenr: logical bytenr where the write will be
 * @size:	portion of page that we want to write to
3431 3432
 * @pg_offset:	offset of the new bio or to check whether we are adding
 *              a contiguous page to the previous one
3433
 * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
3434 3435 3436 3437
 * @end_io_func:     end_io callback for new bio
 * @mirror_num:	     desired mirror to read/write
 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
 * @bio_flags:	flags of the current bio to see if we can merge them
3438
 */
3439
static int submit_extent_page(unsigned int opf,
3440
			      struct writeback_control *wbc,
3441
			      struct btrfs_bio_ctrl *bio_ctrl,
3442
			      struct page *page, u64 disk_bytenr,
3443
			      size_t size, unsigned long pg_offset,
3444
			      bio_end_io_t end_io_func,
C
Chris Mason 已提交
3445
			      int mirror_num,
3446 3447
			      unsigned long bio_flags,
			      bool force_bio_submit)
3448 3449
{
	int ret = 0;
3450
	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3451
	unsigned int cur = pg_offset;
3452

3453
	ASSERT(bio_ctrl);
3454

3455 3456
	ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE &&
	       pg_offset + size <= PAGE_SIZE);
3457
	if (force_bio_submit && bio_ctrl->bio) {
3458
		submit_one_bio(bio_ctrl->bio, mirror_num, bio_ctrl->bio_flags);
3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
		bio_ctrl->bio = NULL;
	}

	while (cur < pg_offset + size) {
		u32 offset = cur - pg_offset;
		int added;

		/* Allocate new bio if needed */
		if (!bio_ctrl->bio) {
			ret = alloc_new_bio(inode, bio_ctrl, wbc, opf,
					    end_io_func, disk_bytenr, offset,
3470
					    page_offset(page) + cur,
3471 3472 3473 3474 3475 3476 3477 3478
					    bio_flags);
			if (ret < 0)
				return ret;
		}
		/*
		 * We must go through btrfs_bio_add_page() to ensure each
		 * page range won't cross various boundaries.
		 */
3479
		if (bio_flags != BTRFS_COMPRESS_NONE)
3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
			added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr,
					size - offset, pg_offset + offset,
					bio_flags);
		else
			added = btrfs_bio_add_page(bio_ctrl, page,
					disk_bytenr + offset, size - offset,
					pg_offset + offset, bio_flags);

		/* Metadata page range should never be split */
		if (!is_data_inode(&inode->vfs_inode))
			ASSERT(added == 0 || added == size - offset);

		/* At least we added some page, update the account */
		if (wbc && added)
			wbc_account_cgroup_owner(wbc, page, added);

		/* We have reached boundary, submit right now */
		if (added < size - offset) {
			/* The bio should contain some page(s) */
			ASSERT(bio_ctrl->bio->bi_iter.bi_size);
3500
			submit_one_bio(bio_ctrl->bio, mirror_num, bio_ctrl->bio_flags);
3501
			bio_ctrl->bio = NULL;
3502
		}
3503
		cur += added;
3504
	}
3505
	return 0;
3506 3507
}

3508 3509 3510
static int attach_extent_buffer_page(struct extent_buffer *eb,
				     struct page *page,
				     struct btrfs_subpage *prealloc)
3511
{
3512 3513 3514
	struct btrfs_fs_info *fs_info = eb->fs_info;
	int ret = 0;

3515 3516 3517 3518 3519 3520 3521 3522 3523
	/*
	 * If the page is mapped to btree inode, we should hold the private
	 * lock to prevent race.
	 * For cloned or dummy extent buffers, their pages are not mapped and
	 * will not race with any other ebs.
	 */
	if (page->mapping)
		lockdep_assert_held(&page->mapping->private_lock);

3524
	if (fs_info->nodesize >= PAGE_SIZE) {
3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
		if (!PagePrivate(page))
			attach_page_private(page, eb);
		else
			WARN_ON(page->private != (unsigned long)eb);
		return 0;
	}

	/* Already mapped, just free prealloc */
	if (PagePrivate(page)) {
		btrfs_free_subpage(prealloc);
		return 0;
	}

	if (prealloc)
		/* Has preallocated memory for subpage */
		attach_page_private(page, prealloc);
3541
	else
3542 3543 3544 3545
		/* Do new allocation to attach subpage */
		ret = btrfs_attach_subpage(fs_info, page,
					   BTRFS_SUBPAGE_METADATA);
	return ret;
3546 3547
}

3548
int set_page_extent_mapped(struct page *page)
3549
{
3550 3551 3552 3553 3554 3555 3556 3557 3558
	struct btrfs_fs_info *fs_info;

	ASSERT(page->mapping);

	if (PagePrivate(page))
		return 0;

	fs_info = btrfs_sb(page->mapping->host->i_sb);

3559
	if (btrfs_is_subpage(fs_info, page))
3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
		return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);

	attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
	return 0;
}

void clear_page_extent_mapped(struct page *page)
{
	struct btrfs_fs_info *fs_info;

	ASSERT(page->mapping);

3572
	if (!PagePrivate(page))
3573 3574 3575
		return;

	fs_info = btrfs_sb(page->mapping->host->i_sb);
3576
	if (btrfs_is_subpage(fs_info, page))
3577 3578 3579
		return btrfs_detach_subpage(fs_info, page);

	detach_page_private(page);
3580 3581
}

3582 3583
static struct extent_map *
__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3584
		 u64 start, u64 len, struct extent_map **em_cached)
3585 3586 3587 3588 3589
{
	struct extent_map *em;

	if (em_cached && *em_cached) {
		em = *em_cached;
3590
		if (extent_map_in_tree(em) && start >= em->start &&
3591
		    start < extent_map_end(em)) {
3592
			refcount_inc(&em->refs);
3593 3594 3595 3596 3597 3598 3599
			return em;
		}

		free_extent_map(em);
		*em_cached = NULL;
	}

3600
	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3601
	if (em_cached && !IS_ERR(em)) {
3602
		BUG_ON(*em_cached);
3603
		refcount_inc(&em->refs);
3604 3605 3606 3607
		*em_cached = em;
	}
	return em;
}
3608 3609 3610 3611
/*
 * basic readpage implementation.  Locked extent state structs are inserted
 * into the tree that are removed when the IO is done (by the end_io
 * handlers)
3612
 * XXX JDM: This needs looking at to ensure proper page locking
3613
 * return 0 on success, otherwise return error
3614
 */
3615
static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
3616
		      struct btrfs_bio_ctrl *bio_ctrl,
3617
		      unsigned int read_flags, u64 *prev_em_start)
3618 3619
{
	struct inode *inode = page->mapping->host;
3620
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
M
Miao Xie 已提交
3621
	u64 start = page_offset(page);
3622
	const u64 end = start + PAGE_SIZE - 1;
3623 3624 3625 3626 3627 3628
	u64 cur = start;
	u64 extent_offset;
	u64 last_byte = i_size_read(inode);
	u64 block_start;
	u64 cur_end;
	struct extent_map *em;
3629
	int ret = 0;
3630
	size_t pg_offset = 0;
3631 3632
	size_t iosize;
	size_t blocksize = inode->i_sb->s_blocksize;
3633
	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3634

3635 3636 3637
	ret = set_page_extent_mapped(page);
	if (ret < 0) {
		unlock_extent(tree, start, end);
3638 3639
		btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
		unlock_page(page);
3640 3641
		goto out;
	}
3642

3643
	if (page->index == last_byte >> PAGE_SHIFT) {
3644
		size_t zero_offset = offset_in_page(last_byte);
C
Chris Mason 已提交
3645 3646

		if (zero_offset) {
3647
			iosize = PAGE_SIZE - zero_offset;
3648
			memzero_page(page, zero_offset, iosize);
C
Chris Mason 已提交
3649 3650 3651
			flush_dcache_page(page);
		}
	}
3652
	begin_page_read(fs_info, page);
3653
	while (cur <= end) {
3654
		unsigned long this_bio_flag = 0;
3655
		bool force_bio_submit = false;
3656
		u64 disk_bytenr;
3657

3658
		ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
3659
		if (cur >= last_byte) {
3660 3661
			struct extent_state *cached = NULL;

3662
			iosize = PAGE_SIZE - pg_offset;
3663
			memzero_page(page, pg_offset, iosize);
3664 3665
			flush_dcache_page(page);
			set_extent_uptodate(tree, cur, cur + iosize - 1,
3666
					    &cached, GFP_NOFS);
3667
			unlock_extent_cached(tree, cur,
3668
					     cur + iosize - 1, &cached);
3669
			end_page_read(page, true, cur, iosize);
3670 3671
			break;
		}
3672
		em = __get_extent_map(inode, page, pg_offset, cur,
3673
				      end - cur + 1, em_cached);
3674
		if (IS_ERR(em)) {
3675
			unlock_extent(tree, cur, end);
3676
			end_page_read(page, false, cur, end + 1 - cur);
3677
			ret = PTR_ERR(em);
3678 3679 3680 3681 3682 3683
			break;
		}
		extent_offset = cur - em->start;
		BUG_ON(extent_map_end(em) <= cur);
		BUG_ON(end < cur);

3684 3685
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
			this_bio_flag = em->compress_type;
C
Chris Mason 已提交
3686

3687 3688
		iosize = min(extent_map_end(em) - cur, end - cur + 1);
		cur_end = min(extent_map_end(em) - 1, end);
3689
		iosize = ALIGN(iosize, blocksize);
3690
		if (this_bio_flag != BTRFS_COMPRESS_NONE)
3691
			disk_bytenr = em->block_start;
3692
		else
3693
			disk_bytenr = em->block_start + extent_offset;
3694
		block_start = em->block_start;
Y
Yan Zheng 已提交
3695 3696
		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
			block_start = EXTENT_MAP_HOLE;
3697 3698 3699

		/*
		 * If we have a file range that points to a compressed extent
3700
		 * and it's followed by a consecutive file range that points
3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
		 * to the same compressed extent (possibly with a different
		 * offset and/or length, so it either points to the whole extent
		 * or only part of it), we must make sure we do not submit a
		 * single bio to populate the pages for the 2 ranges because
		 * this makes the compressed extent read zero out the pages
		 * belonging to the 2nd range. Imagine the following scenario:
		 *
		 *  File layout
		 *  [0 - 8K]                     [8K - 24K]
		 *    |                               |
		 *    |                               |
		 * points to extent X,         points to extent X,
		 * offset 4K, length of 8K     offset 0, length 16K
		 *
		 * [extent X, compressed length = 4K uncompressed length = 16K]
		 *
		 * If the bio to read the compressed extent covers both ranges,
		 * it will decompress extent X into the pages belonging to the
		 * first range and then it will stop, zeroing out the remaining
		 * pages that belong to the other range that points to extent X.
		 * So here we make sure we submit 2 bios, one for the first
		 * range and another one for the third range. Both will target
		 * the same physical extent from disk, but we can't currently
		 * make the compressed bio endio callback populate the pages
		 * for both ranges because each compressed bio is tightly
		 * coupled with a single extent map, and each range can have
		 * an extent map with a different offset value relative to the
		 * uncompressed data of our extent and different lengths. This
		 * is a corner case so we prioritize correctness over
		 * non-optimal behavior (submitting 2 bios for the same extent).
		 */
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
		    prev_em_start && *prev_em_start != (u64)-1 &&
3734
		    *prev_em_start != em->start)
3735 3736 3737
			force_bio_submit = true;

		if (prev_em_start)
3738
			*prev_em_start = em->start;
3739

3740 3741 3742 3743 3744
		free_extent_map(em);
		em = NULL;

		/* we've found a hole, just zero and go on */
		if (block_start == EXTENT_MAP_HOLE) {
3745 3746
			struct extent_state *cached = NULL;

3747
			memzero_page(page, pg_offset, iosize);
3748 3749 3750
			flush_dcache_page(page);

			set_extent_uptodate(tree, cur, cur + iosize - 1,
3751
					    &cached, GFP_NOFS);
3752
			unlock_extent_cached(tree, cur,
3753
					     cur + iosize - 1, &cached);
3754
			end_page_read(page, true, cur, iosize);
3755
			cur = cur + iosize;
3756
			pg_offset += iosize;
3757 3758 3759
			continue;
		}
		/* the get_extent function already copied into the page */
3760 3761
		if (test_range_bit(tree, cur, cur_end,
				   EXTENT_UPTODATE, 1, NULL)) {
3762
			unlock_extent(tree, cur, cur + iosize - 1);
3763
			end_page_read(page, true, cur, iosize);
3764
			cur = cur + iosize;
3765
			pg_offset += iosize;
3766 3767
			continue;
		}
3768 3769 3770 3771
		/* we have an inline extent but it didn't get marked up
		 * to date.  Error out
		 */
		if (block_start == EXTENT_MAP_INLINE) {
3772
			unlock_extent(tree, cur, cur + iosize - 1);
3773
			end_page_read(page, false, cur, iosize);
3774
			cur = cur + iosize;
3775
			pg_offset += iosize;
3776 3777
			continue;
		}
3778

3779
		ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3780 3781
					 bio_ctrl, page, disk_bytenr, iosize,
					 pg_offset,
3782
					 end_bio_extent_readpage, 0,
3783 3784
					 this_bio_flag,
					 force_bio_submit);
3785
		if (ret) {
3786 3787 3788 3789 3790 3791
			/*
			 * We have to unlock the remaining range, or the page
			 * will never be unlocked.
			 */
			unlock_extent(tree, cur, end);
			end_page_read(page, false, cur, end + 1 - cur);
3792
			goto out;
3793
		}
3794
		cur = cur + iosize;
3795
		pg_offset += iosize;
3796
	}
D
Dan Magenheimer 已提交
3797
out:
3798
	return ret;
3799 3800
}

3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820
int btrfs_readpage(struct file *file, struct page *page)
{
	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
	u64 start = page_offset(page);
	u64 end = start + PAGE_SIZE - 1;
	struct btrfs_bio_ctrl bio_ctrl = { 0 };
	int ret;

	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);

	ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL);
	/*
	 * If btrfs_do_readpage() failed we will want to submit the assembled
	 * bio to do the cleanup.
	 */
	if (bio_ctrl.bio)
		submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags);
	return ret;
}

3821
static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3822 3823 3824 3825
					u64 start, u64 end,
					struct extent_map **em_cached,
					struct btrfs_bio_ctrl *bio_ctrl,
					u64 *prev_em_start)
3826
{
3827
	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3828 3829
	int index;

3830
	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3831 3832

	for (index = 0; index < nr_pages; index++) {
3833
		btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
3834
				  REQ_RAHEAD, prev_em_start);
3835
		put_page(pages[index]);
3836 3837 3838
	}
}

3839
/*
3840 3841
 * helper for __extent_writepage, doing all of the delayed allocation setup.
 *
3842
 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3843 3844 3845 3846 3847
 * to write the page (copy into inline extent).  In this case the IO has
 * been started and the page is already unlocked.
 *
 * This returns 0 if all went well (page still locked)
 * This returns < 0 if there were errors (page still locked)
3848
 */
3849
static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3850
		struct page *page, struct writeback_control *wbc)
3851
{
3852
	const u64 page_end = page_offset(page) + PAGE_SIZE - 1;
3853
	u64 delalloc_start = page_offset(page);
3854
	u64 delalloc_to_write = 0;
3855 3856
	/* How many pages are started by btrfs_run_delalloc_range() */
	unsigned long nr_written = 0;
3857 3858 3859
	int ret;
	int page_started = 0;

3860 3861 3862
	while (delalloc_start < page_end) {
		u64 delalloc_end = page_end;
		bool found;
3863

3864
		found = find_lock_delalloc_range(&inode->vfs_inode, page,
3865
					       &delalloc_start,
3866
					       &delalloc_end);
3867
		if (!found) {
3868 3869 3870
			delalloc_start = delalloc_end + 1;
			continue;
		}
3871
		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3872
				delalloc_end, &page_started, &nr_written, wbc);
3873
		if (ret) {
3874 3875
			btrfs_page_set_error(inode->root->fs_info, page,
					     page_offset(page), PAGE_SIZE);
3876
			return ret;
3877 3878
		}
		/*
3879 3880
		 * delalloc_end is already one less than the total length, so
		 * we don't subtract one from PAGE_SIZE
3881 3882
		 */
		delalloc_to_write += (delalloc_end - delalloc_start +
3883
				      PAGE_SIZE) >> PAGE_SHIFT;
3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
		delalloc_start = delalloc_end + 1;
	}
	if (wbc->nr_to_write < delalloc_to_write) {
		int thresh = 8192;

		if (delalloc_to_write < thresh * 2)
			thresh = delalloc_to_write;
		wbc->nr_to_write = min_t(u64, delalloc_to_write,
					 thresh);
	}

3895
	/* Did btrfs_run_dealloc_range() already unlock and start the IO? */
3896 3897
	if (page_started) {
		/*
3898 3899
		 * We've unlocked the page, so we can't update the mapping's
		 * writeback index, just update nr_to_write.
3900
		 */
3901
		wbc->nr_to_write -= nr_written;
3902 3903 3904
		return 1;
	}

3905
	return 0;
3906 3907
}

3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926
/*
 * Find the first byte we need to write.
 *
 * For subpage, one page can contain several sectors, and
 * __extent_writepage_io() will just grab all extent maps in the page
 * range and try to submit all non-inline/non-compressed extents.
 *
 * This is a big problem for subpage, we shouldn't re-submit already written
 * data at all.
 * This function will lookup subpage dirty bit to find which range we really
 * need to submit.
 *
 * Return the next dirty range in [@start, @end).
 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
 */
static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
				 struct page *page, u64 *start, u64 *end)
{
	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
3927
	struct btrfs_subpage_info *spi = fs_info->subpage_info;
3928 3929 3930
	u64 orig_start = *start;
	/* Declare as unsigned long so we can use bitmap ops */
	unsigned long flags;
3931
	int range_start_bit;
3932 3933 3934 3935 3936 3937
	int range_end_bit;

	/*
	 * For regular sector size == page size case, since one page only
	 * contains one sector, we return the page offset directly.
	 */
3938
	if (!btrfs_is_subpage(fs_info, page)) {
3939 3940 3941 3942 3943
		*start = page_offset(page);
		*end = page_offset(page) + PAGE_SIZE;
		return;
	}

3944 3945 3946
	range_start_bit = spi->dirty_offset +
			  (offset_in_page(orig_start) >> fs_info->sectorsize_bits);

3947 3948
	/* We should have the page locked, but just in case */
	spin_lock_irqsave(&subpage->lock, flags);
3949 3950
	bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
			       spi->dirty_offset + spi->bitmap_nr_bits);
3951 3952
	spin_unlock_irqrestore(&subpage->lock, flags);

3953 3954 3955
	range_start_bit -= spi->dirty_offset;
	range_end_bit -= spi->dirty_offset;

3956 3957 3958 3959
	*start = page_offset(page) + range_start_bit * fs_info->sectorsize;
	*end = page_offset(page) + range_end_bit * fs_info->sectorsize;
}

3960 3961 3962 3963 3964 3965 3966 3967
/*
 * helper for __extent_writepage.  This calls the writepage start hooks,
 * and does the loop to map the page into extents and bios.
 *
 * We return 1 if the IO is started and the page is unlocked,
 * 0 if all went well (page still locked)
 * < 0 if there were errors (page still locked)
 */
3968
static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3969 3970 3971 3972
				 struct page *page,
				 struct writeback_control *wbc,
				 struct extent_page_data *epd,
				 loff_t i_size,
3973
				 int *nr_ret)
3974
{
3975
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3976 3977
	u64 cur = page_offset(page);
	u64 end = cur + PAGE_SIZE - 1;
3978 3979 3980
	u64 extent_offset;
	u64 block_start;
	struct extent_map *em;
3981
	int saved_ret = 0;
3982 3983
	int ret = 0;
	int nr = 0;
3984
	u32 opf = REQ_OP_WRITE;
3985
	const unsigned int write_flags = wbc_to_write_flags(wbc);
3986
	bool has_error = false;
3987
	bool compressed;
C
Chris Mason 已提交
3988

3989
	ret = btrfs_writepage_cow_fixup(page);
3990 3991
	if (ret) {
		/* Fixup worker will requeue */
3992
		redirty_page_for_writepage(wbc, page);
3993 3994
		unlock_page(page);
		return 1;
3995 3996
	}

3997 3998 3999 4000
	/*
	 * we don't want to touch the inode after unlocking the page,
	 * so we update the mapping writeback index now
	 */
4001
	wbc->nr_to_write--;
4002

4003
	while (cur <= end) {
4004
		u64 disk_bytenr;
4005
		u64 em_end;
4006 4007
		u64 dirty_range_start = cur;
		u64 dirty_range_end;
4008
		u32 iosize;
4009

4010
		if (cur >= i_size) {
4011
			btrfs_writepage_endio_finish_ordered(inode, page, cur,
4012
							     end, true);
4013 4014 4015 4016 4017 4018 4019 4020 4021
			/*
			 * This range is beyond i_size, thus we don't need to
			 * bother writing back.
			 * But we still need to clear the dirty subpage bit, or
			 * the next time the page gets dirtied, we will try to
			 * writeback the sectors with subpage dirty bits,
			 * causing writeback without ordered extent.
			 */
			btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur);
4022 4023
			break;
		}
4024 4025 4026 4027 4028 4029 4030 4031

		find_next_dirty_byte(fs_info, page, &dirty_range_start,
				     &dirty_range_end);
		if (cur < dirty_range_start) {
			cur = dirty_range_start;
			continue;
		}

4032
		em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
4033
		if (IS_ERR(em)) {
4034
			btrfs_page_set_error(fs_info, page, cur, end - cur + 1);
4035
			ret = PTR_ERR_OR_ZERO(em);
4036 4037 4038
			has_error = true;
			if (!saved_ret)
				saved_ret = ret;
4039 4040 4041 4042
			break;
		}

		extent_offset = cur - em->start;
4043
		em_end = extent_map_end(em);
4044 4045 4046 4047
		ASSERT(cur <= em_end);
		ASSERT(cur < end);
		ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
		ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
4048
		block_start = em->block_start;
C
Chris Mason 已提交
4049
		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4050 4051
		disk_bytenr = em->block_start + extent_offset;

4052 4053 4054 4055 4056
		/*
		 * Note that em_end from extent_map_end() and dirty_range_end from
		 * find_next_dirty_byte() are all exclusive
		 */
		iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
4057

4058
		if (btrfs_use_zone_append(inode, em->block_start))
4059 4060
			opf = REQ_OP_ZONE_APPEND;

4061 4062 4063
		free_extent_map(em);
		em = NULL;

C
Chris Mason 已提交
4064 4065 4066 4067 4068
		/*
		 * compressed and inline extents are written through other
		 * paths in the FS
		 */
		if (compressed || block_start == EXTENT_MAP_HOLE ||
4069
		    block_start == EXTENT_MAP_INLINE) {
4070
			if (compressed)
C
Chris Mason 已提交
4071
				nr++;
4072
			else
4073
				btrfs_writepage_endio_finish_ordered(inode,
4074
						page, cur, cur + iosize - 1, true);
4075
			btrfs_page_clear_dirty(fs_info, page, cur, iosize);
C
Chris Mason 已提交
4076
			cur += iosize;
4077 4078
			continue;
		}
C
Chris Mason 已提交
4079

4080
		btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
4081
		if (!PageWriteback(page)) {
4082
			btrfs_err(inode->root->fs_info,
4083 4084
				   "page %lu not writeback, cur %llu end %llu",
			       page->index, cur, end);
4085
		}
4086

4087 4088 4089 4090 4091 4092 4093 4094
		/*
		 * Although the PageDirty bit is cleared before entering this
		 * function, subpage dirty bit is not cleared.
		 * So clear subpage dirty bit here so next time we won't submit
		 * page for range already written to disk.
		 */
		btrfs_page_clear_dirty(fs_info, page, cur, iosize);

4095 4096
		ret = submit_extent_page(opf | write_flags, wbc,
					 &epd->bio_ctrl, page,
4097
					 disk_bytenr, iosize,
4098
					 cur - page_offset(page),
4099
					 end_bio_extent_writepage,
4100
					 0, 0, false);
4101
		if (ret) {
4102 4103 4104 4105
			has_error = true;
			if (!saved_ret)
				saved_ret = ret;

4106
			btrfs_page_set_error(fs_info, page, cur, iosize);
4107
			if (PageWriteback(page))
4108 4109
				btrfs_page_clear_writeback(fs_info, page, cur,
							   iosize);
4110
		}
4111

4112
		cur += iosize;
4113 4114
		nr++;
	}
4115 4116 4117 4118
	/*
	 * If we finish without problem, we should not only clear page dirty,
	 * but also empty subpage dirty bits
	 */
4119
	if (!has_error)
4120
		btrfs_page_assert_not_dirty(fs_info, page);
4121 4122
	else
		ret = saved_ret;
4123 4124 4125 4126 4127 4128 4129 4130 4131
	*nr_ret = nr;
	return ret;
}

/*
 * the writepage semantics are similar to regular writepage.  extent
 * records are inserted to lock ranges in the tree, and as dirty areas
 * are found, they are marked writeback.  Then the lock bits are removed
 * and the end_io handler clears the writeback ranges
4132 4133 4134
 *
 * Return 0 if everything goes well.
 * Return <0 for error.
4135 4136
 */
static int __extent_writepage(struct page *page, struct writeback_control *wbc,
4137
			      struct extent_page_data *epd)
4138
{
4139
	struct folio *folio = page_folio(page);
4140
	struct inode *inode = page->mapping->host;
4141
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4142 4143
	const u64 page_start = page_offset(page);
	const u64 page_end = page_start + PAGE_SIZE - 1;
4144 4145
	int ret;
	int nr = 0;
4146
	size_t pg_offset;
4147
	loff_t i_size = i_size_read(inode);
4148
	unsigned long end_index = i_size >> PAGE_SHIFT;
4149 4150 4151 4152 4153

	trace___extent_writepage(page, inode, wbc);

	WARN_ON(!PageLocked(page));

4154 4155
	btrfs_page_clear_error(btrfs_sb(inode->i_sb), page,
			       page_offset(page), PAGE_SIZE);
4156

4157
	pg_offset = offset_in_page(i_size);
4158 4159
	if (page->index > end_index ||
	   (page->index == end_index && !pg_offset)) {
4160 4161
		folio_invalidate(folio, 0, folio_size(folio));
		folio_unlock(folio);
4162 4163 4164 4165
		return 0;
	}

	if (page->index == end_index) {
4166
		memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
4167 4168 4169
		flush_dcache_page(page);
	}

4170 4171 4172 4173 4174
	ret = set_page_extent_mapped(page);
	if (ret < 0) {
		SetPageError(page);
		goto done;
	}
4175

4176
	if (!epd->extent_locked) {
4177
		ret = writepage_delalloc(BTRFS_I(inode), page, wbc);
4178
		if (ret == 1)
4179
			return 0;
4180 4181 4182
		if (ret)
			goto done;
	}
4183

4184
	ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
4185
				    &nr);
4186
	if (ret == 1)
4187
		return 0;
4188

4189 4190 4191 4192 4193 4194
done:
	if (nr == 0) {
		/* make sure the mapping tag for page dirty gets cleared */
		set_page_writeback(page);
		end_page_writeback(page);
	}
4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226
	/*
	 * Here we used to have a check for PageError() and then set @ret and
	 * call end_extent_writepage().
	 *
	 * But in fact setting @ret here will cause different error paths
	 * between subpage and regular sectorsize.
	 *
	 * For regular page size, we never submit current page, but only add
	 * current page to current bio.
	 * The bio submission can only happen in next page.
	 * Thus if we hit the PageError() branch, @ret is already set to
	 * non-zero value and will not get updated for regular sectorsize.
	 *
	 * But for subpage case, it's possible we submit part of current page,
	 * thus can get PageError() set by submitted bio of the same page,
	 * while our @ret is still 0.
	 *
	 * So here we unify the behavior and don't set @ret.
	 * Error can still be properly passed to higher layer as page will
	 * be set error, here we just don't handle the IO failure.
	 *
	 * NOTE: This is just a hotfix for subpage.
	 * The root fix will be properly ending ordered extent when we hit
	 * an error during writeback.
	 *
	 * But that needs a bigger refactoring, as we not only need to grab the
	 * submitted OE, but also need to know exactly at which bytenr we hit
	 * the error.
	 * Currently the full page based __extent_writepage_io() is not
	 * capable of that.
	 */
	if (PageError(page))
4227
		end_extent_writepage(page, ret, page_start, page_end);
4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240
	if (epd->extent_locked) {
		/*
		 * If epd->extent_locked, it's from extent_write_locked_range(),
		 * the page can either be locked by lock_page() or
		 * process_one_page().
		 * Let btrfs_page_unlock_writer() handle both cases.
		 */
		ASSERT(wbc);
		btrfs_page_unlock_writer(fs_info, page, wbc->range_start,
					 wbc->range_end + 1 - wbc->range_start);
	} else {
		unlock_page(page);
	}
4241
	ASSERT(ret <= 0);
4242
	return ret;
4243 4244
}

4245
void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
4246
{
4247 4248
	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
		       TASK_UNINTERRUPTIBLE);
4249 4250
}

4251 4252
static void end_extent_buffer_writeback(struct extent_buffer *eb)
{
4253 4254 4255
	if (test_bit(EXTENT_BUFFER_ZONE_FINISH, &eb->bflags))
		btrfs_zone_finish_endio(eb->fs_info, eb->start, eb->len);

4256 4257 4258 4259 4260
	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
	smp_mb__after_atomic();
	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
}

4261
/*
4262
 * Lock extent buffer status and pages for writeback.
4263
 *
4264 4265 4266 4267 4268 4269
 * May try to flush write bio if we can't get the lock.
 *
 * Return  0 if the extent buffer doesn't need to be submitted.
 *           (E.g. the extent buffer is not dirty)
 * Return >0 is the extent buffer is submitted to bio.
 * Return <0 if something went wrong, no page is locked.
4270
 */
4271
static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
4272
			  struct extent_page_data *epd)
4273
{
4274
	struct btrfs_fs_info *fs_info = eb->fs_info;
4275
	int i, num_pages;
4276 4277 4278 4279
	int flush = 0;
	int ret = 0;

	if (!btrfs_try_tree_write_lock(eb)) {
4280
		flush_write_bio(epd);
4281
		flush = 1;
4282 4283 4284 4285 4286 4287 4288 4289
		btrfs_tree_lock(eb);
	}

	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
		btrfs_tree_unlock(eb);
		if (!epd->sync_io)
			return 0;
		if (!flush) {
4290
			flush_write_bio(epd);
4291 4292
			flush = 1;
		}
C
Chris Mason 已提交
4293 4294 4295 4296 4297
		while (1) {
			wait_on_extent_buffer_writeback(eb);
			btrfs_tree_lock(eb);
			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
				break;
4298 4299 4300 4301
			btrfs_tree_unlock(eb);
		}
	}

4302 4303 4304 4305 4306 4307
	/*
	 * We need to do this to prevent races in people who check if the eb is
	 * under IO since we can end up having no IO bits set for a short period
	 * of time.
	 */
	spin_lock(&eb->refs_lock);
4308 4309
	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4310
		spin_unlock(&eb->refs_lock);
4311
		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4312 4313 4314
		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
					 -eb->len,
					 fs_info->dirty_metadata_batch);
4315
		ret = 1;
4316 4317
	} else {
		spin_unlock(&eb->refs_lock);
4318 4319 4320 4321
	}

	btrfs_tree_unlock(eb);

4322 4323 4324 4325 4326 4327
	/*
	 * Either we don't need to submit any tree block, or we're submitting
	 * subpage eb.
	 * Subpage metadata doesn't use page locking at all, so we can skip
	 * the page locking.
	 */
4328
	if (!ret || fs_info->nodesize < PAGE_SIZE)
4329 4330
		return ret;

4331
	num_pages = num_extent_pages(eb);
4332
	for (i = 0; i < num_pages; i++) {
4333
		struct page *p = eb->pages[i];
4334 4335 4336

		if (!trylock_page(p)) {
			if (!flush) {
4337
				flush_write_bio(epd);
4338 4339 4340 4341 4342 4343
				flush = 1;
			}
			lock_page(p);
		}
	}

4344
	return ret;
4345 4346
}

4347
static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
4348
{
4349
	struct btrfs_fs_info *fs_info = eb->fs_info;
4350

4351
	btrfs_page_set_error(fs_info, page, eb->start, eb->len);
4352 4353 4354
	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
		return;

4355 4356 4357 4358 4359 4360
	/*
	 * A read may stumble upon this buffer later, make sure that it gets an
	 * error and knows there was an error.
	 */
	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);

4361 4362 4363 4364 4365 4366 4367 4368
	/*
	 * We need to set the mapping with the io error as well because a write
	 * error will flip the file system readonly, and then syncfs() will
	 * return a 0 because we are readonly if we don't modify the err seq for
	 * the superblock.
	 */
	mapping_set_error(page->mapping, -EIO);

4369 4370 4371 4372 4373 4374 4375
	/*
	 * If we error out, we should add back the dirty_metadata_bytes
	 * to make it consistent.
	 */
	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
				 eb->len, fs_info->dirty_metadata_batch);

4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415
	/*
	 * If writeback for a btree extent that doesn't belong to a log tree
	 * failed, increment the counter transaction->eb_write_errors.
	 * We do this because while the transaction is running and before it's
	 * committing (when we call filemap_fdata[write|wait]_range against
	 * the btree inode), we might have
	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
	 * returns an error or an error happens during writeback, when we're
	 * committing the transaction we wouldn't know about it, since the pages
	 * can be no longer dirty nor marked anymore for writeback (if a
	 * subsequent modification to the extent buffer didn't happen before the
	 * transaction commit), which makes filemap_fdata[write|wait]_range not
	 * able to find the pages tagged with SetPageError at transaction
	 * commit time. So if this happens we must abort the transaction,
	 * otherwise we commit a super block with btree roots that point to
	 * btree nodes/leafs whose content on disk is invalid - either garbage
	 * or the content of some node/leaf from a past generation that got
	 * cowed or deleted and is no longer valid.
	 *
	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
	 * not be enough - we need to distinguish between log tree extents vs
	 * non-log tree extents, and the next filemap_fdatawait_range() call
	 * will catch and clear such errors in the mapping - and that call might
	 * be from a log sync and not from a transaction commit. Also, checking
	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
	 * not done and would not be reliable - the eb might have been released
	 * from memory and reading it back again means that flag would not be
	 * set (since it's a runtime flag, not persisted on disk).
	 *
	 * Using the flags below in the btree inode also makes us achieve the
	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
	 * writeback for all dirty pages and before filemap_fdatawait_range()
	 * is called, the writeback for all dirty pages had already finished
	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
	 * filemap_fdatawait_range() would return success, as it could not know
	 * that writeback errors happened (the pages were no longer tagged for
	 * writeback).
	 */
	switch (eb->log_index) {
	case -1:
4416
		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
4417 4418
		break;
	case 0:
4419
		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
4420 4421
		break;
	case 1:
4422
		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
4423 4424 4425 4426 4427 4428
		break;
	default:
		BUG(); /* unexpected, logic error */
	}
}

4429 4430 4431 4432 4433 4434 4435 4436 4437 4438
/*
 * The endio specific version which won't touch any unsafe spinlock in endio
 * context.
 */
static struct extent_buffer *find_extent_buffer_nolock(
		struct btrfs_fs_info *fs_info, u64 start)
{
	struct extent_buffer *eb;

	rcu_read_lock();
4439 4440
	eb = xa_load(&fs_info->extent_buffers,
		     start >> fs_info->sectorsize_bits);
4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454
	if (eb && atomic_inc_not_zero(&eb->refs)) {
		rcu_read_unlock();
		return eb;
	}
	rcu_read_unlock();
	return NULL;
}

/*
 * The endio function for subpage extent buffer write.
 *
 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
 * after all extent buffers in the page has finished their writeback.
 */
4455
static void end_bio_subpage_eb_writepage(struct bio *bio)
4456
{
4457
	struct btrfs_fs_info *fs_info;
4458 4459 4460
	struct bio_vec *bvec;
	struct bvec_iter_all iter_all;

4461
	fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
4462
	ASSERT(fs_info->nodesize < PAGE_SIZE);
4463

4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511
	ASSERT(!bio_flagged(bio, BIO_CLONED));
	bio_for_each_segment_all(bvec, bio, iter_all) {
		struct page *page = bvec->bv_page;
		u64 bvec_start = page_offset(page) + bvec->bv_offset;
		u64 bvec_end = bvec_start + bvec->bv_len - 1;
		u64 cur_bytenr = bvec_start;

		ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));

		/* Iterate through all extent buffers in the range */
		while (cur_bytenr <= bvec_end) {
			struct extent_buffer *eb;
			int done;

			/*
			 * Here we can't use find_extent_buffer(), as it may
			 * try to lock eb->refs_lock, which is not safe in endio
			 * context.
			 */
			eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
			ASSERT(eb);

			cur_bytenr = eb->start + eb->len;

			ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
			done = atomic_dec_and_test(&eb->io_pages);
			ASSERT(done);

			if (bio->bi_status ||
			    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
				ClearPageUptodate(page);
				set_btree_ioerr(page, eb);
			}

			btrfs_subpage_clear_writeback(fs_info, page, eb->start,
						      eb->len);
			end_extent_buffer_writeback(eb);
			/*
			 * free_extent_buffer() will grab spinlock which is not
			 * safe in endio context. Thus here we manually dec
			 * the ref.
			 */
			atomic_dec(&eb->refs);
		}
	}
	bio_put(bio);
}

4512
static void end_bio_extent_buffer_writepage(struct bio *bio)
4513
{
4514
	struct bio_vec *bvec;
4515
	struct extent_buffer *eb;
4516
	int done;
4517
	struct bvec_iter_all iter_all;
4518

4519
	ASSERT(!bio_flagged(bio, BIO_CLONED));
4520
	bio_for_each_segment_all(bvec, bio, iter_all) {
4521 4522 4523 4524 4525 4526
		struct page *page = bvec->bv_page;

		eb = (struct extent_buffer *)page->private;
		BUG_ON(!eb);
		done = atomic_dec_and_test(&eb->io_pages);

4527
		if (bio->bi_status ||
4528
		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4529
			ClearPageUptodate(page);
4530
			set_btree_ioerr(page, eb);
4531 4532 4533 4534 4535 4536 4537 4538
		}

		end_page_writeback(page);

		if (!done)
			continue;

		end_extent_buffer_writeback(eb);
4539
	}
4540 4541 4542 4543

	bio_put(bio);
}

4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568
static void prepare_eb_write(struct extent_buffer *eb)
{
	u32 nritems;
	unsigned long start;
	unsigned long end;

	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
	atomic_set(&eb->io_pages, num_extent_pages(eb));

	/* Set btree blocks beyond nritems with 0 to avoid stale content */
	nritems = btrfs_header_nritems(eb);
	if (btrfs_header_level(eb) > 0) {
		end = btrfs_node_key_ptr_offset(nritems);
		memzero_extent_buffer(eb, end, eb->len - end);
	} else {
		/*
		 * Leaf:
		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
		 */
		start = btrfs_item_nr_offset(nritems);
		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
		memzero_extent_buffer(eb, start, end - start);
	}
}

4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582
/*
 * Unlike the work in write_one_eb(), we rely completely on extent locking.
 * Page locking is only utilized at minimum to keep the VMM code happy.
 */
static int write_one_subpage_eb(struct extent_buffer *eb,
				struct writeback_control *wbc,
				struct extent_page_data *epd)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct page *page = eb->pages[0];
	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
	bool no_dirty_ebs = false;
	int ret;

4583 4584
	prepare_eb_write(eb);

4585 4586 4587 4588 4589 4590 4591 4592 4593 4594
	/* clear_page_dirty_for_io() in subpage helper needs page locked */
	lock_page(page);
	btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);

	/* Check if this is the last dirty bit to update nr_written */
	no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
							  eb->start, eb->len);
	if (no_dirty_ebs)
		clear_page_dirty_for_io(page);

4595 4596 4597
	ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
			&epd->bio_ctrl, page, eb->start, eb->len,
			eb->start - page_offset(page),
4598
			end_bio_subpage_eb_writepage, 0, 0, false);
4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613
	if (ret) {
		btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len);
		set_btree_ioerr(page, eb);
		unlock_page(page);

		if (atomic_dec_and_test(&eb->io_pages))
			end_extent_buffer_writeback(eb);
		return -EIO;
	}
	unlock_page(page);
	/*
	 * Submission finished without problem, if no range of the page is
	 * dirty anymore, we have submitted a page.  Update nr_written in wbc.
	 */
	if (no_dirty_ebs)
4614
		wbc->nr_to_write--;
4615 4616 4617
	return ret;
}

4618
static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
4619 4620 4621
			struct writeback_control *wbc,
			struct extent_page_data *epd)
{
4622
	u64 disk_bytenr = eb->start;
4623
	int i, num_pages;
4624
	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
4625
	int ret = 0;
4626

4627
	prepare_eb_write(eb);
4628

4629
	num_pages = num_extent_pages(eb);
4630
	for (i = 0; i < num_pages; i++) {
4631
		struct page *p = eb->pages[i];
4632 4633 4634

		clear_page_dirty_for_io(p);
		set_page_writeback(p);
4635
		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4636 4637
					 &epd->bio_ctrl, p, disk_bytenr,
					 PAGE_SIZE, 0,
4638
					 end_bio_extent_buffer_writepage,
4639
					 0, 0, false);
4640
		if (ret) {
4641
			set_btree_ioerr(p, eb);
4642 4643
			if (PageWriteback(p))
				end_page_writeback(p);
4644 4645 4646 4647 4648
			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
				end_extent_buffer_writeback(eb);
			ret = -EIO;
			break;
		}
4649
		disk_bytenr += PAGE_SIZE;
4650
		wbc->nr_to_write--;
4651 4652 4653 4654 4655
		unlock_page(p);
	}

	if (unlikely(ret)) {
		for (; i < num_pages; i++) {
4656
			struct page *p = eb->pages[i];
4657
			clear_page_dirty_for_io(p);
4658 4659 4660 4661 4662 4663 4664
			unlock_page(p);
		}
	}

	return ret;
}

4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690
/*
 * Submit one subpage btree page.
 *
 * The main difference to submit_eb_page() is:
 * - Page locking
 *   For subpage, we don't rely on page locking at all.
 *
 * - Flush write bio
 *   We only flush bio if we may be unable to fit current extent buffers into
 *   current bio.
 *
 * Return >=0 for the number of submitted extent buffers.
 * Return <0 for fatal error.
 */
static int submit_eb_subpage(struct page *page,
			     struct writeback_control *wbc,
			     struct extent_page_data *epd)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
	int submitted = 0;
	u64 page_start = page_offset(page);
	int bit_start = 0;
	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
	int ret;

	/* Lock and write each dirty extent buffers in the range */
4691
	while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706
		struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
		struct extent_buffer *eb;
		unsigned long flags;
		u64 start;

		/*
		 * Take private lock to ensure the subpage won't be detached
		 * in the meantime.
		 */
		spin_lock(&page->mapping->private_lock);
		if (!PagePrivate(page)) {
			spin_unlock(&page->mapping->private_lock);
			break;
		}
		spin_lock_irqsave(&subpage->lock, flags);
4707 4708
		if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
			      subpage->bitmaps)) {
4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742
			spin_unlock_irqrestore(&subpage->lock, flags);
			spin_unlock(&page->mapping->private_lock);
			bit_start++;
			continue;
		}

		start = page_start + bit_start * fs_info->sectorsize;
		bit_start += sectors_per_node;

		/*
		 * Here we just want to grab the eb without touching extra
		 * spin locks, so call find_extent_buffer_nolock().
		 */
		eb = find_extent_buffer_nolock(fs_info, start);
		spin_unlock_irqrestore(&subpage->lock, flags);
		spin_unlock(&page->mapping->private_lock);

		/*
		 * The eb has already reached 0 refs thus find_extent_buffer()
		 * doesn't return it. We don't need to write back such eb
		 * anyway.
		 */
		if (!eb)
			continue;

		ret = lock_extent_buffer_for_io(eb, epd);
		if (ret == 0) {
			free_extent_buffer(eb);
			continue;
		}
		if (ret < 0) {
			free_extent_buffer(eb);
			goto cleanup;
		}
4743
		ret = write_one_subpage_eb(eb, wbc, epd);
4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756
		free_extent_buffer(eb);
		if (ret < 0)
			goto cleanup;
		submitted++;
	}
	return submitted;

cleanup:
	/* We hit error, end bio for the submitted extent buffers */
	end_write_bio(epd, ret);
	return ret;
}

4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781
/*
 * Submit all page(s) of one extent buffer.
 *
 * @page:	the page of one extent buffer
 * @eb_context:	to determine if we need to submit this page, if current page
 *		belongs to this eb, we don't need to submit
 *
 * The caller should pass each page in their bytenr order, and here we use
 * @eb_context to determine if we have submitted pages of one extent buffer.
 *
 * If we have, we just skip until we hit a new page that doesn't belong to
 * current @eb_context.
 *
 * If not, we submit all the page(s) of the extent buffer.
 *
 * Return >0 if we have submitted the extent buffer successfully.
 * Return 0 if we don't need to submit the page, as it's already submitted by
 * previous call.
 * Return <0 for fatal error.
 */
static int submit_eb_page(struct page *page, struct writeback_control *wbc,
			  struct extent_page_data *epd,
			  struct extent_buffer **eb_context)
{
	struct address_space *mapping = page->mapping;
4782
	struct btrfs_block_group *cache = NULL;
4783 4784 4785 4786 4787 4788
	struct extent_buffer *eb;
	int ret;

	if (!PagePrivate(page))
		return 0;

4789
	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
4790 4791
		return submit_eb_subpage(page, wbc, epd);

4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817
	spin_lock(&mapping->private_lock);
	if (!PagePrivate(page)) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}

	eb = (struct extent_buffer *)page->private;

	/*
	 * Shouldn't happen and normally this would be a BUG_ON but no point
	 * crashing the machine for something we can survive anyway.
	 */
	if (WARN_ON(!eb)) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}

	if (eb == *eb_context) {
		spin_unlock(&mapping->private_lock);
		return 0;
	}
	ret = atomic_inc_not_zero(&eb->refs);
	spin_unlock(&mapping->private_lock);
	if (!ret)
		return 0;

4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830
	if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
		/*
		 * If for_sync, this hole will be filled with
		 * trasnsaction commit.
		 */
		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
			ret = -EAGAIN;
		else
			ret = 0;
		free_extent_buffer(eb);
		return ret;
	}

4831 4832 4833 4834
	*eb_context = eb;

	ret = lock_extent_buffer_for_io(eb, epd);
	if (ret <= 0) {
4835 4836 4837
		btrfs_revert_meta_write_pointer(cache, eb);
		if (cache)
			btrfs_put_block_group(cache);
4838 4839 4840
		free_extent_buffer(eb);
		return ret;
	}
4841
	if (cache) {
4842 4843 4844
		/*
		 * Implies write in zoned mode. Mark the last eb in a block group.
		 */
4845 4846
		if (cache->seq_zone && eb->start + eb->len == cache->zone_capacity)
			set_bit(EXTENT_BUFFER_ZONE_FINISH, &eb->bflags);
4847
		btrfs_put_block_group(cache);
4848
	}
4849 4850 4851 4852 4853 4854 4855
	ret = write_one_eb(eb, wbc, epd);
	free_extent_buffer(eb);
	if (ret < 0)
		return ret;
	return 1;
}

4856 4857 4858
int btree_write_cache_pages(struct address_space *mapping,
				   struct writeback_control *wbc)
{
4859
	struct extent_buffer *eb_context = NULL;
4860
	struct extent_page_data epd = {
4861
		.bio_ctrl = { 0 },
4862 4863 4864
		.extent_locked = 0,
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
	};
4865
	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
4866 4867 4868 4869 4870 4871 4872 4873
	int ret = 0;
	int done = 0;
	int nr_to_write_done = 0;
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
	int scanned = 0;
M
Matthew Wilcox 已提交
4874
	xa_mark_t tag;
4875

4876
	pagevec_init(&pvec);
4877 4878 4879
	if (wbc->range_cyclic) {
		index = mapping->writeback_index; /* Start from prev offset */
		end = -1;
4880 4881 4882 4883 4884
		/*
		 * Start from the beginning does not need to cycle over the
		 * range, mark it as scanned.
		 */
		scanned = (index == 0);
4885
	} else {
4886 4887
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
4888 4889 4890 4891 4892 4893
		scanned = 1;
	}
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
4894
	btrfs_zoned_meta_io_lock(fs_info);
4895 4896 4897 4898
retry:
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag_pages_for_writeback(mapping, index, end);
	while (!done && !nr_to_write_done && (index <= end) &&
J
Jan Kara 已提交
4899
	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4900
			tag))) {
4901 4902 4903 4904 4905
		unsigned i;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

4906 4907
			ret = submit_eb_page(page, wbc, &epd, &eb_context);
			if (ret == 0)
4908
				continue;
4909
			if (ret < 0) {
4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932
				done = 1;
				break;
			}

			/*
			 * the filesystem may choose to bump up nr_to_write.
			 * We have to make sure to honor the new nr_to_write
			 * at any time
			 */
			nr_to_write_done = wbc->nr_to_write <= 0;
		}
		pagevec_release(&pvec);
		cond_resched();
	}
	if (!scanned && !done) {
		/*
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
		scanned = 1;
		index = 0;
		goto retry;
	}
4933 4934
	if (ret < 0) {
		end_write_bio(&epd, ret);
4935
		goto out;
4936
	}
4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963
	/*
	 * If something went wrong, don't allow any metadata write bio to be
	 * submitted.
	 *
	 * This would prevent use-after-free if we had dirty pages not
	 * cleaned up, which can still happen by fuzzed images.
	 *
	 * - Bad extent tree
	 *   Allowing existing tree block to be allocated for other trees.
	 *
	 * - Log tree operations
	 *   Exiting tree blocks get allocated to log tree, bumps its
	 *   generation, then get cleaned in tree re-balance.
	 *   Such tree block will not be written back, since it's clean,
	 *   thus no WRITTEN flag set.
	 *   And after log writes back, this tree block is not traced by
	 *   any dirty extent_io_tree.
	 *
	 * - Offending tree block gets re-dirtied from its original owner
	 *   Since it has bumped generation, no WRITTEN flag, it can be
	 *   reused without COWing. This tree block will not be traced
	 *   by btrfs_transaction::dirty_pages.
	 *
	 *   Now such dirty tree block will not be cleaned by any dirty
	 *   extent io tree. Thus we don't want to submit such wild eb
	 *   if the fs already has error.
	 */
J
Josef Bacik 已提交
4964
	if (!BTRFS_FS_ERROR(fs_info)) {
4965
		flush_write_bio(&epd);
4966
	} else {
4967
		ret = -EROFS;
4968 4969
		end_write_bio(&epd, ret);
	}
4970 4971
out:
	btrfs_zoned_meta_io_unlock(fs_info);
4972 4973 4974 4975 4976 4977
	/*
	 * We can get ret > 0 from submit_extent_page() indicating how many ebs
	 * were submitted. Reset it to 0 to avoid false alerts for the caller.
	 */
	if (ret > 0)
		ret = 0;
4978 4979 4980
	return ret;
}

4981
/**
4982 4983
 * Walk the list of dirty pages of the given address space and write all of them.
 *
4984
 * @mapping: address space structure to write
4985 4986
 * @wbc:     subtract the number of written pages from *@wbc->nr_to_write
 * @epd:     holds context for the write, namely the bio
4987 4988 4989 4990 4991 4992 4993 4994 4995
 *
 * If a page is already under I/O, write_cache_pages() skips it, even
 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 * and msync() need to guarantee that all the data which was dirty at the time
 * the call was made get new I/O started against them.  If wbc->sync_mode is
 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 * existing IO to complete.
 */
4996
static int extent_write_cache_pages(struct address_space *mapping,
C
Chris Mason 已提交
4997
			     struct writeback_control *wbc,
4998
			     struct extent_page_data *epd)
4999
{
5000
	struct inode *inode = mapping->host;
5001 5002
	int ret = 0;
	int done = 0;
5003
	int nr_to_write_done = 0;
5004 5005 5006 5007
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
5008 5009
	pgoff_t done_index;
	int range_whole = 0;
5010
	int scanned = 0;
M
Matthew Wilcox 已提交
5011
	xa_mark_t tag;
5012

5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024
	/*
	 * We have to hold onto the inode so that ordered extents can do their
	 * work when the IO finishes.  The alternative to this is failing to add
	 * an ordered extent if the igrab() fails there and that is a huge pain
	 * to deal with, so instead just hold onto the inode throughout the
	 * writepages operation.  If it fails here we are freeing up the inode
	 * anyway and we'd rather not waste our time writing out stuff that is
	 * going to be truncated anyway.
	 */
	if (!igrab(inode))
		return 0;

5025
	pagevec_init(&pvec);
5026 5027 5028
	if (wbc->range_cyclic) {
		index = mapping->writeback_index; /* Start from prev offset */
		end = -1;
5029 5030 5031 5032 5033
		/*
		 * Start from the beginning does not need to cycle over the
		 * range, mark it as scanned.
		 */
		scanned = (index == 0);
5034
	} else {
5035 5036
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
5037 5038
		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
			range_whole = 1;
5039 5040
		scanned = 1;
	}
5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054

	/*
	 * We do the tagged writepage as long as the snapshot flush bit is set
	 * and we are the first one who do the filemap_flush() on this inode.
	 *
	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
	 * not race in and drop the bit.
	 */
	if (range_whole && wbc->nr_to_write == LONG_MAX &&
	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
			       &BTRFS_I(inode)->runtime_flags))
		wbc->tagged_writepages = 1;

	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5055 5056 5057
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
5058
retry:
5059
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5060
		tag_pages_for_writeback(mapping, index, end);
5061
	done_index = index;
5062
	while (!done && !nr_to_write_done && (index <= end) &&
5063 5064
			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
						&index, end, tag))) {
5065 5066 5067 5068 5069
		unsigned i;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

5070
			done_index = page->index + 1;
5071
			/*
M
Matthew Wilcox 已提交
5072 5073 5074 5075 5076
			 * At this point we hold neither the i_pages lock nor
			 * the page lock: the page may be truncated or
			 * invalidated (changing page->mapping to NULL),
			 * or even swizzled back from swapper_space to
			 * tmpfs file mapping
5077
			 */
5078
			if (!trylock_page(page)) {
5079
				flush_write_bio(epd);
5080
				lock_page(page);
5081
			}
5082 5083 5084 5085 5086 5087

			if (unlikely(page->mapping != mapping)) {
				unlock_page(page);
				continue;
			}

C
Chris Mason 已提交
5088
			if (wbc->sync_mode != WB_SYNC_NONE) {
5089 5090
				if (PageWriteback(page))
					flush_write_bio(epd);
5091
				wait_on_page_writeback(page);
C
Chris Mason 已提交
5092
			}
5093 5094 5095 5096 5097 5098 5099

			if (PageWriteback(page) ||
			    !clear_page_dirty_for_io(page)) {
				unlock_page(page);
				continue;
			}

5100
			ret = __extent_writepage(page, wbc, epd);
5101 5102 5103 5104
			if (ret < 0) {
				done = 1;
				break;
			}
5105 5106 5107 5108 5109 5110 5111

			/*
			 * the filesystem may choose to bump up nr_to_write.
			 * We have to make sure to honor the new nr_to_write
			 * at any time
			 */
			nr_to_write_done = wbc->nr_to_write <= 0;
5112 5113 5114 5115
		}
		pagevec_release(&pvec);
		cond_resched();
	}
5116
	if (!scanned && !done) {
5117 5118 5119 5120 5121 5122
		/*
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
		scanned = 1;
		index = 0;
5123 5124 5125 5126 5127 5128 5129

		/*
		 * If we're looping we could run into a page that is locked by a
		 * writer and that writer could be waiting on writeback for a
		 * page in our current bio, and thus deadlock, so flush the
		 * write bio here.
		 */
5130 5131
		flush_write_bio(epd);
		goto retry;
5132
	}
5133 5134 5135 5136

	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
		mapping->writeback_index = done_index;

5137
	btrfs_add_delayed_iput(inode);
5138
	return ret;
5139 5140
}

5141
int extent_write_full_page(struct page *page, struct writeback_control *wbc)
5142 5143 5144
{
	int ret;
	struct extent_page_data epd = {
5145
		.bio_ctrl = { 0 },
5146
		.extent_locked = 0,
5147
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
5148 5149 5150
	};

	ret = __extent_writepage(page, wbc, &epd);
5151 5152 5153 5154 5155
	ASSERT(ret <= 0);
	if (ret < 0) {
		end_write_bio(&epd, ret);
		return ret;
	}
5156

5157
	flush_write_bio(&epd);
5158 5159 5160
	return ret;
}

5161 5162 5163 5164 5165 5166
/*
 * Submit the pages in the range to bio for call sites which delalloc range has
 * already been ran (aka, ordered extent inserted) and all pages are still
 * locked.
 */
int extent_write_locked_range(struct inode *inode, u64 start, u64 end)
5167
{
5168 5169
	bool found_error = false;
	int first_error = 0;
5170 5171 5172
	int ret = 0;
	struct address_space *mapping = inode->i_mapping;
	struct page *page;
5173
	u64 cur = start;
5174 5175
	unsigned long nr_pages;
	const u32 sectorsize = btrfs_sb(inode->i_sb)->sectorsize;
5176
	struct extent_page_data epd = {
5177
		.bio_ctrl = { 0 },
5178
		.extent_locked = 1,
5179
		.sync_io = 1,
5180 5181
	};
	struct writeback_control wbc_writepages = {
5182
		.sync_mode	= WB_SYNC_ALL,
5183 5184
		.range_start	= start,
		.range_end	= end + 1,
5185 5186 5187
		/* We're called from an async helper function */
		.punt_to_cgroup	= 1,
		.no_cgroup_owner = 1,
5188 5189
	};

5190 5191 5192 5193 5194
	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
	nr_pages = (round_up(end, PAGE_SIZE) - round_down(start, PAGE_SIZE)) >>
		   PAGE_SHIFT;
	wbc_writepages.nr_to_write = nr_pages * 2;

5195
	wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
5196
	while (cur <= end) {
5197 5198
		u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);

5199 5200 5201 5202 5203 5204
		page = find_get_page(mapping, cur >> PAGE_SHIFT);
		/*
		 * All pages in the range are locked since
		 * btrfs_run_delalloc_range(), thus there is no way to clear
		 * the page dirty flag.
		 */
5205
		ASSERT(PageLocked(page));
5206 5207 5208 5209 5210 5211 5212
		ASSERT(PageDirty(page));
		clear_page_dirty_for_io(page);
		ret = __extent_writepage(page, &wbc_writepages, &epd);
		ASSERT(ret <= 0);
		if (ret < 0) {
			found_error = true;
			first_error = ret;
5213
		}
5214
		put_page(page);
5215
		cur = cur_end + 1;
5216 5217
	}

5218
	if (!found_error)
5219
		flush_write_bio(&epd);
5220
	else
5221
		end_write_bio(&epd, ret);
5222 5223

	wbc_detach_inode(&wbc_writepages);
5224 5225
	if (found_error)
		return first_error;
5226 5227
	return ret;
}
5228

5229
int extent_writepages(struct address_space *mapping,
5230 5231
		      struct writeback_control *wbc)
{
5232
	struct inode *inode = mapping->host;
5233 5234
	int ret = 0;
	struct extent_page_data epd = {
5235
		.bio_ctrl = { 0 },
5236
		.extent_locked = 0,
5237
		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
5238 5239
	};

5240 5241 5242 5243
	/*
	 * Allow only a single thread to do the reloc work in zoned mode to
	 * protect the write pointer updates.
	 */
5244
	btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
5245
	ret = extent_write_cache_pages(mapping, wbc, &epd);
5246
	btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
5247 5248 5249 5250 5251
	ASSERT(ret <= 0);
	if (ret < 0) {
		end_write_bio(&epd, ret);
		return ret;
	}
5252
	flush_write_bio(&epd);
5253 5254 5255
	return ret;
}

5256
void extent_readahead(struct readahead_control *rac)
5257
{
5258
	struct btrfs_bio_ctrl bio_ctrl = { 0 };
L
Liu Bo 已提交
5259
	struct page *pagepool[16];
5260
	struct extent_map *em_cached = NULL;
5261
	u64 prev_em_start = (u64)-1;
5262
	int nr;
5263

5264
	while ((nr = readahead_page_batch(rac, pagepool))) {
5265 5266
		u64 contig_start = readahead_pos(rac);
		u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
5267

5268
		contiguous_readpages(pagepool, nr, contig_start, contig_end,
5269
				&em_cached, &bio_ctrl, &prev_em_start);
5270
	}
L
Liu Bo 已提交
5271

5272 5273 5274
	if (em_cached)
		free_extent_map(em_cached);

5275 5276
	if (bio_ctrl.bio)
		submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags);
5277 5278 5279
}

/*
5280 5281
 * basic invalidate_folio code, this waits on any locked or writeback
 * ranges corresponding to the folio, and then deletes any extent state
5282 5283
 * records from the tree
 */
5284 5285
int extent_invalidate_folio(struct extent_io_tree *tree,
			  struct folio *folio, size_t offset)
5286
{
5287
	struct extent_state *cached_state = NULL;
5288 5289 5290
	u64 start = folio_pos(folio);
	u64 end = start + folio_size(folio) - 1;
	size_t blocksize = folio->mapping->host->i_sb->s_blocksize;
5291

5292 5293 5294
	/* This function is only called for the btree inode */
	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);

5295
	start += ALIGN(offset, blocksize);
5296 5297 5298
	if (start > end)
		return 0;

5299
	lock_extent_bits(tree, start, end, &cached_state);
5300
	folio_wait_writeback(folio);
5301 5302 5303 5304 5305 5306 5307

	/*
	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
	 * so here we only need to unlock the extent range to free any
	 * existing extent state.
	 */
	unlock_extent_cached(tree, start, end, &cached_state);
5308 5309 5310
	return 0;
}

5311 5312 5313 5314 5315
/*
 * a helper for releasepage, this tests for areas of the page that
 * are locked or under IO and drops the related state bits if it is safe
 * to drop the page.
 */
5316
static int try_release_extent_state(struct extent_io_tree *tree,
5317
				    struct page *page, gfp_t mask)
5318
{
M
Miao Xie 已提交
5319
	u64 start = page_offset(page);
5320
	u64 end = start + PAGE_SIZE - 1;
5321 5322
	int ret = 1;

N
Nikolay Borisov 已提交
5323
	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
5324
		ret = 0;
N
Nikolay Borisov 已提交
5325
	} else {
5326
		/*
5327 5328 5329 5330
		 * At this point we can safely clear everything except the
		 * locked bit, the nodatasum bit and the delalloc new bit.
		 * The delalloc new bit will be cleared by ordered extent
		 * completion.
5331
		 */
5332
		ret = __clear_extent_bit(tree, start, end,
5333 5334
			 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW),
			 0, 0, NULL, mask, NULL);
5335 5336 5337 5338 5339 5340 5341 5342

		/* if clear_extent_bit failed for enomem reasons,
		 * we can't allow the release to continue.
		 */
		if (ret < 0)
			ret = 0;
		else
			ret = 1;
5343 5344 5345 5346
	}
	return ret;
}

5347 5348 5349 5350 5351
/*
 * a helper for releasepage.  As long as there are no locked extents
 * in the range corresponding to the page, both state records and extent
 * map records are removed
 */
5352
int try_release_extent_mapping(struct page *page, gfp_t mask)
5353 5354
{
	struct extent_map *em;
M
Miao Xie 已提交
5355
	u64 start = page_offset(page);
5356
	u64 end = start + PAGE_SIZE - 1;
5357 5358 5359
	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
	struct extent_io_tree *tree = &btrfs_inode->io_tree;
	struct extent_map_tree *map = &btrfs_inode->extent_tree;
5360

5361
	if (gfpflags_allow_blocking(mask) &&
5362
	    page->mapping->host->i_size > SZ_16M) {
5363
		u64 len;
5364
		while (start <= end) {
5365 5366 5367
			struct btrfs_fs_info *fs_info;
			u64 cur_gen;

5368
			len = end - start + 1;
5369
			write_lock(&map->lock);
5370
			em = lookup_extent_mapping(map, start, len);
5371
			if (!em) {
5372
				write_unlock(&map->lock);
5373 5374
				break;
			}
5375 5376
			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
			    em->start != start) {
5377
				write_unlock(&map->lock);
5378 5379 5380
				free_extent_map(em);
				break;
			}
5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391
			if (test_range_bit(tree, em->start,
					   extent_map_end(em) - 1,
					   EXTENT_LOCKED, 0, NULL))
				goto next;
			/*
			 * If it's not in the list of modified extents, used
			 * by a fast fsync, we can remove it. If it's being
			 * logged we can safely remove it since fsync took an
			 * extra reference on the em.
			 */
			if (list_empty(&em->list) ||
5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407
			    test_bit(EXTENT_FLAG_LOGGING, &em->flags))
				goto remove_em;
			/*
			 * If it's in the list of modified extents, remove it
			 * only if its generation is older then the current one,
			 * in which case we don't need it for a fast fsync.
			 * Otherwise don't remove it, we could be racing with an
			 * ongoing fast fsync that could miss the new extent.
			 */
			fs_info = btrfs_inode->root->fs_info;
			spin_lock(&fs_info->trans_lock);
			cur_gen = fs_info->generation;
			spin_unlock(&fs_info->trans_lock);
			if (em->generation >= cur_gen)
				goto next;
remove_em:
5408 5409 5410 5411 5412 5413 5414 5415
			/*
			 * We only remove extent maps that are not in the list of
			 * modified extents or that are in the list but with a
			 * generation lower then the current generation, so there
			 * is no need to set the full fsync flag on the inode (it
			 * hurts the fsync performance for workloads with a data
			 * size that exceeds or is close to the system's memory).
			 */
5416 5417 5418
			remove_extent_mapping(map, em);
			/* once for the rb tree */
			free_extent_map(em);
5419
next:
5420
			start = extent_map_end(em);
5421
			write_unlock(&map->lock);
5422 5423

			/* once for us */
5424
			free_extent_map(em);
5425 5426

			cond_resched(); /* Allow large-extent preemption. */
5427 5428
		}
	}
5429
	return try_release_extent_state(tree, page, mask);
5430 5431
}

5432 5433 5434 5435
/*
 * helper function for fiemap, which doesn't want to see any holes.
 * This maps until we find something past 'last'
 */
5436
static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
5437
						u64 offset, u64 last)
5438
{
5439
	u64 sectorsize = btrfs_inode_sectorsize(inode);
5440 5441 5442 5443 5444 5445
	struct extent_map *em;
	u64 len;

	if (offset >= last)
		return NULL;

5446
	while (1) {
5447 5448 5449
		len = last - offset;
		if (len == 0)
			break;
5450
		len = ALIGN(len, sectorsize);
5451
		em = btrfs_get_extent_fiemap(inode, offset, len);
5452
		if (IS_ERR(em))
5453 5454 5455
			return em;

		/* if this isn't a hole return it */
5456
		if (em->block_start != EXTENT_MAP_HOLE)
5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467
			return em;

		/* this is a hole, advance to the next extent */
		offset = extent_map_end(em);
		free_extent_map(em);
		if (offset >= last)
			break;
	}
	return NULL;
}

5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501
/*
 * To cache previous fiemap extent
 *
 * Will be used for merging fiemap extent
 */
struct fiemap_cache {
	u64 offset;
	u64 phys;
	u64 len;
	u32 flags;
	bool cached;
};

/*
 * Helper to submit fiemap extent.
 *
 * Will try to merge current fiemap extent specified by @offset, @phys,
 * @len and @flags with cached one.
 * And only when we fails to merge, cached one will be submitted as
 * fiemap extent.
 *
 * Return value is the same as fiemap_fill_next_extent().
 */
static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
				struct fiemap_cache *cache,
				u64 offset, u64 phys, u64 len, u32 flags)
{
	int ret = 0;

	if (!cache->cached)
		goto assign;

	/*
	 * Sanity check, extent_fiemap() should have ensured that new
5502
	 * fiemap extent won't overlap with cached one.
5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553
	 * Not recoverable.
	 *
	 * NOTE: Physical address can overlap, due to compression
	 */
	if (cache->offset + cache->len > offset) {
		WARN_ON(1);
		return -EINVAL;
	}

	/*
	 * Only merges fiemap extents if
	 * 1) Their logical addresses are continuous
	 *
	 * 2) Their physical addresses are continuous
	 *    So truly compressed (physical size smaller than logical size)
	 *    extents won't get merged with each other
	 *
	 * 3) Share same flags except FIEMAP_EXTENT_LAST
	 *    So regular extent won't get merged with prealloc extent
	 */
	if (cache->offset + cache->len  == offset &&
	    cache->phys + cache->len == phys  &&
	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
			(flags & ~FIEMAP_EXTENT_LAST)) {
		cache->len += len;
		cache->flags |= flags;
		goto try_submit_last;
	}

	/* Not mergeable, need to submit cached one */
	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
				      cache->len, cache->flags);
	cache->cached = false;
	if (ret)
		return ret;
assign:
	cache->cached = true;
	cache->offset = offset;
	cache->phys = phys;
	cache->len = len;
	cache->flags = flags;
try_submit_last:
	if (cache->flags & FIEMAP_EXTENT_LAST) {
		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
				cache->phys, cache->len, cache->flags);
		cache->cached = false;
	}
	return ret;
}

/*
5554
 * Emit last fiemap cache
5555
 *
5556 5557 5558 5559 5560 5561 5562
 * The last fiemap cache may still be cached in the following case:
 * 0		      4k		    8k
 * |<- Fiemap range ->|
 * |<------------  First extent ----------->|
 *
 * In this case, the first extent range will be cached but not emitted.
 * So we must emit it before ending extent_fiemap().
5563
 */
5564
static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
5565
				  struct fiemap_cache *cache)
5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579
{
	int ret;

	if (!cache->cached)
		return 0;

	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
				      cache->len, cache->flags);
	cache->cached = false;
	if (ret > 0)
		ret = 0;
	return ret;
}

5580
int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
5581
		  u64 start, u64 len)
Y
Yehuda Sadeh 已提交
5582
{
J
Josef Bacik 已提交
5583
	int ret = 0;
5584
	u64 off;
Y
Yehuda Sadeh 已提交
5585 5586
	u64 max = start + len;
	u32 flags = 0;
J
Josef Bacik 已提交
5587 5588
	u32 found_type;
	u64 last;
5589
	u64 last_for_get_extent = 0;
Y
Yehuda Sadeh 已提交
5590
	u64 disko = 0;
5591
	u64 isize = i_size_read(&inode->vfs_inode);
J
Josef Bacik 已提交
5592
	struct btrfs_key found_key;
Y
Yehuda Sadeh 已提交
5593
	struct extent_map *em = NULL;
5594
	struct extent_state *cached_state = NULL;
J
Josef Bacik 已提交
5595
	struct btrfs_path *path;
5596
	struct btrfs_root *root = inode->root;
5597
	struct fiemap_cache cache = { 0 };
5598 5599
	struct ulist *roots;
	struct ulist *tmp_ulist;
Y
Yehuda Sadeh 已提交
5600
	int end = 0;
5601 5602 5603
	u64 em_start = 0;
	u64 em_len = 0;
	u64 em_end = 0;
Y
Yehuda Sadeh 已提交
5604 5605 5606 5607

	if (len == 0)
		return -EINVAL;

J
Josef Bacik 已提交
5608 5609 5610 5611
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

5612 5613 5614 5615 5616 5617 5618
	roots = ulist_alloc(GFP_KERNEL);
	tmp_ulist = ulist_alloc(GFP_KERNEL);
	if (!roots || !tmp_ulist) {
		ret = -ENOMEM;
		goto out_free_ulist;
	}

5619 5620 5621 5622 5623
	/*
	 * We can't initialize that to 'start' as this could miss extents due
	 * to extent item merging
	 */
	off = 0;
5624 5625
	start = round_down(start, btrfs_inode_sectorsize(inode));
	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
5626

5627 5628 5629 5630
	/*
	 * lookup the last file extent.  We're not using i_size here
	 * because there might be preallocation past i_size
	 */
5631 5632
	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
				       0);
J
Josef Bacik 已提交
5633
	if (ret < 0) {
5634
		goto out_free_ulist;
5635 5636 5637 5638
	} else {
		WARN_ON(!ret);
		if (ret == 1)
			ret = 0;
J
Josef Bacik 已提交
5639
	}
5640

J
Josef Bacik 已提交
5641 5642
	path->slots[0]--;
	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5643
	found_type = found_key.type;
J
Josef Bacik 已提交
5644

5645
	/* No extents, but there might be delalloc bits */
5646
	if (found_key.objectid != btrfs_ino(inode) ||
J
Josef Bacik 已提交
5647
	    found_type != BTRFS_EXTENT_DATA_KEY) {
5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658
		/* have to trust i_size as the end */
		last = (u64)-1;
		last_for_get_extent = isize;
	} else {
		/*
		 * remember the start of the last extent.  There are a
		 * bunch of different factors that go into the length of the
		 * extent, so its much less complex to remember where it started
		 */
		last = found_key.offset;
		last_for_get_extent = last + 1;
J
Josef Bacik 已提交
5659
	}
5660
	btrfs_release_path(path);
J
Josef Bacik 已提交
5661

5662 5663 5664 5665 5666 5667 5668 5669 5670 5671
	/*
	 * we might have some extents allocated but more delalloc past those
	 * extents.  so, we trust isize unless the start of the last extent is
	 * beyond isize
	 */
	if (last < isize) {
		last = (u64)-1;
		last_for_get_extent = isize;
	}

5672
	lock_extent_bits(&inode->io_tree, start, start + len - 1,
5673
			 &cached_state);
5674

5675
	em = get_extent_skip_holes(inode, start, last_for_get_extent);
Y
Yehuda Sadeh 已提交
5676 5677 5678 5679 5680 5681
	if (!em)
		goto out;
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out;
	}
J
Josef Bacik 已提交
5682

Y
Yehuda Sadeh 已提交
5683
	while (!end) {
5684
		u64 offset_in_extent = 0;
5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696

		/* break if the extent we found is outside the range */
		if (em->start >= max || extent_map_end(em) < off)
			break;

		/*
		 * get_extent may return an extent that starts before our
		 * requested range.  We have to make sure the ranges
		 * we return to fiemap always move forward and don't
		 * overlap, so adjust the offsets here
		 */
		em_start = max(em->start, off);
Y
Yehuda Sadeh 已提交
5697

5698 5699
		/*
		 * record the offset from the start of the extent
5700 5701 5702
		 * for adjusting the disk offset below.  Only do this if the
		 * extent isn't compressed since our in ram offset may be past
		 * what we have actually allocated on disk.
5703
		 */
5704 5705
		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
			offset_in_extent = em_start - em->start;
5706
		em_end = extent_map_end(em);
5707
		em_len = em_end - em_start;
Y
Yehuda Sadeh 已提交
5708
		flags = 0;
5709 5710 5711 5712
		if (em->block_start < EXTENT_MAP_LAST_BYTE)
			disko = em->block_start + offset_in_extent;
		else
			disko = 0;
Y
Yehuda Sadeh 已提交
5713

5714 5715 5716 5717 5718 5719 5720
		/*
		 * bump off for our next call to get_extent
		 */
		off = extent_map_end(em);
		if (off >= max)
			end = 1;

5721
		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
Y
Yehuda Sadeh 已提交
5722 5723
			end = 1;
			flags |= FIEMAP_EXTENT_LAST;
5724
		} else if (em->block_start == EXTENT_MAP_INLINE) {
Y
Yehuda Sadeh 已提交
5725 5726
			flags |= (FIEMAP_EXTENT_DATA_INLINE |
				  FIEMAP_EXTENT_NOT_ALIGNED);
5727
		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
Y
Yehuda Sadeh 已提交
5728 5729
			flags |= (FIEMAP_EXTENT_DELALLOC |
				  FIEMAP_EXTENT_UNKNOWN);
5730 5731 5732
		} else if (fieinfo->fi_extents_max) {
			u64 bytenr = em->block_start -
				(em->start - em->orig_start);
5733 5734 5735 5736

			/*
			 * As btrfs supports shared space, this information
			 * can be exported to userspace tools via
5737 5738 5739
			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
			 * then we're just getting a count and we can skip the
			 * lookup stuff.
5740
			 */
5741
			ret = btrfs_check_shared(root, btrfs_ino(inode),
5742
						 bytenr, roots, tmp_ulist);
5743
			if (ret < 0)
5744
				goto out_free;
5745
			if (ret)
5746
				flags |= FIEMAP_EXTENT_SHARED;
5747
			ret = 0;
Y
Yehuda Sadeh 已提交
5748 5749 5750
		}
		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
			flags |= FIEMAP_EXTENT_ENCODED;
5751 5752
		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
			flags |= FIEMAP_EXTENT_UNWRITTEN;
Y
Yehuda Sadeh 已提交
5753 5754 5755

		free_extent_map(em);
		em = NULL;
5756 5757
		if ((em_start >= last) || em_len == (u64)-1 ||
		   (last == (u64)-1 && isize <= em_end)) {
Y
Yehuda Sadeh 已提交
5758 5759 5760 5761
			flags |= FIEMAP_EXTENT_LAST;
			end = 1;
		}

5762
		/* now scan forward to see if this is really the last extent. */
5763
		em = get_extent_skip_holes(inode, off, last_for_get_extent);
5764 5765 5766 5767 5768
		if (IS_ERR(em)) {
			ret = PTR_ERR(em);
			goto out;
		}
		if (!em) {
J
Josef Bacik 已提交
5769 5770 5771
			flags |= FIEMAP_EXTENT_LAST;
			end = 1;
		}
5772 5773
		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
					   em_len, flags);
5774 5775 5776
		if (ret) {
			if (ret == 1)
				ret = 0;
5777
			goto out_free;
5778
		}
Y
Yehuda Sadeh 已提交
5779 5780
	}
out_free:
5781
	if (!ret)
5782
		ret = emit_last_fiemap_cache(fieinfo, &cache);
Y
Yehuda Sadeh 已提交
5783 5784
	free_extent_map(em);
out:
5785
	unlock_extent_cached(&inode->io_tree, start, start + len - 1,
5786
			     &cached_state);
5787 5788

out_free_ulist:
5789
	btrfs_free_path(path);
5790 5791
	ulist_free(roots);
	ulist_free(tmp_ulist);
Y
Yehuda Sadeh 已提交
5792 5793 5794
	return ret;
}

5795 5796 5797 5798 5799
static void __free_extent_buffer(struct extent_buffer *eb)
{
	kmem_cache_free(extent_buffer_cache, eb);
}

5800
int extent_buffer_under_io(const struct extent_buffer *eb)
5801 5802 5803 5804 5805 5806
{
	return (atomic_read(&eb->io_pages) ||
		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
}

5807
static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
5808
{
5809
	struct btrfs_subpage *subpage;
5810

5811
	lockdep_assert_held(&page->mapping->private_lock);
5812

5813 5814 5815 5816
	if (PagePrivate(page)) {
		subpage = (struct btrfs_subpage *)page->private;
		if (atomic_read(&subpage->eb_refs))
			return true;
5817 5818 5819 5820 5821 5822
		/*
		 * Even there is no eb refs here, we may still have
		 * end_page_read() call relying on page::private.
		 */
		if (atomic_read(&subpage->readers))
			return true;
5823 5824 5825
	}
	return false;
}
5826

5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839
static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);

	/*
	 * For mapped eb, we're going to change the page private, which should
	 * be done under the private_lock.
	 */
	if (mapped)
		spin_lock(&page->mapping->private_lock);

	if (!PagePrivate(page)) {
5840
		if (mapped)
5841 5842 5843 5844
			spin_unlock(&page->mapping->private_lock);
		return;
	}

5845
	if (fs_info->nodesize >= PAGE_SIZE) {
5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857
		/*
		 * We do this since we'll remove the pages after we've
		 * removed the eb from the radix tree, so we could race
		 * and have this page now attached to the new eb.  So
		 * only clear page_private if it's still connected to
		 * this eb.
		 */
		if (PagePrivate(page) &&
		    page->private == (unsigned long)eb) {
			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
			BUG_ON(PageDirty(page));
			BUG_ON(PageWriteback(page));
5858
			/*
5859 5860
			 * We need to make sure we haven't be attached
			 * to a new eb.
5861
			 */
5862
			detach_page_private(page);
5863
		}
5864 5865
		if (mapped)
			spin_unlock(&page->mapping->private_lock);
5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882
		return;
	}

	/*
	 * For subpage, we can have dummy eb with page private.  In this case,
	 * we can directly detach the private as such page is only attached to
	 * one dummy eb, no sharing.
	 */
	if (!mapped) {
		btrfs_detach_subpage(fs_info, page);
		return;
	}

	btrfs_page_dec_eb_refs(fs_info, page);

	/*
	 * We can only detach the page private if there are no other ebs in the
5883
	 * page range and no unfinished IO.
5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906
	 */
	if (!page_range_has_eb(fs_info, page))
		btrfs_detach_subpage(fs_info, page);

	spin_unlock(&page->mapping->private_lock);
}

/* Release all pages attached to the extent buffer */
static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
{
	int i;
	int num_pages;

	ASSERT(!extent_buffer_under_io(eb));

	num_pages = num_extent_pages(eb);
	for (i = 0; i < num_pages; i++) {
		struct page *page = eb->pages[i];

		if (!page)
			continue;

		detach_extent_buffer_page(eb, page);
5907

5908
		/* One for when we allocated the page */
5909
		put_page(page);
5910
	}
5911 5912 5913 5914 5915 5916 5917
}

/*
 * Helper for releasing the extent buffer.
 */
static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
{
5918
	btrfs_release_extent_buffer_pages(eb);
5919
	btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5920 5921 5922
	__free_extent_buffer(eb);
}

5923 5924
static struct extent_buffer *
__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
5925
		      unsigned long len)
5926 5927 5928
{
	struct extent_buffer *eb = NULL;

5929
	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
5930 5931
	eb->start = start;
	eb->len = len;
5932
	eb->fs_info = fs_info;
5933
	eb->bflags = 0;
5934
	init_rwsem(&eb->lock);
5935

5936 5937
	btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
			     &fs_info->allocated_ebs);
5938
	INIT_LIST_HEAD(&eb->release_list);
5939

5940
	spin_lock_init(&eb->refs_lock);
5941
	atomic_set(&eb->refs, 1);
5942
	atomic_set(&eb->io_pages, 0);
5943

5944
	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
5945 5946 5947 5948

	return eb;
}

5949
struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
5950
{
5951
	int i;
5952
	struct extent_buffer *new;
5953
	int num_pages = num_extent_pages(src);
5954
	int ret;
5955

5956
	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5957 5958 5959
	if (new == NULL)
		return NULL;

5960 5961 5962 5963 5964 5965 5966
	/*
	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
	 * btrfs_release_extent_buffer() have different behavior for
	 * UNMAPPED subpage extent buffer.
	 */
	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);

5967 5968 5969 5970 5971 5972 5973
	memset(new->pages, 0, sizeof(*new->pages) * num_pages);
	ret = btrfs_alloc_page_array(num_pages, new->pages);
	if (ret) {
		btrfs_release_extent_buffer(new);
		return NULL;
	}

5974
	for (i = 0; i < num_pages; i++) {
5975
		int ret;
5976
		struct page *p = new->pages[i];
5977 5978 5979 5980 5981 5982

		ret = attach_extent_buffer_page(new, p, NULL);
		if (ret < 0) {
			btrfs_release_extent_buffer(new);
			return NULL;
		}
5983
		WARN_ON(PageDirty(p));
5984
		copy_page(page_address(p), page_address(src->pages[i]));
5985
	}
5986
	set_extent_buffer_uptodate(new);
5987 5988 5989 5990

	return new;
}

5991 5992
struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
						  u64 start, unsigned long len)
5993 5994
{
	struct extent_buffer *eb;
5995 5996
	int num_pages;
	int i;
5997
	int ret;
5998

5999
	eb = __alloc_extent_buffer(fs_info, start, len);
6000 6001 6002
	if (!eb)
		return NULL;

6003
	num_pages = num_extent_pages(eb);
6004 6005 6006 6007
	ret = btrfs_alloc_page_array(num_pages, eb->pages);
	if (ret)
		goto err;

6008
	for (i = 0; i < num_pages; i++) {
6009
		struct page *p = eb->pages[i];
6010

6011
		ret = attach_extent_buffer_page(eb, p, NULL);
6012 6013
		if (ret < 0)
			goto err;
6014
	}
6015

6016 6017
	set_extent_buffer_uptodate(eb);
	btrfs_set_header_nritems(eb, 0);
6018
	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
6019 6020 6021

	return eb;
err:
6022 6023 6024 6025 6026
	for (i = 0; i < num_pages; i++) {
		if (eb->pages[i]) {
			detach_extent_buffer_page(eb, eb->pages[i]);
			__free_page(eb->pages[i]);
		}
6027
	}
6028 6029 6030 6031
	__free_extent_buffer(eb);
	return NULL;
}

6032
struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
6033
						u64 start)
6034
{
6035
	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
6036 6037
}

6038 6039
static void check_buffer_tree_ref(struct extent_buffer *eb)
{
6040
	int refs;
6041 6042 6043 6044
	/*
	 * The TREE_REF bit is first set when the extent_buffer is added
	 * to the radix tree. It is also reset, if unset, when a new reference
	 * is created by find_extent_buffer.
6045
	 *
6046 6047 6048
	 * It is only cleared in two cases: freeing the last non-tree
	 * reference to the extent_buffer when its STALE bit is set or
	 * calling releasepage when the tree reference is the only reference.
6049
	 *
6050 6051 6052 6053 6054
	 * In both cases, care is taken to ensure that the extent_buffer's
	 * pages are not under io. However, releasepage can be concurrently
	 * called with creating new references, which is prone to race
	 * conditions between the calls to check_buffer_tree_ref in those
	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
6055
	 *
6056 6057 6058 6059 6060 6061 6062
	 * The actual lifetime of the extent_buffer in the radix tree is
	 * adequately protected by the refcount, but the TREE_REF bit and
	 * its corresponding reference are not. To protect against this
	 * class of races, we call check_buffer_tree_ref from the codepaths
	 * which trigger io after they set eb->io_pages. Note that once io is
	 * initiated, TREE_REF can no longer be cleared, so that is the
	 * moment at which any such race is best fixed.
6063
	 */
6064 6065 6066 6067
	refs = atomic_read(&eb->refs);
	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		return;

6068 6069
	spin_lock(&eb->refs_lock);
	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6070
		atomic_inc(&eb->refs);
6071
	spin_unlock(&eb->refs_lock);
6072 6073
}

6074 6075
static void mark_extent_buffer_accessed(struct extent_buffer *eb,
		struct page *accessed)
6076
{
6077
	int num_pages, i;
6078

6079 6080
	check_buffer_tree_ref(eb);

6081
	num_pages = num_extent_pages(eb);
6082
	for (i = 0; i < num_pages; i++) {
6083 6084
		struct page *p = eb->pages[i];

6085 6086
		if (p != accessed)
			mark_page_accessed(p);
6087 6088 6089
	}
}

6090 6091
struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
					 u64 start)
6092 6093 6094
{
	struct extent_buffer *eb;

6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113
	eb = find_extent_buffer_nolock(fs_info, start);
	if (!eb)
		return NULL;
	/*
	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
	 * another task running free_extent_buffer() might have seen that flag
	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
	 * writeback flags not set) and it's still in the tree (flag
	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
	 * decrementing the extent buffer's reference count twice.  So here we
	 * could race and increment the eb's reference count, clear its stale
	 * flag, mark it as dirty and drop our reference before the other task
	 * finishes executing free_extent_buffer, which would later result in
	 * an attempt to free an extent buffer that is dirty.
	 */
	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
		spin_lock(&eb->refs_lock);
		spin_unlock(&eb->refs_lock);
6114
	}
6115 6116
	mark_extent_buffer_accessed(eb, NULL);
	return eb;
6117 6118
}

6119 6120
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
6121
					u64 start)
6122 6123 6124 6125 6126 6127 6128
{
	struct extent_buffer *eb, *exists = NULL;
	int ret;

	eb = find_extent_buffer(fs_info, start);
	if (eb)
		return eb;
6129
	eb = alloc_dummy_extent_buffer(fs_info, start);
6130
	if (!eb)
6131
		return ERR_PTR(-ENOMEM);
6132
	eb->fs_info = fs_info;
6133 6134 6135 6136 6137 6138 6139

	do {
		ret = xa_insert(&fs_info->extent_buffers,
				start >> fs_info->sectorsize_bits,
				eb, GFP_NOFS);
		if (ret == -ENOMEM) {
			exists = ERR_PTR(ret);
6140
			goto free_eb;
6141 6142 6143 6144 6145 6146 6147 6148
		}
		if (ret == -EBUSY) {
			exists = find_extent_buffer(fs_info, start);
			if (exists)
				goto free_eb;
		}
	} while (ret);

6149 6150 6151 6152 6153 6154 6155 6156 6157 6158
	check_buffer_tree_ref(eb);
	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);

	return eb;
free_eb:
	btrfs_release_extent_buffer(eb);
	return exists;
}
#endif

6159 6160
static struct extent_buffer *grab_extent_buffer(
		struct btrfs_fs_info *fs_info, struct page *page)
6161 6162 6163
{
	struct extent_buffer *exists;

6164 6165 6166 6167 6168
	/*
	 * For subpage case, we completely rely on radix tree to ensure we
	 * don't try to insert two ebs for the same bytenr.  So here we always
	 * return NULL and just continue.
	 */
6169
	if (fs_info->nodesize < PAGE_SIZE)
6170 6171
		return NULL;

6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190
	/* Page not yet attached to an extent buffer */
	if (!PagePrivate(page))
		return NULL;

	/*
	 * We could have already allocated an eb for this page and attached one
	 * so lets see if we can get a ref on the existing eb, and if we can we
	 * know it's good and we can just return that one, else we know we can
	 * just overwrite page->private.
	 */
	exists = (struct extent_buffer *)page->private;
	if (atomic_inc_not_zero(&exists->refs))
		return exists;

	WARN_ON(PageDirty(page));
	detach_page_private(page);
	return NULL;
}

6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214
static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
{
	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
		btrfs_err(fs_info, "bad tree block start %llu", start);
		return -EINVAL;
	}

	if (fs_info->nodesize < PAGE_SIZE &&
	    offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
		btrfs_err(fs_info,
		"tree block crosses page boundary, start %llu nodesize %u",
			  start, fs_info->nodesize);
		return -EINVAL;
	}
	if (fs_info->nodesize >= PAGE_SIZE &&
	    !IS_ALIGNED(start, PAGE_SIZE)) {
		btrfs_err(fs_info,
		"tree block is not page aligned, start %llu nodesize %u",
			  start, fs_info->nodesize);
		return -EINVAL;
	}
	return 0;
}

6215
struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
6216
					  u64 start, u64 owner_root, int level)
6217
{
6218
	unsigned long len = fs_info->nodesize;
6219 6220
	int num_pages;
	int i;
6221
	unsigned long index = start >> PAGE_SHIFT;
6222
	struct extent_buffer *eb;
6223
	struct extent_buffer *exists = NULL;
6224
	struct page *p;
6225
	struct address_space *mapping = fs_info->btree_inode->i_mapping;
6226
	int uptodate = 1;
6227
	int ret;
6228

6229
	if (check_eb_alignment(fs_info, start))
6230 6231
		return ERR_PTR(-EINVAL);

6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242
#if BITS_PER_LONG == 32
	if (start >= MAX_LFS_FILESIZE) {
		btrfs_err_rl(fs_info,
		"extent buffer %llu is beyond 32bit page cache limit", start);
		btrfs_err_32bit_limit(fs_info);
		return ERR_PTR(-EOVERFLOW);
	}
	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
		btrfs_warn_32bit_limit(fs_info);
#endif

6243
	eb = find_extent_buffer(fs_info, start);
6244
	if (eb)
6245 6246
		return eb;

6247
	eb = __alloc_extent_buffer(fs_info, start, len);
6248
	if (!eb)
6249
		return ERR_PTR(-ENOMEM);
6250
	btrfs_set_buffer_lockdep_class(owner_root, eb, level);
6251

6252
	num_pages = num_extent_pages(eb);
6253
	for (i = 0; i < num_pages; i++, index++) {
6254 6255
		struct btrfs_subpage *prealloc = NULL;

6256
		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
6257 6258
		if (!p) {
			exists = ERR_PTR(-ENOMEM);
6259
			goto free_eb;
6260
		}
J
Josef Bacik 已提交
6261

6262 6263 6264 6265 6266 6267 6268 6269 6270 6271
		/*
		 * Preallocate page->private for subpage case, so that we won't
		 * allocate memory with private_lock hold.  The memory will be
		 * freed by attach_extent_buffer_page() or freed manually if
		 * we exit earlier.
		 *
		 * Although we have ensured one subpage eb can only have one
		 * page, but it may change in the future for 16K page size
		 * support, so we still preallocate the memory in the loop.
		 */
6272
		if (fs_info->nodesize < PAGE_SIZE) {
6273 6274 6275
			prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
			if (IS_ERR(prealloc)) {
				ret = PTR_ERR(prealloc);
6276 6277 6278 6279 6280
				unlock_page(p);
				put_page(p);
				exists = ERR_PTR(ret);
				goto free_eb;
			}
6281 6282
		}

J
Josef Bacik 已提交
6283
		spin_lock(&mapping->private_lock);
6284
		exists = grab_extent_buffer(fs_info, p);
6285 6286 6287 6288 6289
		if (exists) {
			spin_unlock(&mapping->private_lock);
			unlock_page(p);
			put_page(p);
			mark_extent_buffer_accessed(exists, p);
6290
			btrfs_free_subpage(prealloc);
6291
			goto free_eb;
6292
		}
6293 6294 6295
		/* Should not fail, as we have preallocated the memory */
		ret = attach_extent_buffer_page(eb, p, prealloc);
		ASSERT(!ret);
6296 6297 6298 6299 6300 6301 6302 6303 6304 6305
		/*
		 * To inform we have extra eb under allocation, so that
		 * detach_extent_buffer_page() won't release the page private
		 * when the eb hasn't yet been inserted into radix tree.
		 *
		 * The ref will be decreased when the eb released the page, in
		 * detach_extent_buffer_page().
		 * Thus needs no special handling in error path.
		 */
		btrfs_page_inc_eb_refs(fs_info, p);
J
Josef Bacik 已提交
6306
		spin_unlock(&mapping->private_lock);
6307

6308
		WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
6309
		eb->pages[i] = p;
6310 6311
		if (!PageUptodate(p))
			uptodate = 0;
C
Chris Mason 已提交
6312 6313

		/*
6314 6315 6316 6317 6318
		 * We can't unlock the pages just yet since the extent buffer
		 * hasn't been properly inserted in the radix tree, this
		 * opens a race with btree_releasepage which can free a page
		 * while we are still filling in all pages for the buffer and
		 * we could crash.
C
Chris Mason 已提交
6319
		 */
6320 6321
	}
	if (uptodate)
6322
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6323 6324 6325 6326 6327 6328 6329

	do {
		ret = xa_insert(&fs_info->extent_buffers,
				start >> fs_info->sectorsize_bits,
				eb, GFP_NOFS);
		if (ret == -ENOMEM) {
			exists = ERR_PTR(ret);
6330
			goto free_eb;
6331 6332 6333 6334 6335 6336 6337 6338
		}
		if (ret == -EBUSY) {
			exists = find_extent_buffer(fs_info, start);
			if (exists)
				goto free_eb;
		}
	} while (ret);

6339
	/* add one reference for the tree */
6340
	check_buffer_tree_ref(eb);
6341
	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
C
Chris Mason 已提交
6342 6343

	/*
6344 6345 6346
	 * Now it's safe to unlock the pages because any calls to
	 * btree_releasepage will correctly detect that a page belongs to a
	 * live buffer and won't free them prematurely.
C
Chris Mason 已提交
6347
	 */
6348 6349
	for (i = 0; i < num_pages; i++)
		unlock_page(eb->pages[i]);
6350 6351
	return eb;

6352
free_eb:
6353
	WARN_ON(!atomic_dec_and_test(&eb->refs));
6354 6355 6356 6357
	for (i = 0; i < num_pages; i++) {
		if (eb->pages[i])
			unlock_page(eb->pages[i]);
	}
C
Chris Mason 已提交
6358

6359
	btrfs_release_extent_buffer(eb);
6360
	return exists;
6361 6362
}

6363 6364 6365 6366 6367 6368 6369 6370
static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
{
	struct extent_buffer *eb =
			container_of(head, struct extent_buffer, rcu_head);

	__free_extent_buffer(eb);
}

6371
static int release_extent_buffer(struct extent_buffer *eb)
6372
	__releases(&eb->refs_lock)
6373
{
6374 6375
	lockdep_assert_held(&eb->refs_lock);

6376 6377
	WARN_ON(atomic_read(&eb->refs) == 0);
	if (atomic_dec_and_test(&eb->refs)) {
6378
		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
6379
			struct btrfs_fs_info *fs_info = eb->fs_info;
6380

6381
			spin_unlock(&eb->refs_lock);
6382

6383 6384
			xa_erase(&fs_info->extent_buffers,
				 eb->start >> fs_info->sectorsize_bits);
6385 6386
		} else {
			spin_unlock(&eb->refs_lock);
6387
		}
6388

6389
		btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
6390
		/* Should be safe to release our pages at this point */
6391
		btrfs_release_extent_buffer_pages(eb);
6392
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
6393
		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
6394 6395 6396 6397
			__free_extent_buffer(eb);
			return 1;
		}
#endif
6398
		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
6399
		return 1;
6400 6401
	}
	spin_unlock(&eb->refs_lock);
6402 6403

	return 0;
6404 6405
}

6406 6407
void free_extent_buffer(struct extent_buffer *eb)
{
6408 6409
	int refs;
	int old;
6410 6411 6412
	if (!eb)
		return;

6413 6414
	while (1) {
		refs = atomic_read(&eb->refs);
6415 6416 6417
		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
			refs == 1))
6418 6419 6420 6421 6422 6423
			break;
		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
		if (old == refs)
			return;
	}

6424 6425 6426
	spin_lock(&eb->refs_lock);
	if (atomic_read(&eb->refs) == 2 &&
	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
6427
	    !extent_buffer_under_io(eb) &&
6428 6429 6430 6431 6432 6433 6434
	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		atomic_dec(&eb->refs);

	/*
	 * I know this is terrible, but it's temporary until we stop tracking
	 * the uptodate bits and such for the extent buffers.
	 */
6435
	release_extent_buffer(eb);
6436 6437 6438 6439 6440
}

void free_extent_buffer_stale(struct extent_buffer *eb)
{
	if (!eb)
6441 6442
		return;

6443 6444 6445
	spin_lock(&eb->refs_lock);
	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);

6446
	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
6447 6448
	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
		atomic_dec(&eb->refs);
6449
	release_extent_buffer(eb);
6450 6451
}

6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479
static void btree_clear_page_dirty(struct page *page)
{
	ASSERT(PageDirty(page));
	ASSERT(PageLocked(page));
	clear_page_dirty_for_io(page);
	xa_lock_irq(&page->mapping->i_pages);
	if (!PageDirty(page))
		__xa_clear_mark(&page->mapping->i_pages,
				page_index(page), PAGECACHE_TAG_DIRTY);
	xa_unlock_irq(&page->mapping->i_pages);
}

static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct page *page = eb->pages[0];
	bool last;

	/* btree_clear_page_dirty() needs page locked */
	lock_page(page);
	last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
						  eb->len);
	if (last)
		btree_clear_page_dirty(page);
	unlock_page(page);
	WARN_ON(atomic_read(&eb->refs) == 0);
}

6480
void clear_extent_buffer_dirty(const struct extent_buffer *eb)
6481
{
6482 6483
	int i;
	int num_pages;
6484 6485
	struct page *page;

6486
	if (eb->fs_info->nodesize < PAGE_SIZE)
6487 6488
		return clear_subpage_extent_buffer_dirty(eb);

6489
	num_pages = num_extent_pages(eb);
6490 6491

	for (i = 0; i < num_pages; i++) {
6492
		page = eb->pages[i];
6493
		if (!PageDirty(page))
C
Chris Mason 已提交
6494
			continue;
6495
		lock_page(page);
6496
		btree_clear_page_dirty(page);
6497
		ClearPageError(page);
6498
		unlock_page(page);
6499
	}
6500
	WARN_ON(atomic_read(&eb->refs) == 0);
6501 6502
}

6503
bool set_extent_buffer_dirty(struct extent_buffer *eb)
6504
{
6505 6506
	int i;
	int num_pages;
6507
	bool was_dirty;
6508

6509 6510
	check_buffer_tree_ref(eb);

6511
	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
6512

6513
	num_pages = num_extent_pages(eb);
6514
	WARN_ON(atomic_read(&eb->refs) == 0);
6515 6516
	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));

6517
	if (!was_dirty) {
6518
		bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
6519

6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538
		/*
		 * For subpage case, we can have other extent buffers in the
		 * same page, and in clear_subpage_extent_buffer_dirty() we
		 * have to clear page dirty without subpage lock held.
		 * This can cause race where our page gets dirty cleared after
		 * we just set it.
		 *
		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
		 * its page for other reasons, we can use page lock to prevent
		 * the above race.
		 */
		if (subpage)
			lock_page(eb->pages[0]);
		for (i = 0; i < num_pages; i++)
			btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
					     eb->start, eb->len);
		if (subpage)
			unlock_page(eb->pages[0]);
	}
6539 6540 6541 6542 6543
#ifdef CONFIG_BTRFS_DEBUG
	for (i = 0; i < num_pages; i++)
		ASSERT(PageDirty(eb->pages[i]));
#endif

6544
	return was_dirty;
6545 6546
}

6547
void clear_extent_buffer_uptodate(struct extent_buffer *eb)
6548
{
6549
	struct btrfs_fs_info *fs_info = eb->fs_info;
6550
	struct page *page;
6551
	int num_pages;
6552
	int i;
6553

6554
	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6555
	num_pages = num_extent_pages(eb);
6556
	for (i = 0; i < num_pages; i++) {
6557
		page = eb->pages[i];
6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569
		if (!page)
			continue;

		/*
		 * This is special handling for metadata subpage, as regular
		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
		 */
		if (fs_info->nodesize >= PAGE_SIZE)
			ClearPageUptodate(page);
		else
			btrfs_subpage_clear_uptodate(fs_info, page, eb->start,
						     eb->len);
6570 6571 6572
	}
}

6573
void set_extent_buffer_uptodate(struct extent_buffer *eb)
6574
{
6575
	struct btrfs_fs_info *fs_info = eb->fs_info;
6576
	struct page *page;
6577
	int num_pages;
6578
	int i;
6579

6580
	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6581
	num_pages = num_extent_pages(eb);
6582
	for (i = 0; i < num_pages; i++) {
6583
		page = eb->pages[i];
6584 6585 6586 6587 6588 6589 6590 6591 6592 6593

		/*
		 * This is special handling for metadata subpage, as regular
		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
		 */
		if (fs_info->nodesize >= PAGE_SIZE)
			SetPageUptodate(page);
		else
			btrfs_subpage_set_uptodate(fs_info, page, eb->start,
						   eb->len);
6594 6595 6596
	}
}

6597 6598 6599 6600 6601 6602
static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
				      int mirror_num)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	struct extent_io_tree *io_tree;
	struct page *page = eb->pages[0];
6603
	struct btrfs_bio_ctrl bio_ctrl = { 0 };
6604 6605 6606 6607 6608 6609 6610
	int ret = 0;

	ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
	ASSERT(PagePrivate(page));
	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;

	if (wait == WAIT_NONE) {
6611 6612
		if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1))
			return -EAGAIN;
6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633
	} else {
		ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1);
		if (ret < 0)
			return ret;
	}

	ret = 0;
	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
	    PageUptodate(page) ||
	    btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
		unlock_extent(io_tree, eb->start, eb->start + eb->len - 1);
		return ret;
	}

	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
	eb->read_mirror = 0;
	atomic_set(&eb->io_pages, 1);
	check_buffer_tree_ref(eb);
	btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);

6634
	btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len);
6635 6636 6637 6638
	ret = submit_extent_page(REQ_OP_READ | REQ_META, NULL, &bio_ctrl,
				 page, eb->start, eb->len,
				 eb->start - page_offset(page),
				 end_bio_extent_readpage, mirror_num, 0,
6639 6640 6641 6642 6643 6644 6645 6646 6647
				 true);
	if (ret) {
		/*
		 * In the endio function, if we hit something wrong we will
		 * increase the io_pages, so here we need to decrease it for
		 * error path.
		 */
		atomic_dec(&eb->io_pages);
	}
6648
	if (bio_ctrl.bio) {
6649
		submit_one_bio(bio_ctrl.bio, mirror_num, 0);
6650
		bio_ctrl.bio = NULL;
6651 6652 6653 6654 6655 6656 6657 6658 6659 6660
	}
	if (ret || wait != WAIT_COMPLETE)
		return ret;

	wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED);
	if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
		ret = -EIO;
	return ret;
}

6661
int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
6662
{
6663
	int i;
6664 6665 6666
	struct page *page;
	int err;
	int ret = 0;
6667 6668
	int locked_pages = 0;
	int all_uptodate = 1;
6669
	int num_pages;
6670
	unsigned long num_reads = 0;
6671
	struct btrfs_bio_ctrl bio_ctrl = { 0 };
6672

6673
	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6674 6675
		return 0;

6676 6677 6678 6679 6680 6681 6682 6683
	/*
	 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
	 * operation, which could potentially still be in flight.  In this case
	 * we simply want to return an error.
	 */
	if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
		return -EIO;

6684
	if (eb->fs_info->nodesize < PAGE_SIZE)
6685 6686
		return read_extent_buffer_subpage(eb, wait, mirror_num);

6687
	num_pages = num_extent_pages(eb);
6688
	for (i = 0; i < num_pages; i++) {
6689
		page = eb->pages[i];
6690
		if (wait == WAIT_NONE) {
6691 6692 6693 6694 6695 6696 6697
			/*
			 * WAIT_NONE is only utilized by readahead. If we can't
			 * acquire the lock atomically it means either the eb
			 * is being read out or under modification.
			 * Either way the eb will be or has been cached,
			 * readahead can exit safely.
			 */
6698
			if (!trylock_page(page))
6699
				goto unlock_exit;
6700 6701 6702
		} else {
			lock_page(page);
		}
6703
		locked_pages++;
6704 6705 6706 6707 6708 6709
	}
	/*
	 * We need to firstly lock all pages to make sure that
	 * the uptodate bit of our pages won't be affected by
	 * clear_extent_buffer_uptodate().
	 */
6710
	for (i = 0; i < num_pages; i++) {
6711
		page = eb->pages[i];
6712 6713
		if (!PageUptodate(page)) {
			num_reads++;
6714
			all_uptodate = 0;
6715
		}
6716
	}
6717

6718
	if (all_uptodate) {
6719
		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6720 6721 6722
		goto unlock_exit;
	}

6723
	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6724
	eb->read_mirror = 0;
6725
	atomic_set(&eb->io_pages, num_reads);
6726 6727 6728 6729 6730
	/*
	 * It is possible for releasepage to clear the TREE_REF bit before we
	 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
	 */
	check_buffer_tree_ref(eb);
6731
	for (i = 0; i < num_pages; i++) {
6732
		page = eb->pages[i];
6733

6734
		if (!PageUptodate(page)) {
6735 6736 6737 6738 6739 6740
			if (ret) {
				atomic_dec(&eb->io_pages);
				unlock_page(page);
				continue;
			}

6741
			ClearPageError(page);
6742
			err = submit_extent_page(REQ_OP_READ | REQ_META, NULL,
6743 6744 6745
					 &bio_ctrl, page, page_offset(page),
					 PAGE_SIZE, 0, end_bio_extent_readpage,
					 mirror_num, 0, false);
6746 6747
			if (err) {
				/*
6748 6749 6750
				 * We failed to submit the bio so it's the
				 * caller's responsibility to perform cleanup
				 * i.e unlock page/set error bit.
6751
				 */
6752 6753 6754
				ret = err;
				SetPageError(page);
				unlock_page(page);
6755 6756
				atomic_dec(&eb->io_pages);
			}
6757 6758 6759 6760 6761
		} else {
			unlock_page(page);
		}
	}

6762
	if (bio_ctrl.bio) {
6763
		submit_one_bio(bio_ctrl.bio, mirror_num, bio_ctrl.bio_flags);
6764
		bio_ctrl.bio = NULL;
6765
	}
6766

6767
	if (ret || wait != WAIT_COMPLETE)
6768
		return ret;
C
Chris Mason 已提交
6769

6770
	for (i = 0; i < num_pages; i++) {
6771
		page = eb->pages[i];
6772
		wait_on_page_locked(page);
C
Chris Mason 已提交
6773
		if (!PageUptodate(page))
6774 6775
			ret = -EIO;
	}
C
Chris Mason 已提交
6776

6777
	return ret;
6778 6779

unlock_exit:
C
Chris Mason 已提交
6780
	while (locked_pages > 0) {
6781
		locked_pages--;
6782 6783
		page = eb->pages[locked_pages];
		unlock_page(page);
6784 6785
	}
	return ret;
6786 6787
}

6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817
static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
			    unsigned long len)
{
	btrfs_warn(eb->fs_info,
		"access to eb bytenr %llu len %lu out of range start %lu len %lu",
		eb->start, eb->len, start, len);
	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));

	return true;
}

/*
 * Check if the [start, start + len) range is valid before reading/writing
 * the eb.
 * NOTE: @start and @len are offset inside the eb, not logical address.
 *
 * Caller should not touch the dst/src memory if this function returns error.
 */
static inline int check_eb_range(const struct extent_buffer *eb,
				 unsigned long start, unsigned long len)
{
	unsigned long offset;

	/* start, start + len should not go beyond eb->len nor overflow */
	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
		return report_eb_range(eb, start, len);

	return false;
}

6818 6819
void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
			unsigned long start, unsigned long len)
6820 6821 6822 6823 6824 6825
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *dst = (char *)dstv;
6826
	unsigned long i = get_eb_page_index(start);
6827

6828
	if (check_eb_range(eb, start, len))
6829
		return;
6830

6831
	offset = get_eb_offset_in_page(eb, start);
6832

C
Chris Mason 已提交
6833
	while (len > 0) {
6834
		page = eb->pages[i];
6835

6836
		cur = min(len, (PAGE_SIZE - offset));
6837
		kaddr = page_address(page);
6838 6839 6840 6841 6842 6843 6844 6845 6846
		memcpy(dst, kaddr + offset, cur);

		dst += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

6847 6848 6849
int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
				       void __user *dstv,
				       unsigned long start, unsigned long len)
6850 6851 6852 6853 6854 6855
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char __user *dst = (char __user *)dstv;
6856
	unsigned long i = get_eb_page_index(start);
6857 6858 6859 6860 6861
	int ret = 0;

	WARN_ON(start > eb->len);
	WARN_ON(start + len > eb->start + eb->len);

6862
	offset = get_eb_offset_in_page(eb, start);
6863 6864

	while (len > 0) {
6865
		page = eb->pages[i];
6866

6867
		cur = min(len, (PAGE_SIZE - offset));
6868
		kaddr = page_address(page);
6869
		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882
			ret = -EFAULT;
			break;
		}

		dst += cur;
		len -= cur;
		offset = 0;
		i++;
	}

	return ret;
}

6883 6884
int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
			 unsigned long start, unsigned long len)
6885 6886 6887 6888 6889 6890
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *ptr = (char *)ptrv;
6891
	unsigned long i = get_eb_page_index(start);
6892 6893
	int ret = 0;

6894 6895
	if (check_eb_range(eb, start, len))
		return -EINVAL;
6896

6897
	offset = get_eb_offset_in_page(eb, start);
6898

C
Chris Mason 已提交
6899
	while (len > 0) {
6900
		page = eb->pages[i];
6901

6902
		cur = min(len, (PAGE_SIZE - offset));
6903

6904
		kaddr = page_address(page);
6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916
		ret = memcmp(ptr, kaddr + offset, cur);
		if (ret)
			break;

		ptr += cur;
		len -= cur;
		offset = 0;
		i++;
	}
	return ret;
}

6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927
/*
 * Check that the extent buffer is uptodate.
 *
 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
 */
static void assert_eb_page_uptodate(const struct extent_buffer *eb,
				    struct page *page)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;

6928 6929 6930 6931 6932 6933 6934 6935 6936
	/*
	 * If we are using the commit root we could potentially clear a page
	 * Uptodate while we're using the extent buffer that we've previously
	 * looked up.  We don't want to complain in this case, as the page was
	 * valid before, we just didn't write it out.  Instead we want to catch
	 * the case where we didn't actually read the block properly, which
	 * would have !PageUptodate && !PageError, as we clear PageError before
	 * reading.
	 */
6937
	if (fs_info->nodesize < PAGE_SIZE) {
6938
		bool uptodate, error;
6939 6940 6941

		uptodate = btrfs_subpage_test_uptodate(fs_info, page,
						       eb->start, eb->len);
6942 6943
		error = btrfs_subpage_test_error(fs_info, page, eb->start, eb->len);
		WARN_ON(!uptodate && !error);
6944
	} else {
6945
		WARN_ON(!PageUptodate(page) && !PageError(page));
6946 6947 6948
	}
}

6949
void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
6950 6951 6952 6953
		const void *srcv)
{
	char *kaddr;

6954
	assert_eb_page_uptodate(eb, eb->pages[0]);
6955 6956 6957 6958
	kaddr = page_address(eb->pages[0]) +
		get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
						   chunk_tree_uuid));
	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6959 6960
}

6961
void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
6962 6963 6964
{
	char *kaddr;

6965
	assert_eb_page_uptodate(eb, eb->pages[0]);
6966 6967 6968
	kaddr = page_address(eb->pages[0]) +
		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6969 6970
}

6971
void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
6972 6973 6974 6975 6976 6977 6978
			 unsigned long start, unsigned long len)
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
	char *src = (char *)srcv;
6979
	unsigned long i = get_eb_page_index(start);
6980

6981 6982
	WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));

6983 6984
	if (check_eb_range(eb, start, len))
		return;
6985

6986
	offset = get_eb_offset_in_page(eb, start);
6987

C
Chris Mason 已提交
6988
	while (len > 0) {
6989
		page = eb->pages[i];
6990
		assert_eb_page_uptodate(eb, page);
6991

6992
		cur = min(len, PAGE_SIZE - offset);
6993
		kaddr = page_address(page);
6994 6995 6996 6997 6998 6999 7000 7001 7002
		memcpy(kaddr + offset, src, cur);

		src += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

7003
void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
7004
		unsigned long len)
7005 7006 7007 7008 7009
{
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
7010
	unsigned long i = get_eb_page_index(start);
7011

7012 7013
	if (check_eb_range(eb, start, len))
		return;
7014

7015
	offset = get_eb_offset_in_page(eb, start);
7016

C
Chris Mason 已提交
7017
	while (len > 0) {
7018
		page = eb->pages[i];
7019
		assert_eb_page_uptodate(eb, page);
7020

7021
		cur = min(len, PAGE_SIZE - offset);
7022
		kaddr = page_address(page);
7023
		memset(kaddr + offset, 0, cur);
7024 7025 7026 7027 7028 7029 7030

		len -= cur;
		offset = 0;
		i++;
	}
}

7031 7032
void copy_extent_buffer_full(const struct extent_buffer *dst,
			     const struct extent_buffer *src)
7033 7034
{
	int i;
7035
	int num_pages;
7036 7037 7038

	ASSERT(dst->len == src->len);

7039
	if (dst->fs_info->nodesize >= PAGE_SIZE) {
7040 7041 7042 7043 7044 7045 7046 7047
		num_pages = num_extent_pages(dst);
		for (i = 0; i < num_pages; i++)
			copy_page(page_address(dst->pages[i]),
				  page_address(src->pages[i]));
	} else {
		size_t src_offset = get_eb_offset_in_page(src, 0);
		size_t dst_offset = get_eb_offset_in_page(dst, 0);

7048
		ASSERT(src->fs_info->nodesize < PAGE_SIZE);
7049 7050 7051 7052
		memcpy(page_address(dst->pages[0]) + dst_offset,
		       page_address(src->pages[0]) + src_offset,
		       src->len);
	}
7053 7054
}

7055 7056
void copy_extent_buffer(const struct extent_buffer *dst,
			const struct extent_buffer *src,
7057 7058 7059 7060 7061 7062 7063 7064
			unsigned long dst_offset, unsigned long src_offset,
			unsigned long len)
{
	u64 dst_len = dst->len;
	size_t cur;
	size_t offset;
	struct page *page;
	char *kaddr;
7065
	unsigned long i = get_eb_page_index(dst_offset);
7066

7067 7068 7069 7070
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(src, src_offset, len))
		return;

7071 7072
	WARN_ON(src->len != dst_len);

7073
	offset = get_eb_offset_in_page(dst, dst_offset);
7074

C
Chris Mason 已提交
7075
	while (len > 0) {
7076
		page = dst->pages[i];
7077
		assert_eb_page_uptodate(dst, page);
7078

7079
		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
7080

7081
		kaddr = page_address(page);
7082 7083 7084 7085 7086 7087 7088 7089 7090
		read_extent_buffer(src, kaddr + offset, src_offset, cur);

		src_offset += cur;
		len -= cur;
		offset = 0;
		i++;
	}
}

7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103
/*
 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
 * given bit number
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @nr: bit number
 * @page_index: return index of the page in the extent buffer that contains the
 * given bit number
 * @page_offset: return offset into the page given by page_index
 *
 * This helper hides the ugliness of finding the byte in an extent buffer which
 * contains a given bit.
 */
7104
static inline void eb_bitmap_offset(const struct extent_buffer *eb,
7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116
				    unsigned long start, unsigned long nr,
				    unsigned long *page_index,
				    size_t *page_offset)
{
	size_t byte_offset = BIT_BYTE(nr);
	size_t offset;

	/*
	 * The byte we want is the offset of the extent buffer + the offset of
	 * the bitmap item in the extent buffer + the offset of the byte in the
	 * bitmap item.
	 */
7117
	offset = start + offset_in_page(eb->start) + byte_offset;
7118

7119
	*page_index = offset >> PAGE_SHIFT;
7120
	*page_offset = offset_in_page(offset);
7121 7122 7123 7124 7125 7126 7127 7128
}

/**
 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @nr: bit number to test
 */
7129
int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
7130 7131
			   unsigned long nr)
{
7132
	u8 *kaddr;
7133 7134 7135 7136 7137 7138
	struct page *page;
	unsigned long i;
	size_t offset;

	eb_bitmap_offset(eb, start, nr, &i, &offset);
	page = eb->pages[i];
7139
	assert_eb_page_uptodate(eb, page);
7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150
	kaddr = page_address(page);
	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
}

/**
 * extent_buffer_bitmap_set - set an area of a bitmap
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @pos: bit number of the first bit
 * @len: number of bits to set
 */
7151
void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
7152 7153
			      unsigned long pos, unsigned long len)
{
7154
	u8 *kaddr;
7155 7156 7157 7158 7159
	struct page *page;
	unsigned long i;
	size_t offset;
	const unsigned int size = pos + len;
	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
7160
	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
7161 7162 7163

	eb_bitmap_offset(eb, start, pos, &i, &offset);
	page = eb->pages[i];
7164
	assert_eb_page_uptodate(eb, page);
7165 7166 7167 7168 7169 7170
	kaddr = page_address(page);

	while (len >= bits_to_set) {
		kaddr[offset] |= mask_to_set;
		len -= bits_to_set;
		bits_to_set = BITS_PER_BYTE;
D
Dan Carpenter 已提交
7171
		mask_to_set = ~0;
7172
		if (++offset >= PAGE_SIZE && len > 0) {
7173 7174
			offset = 0;
			page = eb->pages[++i];
7175
			assert_eb_page_uptodate(eb, page);
7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192
			kaddr = page_address(page);
		}
	}
	if (len) {
		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
		kaddr[offset] |= mask_to_set;
	}
}


/**
 * extent_buffer_bitmap_clear - clear an area of a bitmap
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @pos: bit number of the first bit
 * @len: number of bits to clear
 */
7193 7194 7195
void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
				unsigned long start, unsigned long pos,
				unsigned long len)
7196
{
7197
	u8 *kaddr;
7198 7199 7200 7201 7202
	struct page *page;
	unsigned long i;
	size_t offset;
	const unsigned int size = pos + len;
	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
7203
	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
7204 7205 7206

	eb_bitmap_offset(eb, start, pos, &i, &offset);
	page = eb->pages[i];
7207
	assert_eb_page_uptodate(eb, page);
7208 7209 7210 7211 7212 7213
	kaddr = page_address(page);

	while (len >= bits_to_clear) {
		kaddr[offset] &= ~mask_to_clear;
		len -= bits_to_clear;
		bits_to_clear = BITS_PER_BYTE;
D
Dan Carpenter 已提交
7214
		mask_to_clear = ~0;
7215
		if (++offset >= PAGE_SIZE && len > 0) {
7216 7217
			offset = 0;
			page = eb->pages[++i];
7218
			assert_eb_page_uptodate(eb, page);
7219 7220 7221 7222 7223 7224 7225 7226 7227
			kaddr = page_address(page);
		}
	}
	if (len) {
		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
		kaddr[offset] &= ~mask_to_clear;
	}
}

7228 7229 7230 7231 7232 7233
static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
{
	unsigned long distance = (src > dst) ? src - dst : dst - src;
	return distance < len;
}

7234 7235 7236 7237
static void copy_pages(struct page *dst_page, struct page *src_page,
		       unsigned long dst_off, unsigned long src_off,
		       unsigned long len)
{
7238
	char *dst_kaddr = page_address(dst_page);
7239
	char *src_kaddr;
7240
	int must_memmove = 0;
7241

7242
	if (dst_page != src_page) {
7243
		src_kaddr = page_address(src_page);
7244
	} else {
7245
		src_kaddr = dst_kaddr;
7246 7247
		if (areas_overlap(src_off, dst_off, len))
			must_memmove = 1;
7248
	}
7249

7250 7251 7252 7253
	if (must_memmove)
		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
	else
		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
7254 7255
}

7256 7257 7258
void memcpy_extent_buffer(const struct extent_buffer *dst,
			  unsigned long dst_offset, unsigned long src_offset,
			  unsigned long len)
7259 7260 7261 7262 7263 7264 7265
{
	size_t cur;
	size_t dst_off_in_page;
	size_t src_off_in_page;
	unsigned long dst_i;
	unsigned long src_i;

7266 7267 7268
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(dst, src_offset, len))
		return;
7269

C
Chris Mason 已提交
7270
	while (len > 0) {
7271 7272
		dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
		src_off_in_page = get_eb_offset_in_page(dst, src_offset);
7273

7274 7275
		dst_i = get_eb_page_index(dst_offset);
		src_i = get_eb_page_index(src_offset);
7276

7277
		cur = min(len, (unsigned long)(PAGE_SIZE -
7278 7279
					       src_off_in_page));
		cur = min_t(unsigned long, cur,
7280
			(unsigned long)(PAGE_SIZE - dst_off_in_page));
7281

7282
		copy_pages(dst->pages[dst_i], dst->pages[src_i],
7283 7284 7285 7286 7287 7288 7289 7290
			   dst_off_in_page, src_off_in_page, cur);

		src_offset += cur;
		dst_offset += cur;
		len -= cur;
	}
}

7291 7292 7293
void memmove_extent_buffer(const struct extent_buffer *dst,
			   unsigned long dst_offset, unsigned long src_offset,
			   unsigned long len)
7294 7295 7296 7297 7298 7299 7300 7301 7302
{
	size_t cur;
	size_t dst_off_in_page;
	size_t src_off_in_page;
	unsigned long dst_end = dst_offset + len - 1;
	unsigned long src_end = src_offset + len - 1;
	unsigned long dst_i;
	unsigned long src_i;

7303 7304 7305
	if (check_eb_range(dst, dst_offset, len) ||
	    check_eb_range(dst, src_offset, len))
		return;
7306
	if (dst_offset < src_offset) {
7307 7308 7309
		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
		return;
	}
C
Chris Mason 已提交
7310
	while (len > 0) {
7311 7312
		dst_i = get_eb_page_index(dst_end);
		src_i = get_eb_page_index(src_end);
7313

7314 7315
		dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
		src_off_in_page = get_eb_offset_in_page(dst, src_end);
7316 7317 7318

		cur = min_t(unsigned long, len, src_off_in_page + 1);
		cur = min(cur, dst_off_in_page + 1);
7319
		copy_pages(dst->pages[dst_i], dst->pages[src_i],
7320 7321 7322 7323 7324 7325 7326 7327
			   dst_off_in_page - cur + 1,
			   src_off_in_page - cur + 1, cur);

		dst_end -= cur;
		src_end -= cur;
		len -= cur;
	}
}
7328

7329 7330 7331
static struct extent_buffer *get_next_extent_buffer(
		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
{
7332 7333
	struct extent_buffer *eb;
	unsigned long index;
7334 7335 7336 7337 7338
	u64 page_start = page_offset(page);

	ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
	lockdep_assert_held(&fs_info->buffer_lock);

7339 7340 7341 7342 7343 7344 7345
	xa_for_each_start(&fs_info->extent_buffers, index, eb,
			  page_start >> fs_info->sectorsize_bits) {
		if (in_range(eb->start, page_start, PAGE_SIZE))
			return eb;
		else if (eb->start >= page_start + PAGE_SIZE)
		        /* Already beyond page end */
			return NULL;
7346
	}
7347
	return NULL;
7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419
}

static int try_release_subpage_extent_buffer(struct page *page)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
	u64 cur = page_offset(page);
	const u64 end = page_offset(page) + PAGE_SIZE;
	int ret;

	while (cur < end) {
		struct extent_buffer *eb = NULL;

		/*
		 * Unlike try_release_extent_buffer() which uses page->private
		 * to grab buffer, for subpage case we rely on radix tree, thus
		 * we need to ensure radix tree consistency.
		 *
		 * We also want an atomic snapshot of the radix tree, thus go
		 * with spinlock rather than RCU.
		 */
		spin_lock(&fs_info->buffer_lock);
		eb = get_next_extent_buffer(fs_info, page, cur);
		if (!eb) {
			/* No more eb in the page range after or at cur */
			spin_unlock(&fs_info->buffer_lock);
			break;
		}
		cur = eb->start + eb->len;

		/*
		 * The same as try_release_extent_buffer(), to ensure the eb
		 * won't disappear out from under us.
		 */
		spin_lock(&eb->refs_lock);
		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
			spin_unlock(&eb->refs_lock);
			spin_unlock(&fs_info->buffer_lock);
			break;
		}
		spin_unlock(&fs_info->buffer_lock);

		/*
		 * If tree ref isn't set then we know the ref on this eb is a
		 * real ref, so just return, this eb will likely be freed soon
		 * anyway.
		 */
		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
			spin_unlock(&eb->refs_lock);
			break;
		}

		/*
		 * Here we don't care about the return value, we will always
		 * check the page private at the end.  And
		 * release_extent_buffer() will release the refs_lock.
		 */
		release_extent_buffer(eb);
	}
	/*
	 * Finally to check if we have cleared page private, as if we have
	 * released all ebs in the page, the page private should be cleared now.
	 */
	spin_lock(&page->mapping->private_lock);
	if (!PagePrivate(page))
		ret = 1;
	else
		ret = 0;
	spin_unlock(&page->mapping->private_lock);
	return ret;

}

7420
int try_release_extent_buffer(struct page *page)
7421
{
7422 7423
	struct extent_buffer *eb;

7424
	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
7425 7426
		return try_release_subpage_extent_buffer(page);

7427
	/*
7428 7429
	 * We need to make sure nobody is changing page->private, as we rely on
	 * page->private as the pointer to extent buffer.
7430 7431 7432 7433
	 */
	spin_lock(&page->mapping->private_lock);
	if (!PagePrivate(page)) {
		spin_unlock(&page->mapping->private_lock);
J
Josef Bacik 已提交
7434
		return 1;
7435
	}
7436

7437 7438
	eb = (struct extent_buffer *)page->private;
	BUG_ON(!eb);
7439 7440

	/*
7441 7442 7443
	 * This is a little awful but should be ok, we need to make sure that
	 * the eb doesn't disappear out from under us while we're looking at
	 * this page.
7444
	 */
7445
	spin_lock(&eb->refs_lock);
7446
	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7447 7448 7449
		spin_unlock(&eb->refs_lock);
		spin_unlock(&page->mapping->private_lock);
		return 0;
7450
	}
7451
	spin_unlock(&page->mapping->private_lock);
7452

7453
	/*
7454 7455
	 * If tree ref isn't set then we know the ref on this eb is a real ref,
	 * so just return, this page will likely be freed soon anyway.
7456
	 */
7457 7458 7459
	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
		spin_unlock(&eb->refs_lock);
		return 0;
7460
	}
7461

7462
	return release_extent_buffer(eb);
7463
}
7464 7465 7466 7467 7468

/*
 * btrfs_readahead_tree_block - attempt to readahead a child block
 * @fs_info:	the fs_info
 * @bytenr:	bytenr to read
7469
 * @owner_root: objectid of the root that owns this eb
7470
 * @gen:	generation for the uptodate check, can be 0
7471
 * @level:	level for the eb
7472 7473 7474 7475 7476 7477
 *
 * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
 * normal uptodate check of the eb, without checking the generation.  If we have
 * to read the block we will not block on anything.
 */
void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
7478
				u64 bytenr, u64 owner_root, u64 gen, int level)
7479 7480 7481 7482
{
	struct extent_buffer *eb;
	int ret;

7483
	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510
	if (IS_ERR(eb))
		return;

	if (btrfs_buffer_uptodate(eb, gen, 1)) {
		free_extent_buffer(eb);
		return;
	}

	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
	if (ret < 0)
		free_extent_buffer_stale(eb);
	else
		free_extent_buffer(eb);
}

/*
 * btrfs_readahead_node_child - readahead a node's child block
 * @node:	parent node we're reading from
 * @slot:	slot in the parent node for the child we want to read
 *
 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
 * the slot in the node provided.
 */
void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
{
	btrfs_readahead_tree_block(node->fs_info,
				   btrfs_node_blockptr(node, slot),
7511 7512 7513
				   btrfs_header_owner(node),
				   btrfs_node_ptr_generation(node, slot),
				   btrfs_header_level(node) - 1);
7514
}