arm.c 38.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */

7
#include <linux/bug.h>
8
#include <linux/cpu_pm.h>
9 10 11
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
12
#include <linux/list.h>
13 14 15 16 17
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
18
#include <linux/kvm.h>
19 20
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
21
#include <linux/sched/stat.h>
22
#include <trace/events/kvm.h>
23
#include <kvm/arm_pmu.h>
24
#include <kvm/arm_psci.h>
25 26 27 28

#define CREATE_TRACE_POINTS
#include "trace.h"

29
#include <linux/uaccess.h>
30 31
#include <asm/ptrace.h>
#include <asm/mman.h>
32
#include <asm/tlbflush.h>
33
#include <asm/cacheflush.h>
34
#include <asm/cpufeature.h>
35 36 37 38
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
39
#include <asm/kvm_emulate.h>
40
#include <asm/kvm_coproc.h>
41
#include <asm/sections.h>
42

43 44 45 46
#include <kvm/arm_hypercalls.h>
#include <kvm/arm_pmu.h>
#include <kvm/arm_psci.h>

47 48 49 50
#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

51
DEFINE_PER_CPU(kvm_host_data_t, kvm_host_data);
52 53
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);

54 55 56
/* Per-CPU variable containing the currently running vcpu. */
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);

57 58
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
59
static u32 kvm_next_vmid;
60
static DEFINE_SPINLOCK(kvm_vmid_lock);
61

62 63
static bool vgic_present;

64 65
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);

66 67
static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
{
68
	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
69 70
}

71 72
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

73 74 75 76 77 78
/**
 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
 * Must be called from non-preemptible context
 */
struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
{
79
	return __this_cpu_read(kvm_arm_running_vcpu);
80 81 82 83 84
}

/**
 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
 */
85
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
86 87 88 89
{
	return &kvm_arm_running_vcpu;
}

90 91 92 93 94 95 96 97 98 99
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

100
int kvm_arch_check_processor_compat(void)
101
{
102
	return 0;
103 104
}

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
			    struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
	case KVM_CAP_ARM_NISV_TO_USER:
		r = 0;
		kvm->arch.return_nisv_io_abort_to_user = true;
		break;
	default:
		r = -EINVAL;
		break;
	}

	return r;
}
125

126 127 128 129
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
130 131
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
132
	int ret, cpu;
133

134
	ret = kvm_arm_setup_stage2(kvm, type);
135 136
	if (ret)
		return ret;
137

138 139 140 141 142 143 144
	kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
	if (!kvm->arch.last_vcpu_ran)
		return -ENOMEM;

	for_each_possible_cpu(cpu)
		*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;

145 146 147 148
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

149
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
150 151 152
	if (ret)
		goto out_free_stage2_pgd;

153
	kvm_vgic_early_init(kvm);
154

155
	/* Mark the initial VMID generation invalid */
156
	kvm->arch.vmid.vmid_gen = 0;
157

158
	/* The maximum number of VCPUs is limited by the host's GIC model */
159 160
	kvm->arch.max_vcpus = vgic_present ?
				kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
161

162 163 164 165
	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
166 167
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;
168
	return ret;
169 170
}

171 172 173 174 175
int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

176
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
177 178 179 180 181
{
	return VM_FAULT_SIGBUS;
}


182 183 184 185
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
186 187 188 189
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

190 191
	kvm_vgic_destroy(kvm);

192 193 194
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;

195 196
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
197
			kvm_arch_vcpu_destroy(kvm->vcpus[i]);
198 199 200
			kvm->vcpus[i] = NULL;
		}
	}
201
	atomic_set(&kvm->online_vcpus, 0);
202 203
}

204
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
205 206 207
{
	int r;
	switch (ext) {
208
	case KVM_CAP_IRQCHIP:
209 210
		r = vgic_present;
		break;
211
	case KVM_CAP_IOEVENTFD:
212
	case KVM_CAP_DEVICE_CTRL:
213 214 215 216
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
217
	case KVM_CAP_ARM_PSCI:
218
	case KVM_CAP_ARM_PSCI_0_2:
219
	case KVM_CAP_READONLY_MEM:
220
	case KVM_CAP_MP_STATE:
221
	case KVM_CAP_IMMEDIATE_EXIT:
222
	case KVM_CAP_VCPU_EVENTS:
223
	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
224
	case KVM_CAP_ARM_NISV_TO_USER:
225
	case KVM_CAP_ARM_INJECT_EXT_DABT:
226 227
		r = 1;
		break;
228 229
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
230
		break;
231 232 233 234 235 236
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
237 238 239
	case KVM_CAP_MAX_VCPU_ID:
		r = KVM_MAX_VCPU_ID;
		break;
V
Vladimir Murzin 已提交
240 241 242 243 244 245
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
246 247 248 249 250 251 252
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
253
	default:
254
		r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
255 256 257 258 259 260 261 262 263 264 265
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
struct kvm *kvm_arch_alloc_vm(void)
{
	if (!has_vhe())
		return kzalloc(sizeof(struct kvm), GFP_KERNEL);

	return vzalloc(sizeof(struct kvm));
}

void kvm_arch_free_vm(struct kvm *kvm)
{
	if (!has_vhe())
		kfree(kvm);
	else
		vfree(kvm);
}
281

282 283 284 285 286 287 288 289 290 291 292
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
{
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
		return -EBUSY;

	if (id >= kvm->arch.max_vcpus)
		return -EINVAL;

	return 0;
}

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err;
	struct kvm_vcpu *vcpu;

	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

308
	err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
309 310 311
	if (err)
		goto vcpu_uninit;

312
	return vcpu;
313 314
vcpu_uninit:
	kvm_vcpu_uninit(vcpu);
315 316 317 318 319 320
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
	return ERR_PTR(err);
}

321
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
322 323 324
{
}

325
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
326
{
327 328 329
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

330
	kvm_mmu_free_memory_caches(vcpu);
331
	kvm_timer_vcpu_terminate(vcpu);
332
	kvm_pmu_vcpu_destroy(vcpu);
333
	kvm_vcpu_uninit(vcpu);
334
	kmem_cache_free(kvm_vcpu_cache, vcpu);
335 336 337 338
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
339
	return kvm_timer_is_pending(vcpu);
340 341
}

342 343
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
344 345 346
	/*
	 * If we're about to block (most likely because we've just hit a
	 * WFI), we need to sync back the state of the GIC CPU interface
347
	 * so that we have the latest PMR and group enables. This ensures
348 349
	 * that kvm_arch_vcpu_runnable has up-to-date data to decide
	 * whether we have pending interrupts.
350 351 352
	 *
	 * For the same reason, we want to tell GICv4 that we need
	 * doorbells to be signalled, should an interrupt become pending.
353 354 355
	 */
	preempt_disable();
	kvm_vgic_vmcr_sync(vcpu);
356
	vgic_v4_put(vcpu, true);
357
	preempt_enable();
358 359 360 361
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
362 363 364
	preempt_disable();
	vgic_v4_load(vcpu);
	preempt_enable();
365 366
}

367 368
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
369 370
	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
371
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
372

373 374 375
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

376 377
	kvm_pmu_vcpu_init(vcpu);

378 379
	kvm_arm_reset_debug_ptr(vcpu);

380 381
	kvm_arm_pvtime_vcpu_init(&vcpu->arch);

382
	return kvm_vgic_vcpu_init(vcpu);
383 384 385 386
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
387
	int *last_ran;
388
	kvm_host_data_t *cpu_data;
389 390

	last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
391
	cpu_data = this_cpu_ptr(&kvm_host_data);
392 393 394 395 396 397 398 399 400 401

	/*
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
		kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
		*last_ran = vcpu->vcpu_id;
	}

402
	vcpu->cpu = cpu;
403
	vcpu->arch.host_cpu_context = &cpu_data->host_ctxt;
404

405
	kvm_arm_set_running_vcpu(vcpu);
406
	kvm_vgic_load(vcpu);
407
	kvm_timer_vcpu_load(vcpu);
408
	kvm_vcpu_load_sysregs(vcpu);
409
	kvm_arch_vcpu_load_fp(vcpu);
410
	kvm_vcpu_pmu_restore_guest(vcpu);
411 412
	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
413 414

	if (single_task_running())
415
		vcpu_clear_wfx_traps(vcpu);
416
	else
417
		vcpu_set_wfx_traps(vcpu);
418 419

	vcpu_ptrauth_setup_lazy(vcpu);
420 421 422 423
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
424
	kvm_arch_vcpu_put_fp(vcpu);
425
	kvm_vcpu_put_sysregs(vcpu);
426
	kvm_timer_vcpu_put(vcpu);
427
	kvm_vgic_put(vcpu);
428
	kvm_vcpu_pmu_restore_host(vcpu);
429

430 431
	vcpu->cpu = -1;

432
	kvm_arm_set_running_vcpu(NULL);
433 434
}

A
Andrew Jones 已提交
435 436 437
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
438
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
439 440 441
	kvm_vcpu_kick(vcpu);
}

442 443 444
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
445
	if (vcpu->arch.power_off)
446 447 448 449 450
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
451 452 453 454 455
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
456 457
	int ret = 0;

458 459
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
460
		vcpu->arch.power_off = false;
461 462
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
463
		vcpu_power_off(vcpu);
464 465
		break;
	default:
466
		ret = -EINVAL;
467 468
	}

469
	return ret;
470 471
}

472 473 474 475 476 477 478
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
479 480
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
481 482
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
483
		&& !v->arch.power_off && !v->arch.pause);
484 485
}

486 487
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
488
	return vcpu_mode_priv(vcpu);
489 490
}

491 492 493 494 495 496 497
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
498
	preempt_disable();
499
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
500
	preempt_enable();
501 502 503 504
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
505
 * @vmid: The VMID to check
506 507 508
 *
 * return true if there is a new generation of VMIDs being used
 *
509 510 511 512 513
 * The hardware supports a limited set of values with the value zero reserved
 * for the host, so we check if an assigned value belongs to a previous
 * generation, which which requires us to assign a new value. If we're the
 * first to use a VMID for the new generation, we must flush necessary caches
 * and TLBs on all CPUs.
514
 */
515
static bool need_new_vmid_gen(struct kvm_vmid *vmid)
516
{
517 518
	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
519
	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
520 521 522
}

/**
523 524 525
 * update_vmid - Update the vmid with a valid VMID for the current generation
 * @kvm: The guest that struct vmid belongs to
 * @vmid: The stage-2 VMID information struct
526
 */
527
static void update_vmid(struct kvm_vmid *vmid)
528
{
529
	if (!need_new_vmid_gen(vmid))
530 531
		return;

532
	spin_lock(&kvm_vmid_lock);
533 534 535 536 537 538

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
539
	if (!need_new_vmid_gen(vmid)) {
540
		spin_unlock(&kvm_vmid_lock);
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

563
	vmid->vmid = kvm_next_vmid;
564
	kvm_next_vmid++;
565
	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
566

567
	smp_wmb();
568
	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
569 570

	spin_unlock(&kvm_vmid_lock);
571 572 573 574
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
575
	struct kvm *kvm = vcpu->kvm;
576
	int ret = 0;
577

578 579 580
	if (likely(vcpu->arch.has_run_once))
		return 0;

581 582 583
	if (!kvm_arm_vcpu_is_finalized(vcpu))
		return -EPERM;

584
	vcpu->arch.has_run_once = true;
585

586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
		if (unlikely(!vgic_ready(kvm))) {
			ret = kvm_vgic_map_resources(kvm);
			if (ret)
				return ret;
		}
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
602 603
	}

604
	ret = kvm_timer_enable(vcpu);
605 606 607 608
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
609

610
	return ret;
611 612
}

613 614 615 616 617
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

618
void kvm_arm_halt_guest(struct kvm *kvm)
619 620 621 622 623 624
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
625
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
626 627
}

628
void kvm_arm_resume_guest(struct kvm *kvm)
629 630 631 632
{
	int i;
	struct kvm_vcpu *vcpu;

633 634
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
635
		swake_up_one(kvm_arch_vcpu_wq(vcpu));
636
	}
637 638
}

639
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
640
{
641
	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
642

643
	swait_event_interruptible_exclusive(*wq, ((!vcpu->arch.power_off) &&
644
				       (!vcpu->arch.pause)));
645

A
Andrew Jones 已提交
646
	if (vcpu->arch.power_off || vcpu->arch.pause) {
647
		/* Awaken to handle a signal, request we sleep again later. */
648
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
649
	}
650 651 652 653 654 655 656

	/*
	 * Make sure we will observe a potential reset request if we've
	 * observed a change to the power state. Pairs with the smp_wmb() in
	 * kvm_psci_vcpu_on().
	 */
	smp_rmb();
657 658
}

659 660 661 662 663
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

664 665 666
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
667 668
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
669

670 671 672
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

673 674 675 676 677
		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
678 679 680

		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
			kvm_update_stolen_time(vcpu);
681 682 683
	}
}

684 685 686 687 688 689 690 691 692 693 694
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 * @run:	The kvm_run structure pointer used for userspace state exchange
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
695 696
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
697 698
	int ret;

699
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
700 701 702 703
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
704
		return ret;
705

C
Christoffer Dall 已提交
706 707 708
	if (run->exit_reason == KVM_EXIT_MMIO) {
		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
		if (ret)
709
			return ret;
C
Christoffer Dall 已提交
710 711
	}

712 713 714 715
	if (run->immediate_exit)
		return -EINTR;

	vcpu_load(vcpu);
716

717
	kvm_sigset_activate(vcpu);
718 719 720 721 722 723 724 725 726

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

727
		update_vmid(&vcpu->kvm->arch.vmid);
728

729 730
		check_vcpu_requests(vcpu);

731 732 733 734 735
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
736
		preempt_disable();
737

738
		kvm_pmu_flush_hwstate(vcpu);
739

740 741
		local_irq_disable();

742 743
		kvm_vgic_flush_hwstate(vcpu);

744
		/*
745 746
		 * Exit if we have a signal pending so that we can deliver the
		 * signal to user space.
747
		 */
748
		if (signal_pending(current)) {
749 750 751 752
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
		/*
		 * If we're using a userspace irqchip, then check if we need
		 * to tell a userspace irqchip about timer or PMU level
		 * changes and if so, exit to userspace (the actual level
		 * state gets updated in kvm_timer_update_run and
		 * kvm_pmu_update_run below).
		 */
		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
			if (kvm_timer_should_notify_user(vcpu) ||
			    kvm_pmu_should_notify_user(vcpu)) {
				ret = -EINTR;
				run->exit_reason = KVM_EXIT_INTR;
			}
		}

768 769 770 771
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
772
		 * Documentation/virt/kvm/vcpu-requests.rst
773 774 775
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

776
		if (ret <= 0 || need_new_vmid_gen(&vcpu->kvm->arch.vmid) ||
A
Andrew Jones 已提交
777
		    kvm_request_pending(vcpu)) {
778
			vcpu->mode = OUTSIDE_GUEST_MODE;
779
			isb(); /* Ensure work in x_flush_hwstate is committed */
780
			kvm_pmu_sync_hwstate(vcpu);
781 782
			if (static_branch_unlikely(&userspace_irqchip_in_use))
				kvm_timer_sync_hwstate(vcpu);
783
			kvm_vgic_sync_hwstate(vcpu);
784
			local_irq_enable();
785
			preempt_enable();
786 787 788
			continue;
		}

789 790
		kvm_arm_setup_debug(vcpu);

791 792 793 794
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
795
		guest_enter_irqoff();
796

797 798 799
		if (has_vhe()) {
			kvm_arm_vhe_guest_enter();
			ret = kvm_vcpu_run_vhe(vcpu);
800
			kvm_arm_vhe_guest_exit();
801
		} else {
802
			ret = kvm_call_hyp_ret(__kvm_vcpu_run_nvhe, vcpu);
803 804
		}

805
		vcpu->mode = OUTSIDE_GUEST_MODE;
806
		vcpu->stat.exits++;
807 808 809 810
		/*
		 * Back from guest
		 *************************************************************/

811 812
		kvm_arm_clear_debug(vcpu);

813
		/*
814
		 * We must sync the PMU state before the vgic state so
815 816 817 818 819
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

820 821 822 823 824
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
825 826
		kvm_vgic_sync_hwstate(vcpu);

827 828 829 830 831
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
832 833
		if (static_branch_unlikely(&userspace_irqchip_in_use))
			kvm_timer_sync_hwstate(vcpu);
834

835 836
		kvm_arch_vcpu_ctxsync_fp(vcpu);

837 838 839 840 841 842 843 844 845 846 847 848 849
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
850
		 * We do local_irq_enable() before calling guest_exit() so
851 852
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
853
		 * preemption after calling guest_exit() so that if we get
854 855 856
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
857
		guest_exit();
858
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
859

860 861 862
		/* Exit types that need handling before we can be preempted */
		handle_exit_early(vcpu, run, ret);

863 864
		preempt_enable();

865 866 867
		ret = handle_exit(vcpu, run, ret);
	}

868
	/* Tell userspace about in-kernel device output levels */
869 870 871 872
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
873

874 875
	kvm_sigset_deactivate(vcpu);

876
	vcpu_put(vcpu);
877
	return ret;
878 879
}

880 881 882 883
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
884
	unsigned long *hcr;
885 886 887 888 889 890

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

891
	hcr = vcpu_hcr(vcpu);
892
	if (level)
893
		set = test_and_set_bit(bit_index, hcr);
894
	else
895
		set = test_and_clear_bit(bit_index, hcr);
896 897 898 899 900 901 902 903 904 905 906 907

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
908
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
909 910 911 912 913
	kvm_vcpu_kick(vcpu);

	return 0;
}

914 915
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
916 917 918 919 920 921 922 923 924
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
925
	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
926 927 928 929
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

930 931 932 933
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
934

935 936
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
937

938 939 940
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
941

942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
959

960
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
961 962 963 964
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

965
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
966 967
			return -EINVAL;

968
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
969 970 971
	}

	return -EINVAL;
972 973
}

974 975 976
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
977
	unsigned int i, ret;
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
1012 1013 1014 1015 1016
	ret = kvm_reset_vcpu(vcpu);
	if (ret) {
		vcpu->arch.target = -1;
		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
	}
1017

1018 1019
	return ret;
}
1020

1021 1022 1023 1024 1025 1026 1027 1028 1029
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

1030 1031 1032 1033 1034 1035 1036
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
	 */
	if (vcpu->arch.has_run_once)
		stage2_unmap_vm(vcpu->kvm);

1037 1038
	vcpu_reset_hcr(vcpu);

1039
	/*
1040
	 * Handle the "start in power-off" case.
1041
	 */
1042
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
1043
		vcpu_power_off(vcpu);
1044
	else
1045
		vcpu->arch.power_off = false;
1046 1047 1048 1049

	return 0;
}

1050 1051 1052 1053 1054 1055 1056
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1057
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1071
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1085
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1086 1087 1088 1089 1090 1091
		break;
	}

	return ret;
}

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	memset(events, 0, sizeof(*events));

	return __kvm_arm_vcpu_get_events(vcpu, events);
}

static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	int i;

	/* check whether the reserved field is zero */
	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
		if (events->reserved[i])
			return -EINVAL;

	/* check whether the pad field is zero */
	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
		if (events->exception.pad[i])
			return -EINVAL;

	return __kvm_arm_vcpu_set_events(vcpu, events);
}

1118 1119 1120 1121 1122
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1123
	struct kvm_device_attr attr;
1124 1125
	long r;

1126 1127 1128 1129
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1130
		r = -EFAULT;
1131
		if (copy_from_user(&init, argp, sizeof(init)))
1132
			break;
1133

1134 1135
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1136 1137 1138 1139
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1140

1141
		r = -ENOEXEC;
1142
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1143
			break;
1144

1145
		r = -EFAULT;
1146
		if (copy_from_user(&reg, argp, sizeof(reg)))
1147 1148
			break;

1149
		if (ioctl == KVM_SET_ONE_REG)
1150
			r = kvm_arm_set_reg(vcpu, &reg);
1151
		else
1152 1153
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1154 1155 1156 1157 1158 1159
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1160
		r = -ENOEXEC;
1161
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1162
			break;
1163

1164 1165 1166 1167
		r = -EPERM;
		if (!kvm_arm_vcpu_is_finalized(vcpu))
			break;

1168
		r = -EFAULT;
1169
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1170
			break;
1171 1172 1173
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1174 1175
			break;
		r = -E2BIG;
1176
		if (n < reg_list.n)
1177 1178 1179
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1180
	}
1181
	case KVM_SET_DEVICE_ATTR: {
1182
		r = -EFAULT;
1183
		if (copy_from_user(&attr, argp, sizeof(attr)))
1184 1185 1186
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1187 1188
	}
	case KVM_GET_DEVICE_ATTR: {
1189
		r = -EFAULT;
1190
		if (copy_from_user(&attr, argp, sizeof(attr)))
1191 1192 1193
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1194 1195
	}
	case KVM_HAS_DEVICE_ATTR: {
1196
		r = -EFAULT;
1197
		if (copy_from_user(&attr, argp, sizeof(attr)))
1198 1199 1200
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1201
	}
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
	case KVM_GET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (kvm_arm_vcpu_get_events(vcpu, &events))
			return -EINVAL;

		if (copy_to_user(argp, &events, sizeof(events)))
			return -EFAULT;

		return 0;
	}
	case KVM_SET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (copy_from_user(&events, argp, sizeof(events)))
			return -EFAULT;

		return kvm_arm_vcpu_set_events(vcpu, &events);
	}
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
	case KVM_ARM_VCPU_FINALIZE: {
		int what;

		if (!kvm_vcpu_initialized(vcpu))
			return -ENOEXEC;

		if (get_user(what, (const int __user *)argp))
			return -EFAULT;

		return kvm_arm_vcpu_finalize(vcpu, what);
	}
1232
	default:
1233
		r = -EINVAL;
1234
	}
1235 1236

	return r;
1237 1238
}

1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
/**
 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 * @kvm: kvm instance
 * @log: slot id and address to which we copy the log
 *
 * Steps 1-4 below provide general overview of dirty page logging. See
 * kvm_get_dirty_log_protect() function description for additional details.
 *
 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 * always flush the TLB (step 4) even if previous step failed  and the dirty
 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 * writes will be marked dirty for next log read.
 *
 *   1. Take a snapshot of the bit and clear it if needed.
 *   2. Write protect the corresponding page.
 *   3. Copy the snapshot to the userspace.
 *   4. Flush TLB's if needed.
 */
1258 1259
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
1260
	bool flush = false;
1261 1262 1263 1264
	int r;

	mutex_lock(&kvm->slots_lock);

1265
	r = kvm_get_dirty_log_protect(kvm, log, &flush);
1266

1267
	if (flush)
1268 1269 1270 1271
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
1272 1273
}

1274 1275 1276
int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
{
	bool flush = false;
1277 1278 1279 1280
	int r;

	mutex_lock(&kvm->slots_lock);

1281
	r = kvm_clear_dirty_log_protect(kvm, log, &flush);
1282

1283
	if (flush)
1284 1285 1286 1287
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
1288 1289
}

1290 1291 1292
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1293 1294 1295 1296 1297 1298 1299 1300 1301
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1302 1303
		if (!vgic_present)
			return -ENXIO;
1304
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1305 1306 1307
	default:
		return -ENODEV;
	}
1308 1309
}

1310 1311 1312
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1313 1314 1315 1316
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1317
	case KVM_CREATE_IRQCHIP: {
1318
		int ret;
1319 1320
		if (!vgic_present)
			return -ENXIO;
1321 1322 1323 1324
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1325
	}
1326 1327 1328 1329 1330 1331 1332
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1346 1347 1348
	default:
		return -EINVAL;
	}
1349 1350
}

1351
static void cpu_init_hyp_mode(void)
1352
{
1353
	phys_addr_t pgd_ptr;
1354 1355 1356 1357 1358
	unsigned long hyp_stack_ptr;
	unsigned long stack_page;
	unsigned long vector_ptr;

	/* Switch from the HYP stub to our own HYP init vector */
1359
	__hyp_set_vectors(kvm_get_idmap_vector());
1360

1361
	pgd_ptr = kvm_mmu_get_httbr();
1362
	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1363
	hyp_stack_ptr = stack_page + PAGE_SIZE;
1364
	vector_ptr = (unsigned long)kvm_get_hyp_vector();
1365

M
Marc Zyngier 已提交
1366
	__cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1367
	__cpu_init_stage2();
1368 1369
}

1370 1371 1372 1373 1374 1375
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1376 1377
static void cpu_hyp_reinit(void)
{
1378 1379
	kvm_init_host_cpu_context(&this_cpu_ptr(&kvm_host_data)->host_ctxt);

1380 1381
	cpu_hyp_reset();

1382
	if (is_kernel_in_hyp_mode())
1383
		kvm_timer_init_vhe();
1384
	else
1385
		cpu_init_hyp_mode();
1386

1387
	kvm_arm_init_debug();
1388 1389 1390

	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1391 1392
}

1393 1394 1395
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1396
		cpu_hyp_reinit();
1397
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1398
	}
1399
}
1400

1401 1402 1403 1404
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1405 1406
}

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
	_kvm_arch_hardware_disable(NULL);
}
1419

1420 1421 1422 1423 1424
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1440
		return NOTIFY_OK;
1441
	case CPU_PM_ENTER_FAILED:
1442 1443 1444 1445
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1446

1447 1448 1449 1450 1451
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
1462 1463 1464 1465
static void __init hyp_cpu_pm_exit(void)
{
	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
}
1466 1467 1468 1469
#else
static inline void hyp_cpu_pm_init(void)
{
}
1470 1471 1472
static inline void hyp_cpu_pm_exit(void)
{
}
1473 1474
#endif

1475 1476
static int init_common_resources(void)
{
1477 1478
	kvm_set_ipa_limit();

1479 1480 1481 1482 1483
	return 0;
}

static int init_subsystems(void)
{
1484
	int err = 0;
1485

1486
	/*
1487
	 * Enable hardware so that subsystem initialisation can access EL2.
1488
	 */
1489
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1490 1491 1492 1493 1494 1495

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1507
		err = 0;
1508 1509
		break;
	default:
1510
		goto out;
1511 1512 1513 1514 1515
	}

	/*
	 * Init HYP architected timer support
	 */
1516
	err = kvm_timer_hyp_init(vgic_present);
1517
	if (err)
1518
		goto out;
1519 1520 1521 1522

	kvm_perf_init();
	kvm_coproc_table_init();

1523 1524 1525 1526
out:
	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);

	return err;
1527 1528 1529 1530 1531 1532 1533 1534 1535
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1536
	hyp_cpu_pm_exit();
1537 1538
}

1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1563
			goto out_err;
1564 1565 1566 1567 1568 1569 1570 1571
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
1572
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1573
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1574 1575
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1576
		goto out_err;
1577 1578
	}

1579
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1580
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1581 1582
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1583 1584 1585 1586 1587 1588 1589
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1590
		goto out_err;
1591 1592
	}

1593 1594 1595 1596 1597 1598
	err = kvm_map_vectors();
	if (err) {
		kvm_err("Cannot map vectors\n");
		goto out_err;
	}

1599 1600 1601 1602 1603
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1604 1605
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1606 1607 1608

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1609
			goto out_err;
1610 1611 1612 1613
		}
	}

	for_each_possible_cpu(cpu) {
1614
		kvm_host_data_t *cpu_data;
1615

1616 1617
		cpu_data = per_cpu_ptr(&kvm_host_data, cpu);
		err = create_hyp_mappings(cpu_data, cpu_data + 1, PAGE_HYP);
1618 1619

		if (err) {
1620
			kvm_err("Cannot map host CPU state: %d\n", err);
1621
			goto out_err;
1622 1623 1624
		}
	}

1625 1626
	err = hyp_map_aux_data();
	if (err)
1627
		kvm_err("Cannot map host auxiliary data: %d\n", err);
1628

1629
	return 0;
1630

1631
out_err:
1632
	teardown_hyp_mode();
1633 1634 1635 1636
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1637 1638 1639 1640 1641
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1666 1667
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
1668 1669 1670 1671 1672 1673 1674
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1675 1676
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

1695 1696 1697
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1698 1699
int kvm_arch_init(void *opaque)
{
1700
	int err;
1701
	int ret, cpu;
1702
	bool in_hyp_mode;
1703 1704

	if (!is_hyp_mode_available()) {
1705
		kvm_info("HYP mode not available\n");
1706 1707 1708
		return -ENODEV;
	}

1709 1710 1711 1712
	in_hyp_mode = is_kernel_in_hyp_mode();

	if (!in_hyp_mode && kvm_arch_requires_vhe()) {
		kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1713 1714 1715
		return -ENODEV;
	}

1716 1717 1718 1719 1720 1721
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1722 1723
	}

1724
	err = init_common_resources();
1725
	if (err)
1726
		return err;
1727

1728
	err = kvm_arm_init_sve();
1729 1730 1731
	if (err)
		return err;

1732
	if (!in_hyp_mode) {
1733
		err = init_hyp_mode();
1734 1735 1736
		if (err)
			goto out_err;
	}
1737

1738 1739 1740
	err = init_subsystems();
	if (err)
		goto out_hyp;
1741

1742 1743 1744 1745 1746
	if (in_hyp_mode)
		kvm_info("VHE mode initialized successfully\n");
	else
		kvm_info("Hyp mode initialized successfully\n");

1747
	return 0;
1748 1749

out_hyp:
1750 1751
	if (!in_hyp_mode)
		teardown_hyp_mode();
1752 1753
out_err:
	return err;
1754 1755 1756 1757 1758
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1759
	kvm_perf_teardown();
1760 1761 1762 1763 1764 1765 1766 1767 1768
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);