entry_64.S 46.7 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2 3 4 5 6 7
/*
 *  linux/arch/x86_64/entry.S
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
8
 *
L
Linus Torvalds 已提交
9 10
 * entry.S contains the system-call and fault low-level handling routines.
 *
11 12
 * Some of this is documented in Documentation/x86/entry_64.txt
 *
13
 * A note on terminology:
14 15
 * - iret frame:	Architecture defined interrupt frame from SS to RIP
 *			at the top of the kernel process stack.
16 17
 *
 * Some macro usage:
18 19 20
 * - ENTRY/END:		Define functions in the symbol table.
 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
 * - idtentry:		Define exception entry points.
L
Linus Torvalds 已提交
21 22 23 24 25
 */
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/cache.h>
#include <asm/errno.h>
26
#include <asm/asm-offsets.h>
L
Linus Torvalds 已提交
27 28 29 30
#include <asm/msr.h>
#include <asm/unistd.h>
#include <asm/thread_info.h>
#include <asm/hw_irq.h>
31
#include <asm/page_types.h>
32
#include <asm/irqflags.h>
33
#include <asm/paravirt.h>
34
#include <asm/percpu.h>
35
#include <asm/asm.h>
36
#include <asm/smap.h>
37
#include <asm/pgtable_types.h>
38
#include <asm/export.h>
39
#include <asm/frame.h>
40
#include <asm/nospec-branch.h>
41
#include <linux/err.h>
L
Linus Torvalds 已提交
42

43 44
#include "calling.h"

45 46
.code64
.section .entry.text, "ax"
47

48
#ifdef CONFIG_PARAVIRT
49
ENTRY(native_usergs_sysret64)
50
	UNWIND_HINT_EMPTY
51 52
	swapgs
	sysretq
53
END(native_usergs_sysret64)
54 55
#endif /* CONFIG_PARAVIRT */

56
.macro TRACE_IRQS_FLAGS flags:req
57
#ifdef CONFIG_TRACE_IRQFLAGS
58
	btl	$9, \flags		/* interrupts off? */
59
	jnc	1f
60 61 62 63 64
	TRACE_IRQS_ON
1:
#endif
.endm

65 66 67 68
.macro TRACE_IRQS_IRETQ
	TRACE_IRQS_FLAGS EFLAGS(%rsp)
.endm

69 70 71 72 73 74 75 76 77 78 79 80 81 82
/*
 * When dynamic function tracer is enabled it will add a breakpoint
 * to all locations that it is about to modify, sync CPUs, update
 * all the code, sync CPUs, then remove the breakpoints. In this time
 * if lockdep is enabled, it might jump back into the debug handler
 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
 *
 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
 * make sure the stack pointer does not get reset back to the top
 * of the debug stack, and instead just reuses the current stack.
 */
#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)

.macro TRACE_IRQS_OFF_DEBUG
83
	call	debug_stack_set_zero
84
	TRACE_IRQS_OFF
85
	call	debug_stack_reset
86 87 88
.endm

.macro TRACE_IRQS_ON_DEBUG
89
	call	debug_stack_set_zero
90
	TRACE_IRQS_ON
91
	call	debug_stack_reset
92 93
.endm

94
.macro TRACE_IRQS_IRETQ_DEBUG
95
	btl	$9, EFLAGS(%rsp)		/* interrupts off? */
96
	jnc	1f
97 98 99 100 101
	TRACE_IRQS_ON_DEBUG
1:
.endm

#else
102 103 104
# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
105 106
#endif

L
Linus Torvalds 已提交
107
/*
108
 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
L
Linus Torvalds 已提交
109
 *
110 111 112 113 114 115 116 117 118 119
 * This is the only entry point used for 64-bit system calls.  The
 * hardware interface is reasonably well designed and the register to
 * argument mapping Linux uses fits well with the registers that are
 * available when SYSCALL is used.
 *
 * SYSCALL instructions can be found inlined in libc implementations as
 * well as some other programs and libraries.  There are also a handful
 * of SYSCALL instructions in the vDSO used, for example, as a
 * clock_gettimeofday fallback.
 *
120
 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
121 122 123 124 125 126
 * then loads new ss, cs, and rip from previously programmed MSRs.
 * rflags gets masked by a value from another MSR (so CLD and CLAC
 * are not needed). SYSCALL does not save anything on the stack
 * and does not change rsp.
 *
 * Registers on entry:
L
Linus Torvalds 已提交
127
 * rax  system call number
128 129
 * rcx  return address
 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
L
Linus Torvalds 已提交
130 131
 * rdi  arg0
 * rsi  arg1
132
 * rdx  arg2
133
 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
L
Linus Torvalds 已提交
134 135
 * r8   arg4
 * r9   arg5
136
 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
137
 *
L
Linus Torvalds 已提交
138 139
 * Only called from user space.
 *
140
 * When user can change pt_regs->foo always force IRET. That is because
141 142
 * it deals with uncanonical addresses better. SYSRET has trouble
 * with them due to bugs in both AMD and Intel CPUs.
143
 */
L
Linus Torvalds 已提交
144

145
ENTRY(entry_SYSCALL_64)
146
	UNWIND_HINT_EMPTY
147 148 149 150 151
	/*
	 * Interrupts are off on entry.
	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
	 * it is too small to ever cause noticeable irq latency.
	 */
152

153
	swapgs
154
	/* tss.sp2 is scratch space. */
155
	movq	%rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
156
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
157
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
158 159

	/* Construct struct pt_regs on stack */
160 161 162 163 164
	pushq	$__USER_DS				/* pt_regs->ss */
	pushq	PER_CPU_VAR(cpu_tss_rw + TSS_sp2)	/* pt_regs->sp */
	pushq	%r11					/* pt_regs->flags */
	pushq	$__USER_CS				/* pt_regs->cs */
	pushq	%rcx					/* pt_regs->ip */
165
GLOBAL(entry_SYSCALL_64_after_hwframe)
166
	pushq	%rax					/* pt_regs->orig_ax */
167 168

	PUSH_AND_CLEAR_REGS rax=$-ENOSYS
169

170 171
	TRACE_IRQS_OFF

172
	/* IRQs are off. */
173 174
	movq	%rax, %rdi
	movq	%rsp, %rsi
175 176
	call	do_syscall_64		/* returns with IRQs disabled */

177
	TRACE_IRQS_IRETQ		/* we're about to change IF */
178 179 180

	/*
	 * Try to use SYSRET instead of IRET if we're returning to
181 182
	 * a completely clean 64-bit userspace context.  If we're not,
	 * go to the slow exit path.
183
	 */
184 185
	movq	RCX(%rsp), %rcx
	movq	RIP(%rsp), %r11
186 187 188

	cmpq	%rcx, %r11	/* SYSRET requires RCX == RIP */
	jne	swapgs_restore_regs_and_return_to_usermode
189 190 191 192

	/*
	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
	 * in kernel space.  This essentially lets the user take over
193
	 * the kernel, since userspace controls RSP.
194
	 *
195
	 * If width of "canonical tail" ever becomes variable, this will need
196
	 * to be updated to remain correct on both old and new CPUs.
197
	 *
198 199
	 * Change top bits to match most significant bit (47th or 56th bit
	 * depending on paging mode) in the address.
200
	 */
201
#ifdef CONFIG_X86_5LEVEL
202 203
	ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
		"shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
204
#else
205 206
	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
207
#endif
208

209 210
	/* If this changed %rcx, it was not canonical */
	cmpq	%rcx, %r11
211
	jne	swapgs_restore_regs_and_return_to_usermode
212

213
	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
214
	jne	swapgs_restore_regs_and_return_to_usermode
215

216 217
	movq	R11(%rsp), %r11
	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
218
	jne	swapgs_restore_regs_and_return_to_usermode
219 220

	/*
221 222 223 224 225 226 227 228 229
	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
	 * restore RF properly. If the slowpath sets it for whatever reason, we
	 * need to restore it correctly.
	 *
	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
	 * trap from userspace immediately after SYSRET.  This would cause an
	 * infinite loop whenever #DB happens with register state that satisfies
	 * the opportunistic SYSRET conditions.  For example, single-stepping
	 * this user code:
230
	 *
231
	 *           movq	$stuck_here, %rcx
232 233 234 235 236 237
	 *           pushfq
	 *           popq %r11
	 *   stuck_here:
	 *
	 * would never get past 'stuck_here'.
	 */
238
	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
239
	jnz	swapgs_restore_regs_and_return_to_usermode
240 241 242

	/* nothing to check for RSP */

243
	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
244
	jne	swapgs_restore_regs_and_return_to_usermode
245 246

	/*
247 248
	 * We win! This label is here just for ease of understanding
	 * perf profiles. Nothing jumps here.
249 250
	 */
syscall_return_via_sysret:
251
	/* rcx and r11 are already restored (see code above) */
252
	UNWIND_HINT_EMPTY
253
	POP_REGS pop_rdi=0 skip_r11rcx=1
254 255 256 257 258 259

	/*
	 * Now all regs are restored except RSP and RDI.
	 * Save old stack pointer and switch to trampoline stack.
	 */
	movq	%rsp, %rdi
260
	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
261 262 263 264 265 266 267 268

	pushq	RSP-RDI(%rdi)	/* RSP */
	pushq	(%rdi)		/* RDI */

	/*
	 * We are on the trampoline stack.  All regs except RDI are live.
	 * We can do future final exit work right here.
	 */
269 270
	STACKLEAK_ERASE_NOCLOBBER

271
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
272

273
	popq	%rdi
274
	popq	%rsp
275
	USERGS_SYSRET64
276
END(entry_SYSCALL_64)
277

278 279 280 281 282
/*
 * %rdi: prev task
 * %rsi: next task
 */
ENTRY(__switch_to_asm)
283
	UNWIND_HINT_FUNC
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
	/*
	 * Save callee-saved registers
	 * This must match the order in inactive_task_frame
	 */
	pushq	%rbp
	pushq	%rbx
	pushq	%r12
	pushq	%r13
	pushq	%r14
	pushq	%r15

	/* switch stack */
	movq	%rsp, TASK_threadsp(%rdi)
	movq	TASK_threadsp(%rsi), %rsp

299
#ifdef CONFIG_STACKPROTECTOR
300 301 302 303
	movq	TASK_stack_canary(%rsi), %rbx
	movq	%rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
#endif

304 305 306 307 308 309 310 311
#ifdef CONFIG_RETPOLINE
	/*
	 * When switching from a shallower to a deeper call stack
	 * the RSB may either underflow or use entries populated
	 * with userspace addresses. On CPUs where those concerns
	 * exist, overwrite the RSB with entries which capture
	 * speculative execution to prevent attack.
	 */
312
	FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
313 314
#endif

315 316 317 318 319 320 321 322 323 324 325
	/* restore callee-saved registers */
	popq	%r15
	popq	%r14
	popq	%r13
	popq	%r12
	popq	%rbx
	popq	%rbp

	jmp	__switch_to
END(__switch_to_asm)

326 327 328
/*
 * A newly forked process directly context switches into this address.
 *
329
 * rax: prev task we switched from
330 331
 * rbx: kernel thread func (NULL for user thread)
 * r12: kernel thread arg
332 333
 */
ENTRY(ret_from_fork)
334
	UNWIND_HINT_EMPTY
335
	movq	%rax, %rdi
336
	call	schedule_tail			/* rdi: 'prev' task parameter */
337

338 339
	testq	%rbx, %rbx			/* from kernel_thread? */
	jnz	1f				/* kernel threads are uncommon */
340

341
2:
342
	UNWIND_HINT_REGS
343
	movq	%rsp, %rdi
344 345
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	TRACE_IRQS_ON			/* user mode is traced as IRQS on */
346
	jmp	swapgs_restore_regs_and_return_to_usermode
347 348 349

1:
	/* kernel thread */
350
	UNWIND_HINT_EMPTY
351
	movq	%r12, %rdi
352
	CALL_NOSPEC %rbx
353 354 355 356 357 358 359
	/*
	 * A kernel thread is allowed to return here after successfully
	 * calling do_execve().  Exit to userspace to complete the execve()
	 * syscall.
	 */
	movq	$0, RAX(%rsp)
	jmp	2b
360 361
END(ret_from_fork)

362
/*
363 364
 * Build the entry stubs with some assembler magic.
 * We pack 1 stub into every 8-byte block.
365
 */
366
	.align 8
367
ENTRY(irq_entries_start)
368 369
    vector=FIRST_EXTERNAL_VECTOR
    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
370
	UNWIND_HINT_IRET_REGS
371
	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
372 373
	jmp	common_interrupt
	.align	8
374
	vector=vector+1
375
    .endr
376 377
END(irq_entries_start)

378 379
.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
#ifdef CONFIG_DEBUG_ENTRY
380 381 382
	pushq %rax
	SAVE_FLAGS(CLBR_RAX)
	testl $X86_EFLAGS_IF, %eax
383 384 385
	jz .Lokay_\@
	ud2
.Lokay_\@:
386
	popq %rax
387 388 389 390 391 392 393 394 395 396
#endif
.endm

/*
 * Enters the IRQ stack if we're not already using it.  NMI-safe.  Clobbers
 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
 * Requires kernel GSBASE.
 *
 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
 */
397
.macro ENTER_IRQ_STACK regs=1 old_rsp save_ret=0
398
	DEBUG_ENTRY_ASSERT_IRQS_OFF
399 400 401 402 403 404 405 406 407

	.if \save_ret
	/*
	 * If save_ret is set, the original stack contains one additional
	 * entry -- the return address. Therefore, move the address one
	 * entry below %rsp to \old_rsp.
	 */
	leaq	8(%rsp), \old_rsp
	.else
408
	movq	%rsp, \old_rsp
409
	.endif
410 411 412 413 414

	.if \regs
	UNWIND_HINT_REGS base=\old_rsp
	.endif

415
	incl	PER_CPU_VAR(irq_count)
416
	jnz	.Lirq_stack_push_old_rsp_\@
417 418 419 420 421 422 423 424 425

	/*
	 * Right now, if we just incremented irq_count to zero, we've
	 * claimed the IRQ stack but we haven't switched to it yet.
	 *
	 * If anything is added that can interrupt us here without using IST,
	 * it must be *extremely* careful to limit its stack usage.  This
	 * could include kprobes and a hypothetical future IST-less #DB
	 * handler.
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
	 *
	 * The OOPS unwinder relies on the word at the top of the IRQ
	 * stack linking back to the previous RSP for the entire time we're
	 * on the IRQ stack.  For this to work reliably, we need to write
	 * it before we actually move ourselves to the IRQ stack.
	 */

	movq	\old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
	movq	PER_CPU_VAR(irq_stack_ptr), %rsp

#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * If the first movq above becomes wrong due to IRQ stack layout
	 * changes, the only way we'll notice is if we try to unwind right
	 * here.  Assert that we set up the stack right to catch this type
	 * of bug quickly.
442
	 */
443 444 445 446 447
	cmpq	-8(%rsp), \old_rsp
	je	.Lirq_stack_okay\@
	ud2
	.Lirq_stack_okay\@:
#endif
448

449
.Lirq_stack_push_old_rsp_\@:
450
	pushq	\old_rsp
451 452 453 454

	.if \regs
	UNWIND_HINT_REGS indirect=1
	.endif
455 456 457 458 459 460 461 462 463

	.if \save_ret
	/*
	 * Push the return address to the stack. This return address can
	 * be found at the "real" original RSP, which was offset by 8 at
	 * the beginning of this macro.
	 */
	pushq	-8(\old_rsp)
	.endif
464 465 466 467 468
.endm

/*
 * Undoes ENTER_IRQ_STACK.
 */
469
.macro LEAVE_IRQ_STACK regs=1
470 471 472 473
	DEBUG_ENTRY_ASSERT_IRQS_OFF
	/* We need to be off the IRQ stack before decrementing irq_count. */
	popq	%rsp

474 475 476 477
	.if \regs
	UNWIND_HINT_REGS
	.endif

478 479 480 481 482 483 484 485
	/*
	 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
	 * the irq stack but we're not on it.
	 */

	decl	PER_CPU_VAR(irq_count)
.endm

486
/*
487
 * Interrupt entry helper function.
488
 *
489 490 491 492 493 494 495 496 497 498 499 500
 * Entry runs with interrupts off. Stack layout at entry:
 * +----------------------------------------------------+
 * | regs->ss						|
 * | regs->rsp						|
 * | regs->eflags					|
 * | regs->cs						|
 * | regs->ip						|
 * +----------------------------------------------------+
 * | regs->orig_ax = ~(interrupt number)		|
 * +----------------------------------------------------+
 * | return address					|
 * +----------------------------------------------------+
501
 */
502 503 504
ENTRY(interrupt_entry)
	UNWIND_HINT_FUNC
	ASM_CLAC
505
	cld
506

507
	testb	$3, CS-ORIG_RAX+8(%rsp)
508 509
	jz	1f
	SWAPGS
510 511 512 513 514 515 516

	/*
	 * Switch to the thread stack. The IRET frame and orig_ax are
	 * on the stack, as well as the return address. RDI..R12 are
	 * not (yet) on the stack and space has not (yet) been
	 * allocated for them.
	 */
517
	pushq	%rdi
518

519 520 521 522
	/* Need to switch before accessing the thread stack. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
	movq	%rsp, %rdi
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
523 524 525 526 527 528

	 /*
	  * We have RDI, return address, and orig_ax on the stack on
	  * top of the IRET frame. That means offset=24
	  */
	UNWIND_HINT_IRET_REGS base=%rdi offset=24
529 530 531 532 533 534 535 536 537 538 539

	pushq	7*8(%rdi)		/* regs->ss */
	pushq	6*8(%rdi)		/* regs->rsp */
	pushq	5*8(%rdi)		/* regs->eflags */
	pushq	4*8(%rdi)		/* regs->cs */
	pushq	3*8(%rdi)		/* regs->ip */
	pushq	2*8(%rdi)		/* regs->orig_ax */
	pushq	8(%rdi)			/* return address */
	UNWIND_HINT_FUNC

	movq	(%rdi), %rdi
540 541
1:

542 543
	PUSH_AND_CLEAR_REGS save_ret=1
	ENCODE_FRAME_POINTER 8
544

545
	testb	$3, CS+8(%rsp)
546
	jz	1f
547 548

	/*
549 550
	 * IRQ from user mode.
	 *
551 552
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
553
	 * (which can take locks).  Since TRACE_IRQS_OFF is idempotent,
554 555 556 557 558 559
	 * the simplest way to handle it is to just call it twice if
	 * we enter from user mode.  There's no reason to optimize this since
	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
	 */
	TRACE_IRQS_OFF

560
	CALL_enter_from_user_mode
561

562
1:
563
	ENTER_IRQ_STACK old_rsp=%rdi save_ret=1
564 565 566
	/* We entered an interrupt context - irqs are off: */
	TRACE_IRQS_OFF

567 568
	ret
END(interrupt_entry)
569
_ASM_NOKPROBE(interrupt_entry)
570

571 572

/* Interrupt entry/exit. */
L
Linus Torvalds 已提交
573

574 575 576 577
	/*
	 * The interrupt stubs push (~vector+0x80) onto the stack and
	 * then jump to common_interrupt.
	 */
578 579
	.p2align CONFIG_X86_L1_CACHE_SHIFT
common_interrupt:
580
	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
581 582 583
	call	interrupt_entry
	UNWIND_HINT_REGS indirect=1
	call	do_IRQ	/* rdi points to pt_regs */
584
	/* 0(%rsp): old RSP */
585
ret_from_intr:
586
	DISABLE_INTERRUPTS(CLBR_ANY)
587
	TRACE_IRQS_OFF
588

589
	LEAVE_IRQ_STACK
590

591
	testb	$3, CS(%rsp)
592
	jz	retint_kernel
593

594 595 596 597
	/* Interrupt came from user space */
GLOBAL(retint_user)
	mov	%rsp,%rdi
	call	prepare_exit_to_usermode
598
	TRACE_IRQS_IRETQ
599

600
GLOBAL(swapgs_restore_regs_and_return_to_usermode)
601 602
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates user mode. */
603
	testb	$3, CS(%rsp)
604 605 606 607
	jnz	1f
	ud2
1:
#endif
608
	POP_REGS pop_rdi=0
609 610 611 612 613 614

	/*
	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
	 * Save old stack pointer and switch to trampoline stack.
	 */
	movq	%rsp, %rdi
615
	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630

	/* Copy the IRET frame to the trampoline stack. */
	pushq	6*8(%rdi)	/* SS */
	pushq	5*8(%rdi)	/* RSP */
	pushq	4*8(%rdi)	/* EFLAGS */
	pushq	3*8(%rdi)	/* CS */
	pushq	2*8(%rdi)	/* RIP */

	/* Push user RDI on the trampoline stack. */
	pushq	(%rdi)

	/*
	 * We are on the trampoline stack.  All regs except RDI are live.
	 * We can do future final exit work right here.
	 */
631
	STACKLEAK_ERASE_NOCLOBBER
632

633
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
634

635 636 637
	/* Restore RDI. */
	popq	%rdi
	SWAPGS
638 639
	INTERRUPT_RETURN

640

641
/* Returning to kernel space */
642
retint_kernel:
643 644 645
#ifdef CONFIG_PREEMPT
	/* Interrupts are off */
	/* Check if we need preemption */
646
	btl	$9, EFLAGS(%rsp)		/* were interrupts off? */
647
	jnc	1f
648
0:	cmpl	$0, PER_CPU_VAR(__preempt_count)
649
	jnz	1f
650
	call	preempt_schedule_irq
651
	jmp	0b
652
1:
653
#endif
654 655 656 657
	/*
	 * The iretq could re-enable interrupts:
	 */
	TRACE_IRQS_IRETQ
658

659 660 661
GLOBAL(restore_regs_and_return_to_kernel)
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates kernel mode. */
662
	testb	$3, CS(%rsp)
663 664 665 666
	jz	1f
	ud2
1:
#endif
667
	POP_REGS
668
	addq	$8, %rsp	/* skip regs->orig_ax */
669 670 671 672
	/*
	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
	 * when returning from IPI handler.
	 */
673 674 675
	INTERRUPT_RETURN

ENTRY(native_iret)
676
	UNWIND_HINT_IRET_REGS
677 678 679 680
	/*
	 * Are we returning to a stack segment from the LDT?  Note: in
	 * 64-bit mode SS:RSP on the exception stack is always valid.
	 */
681
#ifdef CONFIG_X86_ESPFIX64
682 683
	testb	$4, (SS-RIP)(%rsp)
	jnz	native_irq_return_ldt
684
#endif
685

686
.global native_irq_return_iret
687
native_irq_return_iret:
A
Andy Lutomirski 已提交
688 689 690 691 692 693
	/*
	 * This may fault.  Non-paranoid faults on return to userspace are
	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
	 * Double-faults due to espfix64 are handled in do_double_fault.
	 * Other faults here are fatal.
	 */
L
Linus Torvalds 已提交
694
	iretq
I
Ingo Molnar 已提交
695

696
#ifdef CONFIG_X86_ESPFIX64
697
native_irq_return_ldt:
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
	/*
	 * We are running with user GSBASE.  All GPRs contain their user
	 * values.  We have a percpu ESPFIX stack that is eight slots
	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
	 * of the ESPFIX stack.
	 *
	 * We clobber RAX and RDI in this code.  We stash RDI on the
	 * normal stack and RAX on the ESPFIX stack.
	 *
	 * The ESPFIX stack layout we set up looks like this:
	 *
	 * --- top of ESPFIX stack ---
	 * SS
	 * RSP
	 * RFLAGS
	 * CS
	 * RIP  <-- RSP points here when we're done
	 * RAX  <-- espfix_waddr points here
	 * --- bottom of ESPFIX stack ---
	 */

	pushq	%rdi				/* Stash user RDI */
720 721 722
	SWAPGS					/* to kernel GS */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi	/* to kernel CR3 */

723
	movq	PER_CPU_VAR(espfix_waddr), %rdi
724 725
	movq	%rax, (0*8)(%rdi)		/* user RAX */
	movq	(1*8)(%rsp), %rax		/* user RIP */
726
	movq	%rax, (1*8)(%rdi)
727
	movq	(2*8)(%rsp), %rax		/* user CS */
728
	movq	%rax, (2*8)(%rdi)
729
	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
730
	movq	%rax, (3*8)(%rdi)
731
	movq	(5*8)(%rsp), %rax		/* user SS */
732
	movq	%rax, (5*8)(%rdi)
733
	movq	(4*8)(%rsp), %rax		/* user RSP */
734
	movq	%rax, (4*8)(%rdi)
735 736 737 738 739 740 741 742 743 744 745 746
	/* Now RAX == RSP. */

	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */

	/*
	 * espfix_stack[31:16] == 0.  The page tables are set up such that
	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
	 * the same page.  Set up RSP so that RSP[31:16] contains the
	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
	 * still points to an RO alias of the ESPFIX stack.
	 */
747
	orq	PER_CPU_VAR(espfix_stack), %rax
748

749
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
750 751 752
	SWAPGS					/* to user GS */
	popq	%rdi				/* Restore user RDI */

753
	movq	%rax, %rsp
754
	UNWIND_HINT_IRET_REGS offset=8
755 756 757 758 759 760 761 762 763 764 765 766

	/*
	 * At this point, we cannot write to the stack any more, but we can
	 * still read.
	 */
	popq	%rax				/* Restore user RAX */

	/*
	 * RSP now points to an ordinary IRET frame, except that the page
	 * is read-only and RSP[31:16] are preloaded with the userspace
	 * values.  We can now IRET back to userspace.
	 */
767
	jmp	native_irq_return_iret
768
#endif
769
END(common_interrupt)
770
_ASM_NOKPROBE(common_interrupt)
771

L
Linus Torvalds 已提交
772 773
/*
 * APIC interrupts.
774
 */
775
.macro apicinterrupt3 num sym do_sym
776
ENTRY(\sym)
777
	UNWIND_HINT_IRET_REGS
778
	pushq	$~(\num)
779
.Lcommon_\sym:
780 781 782
	call	interrupt_entry
	UNWIND_HINT_REGS indirect=1
	call	\do_sym	/* rdi points to pt_regs */
783
	jmp	ret_from_intr
784
END(\sym)
785
_ASM_NOKPROBE(\sym)
786
.endm
L
Linus Torvalds 已提交
787

788
/* Make sure APIC interrupt handlers end up in the irqentry section: */
789 790
#define PUSH_SECTION_IRQENTRY	.pushsection .irqentry.text, "ax"
#define POP_SECTION_IRQENTRY	.popsection
791

792
.macro apicinterrupt num sym do_sym
793
PUSH_SECTION_IRQENTRY
794
apicinterrupt3 \num \sym \do_sym
795
POP_SECTION_IRQENTRY
796 797
.endm

798
#ifdef CONFIG_SMP
799 800
apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
801
#endif
L
Linus Torvalds 已提交
802

N
Nick Piggin 已提交
803
#ifdef CONFIG_X86_UV
804
apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
N
Nick Piggin 已提交
805
#endif
806 807 808

apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
809

810
#ifdef CONFIG_HAVE_KVM
811 812
apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
813
apicinterrupt3 POSTED_INTR_NESTED_VECTOR	kvm_posted_intr_nested_ipi	smp_kvm_posted_intr_nested_ipi
814 815
#endif

816
#ifdef CONFIG_X86_MCE_THRESHOLD
817
apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
818 819
#endif

820
#ifdef CONFIG_X86_MCE_AMD
821
apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
822 823
#endif

824
#ifdef CONFIG_X86_THERMAL_VECTOR
825
apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
826
#endif
827

828
#ifdef CONFIG_SMP
829 830 831
apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
832
#endif
L
Linus Torvalds 已提交
833

834 835
apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
836

837
#ifdef CONFIG_IRQ_WORK
838
apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
I
Ingo Molnar 已提交
839 840
#endif

L
Linus Torvalds 已提交
841 842
/*
 * Exception entry points.
843
 */
844
#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + ((x) - 1) * 8)
845

846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
/**
 * idtentry - Generate an IDT entry stub
 * @sym:		Name of the generated entry point
 * @do_sym: 		C function to be called
 * @has_error_code: 	True if this IDT vector has an error code on the stack
 * @paranoid: 		non-zero means that this vector may be invoked from
 *			kernel mode with user GSBASE and/or user CR3.
 *			2 is special -- see below.
 * @shift_ist:		Set to an IST index if entries from kernel mode should
 *             		decrement the IST stack so that nested entries get a
 *			fresh stack.  (This is for #DB, which has a nasty habit
 *             		of recursing.)
 *
 * idtentry generates an IDT stub that sets up a usable kernel context,
 * creates struct pt_regs, and calls @do_sym.  The stub has the following
 * special behaviors:
 *
 * On an entry from user mode, the stub switches from the trampoline or
 * IST stack to the normal thread stack.  On an exit to user mode, the
 * normal exit-to-usermode path is invoked.
 *
 * On an exit to kernel mode, if @paranoid == 0, we check for preemption,
 * whereas we omit the preemption check if @paranoid != 0.  This is purely
 * because the implementation is simpler this way.  The kernel only needs
 * to check for asynchronous kernel preemption when IRQ handlers return.
 *
 * If @paranoid == 0, then the stub will handle IRET faults by pretending
 * that the fault came from user mode.  It will handle gs_change faults by
 * pretending that the fault happened with kernel GSBASE.  Since this handling
 * is omitted for @paranoid != 0, the #GP, #SS, and #NP stubs must have
 * @paranoid == 0.  This special handling will do the wrong thing for
 * espfix-induced #DF on IRET, so #DF must not use @paranoid == 0.
 *
 * @paranoid == 2 is special: the stub will never switch stacks.  This is for
 * #DF: if the thread stack is somehow unusable, we'll still get a useful OOPS.
 */
882
.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
883
ENTRY(\sym)
884
	UNWIND_HINT_IRET_REGS offset=\has_error_code*8
885

886 887 888 889 890
	/* Sanity check */
	.if \shift_ist != -1 && \paranoid == 0
	.error "using shift_ist requires paranoid=1"
	.endif

891
	ASM_CLAC
892

893
	.if \has_error_code == 0
894
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
895 896
	.endif

897
	.if \paranoid == 1
898
	testb	$3, CS-ORIG_RAX(%rsp)		/* If coming from userspace, switch stacks */
899
	jnz	.Lfrom_usermode_switch_stack_\@
900
	.endif
901 902

	.if \paranoid
903
	call	paranoid_entry
904
	.else
905
	call	error_entry
906
	.endif
907
	UNWIND_HINT_REGS
908
	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
909 910

	.if \paranoid
911
	.if \shift_ist != -1
912
	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
913
	.else
914
	TRACE_IRQS_OFF
915
	.endif
916
	.endif
917

918
	movq	%rsp, %rdi			/* pt_regs pointer */
919 920

	.if \has_error_code
921 922
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
923
	.else
924
	xorl	%esi, %esi			/* no error code */
925 926
	.endif

927
	.if \shift_ist != -1
928
	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
929 930
	.endif

931
	call	\do_sym
932

933
	.if \shift_ist != -1
934
	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
935 936
	.endif

937
	/* these procedures expect "no swapgs" flag in ebx */
938
	.if \paranoid
939
	jmp	paranoid_exit
940
	.else
941
	jmp	error_exit
942 943
	.endif

944
	.if \paranoid == 1
945
	/*
946
	 * Entry from userspace.  Switch stacks and treat it
947 948 949
	 * as a normal entry.  This means that paranoid handlers
	 * run in real process context if user_mode(regs).
	 */
950
.Lfrom_usermode_switch_stack_\@:
951
	call	error_entry
952

953
	movq	%rsp, %rdi			/* pt_regs pointer */
954 955

	.if \has_error_code
956 957
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
958
	.else
959
	xorl	%esi, %esi			/* no error code */
960 961
	.endif

962
	call	\do_sym
963

964
	jmp	error_exit
965
	.endif
966
_ASM_NOKPROBE(\sym)
967
END(\sym)
968
.endm
969

970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
idtentry divide_error			do_divide_error			has_error_code=0
idtentry overflow			do_overflow			has_error_code=0
idtentry bounds				do_bounds			has_error_code=0
idtentry invalid_op			do_invalid_op			has_error_code=0
idtentry device_not_available		do_device_not_available		has_error_code=0
idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
idtentry segment_not_present		do_segment_not_present		has_error_code=1
idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
idtentry alignment_check		do_alignment_check		has_error_code=1
idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0


	/*
	 * Reload gs selector with exception handling
	 * edi:  new selector
	 */
989
ENTRY(native_load_gs_index)
990
	FRAME_BEGIN
991
	pushfq
992
	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
993
	TRACE_IRQS_OFF
994
	SWAPGS
995
.Lgs_change:
996
	movl	%edi, %gs
997
2:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
998
	SWAPGS
999
	TRACE_IRQS_FLAGS (%rsp)
1000
	popfq
1001
	FRAME_END
1002
	ret
1003
ENDPROC(native_load_gs_index)
1004
EXPORT_SYMBOL(native_load_gs_index)
1005

1006
	_ASM_EXTABLE(.Lgs_change, bad_gs)
1007
	.section .fixup, "ax"
L
Linus Torvalds 已提交
1008
	/* running with kernelgs */
1009
bad_gs:
1010
	SWAPGS					/* switch back to user gs */
1011 1012 1013 1014 1015 1016
.macro ZAP_GS
	/* This can't be a string because the preprocessor needs to see it. */
	movl $__USER_DS, %eax
	movl %eax, %gs
.endm
	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
1017 1018 1019
	xorl	%eax, %eax
	movl	%eax, %gs
	jmp	2b
1020
	.previous
1021

1022
/* Call softirq on interrupt stack. Interrupts are off. */
1023
ENTRY(do_softirq_own_stack)
1024 1025
	pushq	%rbp
	mov	%rsp, %rbp
1026
	ENTER_IRQ_STACK regs=0 old_rsp=%r11
1027
	call	__do_softirq
1028
	LEAVE_IRQ_STACK regs=0
1029
	leaveq
1030
	ret
1031
ENDPROC(do_softirq_own_stack)
1032

1033
#ifdef CONFIG_XEN_PV
1034
idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
1035 1036

/*
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
 * A note on the "critical region" in our callback handler.
 * We want to avoid stacking callback handlers due to events occurring
 * during handling of the last event. To do this, we keep events disabled
 * until we've done all processing. HOWEVER, we must enable events before
 * popping the stack frame (can't be done atomically) and so it would still
 * be possible to get enough handler activations to overflow the stack.
 * Although unlikely, bugs of that kind are hard to track down, so we'd
 * like to avoid the possibility.
 * So, on entry to the handler we detect whether we interrupted an
 * existing activation in its critical region -- if so, we pop the current
 * activation and restart the handler using the previous one.
 */
1049 1050
ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */

1051 1052 1053 1054
/*
 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
 * see the correct pointer to the pt_regs
 */
1055
	UNWIND_HINT_FUNC
1056
	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
1057
	UNWIND_HINT_REGS
1058 1059

	ENTER_IRQ_STACK old_rsp=%r10
1060
	call	xen_evtchn_do_upcall
1061 1062
	LEAVE_IRQ_STACK

1063
#ifndef CONFIG_PREEMPT
1064
	call	xen_maybe_preempt_hcall
1065
#endif
1066
	jmp	error_exit
1067
END(xen_do_hypervisor_callback)
1068 1069

/*
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
 * Hypervisor uses this for application faults while it executes.
 * We get here for two reasons:
 *  1. Fault while reloading DS, ES, FS or GS
 *  2. Fault while executing IRET
 * Category 1 we do not need to fix up as Xen has already reloaded all segment
 * registers that could be reloaded and zeroed the others.
 * Category 2 we fix up by killing the current process. We cannot use the
 * normal Linux return path in this case because if we use the IRET hypercall
 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 * We distinguish between categories by comparing each saved segment register
 * with its current contents: any discrepancy means we in category 1.
 */
1082
ENTRY(xen_failsafe_callback)
1083
	UNWIND_HINT_EMPTY
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
	movl	%ds, %ecx
	cmpw	%cx, 0x10(%rsp)
	jne	1f
	movl	%es, %ecx
	cmpw	%cx, 0x18(%rsp)
	jne	1f
	movl	%fs, %ecx
	cmpw	%cx, 0x20(%rsp)
	jne	1f
	movl	%gs, %ecx
	cmpw	%cx, 0x28(%rsp)
	jne	1f
1096
	/* All segments match their saved values => Category 2 (Bad IRET). */
1097 1098 1099 1100
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$0				/* RIP */
1101
	UNWIND_HINT_IRET_REGS offset=8
1102
	jmp	general_protection
1103
1:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1104 1105 1106
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
1107
	UNWIND_HINT_IRET_REGS
1108
	pushq	$-1 /* orig_ax = -1 => not a system call */
1109
	PUSH_AND_CLEAR_REGS
1110
	ENCODE_FRAME_POINTER
1111
	jmp	error_exit
1112
END(xen_failsafe_callback)
1113
#endif /* CONFIG_XEN_PV */
1114

1115
#ifdef CONFIG_XEN_PVHVM
1116
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1117
	xen_hvm_callback_vector xen_evtchn_do_upcall
1118
#endif
1119

1120

1121
#if IS_ENABLED(CONFIG_HYPERV)
1122
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1123
	hyperv_callback_vector hyperv_vector_handler
1124 1125 1126

apicinterrupt3 HYPERV_REENLIGHTENMENT_VECTOR \
	hyperv_reenlightenment_vector hyperv_reenlightenment_intr
1127 1128 1129

apicinterrupt3 HYPERV_STIMER0_VECTOR \
	hv_stimer0_callback_vector hv_stimer0_vector_handler
1130 1131
#endif /* CONFIG_HYPERV */

1132
idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
1133
idtentry int3			do_int3			has_error_code=0
1134 1135
idtentry stack_segment		do_stack_segment	has_error_code=1

1136
#ifdef CONFIG_XEN_PV
1137
idtentry xennmi			do_nmi			has_error_code=0
1138 1139
idtentry xendebug		do_debug		has_error_code=0
idtentry xenint3		do_int3			has_error_code=0
1140
#endif
1141 1142

idtentry general_protection	do_general_protection	has_error_code=1
1143
idtentry page_fault		do_page_fault		has_error_code=1
1144

G
Gleb Natapov 已提交
1145
#ifdef CONFIG_KVM_GUEST
1146
idtentry async_page_fault	do_async_page_fault	has_error_code=1
G
Gleb Natapov 已提交
1147
#endif
1148

1149
#ifdef CONFIG_X86_MCE
1150
idtentry machine_check		do_mce			has_error_code=0	paranoid=1
1151 1152
#endif

1153
/*
1154
 * Save all registers in pt_regs, and switch gs if needed.
1155 1156 1157 1158
 * Use slow, but surefire "are we in kernel?" check.
 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
 */
ENTRY(paranoid_entry)
1159
	UNWIND_HINT_FUNC
1160
	cld
1161 1162
	PUSH_AND_CLEAR_REGS save_ret=1
	ENCODE_FRAME_POINTER 8
1163 1164
	movl	$1, %ebx
	movl	$MSR_GS_BASE, %ecx
1165
	rdmsr
1166 1167
	testl	%edx, %edx
	js	1f				/* negative -> in kernel */
1168
	SWAPGS
1169
	xorl	%ebx, %ebx
1170 1171

1:
1172 1173
	/*
	 * Always stash CR3 in %r14.  This value will be restored,
1174 1175 1176
	 * verbatim, at exit.  Needed if paranoid_entry interrupted
	 * another entry that already switched to the user CR3 value
	 * but has not yet returned to userspace.
1177 1178 1179
	 *
	 * This is also why CS (stashed in the "iret frame" by the
	 * hardware at entry) can not be used: this may be a return
1180
	 * to kernel code, but with a user CR3 value.
1181
	 */
1182 1183 1184
	SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14

	ret
1185
END(paranoid_entry)
1186

1187 1188 1189 1190 1191 1192 1193 1194 1195
/*
 * "Paranoid" exit path from exception stack.  This is invoked
 * only on return from non-NMI IST interrupts that came
 * from kernel space.
 *
 * We may be returning to very strange contexts (e.g. very early
 * in syscall entry), so checking for preemption here would
 * be complicated.  Fortunately, we there's no good reason
 * to try to handle preemption here.
1196 1197
 *
 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1198
 */
1199
ENTRY(paranoid_exit)
1200
	UNWIND_HINT_REGS
1201
	DISABLE_INTERRUPTS(CLBR_ANY)
1202
	TRACE_IRQS_OFF_DEBUG
1203
	testl	%ebx, %ebx			/* swapgs needed? */
1204
	jnz	.Lparanoid_exit_no_swapgs
1205
	TRACE_IRQS_IRETQ
1206
	/* Always restore stashed CR3 value (see paranoid_entry) */
P
Peter Zijlstra 已提交
1207
	RESTORE_CR3	scratch_reg=%rbx save_reg=%r14
1208
	SWAPGS_UNSAFE_STACK
1209 1210
	jmp	.Lparanoid_exit_restore
.Lparanoid_exit_no_swapgs:
1211
	TRACE_IRQS_IRETQ_DEBUG
1212
	/* Always restore stashed CR3 value (see paranoid_entry) */
1213
	RESTORE_CR3	scratch_reg=%rbx save_reg=%r14
1214 1215
.Lparanoid_exit_restore:
	jmp restore_regs_and_return_to_kernel
1216 1217 1218
END(paranoid_exit)

/*
1219
 * Save all registers in pt_regs, and switch GS if needed.
1220 1221
 */
ENTRY(error_entry)
1222
	UNWIND_HINT_FUNC
1223
	cld
1224 1225
	PUSH_AND_CLEAR_REGS save_ret=1
	ENCODE_FRAME_POINTER 8
1226
	testb	$3, CS+8(%rsp)
1227
	jz	.Lerror_kernelspace
1228

1229 1230 1231 1232
	/*
	 * We entered from user mode or we're pretending to have entered
	 * from user mode due to an IRET fault.
	 */
1233
	SWAPGS
1234 1235
	/* We have user CR3.  Change to kernel CR3. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1236

1237
.Lerror_entry_from_usermode_after_swapgs:
1238 1239 1240 1241 1242 1243 1244 1245
	/* Put us onto the real thread stack. */
	popq	%r12				/* save return addr in %12 */
	movq	%rsp, %rdi			/* arg0 = pt_regs pointer */
	call	sync_regs
	movq	%rax, %rsp			/* switch stack */
	ENCODE_FRAME_POINTER
	pushq	%r12

1246 1247 1248 1249 1250 1251
	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).
	 */
	TRACE_IRQS_OFF
1252
	CALL_enter_from_user_mode
1253
	ret
1254

1255
.Lerror_entry_done:
1256 1257 1258
	TRACE_IRQS_OFF
	ret

1259 1260 1261 1262 1263 1264
	/*
	 * There are two places in the kernel that can potentially fault with
	 * usergs. Handle them here.  B stepping K8s sometimes report a
	 * truncated RIP for IRET exceptions returning to compat mode. Check
	 * for these here too.
	 */
1265
.Lerror_kernelspace:
1266 1267
	leaq	native_irq_return_iret(%rip), %rcx
	cmpq	%rcx, RIP+8(%rsp)
1268
	je	.Lerror_bad_iret
1269 1270
	movl	%ecx, %eax			/* zero extend */
	cmpq	%rax, RIP+8(%rsp)
1271
	je	.Lbstep_iret
1272
	cmpq	$.Lgs_change, RIP+8(%rsp)
1273
	jne	.Lerror_entry_done
1274 1275

	/*
1276
	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1277
	 * gsbase and proceed.  We'll fix up the exception and land in
1278
	 * .Lgs_change's error handler with kernel gsbase.
1279
	 */
1280
	SWAPGS
1281
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1282
	jmp .Lerror_entry_done
1283

1284
.Lbstep_iret:
1285
	/* Fix truncated RIP */
1286
	movq	%rcx, RIP+8(%rsp)
A
Andy Lutomirski 已提交
1287 1288
	/* fall through */

1289
.Lerror_bad_iret:
1290
	/*
1291 1292
	 * We came from an IRET to user mode, so we have user
	 * gsbase and CR3.  Switch to kernel gsbase and CR3:
1293
	 */
A
Andy Lutomirski 已提交
1294
	SWAPGS
1295
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1296 1297 1298

	/*
	 * Pretend that the exception came from user mode: set up pt_regs
1299
	 * as if we faulted immediately after IRET.
1300
	 */
1301 1302 1303
	mov	%rsp, %rdi
	call	fixup_bad_iret
	mov	%rax, %rsp
1304
	jmp	.Lerror_entry_from_usermode_after_swapgs
1305 1306 1307
END(error_entry)

ENTRY(error_exit)
1308
	UNWIND_HINT_REGS
1309
	DISABLE_INTERRUPTS(CLBR_ANY)
1310
	TRACE_IRQS_OFF
1311 1312
	testb	$3, CS(%rsp)
	jz	retint_kernel
1313
	jmp	retint_user
1314 1315
END(error_exit)

1316 1317 1318
/*
 * Runs on exception stack.  Xen PV does not go through this path at all,
 * so we can use real assembly here.
1319 1320 1321 1322
 *
 * Registers:
 *	%r14: Used to save/restore the CR3 of the interrupted context
 *	      when PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1323
 */
1324
ENTRY(nmi)
1325
	UNWIND_HINT_IRET_REGS
1326

1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
	/*
	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
	 * the iretq it performs will take us out of NMI context.
	 * This means that we can have nested NMIs where the next
	 * NMI is using the top of the stack of the previous NMI. We
	 * can't let it execute because the nested NMI will corrupt the
	 * stack of the previous NMI. NMI handlers are not re-entrant
	 * anyway.
	 *
	 * To handle this case we do the following:
	 *  Check the a special location on the stack that contains
	 *  a variable that is set when NMIs are executing.
	 *  The interrupted task's stack is also checked to see if it
	 *  is an NMI stack.
	 *  If the variable is not set and the stack is not the NMI
	 *  stack then:
	 *    o Set the special variable on the stack
1344 1345 1346
	 *    o Copy the interrupt frame into an "outermost" location on the
	 *      stack
	 *    o Copy the interrupt frame into an "iret" location on the stack
1347 1348
	 *    o Continue processing the NMI
	 *  If the variable is set or the previous stack is the NMI stack:
1349
	 *    o Modify the "iret" location to jump to the repeat_nmi
1350 1351 1352 1353 1354 1355 1356 1357
	 *    o return back to the first NMI
	 *
	 * Now on exit of the first NMI, we first clear the stack variable
	 * The NMI stack will tell any nested NMIs at that point that it is
	 * nested. Then we pop the stack normally with iret, and if there was
	 * a nested NMI that updated the copy interrupt stack frame, a
	 * jump will be made to the repeat_nmi code that will handle the second
	 * NMI.
1358 1359 1360 1361 1362
	 *
	 * However, espfix prevents us from directly returning to userspace
	 * with a single IRET instruction.  Similarly, IRET to user mode
	 * can fault.  We therefore handle NMIs from user space like
	 * other IST entries.
1363 1364
	 */

1365 1366
	ASM_CLAC

1367
	/* Use %rdx as our temp variable throughout */
1368
	pushq	%rdx
1369

1370 1371 1372 1373 1374 1375 1376 1377 1378
	testb	$3, CS-RIP+8(%rsp)
	jz	.Lnmi_from_kernel

	/*
	 * NMI from user mode.  We need to run on the thread stack, but we
	 * can't go through the normal entry paths: NMIs are masked, and
	 * we don't want to enable interrupts, because then we'll end
	 * up in an awkward situation in which IRQs are on but NMIs
	 * are off.
1379 1380 1381
	 *
	 * We also must not push anything to the stack before switching
	 * stacks lest we corrupt the "NMI executing" variable.
1382 1383
	 */

1384
	swapgs
1385
	cld
1386
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1387 1388
	movq	%rsp, %rdx
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1389
	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1390 1391 1392 1393 1394
	pushq	5*8(%rdx)	/* pt_regs->ss */
	pushq	4*8(%rdx)	/* pt_regs->rsp */
	pushq	3*8(%rdx)	/* pt_regs->flags */
	pushq	2*8(%rdx)	/* pt_regs->cs */
	pushq	1*8(%rdx)	/* pt_regs->rip */
1395
	UNWIND_HINT_IRET_REGS
1396
	pushq   $-1		/* pt_regs->orig_ax */
1397
	PUSH_AND_CLEAR_REGS rdx=(%rdx)
1398
	ENCODE_FRAME_POINTER
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409

	/*
	 * At this point we no longer need to worry about stack damage
	 * due to nesting -- we're on the normal thread stack and we're
	 * done with the NMI stack.
	 */

	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi

1410
	/*
1411
	 * Return back to user mode.  We must *not* do the normal exit
1412
	 * work, because we don't want to enable interrupts.
1413
	 */
1414
	jmp	swapgs_restore_regs_and_return_to_usermode
1415

1416
.Lnmi_from_kernel:
1417
	/*
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
	 * Here's what our stack frame will look like:
	 * +---------------------------------------------------------+
	 * | original SS                                             |
	 * | original Return RSP                                     |
	 * | original RFLAGS                                         |
	 * | original CS                                             |
	 * | original RIP                                            |
	 * +---------------------------------------------------------+
	 * | temp storage for rdx                                    |
	 * +---------------------------------------------------------+
	 * | "NMI executing" variable                                |
	 * +---------------------------------------------------------+
	 * | iret SS          } Copied from "outermost" frame        |
	 * | iret Return RSP  } on each loop iteration; overwritten  |
	 * | iret RFLAGS      } by a nested NMI to force another     |
	 * | iret CS          } iteration if needed.                 |
	 * | iret RIP         }                                      |
	 * +---------------------------------------------------------+
	 * | outermost SS          } initialized in first_nmi;       |
	 * | outermost Return RSP  } will not be changed before      |
	 * | outermost RFLAGS      } NMI processing is done.         |
	 * | outermost CS          } Copied to "iret" frame on each  |
	 * | outermost RIP         } iteration.                      |
	 * +---------------------------------------------------------+
	 * | pt_regs                                                 |
	 * +---------------------------------------------------------+
	 *
	 * The "original" frame is used by hardware.  Before re-enabling
	 * NMIs, we need to be done with it, and we need to leave enough
	 * space for the asm code here.
	 *
	 * We return by executing IRET while RSP points to the "iret" frame.
	 * That will either return for real or it will loop back into NMI
	 * processing.
	 *
	 * The "outermost" frame is copied to the "iret" frame on each
	 * iteration of the loop, so each iteration starts with the "iret"
	 * frame pointing to the final return target.
	 */

1458
	/*
1459 1460
	 * Determine whether we're a nested NMI.
	 *
1461 1462 1463 1464 1465 1466
	 * If we interrupted kernel code between repeat_nmi and
	 * end_repeat_nmi, then we are a nested NMI.  We must not
	 * modify the "iret" frame because it's being written by
	 * the outer NMI.  That's okay; the outer NMI handler is
	 * about to about to call do_nmi anyway, so we can just
	 * resume the outer NMI.
1467
	 */
1468 1469 1470 1471 1472 1473 1474 1475

	movq	$repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	1f
	movq	$end_repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	nested_nmi_out
1:
1476

1477
	/*
1478
	 * Now check "NMI executing".  If it's set, then we're nested.
1479 1480
	 * This will not detect if we interrupted an outer NMI just
	 * before IRET.
1481
	 */
1482 1483
	cmpl	$1, -8(%rsp)
	je	nested_nmi
1484 1485

	/*
1486 1487
	 * Now test if the previous stack was an NMI stack.  This covers
	 * the case where we interrupt an outer NMI after it clears
1488 1489 1490 1491 1492 1493 1494 1495
	 * "NMI executing" but before IRET.  We need to be careful, though:
	 * there is one case in which RSP could point to the NMI stack
	 * despite there being no NMI active: naughty userspace controls
	 * RSP at the very beginning of the SYSCALL targets.  We can
	 * pull a fast one on naughty userspace, though: we program
	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
	 * if it controls the kernel's RSP.  We set DF before we clear
	 * "NMI executing".
1496
	 */
1497 1498 1499 1500 1501
	lea	6*8(%rsp), %rdx
	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
	cmpq	%rdx, 4*8(%rsp)
	/* If the stack pointer is above the NMI stack, this is a normal NMI */
	ja	first_nmi
1502

1503 1504 1505 1506
	subq	$EXCEPTION_STKSZ, %rdx
	cmpq	%rdx, 4*8(%rsp)
	/* If it is below the NMI stack, it is a normal NMI */
	jb	first_nmi
1507 1508 1509 1510 1511 1512 1513

	/* Ah, it is within the NMI stack. */

	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
	jz	first_nmi	/* RSP was user controlled. */

	/* This is a nested NMI. */
1514

1515 1516
nested_nmi:
	/*
1517 1518
	 * Modify the "iret" frame to point to repeat_nmi, forcing another
	 * iteration of NMI handling.
1519
	 */
1520
	subq	$8, %rsp
1521 1522 1523
	leaq	-10*8(%rsp), %rdx
	pushq	$__KERNEL_DS
	pushq	%rdx
1524
	pushfq
1525 1526
	pushq	$__KERNEL_CS
	pushq	$repeat_nmi
1527 1528

	/* Put stack back */
1529
	addq	$(6*8), %rsp
1530 1531

nested_nmi_out:
1532
	popq	%rdx
1533

1534
	/* We are returning to kernel mode, so this cannot result in a fault. */
1535
	iretq
1536 1537

first_nmi:
1538
	/* Restore rdx. */
1539
	movq	(%rsp), %rdx
1540

1541 1542
	/* Make room for "NMI executing". */
	pushq	$0
1543

1544
	/* Leave room for the "iret" frame */
1545
	subq	$(5*8), %rsp
1546

1547
	/* Copy the "original" frame to the "outermost" frame */
1548
	.rept 5
1549
	pushq	11*8(%rsp)
1550
	.endr
1551
	UNWIND_HINT_IRET_REGS
1552

1553 1554
	/* Everything up to here is safe from nested NMIs */

1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * For ease of testing, unmask NMIs right away.  Disabled by
	 * default because IRET is very expensive.
	 */
	pushq	$0		/* SS */
	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
	addq	$8, (%rsp)	/* Fix up RSP */
	pushfq			/* RFLAGS */
	pushq	$__KERNEL_CS	/* CS */
	pushq	$1f		/* RIP */
1566
	iretq			/* continues at repeat_nmi below */
1567
	UNWIND_HINT_IRET_REGS
1568 1569 1570
1:
#endif

1571
repeat_nmi:
1572 1573 1574 1575 1576 1577 1578 1579
	/*
	 * If there was a nested NMI, the first NMI's iret will return
	 * here. But NMIs are still enabled and we can take another
	 * nested NMI. The nested NMI checks the interrupted RIP to see
	 * if it is between repeat_nmi and end_repeat_nmi, and if so
	 * it will just return, as we are about to repeat an NMI anyway.
	 * This makes it safe to copy to the stack frame that a nested
	 * NMI will update.
1580 1581 1582 1583
	 *
	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
	 * we're repeating an NMI, gsbase has the same value that it had on
	 * the first iteration.  paranoid_entry will load the kernel
1584 1585
	 * gsbase if needed before we call do_nmi.  "NMI executing"
	 * is zero.
1586
	 */
1587
	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1588

1589
	/*
1590 1591 1592
	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
	 * here must not modify the "iret" frame while we're writing to
	 * it or it will end up containing garbage.
1593
	 */
1594
	addq	$(10*8), %rsp
1595
	.rept 5
1596
	pushq	-6*8(%rsp)
1597
	.endr
1598
	subq	$(5*8), %rsp
1599
end_repeat_nmi:
1600 1601

	/*
1602 1603 1604
	 * Everything below this point can be preempted by a nested NMI.
	 * If this happens, then the inner NMI will change the "iret"
	 * frame to point back to repeat_nmi.
1605
	 */
1606
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1607

1608
	/*
1609
	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1610 1611 1612 1613 1614
	 * as we should not be calling schedule in NMI context.
	 * Even with normal interrupts enabled. An NMI should not be
	 * setting NEED_RESCHED or anything that normal interrupts and
	 * exceptions might do.
	 */
1615
	call	paranoid_entry
1616
	UNWIND_HINT_REGS
1617

1618
	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1619 1620 1621
	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi
1622

1623
	/* Always restore stashed CR3 value (see paranoid_entry) */
P
Peter Zijlstra 已提交
1624
	RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1625

1626 1627
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	nmi_restore
1628 1629 1630
nmi_swapgs:
	SWAPGS_UNSAFE_STACK
nmi_restore:
1631
	POP_REGS
1632

1633 1634 1635 1636 1637
	/*
	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
	 * at the "iret" frame.
	 */
	addq	$6*8, %rsp
1638

1639 1640 1641
	/*
	 * Clear "NMI executing".  Set DF first so that we can easily
	 * distinguish the remaining code between here and IRET from
1642 1643 1644 1645 1646
	 * the SYSCALL entry and exit paths.
	 *
	 * We arguably should just inspect RIP instead, but I (Andy) wrote
	 * this code when I had the misapprehension that Xen PV supported
	 * NMIs, and Xen PV would break that approach.
1647 1648 1649
	 */
	std
	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1650 1651

	/*
1652 1653 1654 1655
	 * iretq reads the "iret" frame and exits the NMI stack in a
	 * single instruction.  We are returning to kernel mode, so this
	 * cannot result in a fault.  Similarly, we don't need to worry
	 * about espfix64 on the way back to kernel mode.
1656
	 */
1657
	iretq
1658 1659 1660
END(nmi)

ENTRY(ignore_sysret)
1661
	UNWIND_HINT_EMPTY
1662
	mov	$-ENOSYS, %eax
1663 1664
	sysret
END(ignore_sysret)
1665 1666

ENTRY(rewind_stack_do_exit)
1667
	UNWIND_HINT_FUNC
1668 1669 1670 1671
	/* Prevent any naive code from trying to unwind to our caller. */
	xorl	%ebp, %ebp

	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1672 1673
	leaq	-PTREGS_SIZE(%rax), %rsp
	UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
1674 1675 1676

	call	do_exit
END(rewind_stack_do_exit)